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ﬂ Introduction
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Four major methods of scientific research

Theoretical Science

LES
Computational Science Data Science
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Data Science

One big success:

Deep Learning

One big question:

Is “deep learning” really a science?
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Deep Concern

Deep learning is “alchemy”.

Are Al And Machine Learning Killing
Analytics As We Know It?

[ forfin] o]
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This series of lectures:

@ Some mathematical understanding of deep learning ...

@ Application to numerical solution of partial differential equations
(PDEs)

Jinchao Xu (KAUST & PSU) DL & PDEs 6/79



What is intelligence?

@ Intelligence: ability to learn, understand, and judge

@ Natural: existing in nature and not designed and
made by human

@ Artificial: designed and made by human

@ Artificial intelligence: also called machine
intelligence, refers to the intelligence expressed by
machines and computer programs developed by
humans

Machine Brain
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Decision making

4 1 >0 (Yes)
X
W Hix) =1
' D ’ {0’ O &
Example: hiring based on experience

@ x = experience (years) @ W=1b=—_3 @
1, x>3 (Yes)

Hx=3) = {o, x<3 (No)
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Example: hiring based on two factors
factors:
@ Xx; = experience (years)
@ Xx, = education (degree)

score: wixq + Woxo + b= Wx+b

decision: y = H(Wx + b)
@ y=1,Yes
@ y=0,No

/%] :1,W2:2,b:—5

candidate | years | degree score | decision
1 3 Ph.D(4) 6 Yes

2 6 Master(2) 5 Yes

3 4 Bachelor(1) | 1 Yes

4 1 Master(2) 0 No

@ H: only gives two values 0 or 1, not continuous
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Example: hiring with salary

Continuous activation:

X, x>0
0, x<0

ReLU(x) = {

Refined decision:
salary: y = W' ReLU(W%x + b°)

@ y > 0, Yes with salary
@ y<0,No

For example: W' = 2000

y = 2000 ReLU(WO%x + b0)

candidate

years

degree salary

1

Ph.D(4) 12000

Master(2) 10000

Bachelor(1) | 2000

2
3
4

~|n|o|w

Master(2) 0
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Example: hiring with salary

x' = ReLU(WOx + b9)
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Example: a more refined model

Itis a DNN!

x! = ReLU (W°x+ b°)

& 0) ()
o_ (W1 Wz 0O 0 0O > x2:ReLU(W1x1+b1)
0_y_ |- wW? = — W2y2
== < 0wl wl, wis W‘=(w1 W1) = U7
50 4
X5 o = b
by
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Deep neural network

A deep neural network (DNN) is an artificial neural network (ANN) with multiple layers

R hidden layer 1 hidden layer 2 hiclden layer 8
input Jnyer

ontput Layer
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Deep neural network

3 layers DNN (4 neurons) 4 layers DNN (9 neurons)
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How to determine the parameters w and b?

@ Natural brains

> HRs use their hiring experience

> wy =1, wo = 2, “education is more important than experience"

@ Machine brains (learning from data)
> Hiring data, performance of employees

> w and b can be learned from data

How to learn?
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What is learning?
@ Employees p': i=1,2,3,...,N

i

@ Input x' = ( i} ): experience, education of p’
2

@ y': evaluation of p, y' € {0,1,2,3,4} and

0 bad

1 fair

2 “ good

3 very good
4 excellent

@ Model: f(x,0) = w?a(w'a(wlx + b°) + b')
@ Learning from data: Find 6 = (w, b) s.t.

f(xi,G)zyi: min L(6) = min g‘ ( )

and
6* = argmin L(6)

@ New hiring: calculate the score of the new candidate

f(XNew, 9*) _9
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How to find 6*?

