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Introduction

Deep Neural Networks for Scientific Computing

Recently, deep neural networks have been widely applied to scientific
computing:

Solving PDEs1

Learning operators from data2

Inverse Problem/Inverse Design3

etc.

How good is approximation with deep neural networks?

1Maziar Raissi, Paris Perdikaris, and George E Karniadakis. “Physics-informed neural
networks: A deep learning framework for solving forward and inverse problems involving
nonlinear partial differential equations”. In: Journal of Computational Physics 378 (2019),
pp. 686–707, Jiequn Han, Arnulf Jentzen, and Weinan E. “Solving high-dimensional partial
differential equations using deep learning”. In: Proceedings of the National Academy of
Sciences 115.34 (2018), pp. 8505–8510.

2Lu Lu et al. “Learning nonlinear operators via DeepONet based on the universal
approximation theorem of operators”. In: Nature Machine Intelligence 3.3 (2021), pp. 218–229,
Zongyi Li et al. “Fourier Neural Operator for Parametric Partial Differential Equations”. In:
International Conference on Learning Representations. 2020.

3Lu Lu et al. “Physics-informed neural networks with hard constraints for inverse design”. In:
SIAM Journal on Scientific Computing 43.6 (2021), B1105–B1132.
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Introduction

Deep ReLU Networks

Consider an affine map AW,b : Rn → Rk

AW,b(x) = Wx + b. (1)

Let σ(x) = max(0, x) denote the ReLU

When applied to a vector, σ is applied component-wise

A deep ReLU network with width W and depth L mapping Rd to Rk

is a composition

AWL,bL ◦ σ ◦ AWL−1,bL−1
◦ σ ◦ · · · ◦ σ ◦ AW1,b1 ◦ σ ◦ AW0,b0 (2)

Here AW1,b1 , ....,AWL−1,bL−1
: RW → RW

We denote the set of these by ΥW ,L(Rd ,Rk).
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Representation by Deep ReLU Networks

What types of functions are in ΥW ,L(Rd ,Rk)

All functions f ∈ ΥW ,L(Rd ,Rk) are continuous and piecewise linear

The number of pieces can be exponential in the depth L

Number of parameters scales like W 2L

Classical piecewise linear finite element functions can be represented4

All piecewise linear continuous functions can be represented if
L ≥ log(d + 1)

Open problem: Can you use fewer layers?

4Juncai He et al. “ReLU Deep Neural Networks and Linear Finite Elements”. In: Journal of
Computational Mathematics 38.3 (2020), pp. 502–527.
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Deep ReLU Network Approximation of Sobolev Functions

Sobolev Spaces

We consider the Sobolev spaces W s(Lq(Ω)), defined by

∥f ∥W s(Lq(Ω)) = ∥f ∥Lq(Ω) + ∥f (s)∥Lq(Ω) (3)

If s is not a integer: Write s = k + θ, θ ∈ [0, 1)

∥f ∥W s (Lq(Ω)) = ∥f ∥Lq(Ω) +
∑
|α|=k

∫
Ω×Ω

|f (α)(x)− f (α)(y)|q

|x − y |d+θq
dxdy (4)

For simplicity, take Ω = [0, 1]d (but any bounded domain will work)

Typical space for PDE regularity estimates5

Our results also apply to Besov spaces

5Lawrence C Evans. Partial differential equations. Vol. 19. American Mathematical Soc.,
2010.
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Deep ReLU Network Approximation of Sobolev Functions

How Efficient Are Deep ReLU Networks?

Let Ω ⊂ Rd be a bounded domain

Consider function classes determined by Sobolev spaces

F s
q (Ω) = {∥f ∥W s(Lq(Ω)) ≤ 1} (5)

Measure error in the Lp(Ω) norm

What are the optimal rates of approximation by deep ReLU networks:

sup
f ∈F s

q (Ω)
inf

fL∈ΥW ,L
∥f − fL∥Lp(Ω)? (6)

Interested in the asymptotics as L → ∞ with W fixed (large enough)
In this regime we get best rates in terms of number of parameters
Also considering width and depth varying together (joint with Juncai
He)

J. W. Siegel (TAMU) Deep ReLU Networks June 22, 2023 10 / 35
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Deep ReLU Network Approximation of Sobolev Functions

Sobolev Embedding

Goal: Approximate f ∈ W s(Lq(Ω)) in the Lp-norm

In order for this to be possible, we need

W s(Lq) ⊂ Lp.

If the Sobolev condition strictly fails, i.e. if 1
q − 1

p > s
d , then

W s(Lq) ̸⊂ Lp
If the Sobolev condition is strictly satisfed, i.e. 1

q − 1
p < s

d , then we
have a compact embedding

W s(Lq) ⊂⊂ Lp. (7)

This is the case we will be most interested in

In the boundary case where 1
q − 1

p = s
d we may or may not have

embedding

J. W. Siegel (TAMU) Deep ReLU Networks June 22, 2023 11 / 35
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Deep ReLU Network Approximation of Sobolev Functions

Classical Approximation Methods

Linear methods of approximation6:

inf
PN

rank N

sup
f ∈F s

q (Ω)
∥f − PN(f )∥Lp(Ω) ≂

{
N−s/d p ≤ q

N−s/d+1/q−1/p p > q.
(8)

Need non-linear (i.e. adaptive) methods when p > q to recover rate
O(N−s/d)

with a compact Sobolev embedding
e.g. n-term wavelets, adaptive piecewise polynomial, variable knot
splines

6George G Lorentz, Manfred v Golitschek, and Yuly Makovoz. Constructive approximation:
advanced problems. Vol. 304. Springer, 1996.
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Deep ReLU Network Approximation of Sobolev Functions

First Approach to Deep Network Approximation

Yarotsky7 showed that polynomials can be efficiently approximated
with deep ReLU networks

Using this, we can efficiently approximate (say) wavelets

If f1, ..., fn ∈ ΥW ,L(Rd ,R), then

n∑
i=1

fi ∈ ΥW+1,nL(Rd ,R). (9)

So, up to logarithmic factors, deep networks recover the O(L−s/d)
classical rate as long as we have a compact Sobolev embedding8

Can we do better?

7Dmitry Yarotsky. “Error bounds for approximations with deep ReLU networks”. In: Neural
Networks 94 (2017), pp. 103–114.

8Ronald DeVore, Boris Hanin, and Guergana Petrova. “Neural Network Approximation”. In:
arXiv preprint arXiv:2012.14501 (2020).
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Deep ReLU Network Approximation of Sobolev Functions

Yes: Superconvergence!

A fascinating result discovered by Yarotsky9:

Theorem

Suppose that p = q = ∞ and 0 < s ≤ 1. So W s(L∞(Ω)) is the class of
s-Hölder continuous functions. Then for sufficiently large W (depending
upon d)

inf
fL∈ΥW ,L(Rd )

∥f − fL∥L∞(Ω) ≤ C∥f ∥W s(L∞(Ω))L
−2s/d . (10)

This is sharp for deep ReLU networks

9Dmitry Yarotsky. “Optimal approximation of continuous functions by very deep ReLU
networks”. In: arXiv preprint arXiv:1802.03620 (2018), Zuowei Shen, Haizhao Yang, and
Shijun Zhang. “Optimal approximation rate of ReLU networks in terms of width and depth”. In:
Journal de Mathématiques Pures et Appliquées 157 (2022), pp. 101–135.
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Deep ReLU Network Approximation of Sobolev Functions

Prior Work: Extensions

Yarotsky’s superconvergence result has been generalized10 to s > 1

Optimal approximation rates when both depth and width vary11

Derivatives can also be approximated12 if s > 1

Interpolation with first approach to get rates in the non-linear
regime13

Yields rate L−κs/d with 1 < κ < 2

10Jianfeng Lu et al. “Deep network approximation for smooth functions”. In: SIAM Journal
on Mathematical Analysis 53.5 (2021), pp. 5465–5506.

11Zuowei Shen, Haizhao Yang, and Shijun Zhang. “Optimal approximation rate of ReLU
networks in terms of width and depth”. In: Journal de Mathématiques Pures et Appliquées 157
(2022), pp. 101–135.

12Sean Hon and Haizhao Yang. “Simultaneous neural network approximations in sobolev
spaces”. In: arXiv preprint arXiv:2109.00161 (2021).