@ Gradient descent method:

Orr1 = 0t — 1t VL(6:)

Figure: The fastest local decreasing direction: —VL(6;)
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Examples of natural brains and machine brains

- e | LR R
}\% inY . And
1 3 Hﬂ'aﬂ'-'__ﬁ;f )
LN T (BS54 Y
Bird g Human
l B VAR HORSE
;f";n & ' '"’“:'; n‘::“m* &
Linear Regression Rivemet &g Deep Neural Nétwork
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Natural brains v.s. machine brains

e
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Natural brains v.s. machine brains

1. Dendrite receives input signal x

impulses camad
toward cell body

branches axon

dendrites '—'_Q h’[ “/ of axon terminals . »
~‘ Xy / 2. x is processed in the cell body
1
nucleus—-_*;u. _‘1"9'1_ — ’;‘.x‘ — x' = ReLU( WOx + bo)
?/ N gl
Xy | (\Y |m;:||;||¢-es|: 1|I'm=d }\gxz
cell body SNy o sen ooy 3. The output signal x is carried from the

cell body to next neuron through axon

4. Repeat steps 1-3 in the next neuron to
obtain the score y

GPA
Ll
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Natural brain: recognize between cats, dogs, rabbits
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Machine brain : recognize between cats, dogs, rabbits
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Different ways of learning

Example of language learning

@ Native language(data)

> Imitation
> Need of a lot of data

@ Foreign language(logics)
> Rules of pronunciation, syntax
> No need of a lot of data

@ More effective: data + logics

> Native language: go to school
> Foreign language: practice more
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Intelligence and learning

Logics

Theoretical Science

Data

Experimental Science Data Science

Data + Logics: Logics Based Machine Learning (LBML)

Example: Physics-Informed Neural Networks (PINN)

@ wm Raissi, P. Perdikaris, G. Karniadakis, 2019.
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Machine learning

Meaningful
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Structure rage
Discervery Chusificacion

Cimtemer Reteation

Big duea Sinensh Feawre Iderity Fraud
Visunliataian Elicimarion Doetection

At siar i
Unsupervised Predicion. R

Learning o Wzt
e Foresasting

Machine = " .

Forecarting

Learning o

Recommender
Spstama

Clustaring
Targatsed
Marketing

Ried-them dectsiom,
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Learning
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Thttps:/towardsdatascience.com/introduction-to-machine-learning-for-beginners-eed6024fdb08
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The era of the artificial intelligence

More powerful
computational
ability

More efficient
algorithms

Question: what are the state of the art deep learning technologies?

Jinchao Xu (KAUST & PSU) DL & PDEs 26/79



Success Stories - I: Image Classification

@ In 1998, LeCun etc. proposed the neural network
LeNet-5 based on the convolution and applied to
the hand-written digits recognition successfully.
Hence LeNet-5 is also called the first convolutional
neural network(CNN) successfully applied.

@ In 2012, Hinton and his student Alex joined the
graph recognition competition by ImageNet and
improved the accuracy significantly with the CNN
AlexNet.

@ In 2013 Google purchased a Canadian startup
company on neural network, DNNResearch. It’ s
set up by Geoffrey Hinton and his graduate students
Alex Krizhevsky and llya Sutskever in 2012.

@ In 2015, Kaiming He etc. proposed the ResNet
CNN structure, which has become a state-of-art
CNN structure and widely used in industry and
discussed in academia.

@ Afterwards CNN is widely used in the field of
computer vision and breaks the records
ceaselessly.

@ Transformers ...
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Success Stories - II: AlphaGo & AlphaZero

@ From 2016 to 2017, the Al program AlphaGo developed by Google DeepMind beat down
all the Go champions worldwide.

@ 2018 AlphaZero gave a unified principle for many other board games.

@ The CEO of Google DeepMind Demis Hassabis announced to integrate AlphaGo with

medical, robots and so on. They can learn by themselves since they are artificial
intelligence, and transfer learning can be done with enough data.

+U+ AlphaGo
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Success Stories - llI: Auto-driving

Auto-driving (the next competition in Al)

@ In 2009, Google proposed the plan to replace human driving with
softwares. Afterwards, many large technology companies such as
Tesla, Google, Uber and Benz devoted a lot on investigating the
technology of automated driving.

@ There are about dozens of companies focus on automatic drive
techniques from L2 to L4.

@ In many countries, road examination autonomous vehicles are
allowed with applications.

Q@ Tesla- Autopilot; Google — Waymo; Baidu — Apollo; GM — Cruise;
Volkswagen — DAS Autonomy...
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Success Stories - IV: Diagnosis and Classification of
Cancer

Al can automatically diagnose the cancer
@ In 2017, a team in Stanford University achieved Al automatic diagnosis of the skin cancer
with the CNN, the accuracy of which is as high as a human expert.
@ This model is trained based on a public model by Google, while the original model is only
used to classify the cats and dogs in photos.