13Ronald DeVore, Boris Hanin, and Guergana Petrova. “Neural Network Approximation”. In:
arXiv preprint arXiv:2012.14501 (2020).
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Deep ReLU Network Approximation of Sobolev Functions

Main Problem

Our interest: What is the optimal rate for all pairs s, p, q for which
we have a (compact) embedding?

Do we get superconvergence in the non-linear regime (i.e. when
q < p ≤ ∞)?
Existing superconvergence results only apply when q = ∞

Two key difficulties14:

Upper Bounds: Existing methods only give superconvergence in linear
regime
Lower Bounds: Existing approaches only give lower bounds when
p = ∞

14Ronald DeVore, Boris Hanin, and Guergana Petrova. “Neural Network Approximation”. In:
arXiv preprint arXiv:2012.14501 (2020).
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Deep ReLU Network Approximation of Sobolev Functions Upper Bounds
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Deep ReLU Network Approximation of Sobolev Functions Upper Bounds

Main Result: Upper Bounds15

Theorem

Let Ω = [0, 1]d be the unit cube and let 0 < s < ∞ and 1 ≤ q ≤ p ≤ ∞.
Assume that 1/q − 1/p < s/d , which guarantees that we have the
compact Sobolev embedding

W s(Lq(Ω)) ⊂⊂ Lp(Ω). (11)

Then there exists an absolute constant K < ∞ and such that

inf
fL∈ΥKd,L(Rd )

∥f − fL∥Lp(Ω) ≲ ∥f ∥W s(Lq(Ω))L
−2s/d . (12)

We obtain superconvergence in all cases!

15Jonathan W Siegel. “Optimal Approximation Rates for Deep ReLU Neural Networks on
Sobolev Spaces”. In: arXiv preprint arXiv:2211.14400 (2022).
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Deep ReLU Network Approximation of Sobolev Functions Upper Bounds

Bit Extraction

The key to superconvergence is the bit-extraction technique16

Suppose that x ∈ {0, 1}N

How many parameters do we need to represent x?
i.e. want a network f , s.t. f (i) = xi for i = 0, ...,N − 1.

Naively, we would need O(N) parameters

Say use a piecewise linear function

Remarkably, we only need O(
√
N)!

Previous results proved by combining bit-extraction with piecewise
polynomial approximation on a regular grid

Works in the linear regime p ≤ q
Works for all spaces which admit suitable piecewise polynomial
approximations

16Peter Bartlett, Vitaly Maiorov, and Ron Meir. “Almost linear VC dimension bounds for
piecewise polynomial networks”. In: Advances in neural information processing systems 11
(1998).

J. W. Siegel (TAMU) Deep ReLU Networks June 22, 2023 19 / 35



Deep ReLU Network Approximation of Sobolev Functions Upper Bounds

Bit Extraction

The key to superconvergence is the bit-extraction technique16

Suppose that x ∈ {0, 1}N

How many parameters do we need to represent x?
i.e. want a network f , s.t. f (i) = xi for i = 0, ...,N − 1.

Naively, we would need O(N) parameters

Say use a piecewise linear function

Remarkably, we only need O(
√
N)!

Previous results proved by combining bit-extraction with piecewise
polynomial approximation on a regular grid

Works in the linear regime p ≤ q
Works for all spaces which admit suitable piecewise polynomial
approximations

16Peter Bartlett, Vitaly Maiorov, and Ron Meir. “Almost linear VC dimension bounds for
piecewise polynomial networks”. In: Advances in neural information processing systems 11
(1998).

J. W. Siegel (TAMU) Deep ReLU Networks June 22, 2023 19 / 35



Deep ReLU Network Approximation of Sobolev Functions Upper Bounds

Bit Extraction

The key to superconvergence is the bit-extraction technique16

Suppose that x ∈ {0, 1}N

How many parameters do we need to represent x?
i.e. want a network f , s.t. f (i) = xi for i = 0, ...,N − 1.

Naively, we would need O(N) parameters

Say use a piecewise linear function

Remarkably, we only need O(
√
N)!