Iodorates vimess ates by aihi

B Ay e 4 1% rugrant e

.

0 B bk syt o

Ref: Darmatologist-evel classifleation of skin cancer with desp newral netwaorks, Andre Esteva, Brett Kuprel, Robento A. Novoa,
Justin Ko, Susan M. Swetter, Helen M. Blau & Sebastian Thrun, Nature 542.7639 (2017): 115-118.
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Success Stories - V: ChatGPT

@ ChatGPT (Chat Generative Pre-trained Transformer) is a chatbot launched by OpenAl in
November 2022.

@ |t is built on top of OpenAl's GPT-3 family of large language models, and is fine-tuned with
both supervised and reinforcement learning techniques.

@ ChatGPT is very versatile:
> write and debug computer programs;
compose music, teleplays, fairy tales, and student essays, poetry and song lyrics;
emulate a Linux system;
simulate an entire chat room;

vyvyYvyy

ChatGPFT
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Success Stories - VI: Science and Math

AlphaFold (Nature, Jul. 2021): Protein structure prediction with score 92.4% using CNNs.

s e ks

@ AnAl system developed by DeepMind that predicts a protein’s 3D structure from its amino acid sequence
@ it regularly achieves accuracy competitive with experiment

Advancing mathematics (Nature, Dec. 2021): Guiding human intuition with Al (DNNs).

[
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Success Stories - VII: Numerical PDEs

Approximation of PDE solutions:
@ PINNs;
@ Finite neuron methods;
@ DeepRitz;
o ...
Approximation of operators:
@ DeepONet;
@ FNO;

@ Transformers;

Maviers-Stokes loss

Experimental data lass
V-V P =0l
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Goal of the lecture series

Develop a mathematical understanding of deep learning ...

In particular: deep learning for numerical PDEs ...
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Topics in the lecture series

@ Finite element and deep neural network functions

» FE spaces and ReLU* NNs
» ReLU DNN = linear FE
@ lterative methods and frequency principle
> Basic iterative methods
» Frequency principles
> Multigrid method
@ Image Classification and MgNet

» Logistic regression
> Image classification
> MgNet: A “trained” multigrid method
@ Application to PDEs: Finite neuron method
» Error analysis
> Novel training algorithms
@ Approximation theory of neural network functions

> Variation space
» Metric entropy
> Error estimate

Jinchao Xu (KAUST & PSU) DL & PDEs
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9 Finite element vesus neural network functions
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Finite element: Piecewise linear functions
@ Uniform grid 7,

O=x<x<--<xyy1=1 X = (J=0:N+1).

N+1

Xo Xj XN-+1
L 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 J

Figure: 1D uniform grid
@ Linear finite element space

Vi = {vh : vis continuous and piecewise linear w.r.t. T , V4(0) = 0}.

i 215 s am e 25 775 55

Figure: Linear finite element functions.
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Finite element in multi-dimensions

(k=1)
wix+b Wy Xy + WoXo + b W1X1 + WoXo + W3X3 + b
*r——o—0 ! ' ...
x Z; i i
Xy i Hhgq
L
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Two basis functions for the finite element space V/,

@ Hat basis:
s
2x X € [0, %], oz
q)(X) = 2(1 7X) X € [%’1]’ Y w om w
0, otherwise. ) o

7i0) = Z-o =) = a(wnc-+ by,

. _ 1 L X / A
with w, = 55, b = —5. yau A
@ ReLU basis: ReLU(x) = max(0, X) PARS R
1 X — Xj_q 1
ri(x) = —=ReLU = —ReLU(wpx + b;

@ Vj =span{p(wpx+b;j)} =
span {ReLU(wpx + b;) }
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Finite element space and neural network functions

@ Finite element function space on a uniform grid

Vh = {ia,-q;(whx+b,'),i= 13 n} = {ia;ReLU(ther,-),i: 1: n} (1)

i=1

i=1

—Xi—1
2h -

@ Finite element function space on an arbitrary grid

with wy = S, by =

n .
el = {Ea;ReLU(w,-x-I—b,-), wi, b eR,i=1 :n}, Xj = —Q, @)

i=1
is contained in the ReLU neural network function space.
@ ReLU neural network (shallow) functions in any dimension d

n
xRetU _ {2a,-ReLU(w,-~x+b,-), wieRY, b eR,i=1: n} (3)

i=1
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Shallow NNs with general activation functions

Change ReL.U to general activation function o : R — R:

n
):Z:{ZQ/U(W/'X+b,'),W,'GRd,biGR,iZ1:n} (4)
i=1
Popular activation functions:

0 x<O0

@ Heaviside 0 = {
1 x>0

@ Sigmoidal o = (1 + e %)~

@ Rectified Linear ¢ = max(0, x)

@ Power of a ReLU o = [max(0, x)]*
@ Cosine o = cos(x)

@ ...
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e Approximation properties of shallow neural networks
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Basic approximation properties

Can shallow networks approximate arbitrary functions?

@ Recall Xj := {27:1 aic(wj-x+b;), a €R, w; € RY, b; € ]R}
@ Is
=Jz] (®)
n=1

dense in C°(Q) for bounded Q  R9?

@ Yes! Aslong as ¢ is not a polynomial.

@ Ref: M. Leshno, V. Lin, A. Pinkus and S. Schocken, 1993.
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Activation function: non-polynomial

Lemma
7 js dense in CO(O) <= o Is not a polynomial (and almost everywhere continuous).
v

Proof.

@ Assume o e C

[o((w + hey) - X + b) — o(w - x + b)] /h € 2,
a%,‘f(“’ X+ b)|w=o = X0’ (b) € TV
= x; € 27 if o’ (b) # 0 for some b.
Do (w - x+ b) = x*o*) (w - x + b) € =7
=x*=xy" - x3@ € 7 if ¢l (b) # 0 for some b
> contains all polynomials.

© fois not smooth ...

Our interest: What about approximation rates?

@ Ref: M. Leshno, V. Lin, A. Pinkus and S. Schocken, 1993.
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Convergence rate: approximation of Cosine networks

@ Cosine networks

n
TEB = {Un TUp = Za,-cos(w,- -x+bj), Va, W,',b,'}

i=1

@ |Integral representation of u in terms of cosine functions

_ 27Tiw-X 7
u(x) = Re /]Rd € U(w)dw
= /}Rd cos(2mmw - X + b(w))|U(w)|dw (et d(w) = |U(w)|eP«))
= @l /Rd cos(27tw - X + b(w))A(w)dw (et A(w) = I‘\%(\iﬁ)
= HU||,_1IE(g(w,X)) (let g(w, x) = cos(27tw - X + b(w)))
@ Sampling:

3\—*

E(g(w, x)) = Ecos 2nwj - X + b(w))) € TF%®
j=1
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Sampling argument
@ Letv=E(gw x)) = Jg9(w, x)A(x)dx and the sampling v, =

1=

il
n

I
-

V() = () = Eg(x) = 13 gla, )
© By adirect calculation
En <|1Eg 2 i g(wi <)I2>
AM(IQ—ZgM H)M%%~Mwmw~dw
=L ®(lglP) - [E@P) <
© There exist {w}}7_, such that

1 & " _
IEg— - Y g(wf <.
i=1

Jinchao Xu (KAUST & PSU) DL & PDEs
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Approximation rates for Cosine networks

The preceding sampling argument gives the approximation rate:

Theorem

n n
There exists un € Loy = {Z ajcos(wj- X+ by), Y_ |aj| < M} such that
i= i=

_1a
= unll < 02 |1 o

where M = ||0]| ;1 ga)-
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From Cosine networks to ReLU* networks

u(x) = (g)k /]Rd /]RRELUk (7'[_1(4] X+ b) m(w)|9_i(nb+n(kz+1)+9(w))dbdw (10)

Sampling arguments = approximation result

Theorem (X 2020)

1_1
n-2 4d|u , k> m,
inf U= nllamey S {5 1B @) (11)
n Eﬁ n §||U||Bk+1(0), k =m,
where
lullgs) = inf | [ (1 +Ieo)lBe()] oo (12)

More details and extensions for optimal rates and underlying function spaces, see
other lectures.
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Deep neural network (DNN)

o Start from a linear function of x € R"0
WOx + b0

e Compose with the activation function:
x() = o(WOx + b%) € R™M

e Compose with another linear function:
wlx() 4 p!