Previous results proved by combining bit-extraction with piecewise
polynomial approximation on a regular grid

Works in the linear regime p ≤ q
Works for all spaces which admit suitable piecewise polynomial
approximations

16Peter Bartlett, Vitaly Maiorov, and Ron Meir. “Almost linear VC dimension bounds for
piecewise polynomial networks”. In: Advances in neural information processing systems 11
(1998).

J. W. Siegel (TAMU) Deep ReLU Networks June 22, 2023 19 / 35



Deep ReLU Network Approximation of Sobolev Functions Upper Bounds

Bit Extraction

The key to superconvergence is the bit-extraction technique16

Suppose that x ∈ {0, 1}N

How many parameters do we need to represent x?
i.e. want a network f , s.t. f (i) = xi for i = 0, ...,N − 1.

Naively, we would need O(N) parameters

Say use a piecewise linear function

Remarkably, we only need O(
√
N)!

Previous results proved by combining bit-extraction with piecewise
polynomial approximation on a regular grid

Works in the linear regime p ≤ q
Works for all spaces which admit suitable piecewise polynomial
approximations

16Peter Bartlett, Vitaly Maiorov, and Ron Meir. “Almost linear VC dimension bounds for
piecewise polynomial networks”. In: Advances in neural information processing systems 11
(1998).

J. W. Siegel (TAMU) Deep ReLU Networks June 22, 2023 19 / 35



Deep ReLU Network Approximation of Sobolev Functions Upper Bounds

Bit Extraction

The key to superconvergence is the bit-extraction technique16

Suppose that x ∈ {0, 1}N

How many parameters do we need to represent x?
i.e. want a network f , s.t. f (i) = xi for i = 0, ...,N − 1.

Naively, we would need O(N) parameters

Say use a piecewise linear function

Remarkably, we only need O(
√
N)!

Previous results proved by combining bit-extraction with piecewise
polynomial approximation on a regular grid

Works in the linear regime p ≤ q
Works for all spaces which admit suitable piecewise polynomial
approximations

16Peter Bartlett, Vitaly Maiorov, and Ron Meir. “Almost linear VC dimension bounds for
piecewise polynomial networks”. In: Advances in neural information processing systems 11
(1998).

J. W. Siegel (TAMU) Deep ReLU Networks June 22, 2023 19 / 35



Deep ReLU Network Approximation of Sobolev Functions Upper Bounds

Bit Extraction

The key to superconvergence is the bit-extraction technique16

Suppose that x ∈ {0, 1}N

How many parameters do we need to represent x?
i.e. want a network f , s.t. f (i) = xi for i = 0, ...,N − 1.

Naively, we would need O(N) parameters

Say use a piecewise linear function

Remarkably, we only need O(
√
N)!

Previous results proved by combining bit-extraction with piecewise
polynomial approximation on a regular grid

Works in the linear regime p ≤ q
Works for all spaces which admit suitable piecewise polynomial
approximations

16Peter Bartlett, Vitaly Maiorov, and Ron Meir. “Almost linear VC dimension bounds for
piecewise polynomial networks”. In: Advances in neural information processing systems 11
(1998).

J. W. Siegel (TAMU) Deep ReLU Networks June 22, 2023 19 / 35



Deep ReLU Network Approximation of Sobolev Functions Upper Bounds

Bit Extraction (cont.)

Divide {0, 1, ...,N − 1} into O(
√
N) sub-intervals of I1, ..., In of length

O(
√
N)
Ij = {kj , kj + 1, ..., kj+1 − 1}

Two piecewise linear functions:
Map Ij to kj
Map Ij to bj = 0.xkj ...xkj+1−1

Requires O(
√
N) layers

Construct network which maps
i
k

0.x1x2 · · · xn
z

 →


i − 1
k

0.x2 · · · xn
z + x1χ(i = k)

 (13)

Can be done with a constant size network
Compose this O(

√
N) times
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Deep ReLU Network Approximation of Sobolev Functions Upper Bounds

Efficient Representation of Sparse Vectors17

Approximation in non-linear regime (p > q) requires adaptivity or
sparsity

Proposition

Let M ≥ 1 and N ≥ 1 and x ∈ ZN be an N-dimensional vector satisfying

∥x∥ℓ1 ≤ M. (14)

Then if N ≥ M, there exists a neural network g ∈ Υ17,L(R,R) with depth

L ≤ C
√

M(1 + log(N/M)) which satisfies g(i) = xi for i = 1, ...,N.

Further, if N < M, then there exists a neural network g ∈ Υ21,L(R,R) with depth

L ≤ C
√

N(1 + log(M/N)) which satisfies g(i) = xi for i = 1, ...,N.

17Jonathan W Siegel. “Optimal Approximation Rates for Deep ReLU Neural Networks on
Sobolev Spaces”. In: arXiv preprint arXiv:2211.14400 (2022).
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Deep ReLU Network Approximation of Sobolev Functions Lower Bounds
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Deep ReLU Network Approximation of Sobolev Functions Lower Bounds

VC-dimension

Let F be a class of functions

A set of points x1, ..., xN is shattered by F if for any ϵ1, ..., ϵN ∈ {±1}
there exists an f ∈ F such that

sign(f (xi )) = ϵi (15)

The VC-dimension of F is the largest N such that F shatters a set of
N points

Degree d polynomials have VC-dimension d + 1
Linear functions on Rd have VC-dimension d + 1
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Deep ReLU Network Approximation of Sobolev Functions Lower Bounds

L∞ Lower Bounds

Consider a grid of Nd points {0, 1/N, 2/N, ..., (N − 1)/N}d

We can interpolate the values cϵiN
−s by a function f ∈ F s

∞(Ω)

Here ϵi represent arbitrary signs at the grid points

The VC-dimension of ΥW ,L(Rd) is bounded by18

CW 3L2 (16)

This gives lower bounds when19 p = ∞

18Nick Harvey, Christopher Liaw, and Abbas Mehrabian. “Nearly-tight VC-dimension bounds
for piecewise linear neural networks”. In: Conference on learning theory. PMLR. 2017,
pp. 1064–1068, Paul Goldberg and Mark Jerrum. “Bounding the Vapnik-Chervonenkis
dimension of concept classes parameterized by real numbers”. In: Proceedings of the sixth
annual conference on Computational learning theory. 1993, pp. 361–369.

19Dmitry Yarotsky. “Optimal approximation of continuous functions by very deep ReLU
networks”. In: arXiv preprint arXiv:1802.03620 (2018), Zuowei Shen, Haizhao Yang, and
Shijun Zhang. “Optimal approximation rate of ReLU networks in terms of width and depth”. In:
Journal de Mathématiques Pures et Appliquées 157 (2022), pp. 101–135.
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Deep ReLU Network Approximation of Sobolev Functions Lower Bounds

Main Result: Lower Bounds21

Remarkably, we can still use VC-dimension when p < ∞!

Theorem

Suppose that K is a translation invariant class of functions whose
VC-dimension is at most n. Then for any p > 0 there exists an
f ∈ W s(L∞(Ω)) such that

inf
g∈K

∥f − g∥Lp(Ω) ≥ C (d , p)n−
s
d ∥f ∥W s(L∞(Ω)). (17)

Argument uses the Sauer-Shelah lemma20 plus entropy arguments

Implies L−2s/d is sharp, optimal in terms of parameter count

20Saharon Shelah. “A combinatorial problem; stability and order for models and theories in
infinitary languages”. In: Pacific Journal of Mathematics 41.1 (1972), pp. 247–261.

21Jonathan W Siegel. “Optimal Approximation Rates for Deep ReLU Neural Networks on
Sobolev Spaces”. In: arXiv preprint arXiv:2211.14400 (2022).
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Deep ReLU Network Approximation of Sobolev Functions Lower Bounds

Main Result: Lower Bounds21
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Deep ReLU Network Approximation of Sobolev Functions Stability and Continuity

Fundamental Lower Bound: Metric Entropy

Definition (Kolmogorov)

Let X be a Banach space and B ⊂ X . The metric entropy numbers of B,
ϵn(B)X are given by

ϵn(B)X = inf{ϵ : B is covered by 2n balls of radius ϵ}. (18)

Roughly speaking, ϵn(B)K measures how accurately elements of B
can be specified with n bits.