° Compose with the activation function:
x@ —o(W'x(™ 4 p') e R™2

o
o

xB) = (W11 4 pt=1y e RL

o Compose with another linear function (final output layer)

f(x;©) = Whx(D 4 pt
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@ RelLU DNN = linear FEM
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ReLU-DNN and FEM

Deep neural network functions with ¢-hidden layers

2o, = {WixO 4 b, W' e R, pl e R™+1}

ReLU-DNN < FEM

ReLUX-DNN A
Zk o— ZReLU . (13)

Ny * M

ReLUX-DNN = XX = piecewise polynomials C H*((2)

(1) ¢=1k>1 @) ¢=2k=1 @) (=2k=2
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ReLU-DNN = FEM

ReLU-DNN = X},  C Linear FEM C H'(Q))

@ Conforming piecewise polynomials of low order are trivial to construct using neural
networks!

@ Arora, R., Basu, A, Mianjy, P. & Mukherjee, A. (2016)., He, J., Li, L., Xu, J., & Zheng, C. (2020), He, J., Li, L., & Xu, J.
(2022).
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Connection of ReLU DNN and linear FEM
Theorem (He, Li, X and Zheng 2018)

Not all linear FE functions can be represented by a shallow neural network, namely

LFE ¢ I}, .

Insights of this proof and result:

@ x! can not represent locally supported functions;
ny
> Neither the basis function of LFE.

@ Deep is necessary for high dimensional spaces;
@ An open question: the optimal depth to represent any LFE functions?
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Connection of ReLU DNN and linear FEM

Theorem (He, Li, X and Zheng 2018)

Given a locally convex finite element grid Ty, any linear finite element function with N degrees of
freedom, it can be written as a function in X, 1.y With

J=2+ |—|Og2 dh-| and Nneurons = O(th)'

where dp, is the largest number of elements that share one vertex.

@ Theoretically, J < [logy(d + 1)], however

Noeurons < O <d2N!+dN>

> Ref: R. Arora, A. Basu, P. Mianjy and A. Mukherjee, 2016

@ Key to the proof: How to represent basis functions of LFE more efficiently.
> See the following example.

Jinchao Xu (KAUST & PSU) DL & PDEs
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A 2D example: FE basis function
9(x):

*6

Here g; is linear in Domain i, and x7 = X1, satisfying
9ix) =1 gi(x)=0  gi(xi41) =0

gi(x), x € Domain i
P(x) = R o—
0. x € R — X1 XoX3X4X5Xg
Then we have
¢(x) = ReLU(min(g1. 92, g3, 94. G5, 96) ).
if the support of ¢(x) is convex.
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Properties of ReLU

Important identities:

X = ReLU(x) — ReLU(—x), |x| = ReLU(x) + ReLU(—x)

and
min(a, b) = agb— 'a;” — V. ReLU(W-[a,b]T) (16)
where
11
1 -
v=z0.-1.-1.-1] W= P

=i 1
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Properties of ReLU

Important identities:

X = ReLU(x) — ReLU(—x), |x| = ReLU(x) + ReLU(—x)

and
min(a, b) = agb— 'a;” — V. ReLU(W- [a,b]T) (17)
where
11
1 -
v=pl.-1.-1.-1] W= P

=i 1
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Example of DNN and FEM: 2D-FEM basis function

min(a, b, ¢) = min(min(a, b), ¢)

= v-ReLU (W- (mi"(ca' b)))

(RveLII{Je}dU MI/{eI[_:aUl()] 2)))

e
=V.ReLU< ( v-ReLU(W - [a,b]T) ))
(e

= v-ReLU

1, —1]-ReLU([1, —1]"¢)

= v ReLU (W, -ReLU(W - [a,b,c]"))
where

1 1 1 1 ! ! 0

2 2 —=2 —=2 1 1 -1 -1 0

e e i -1 0

Wo=1+ 25 5 5 4 4 Wi=14 1 o

- 4 b 4 1 - 0 0 A

0 0 -1
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Example of DNN and FEM: 2D-FEM basis function

It follows that

g =min(91, 92,95, 94,95, g) = min(min(g1, g2, g3), min(gs, s, Js))
min(g1, g2, g3)
min(gs, gs, s)

v-ReLU(W, - ReLU(W; - [g1,gg,g3]r)})
v-ReLU(W; - ReLU(W - [g4, g5, 6] ")

=v-ReLU(W - {

:v.ReLU(W.[

Thus

B _ [v-ReLU(Ws - ReLU(W, - [g1, g2, ga]T) 1
¢ = ReLU (v ReLU(W {V_ReLU(Wz “ReLU(W, - (g1 g0, o) ez,
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ReLU DNN = LFE

For non-convex support sets of linear finite elements:

@ Any polyhedron can be divided by a union of convex polyhedrons;
> Introduce extra vertexes and faces.