Gives a fundamental lower bound on the rates of stable
approximation22

If compact Sobolev embedding holds, then23

ϵn(B
s(Lq(Ω)))Lp(Ω) ≂ n−s/d (19)

22Albert Cohen et al. “Optimal stable nonlinear approximation”. In: Foundations of
Computational Mathematics (2021), pp. 1–42.

23M Š Birman and MZ Solomjak. “Piecewise-polynomial approximations of functions of the
classes Wα

p ”. In: Mathematics of the USSR-Sbornik 2.3 (1967), p. 295.
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Deep ReLU Network Approximation of Sobolev Functions Stability and Continuity

Continuous Lower Bound: Bernstein n-widths

Definition (Bernstein)

Let X be a Banach space and B ⊂ X . The Bernstein n-widths of B are

bn(B)X = sup
Fn⊂X

sup{r ≥ 0 : Br (Fn) ⊂ X ∩ Fn}, (20)

where the supremum is over all linear subspaces Fn of dimension n + 1
and Br (Fn) is the ball of radius r in the subspace Br (Fn).

For continuous approximation methods, we have24

sup
f ∈B

∥fn − f ∥X ≥ bn(B)X (21)

bn(F
s
2 )L2(Ω) ≂ n−s/d

Superconvergence parameter selection must be discontinuous
24Ronald A DeVore, Ralph Howard, and Charles Micchelli. “Optimal nonlinear

approximation”. In: Manuscripta mathematica 63.4 (1989), pp. 469–478.
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Interpolation by Deep ReLU Networks

Deep Network Interpolation

Suppose we have points x1, ..., xN ∈ R and values y1, ..., yN

How many parameters does a deep network need to interpolate, i.e.
want f ∈ ΥW ,L(R) s.t. f (xi ) = yi

If xi are evenly spaced and yi ∈ {0, 1} then we need only O(
√
N)

parameters

Bit extraction25

25Peter Bartlett, Vitaly Maiorov, and Ron Meir. “Almost linear VC dimension bounds for
piecewise polynomial networks”. In: Advances in neural information processing systems 11
(1998).
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Interpolation by Deep ReLU Networks

Continuous Values26

Suppose we want to interpolate arbitrary real values, i.e. yi ∈ R?

Need Ω(N) parameters

No bit extraction possible!

Theorem

Let x1, ..., xN be given. Suppose that for any y1, ..., yn ∈ R there is an
f ∈ ΥW ,L(R) such that f (xi ) = yi . Then the number of parameters
P = W 2L ≥ cn for an absolute constant c .

26Jonathan W Siegel. “Optimal Approximation Rates for Deep ReLU Neural Networks on
Sobolev Spaces”. In: arXiv preprint arXiv:2211.14400 (2022).
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Interpolation by Deep ReLU Networks

Arbitrary Interpolation Points27

Suppose we want to interpolate at arbitrary points x1, ..., xN ∈ R

Need Ω(N) parameters

No bit extraction possible!

Theorem

Suppose that the neural network class ΥW ,L(R) can shatter every set of n
points. Then the number of parameters P = W 2L ≥ cn for an absolute
constant c .

27Jonathan W Siegel. “Sharp Lower Bounds on Interpolation by Deep ReLU Neural Networks
at Irregularly Spaced Data”. In: arXiv preprint arXiv:2302.00834 (2023), Eduardo D Sontag.
“Shattering all sets of ‘k’points in “general position” requires (k—1)/2 parameters”. In: Neural
Computation 9.2 (1997), pp. 337–348.
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Interpolation by Deep ReLU Networks

The Sobolev Endpoint Case

We can use these results to understand the Sobolev endpoint

Consider W 1(L1([0, 1])) ⊂ L∞([0, 1])

If we can get approximation error 1/N, then we must be able to
shatter any set of N points

Implies that the optimal rate for W 1(L1([0, 1])) in L∞([0, 1]) is
O(P−1) (no superconvergence)
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Conclusion

Conclusion

Determined sharp approximation rates for deep ReLU networks on
Sobolev spaces

Some open problems:

Sobolev endpoint is more subtle
Obtain a similar theory for shallow neural networks
Extensions to other activation functions and architectures
Understanding the optimization process and generalization of deep
networks as well

Thank you for your attention!
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