@ Divide convex polyhedrons to simplex.
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A more compact result for 2D LFE on the uniform grid
The following identity holds on R?,

I _ % <g2 (ReLIél(x)) o (ReLIil(y)) w (ReLUl(x) -;ReLUl(y)))’

4 g
where %(x) = =) aReLU (x = é) ez, (18)
i=0
and ReLU1(x) := ReLU(x) — ReLU(x — 1) € Z. (19)

Question: Other approaches for this representation?
Theorem (He, Li and X 2022)
Let V}, be the LFE space on a uniform mesh on 2D, then
Vp c 2} (20)

M2’

and it can be represented explicitly and concisely.

@ . He, L. Li, J. Xu and C. Zheng, 2018: u(x, y) can not be reproduced by one hidden layer.

@ R. Arora, A. Basu, P. Mianjy and A. Mukherjee, 2016: u(x, y) € 2271«2’ but it is almost impossible to represent u(x, y)

explicitly.
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ReLU-DNN = LFE

Conclusion:
Any linear finite element function can be represented by a deep RelLU neural network
with a relatively deeper and narrower structure.

Theorem
RelLU-DNN = LFE
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© ReLU neural networks
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Shallow ReLU* neural networks and polynomials

Polynomials of order k inRY C Zf‘H .

Theorem (X 2020, Chen, He and Hao 2022) J

Sketch of the proof:
o
xK = ReLUX(x) 4+ (=1)fReLU*(—x), Vx € R
@ Generalized Vandermonde determinant identity — homogeneous polynomials on R? with
order k
o

K
XK1= Y a(x — i)k
iZ0

@ Generalized Vandermonde determinant identity — homogeneous polynomials on R? with
order k — 1

@ Repeat for k — 2
o ..
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Deep ReLU* neural networks

Zf‘,w for k > 2: Piecewise polynomials :

@ "Simplex" (global) elements: any k > 2 but ¢ = 1

@ "Curved" elements: any k > 2 and ¢ > 2:
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Deep ReLU* neural networks

@ Best possible error estimate O (n™=(k+1) jog n)

@ If k > 2, recover all polynomials as  increase:
For k =2, x2 e 22;

=4 ((x+9)2 - (x—y?) ez

Polynomial with order non RY 2%1 . With £ < loga (n);
Spectral accuracy for smooth functions.

vvyVvyy

Q Possible multi-scale adaptivity features (?):

> local singularity.
> global smoothness

@ Ref: J. Siegel and J. Xu (2019); B. Li, S. Tang, and H. Yu (2020).
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@ DNN versus FEM: Error estimate comparison
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Lower bound for conforming elements

Theorem

Assume that VK is a finite element of degree k on quasi-uniform mesh {7} of O(N) elements.
Assume u is sufficiently smooth and not piecewise polynomials, then we have

C(UN"3 < inf[u—hllys () < CUIN™3 = O(HF). (21)
VhEV;;

In general
m—(k+1)

= O(HH1=m), (22)

inf |[u—v ~N
s [ hllHp (o)

Ref: Q. Lin, H. Xie and J. Xu , Lower Bounds of the Discretization Error for Piecewise
Polynomials, Math. Comp., 83, 1-13 (2014)
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Proof (k = 1)

Let I, be quadratic interpolation. For any linear FE v, € V},

|ul2 = |u—Vhlap < [u—TTaulzp + [TT2U — Vpl2h
< Crhluls + Coh™ " | TTau — i 4
< Crhluls + Coh™ | TTpu — ully + Coh ™" [lu — vl
< Cihluls + Csh™ "W ulg + Coh™||u — i1

namely
|ul2 = (C1 + C3)hluls < Coh™'||u— i1

Noting that v, € V, is arbitrary, then for sufficiently small h, we have

inf |[u—vally > Ch=CN~a
vheVy

since h= CN~ @ for quasi-uniform mesh.
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Approximation properties: DNN versus AFEM

Shallow NN:

inf |u—unlio SN z/ |w]?]0(w)|dw.
unezk “

Adaptive FEM: [similar for N-term wavelets approximation]

q
inf f |u—u <N 7|u
dlmVN NLI,\I/n N| 120 S [l ull«

Observation:
@ For d > 3, DNN seems to provide “better” asymptotic approximation than AFEM:

N2 < N3
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On the curse of dimensionality

Example: d = 100
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e Hierarchical basis, composition, and approximation
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Sharpness of AFEM estimate

Example: u = |x|?
1 . . 1
N~d < inf inf |[u—un|li20 SN @
dim Vy=N uye Vy S

g 2
N-ad < i inf llu—u G0
~ dim|9N=N Ul\;g Vi ” N”O,eo,() ~

optimal grid: uniform grid.

d=1
Q Grid7T:={0=xp <Xy <---<xXypq =1}
@ Local basis
x—gr X € (Xi1.xil,
x=xo X € (X Xit1], -
others.

@ interpolation: fr-u = ¥; ux; ¢;.
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Approximation of x? by multilevel FEM

Let f(x) = x2 on [0,1] C R. Recall

(I—=1)f = O(N?)
with
2J
If =Y f(x)¢(x).
i=0
We write

J
Iyf = Iof + Z(lk = /k,1)f
k=1

Notice that Ipf = x and
ok—1

(e = l—1)f = —47K 21 ;1 (x).
s

Non-local basis: g; = 212;1 Phi 1 (%)
L

[x2 = (x =Y 47g)]lo.c00 = O(N72),

i=1

with L = logo N |
Ref: D.Yarotsky 2017, W. E and Q. Wang 2018, J. He and J. Xu 2019.
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Diagram for basis functions g;

akl ahl
1 ;

ol ; A

Figure: The figure of g;(x)

Important observation: composition property:

gi(x) =giogio--ogi(x) EXh . (27)
—‘/_J

I
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Comparison between DNN and FEM on x?

Recall: Approximating x° by AFEM

Theorem

: 2 _ -2
vo'(?éva?[g,)ﬁ X = vl = oL, &)

where V, denotes the AFEM space with L elements on [0, 1].

Approximating x> by ReLU DNNs

Theorem

There exists v(x) € £, , such that
max_|x% — v(x)| = 047 1), (29)
x€[0,1]

whereny < 4 for{ =1:L.

Ref: D.Yarotsky 2017, W. E and Q. Wang 2018, J. He, Lin Li and J. Xu 2022.
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From x2 to polynomials and smooth functions

We note that
gi€X)., where n<4,j=1:i

Using the following identity

= ((3) - () ~(

NI<
N—
N
~_

Theorem

For any polynomial p(x) = ¥ jk|<p akX* with order p on [0,1]%, there exists v(x) € £

that

—L
L, 1P = v(x)] < 4(p Zlak\

where ny < 2d+4 and C = 3(p— 1)("+d) that is independent from L.

,,1 .o Such

(30)

Corollary

ReLU DNN can approximate smooth functions as good as polynomials !

Ref: D.Yarotsky 2017, W. E and Q. Wang 2018, J. He, L. Li and J. Xu 2022, J. He and J. Xu 2023.
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DNN versus FEM

FEM
@ Local basis functions

© Muttilevel basis functions give more “global” basis functions:
> Sparse grid
> Combination of hierarchical basis functions

DNN
@ !t contains all AFEM

9 It generates “global” basis functions (from composition)
> “Features” are mostly “global”?

© Nonlinearity function generates redundant number of basis functions:
Lemma (He, Lin, X and Zheng 2018, Siegel and X 2019)

{o(w; - x + b;) }., are linearly independent if o is not polynomials and (‘g’ ) (vaf) € R4 are
i j
linear independent for any i # j.

Jinchao Xu (KAUST & PSU) DL & PDEs 78/79



Concluding remarks

Summary
@ Finite elements = neural networks
@ Approximation properties of Cosine and ReLU* shallow NNs

@ RelLU DNN = linear finite elements

> Local adaptivity
> Super-approximation for polynomials

@ ReLUX-DNN can recover all polynomials

Open problems:
@ Optimal depth to recover any LFE on RY

@ Understand ReLU* DNNs from adaptive finite elements (both mesh and degree of
polynomials)

@ Optimal representation of finite element functions using DNNs
o ...

Thank You !
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