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What is the BEST nonlocal model?

1. Is this simple formula general 

enough?

Outline
● Goal: modeling material responses from data

● Part I: Learning a Linear & Homogenized Model
✔ To Learn: a nonlocal kernel function

● Part II: Learning a Nonlinear & Heterogeneous Model
✔ To Learn: a nonlocal neural constitutive law



  

Goal: prediction and monitoring of material responses
 Prediction and monitoring of material responses from experimental measurements are ubiquitous in 

applications from different fields, such as mechanical engineering, biomedical engineering, civil 
engineering, etc.

Motivation and Background

Example 1: monitor aneurysm status and predict the possible hemorrhagic stroke.

?
Image by Chung-Hao Lee group



  

Goal: prediction and monitoring of material responses
 Prediction and monitoring of material responses from experimental measurements are ubiquitous in 

applications from different fields, such as mechanical engineering, biomedical engineering, civil 
engineering, etc.

Motivation and Background

Example 2: monitor crack propagation and corrosion to predict the bridge serving life.

UAV
?

Image by Francesco PuglieseImage by Chenglin Wu group



  

Goal: prediction and monitoring of material responses
 In materials, small-scale dynamics and interactions affect the global behavior.
 The constitutive law is generally unknown, making the model calibration and validation challenging.
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Motivation and Background

Step 1: Data collection (mechanical 
Testing of heart valve leaflet)

Step 2: Model selection 
and parameter fitting

Step 3: Prediction 
by solving PDEs



  

Goal: prediction and monitoring of material responses
 In materials, small-scale dynamics and interactions affect the global behavior.
 The constitutive law is generally unknown, making the model calibration and validation challenging.
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Motivation and Background

Step 1: Data collection (mechanical 
Testing of heart valve leaflet)

Step 2: Model selection 
and parameter fitting

Step 3: Prediction 
by solving PDEs

To learn:
a nonlocal constitutive law from 

experimental measurements



  

What is nonlocal model?

Basic concepts:

 The state of a system at any point depends on the state in a neighborhood 
of points

 Interactions can occur at distance, without contact
 Solutions can be irregular: non-differentiable, singular, discontinuous

  Facts: 
These models can capture effects that traditional PDEs hard to capture

1) Multiscale behavior (nonlocal as an upscaled/homogenized model)
2) Discontinuities such as cracks and fractures
3) Anomalous behavior such as superdiffusion and subdiffusion (fractional 

operators)

2.

Glass fracture simulation, Yu et al. [2021]



  

Basic concepts:

 The state of a system at any point depends on the state in a neighborhood 
of points

 Interactions can occur at distance, without contact
 Solutions can be irregular: non-differentiable, singular, discontinuous

A general nonlocal mechanical (peridynamics) model: 2.
Glass fracture simulation, Yu et al. [2021]

The integrants depend on material 
properties, microstructure, etc

What is nonlocal model?

S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids 48 (1) (2000) 175–209.



  

Basic concepts:

 The state of a system at any point depends on the state in a neighborhood 
of points

 Interactions can occur at distance, without contact
 Solutions can be irregular: non-differentiable, singular, discontinuous

A general nonlocal mechanical (peridynamics) model: 2.
Glass fracture simulation, Yu et al. [2021]

Learn the integrants from data pairs

What is nonlocal model?

S. A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids 48 (1) (2000) 175–209.



  

Goal: learn nonlocal constitutive laws for material modeling

 Desired properties: 1. the learnt model should be generalizable to future prediction tasks.
                               2. the inverse problem should also be well-posed and resolution               
                                   independent.

What is nonlocal model?



  

Goal: learn nonlocal constitutive laws for material modeling

 Desired properties: 1. the learnt model should be generalizable to future prediction tasks.
                               2. the inverse problem should also be well-posed and resolution 
                                   independent.

What is nonlocal model?

Propose: Learning the 
nonlocal kernel/integrant!

1Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Neural operator: Graph kernel network for partial differential 
equations, arXiv preprint arXiv:2003.03485.
 2H. You, Y. Yu, N. Trask, M. Gulian, M. D’Elia, “Data-driven learning of nonlocal physics from high-fidelity synthetic data”, Computer Methods in Applied 
Mechanics and Engineering, Volume 374, 113553, 2021.



What is the BEST nonlocal model?

1. Is this simple formula general 

enough?

Part I
Learning Nonlocal Kernel for 

Homogenized Models
[1] H. You, Y. Yu*, S. Silling, M. D’Elia, “A data-driven peridynamic continuum model for 
upscaling molecular dynamics”. CMAME, 2022.
[2] F. Lu, Q. An, Y. Yu*, “Nonparametric learning of kernels in nonlocal operators”. Submitted.
[3] H. You, Y. Yu, S. Silling, M. D’Elia, “Data-driven learning of nonlocal models: from high-fidelity 
simulations to constitutive laws”. AAAI Spring Symposium: MLPS, 2021
[4] H. You, Y. Yu, N. Trask, M. Gulian, M. D’Elia, “Data-driven learning of nonlocal physics from high-
fidelity synthetic data”, CMAME, 2021.
[5] H. You, L. Zhang, Y. Yu, “A meta-learnt nonlocal operator regression approach for metamaterial 
modeling”. MRS Communications, 2022.
[6] Fan Y., D’Elia M, Yu Y, Najm H., Silling S. “Bayesian Nonlocal Operator Regression (BNOR): A 
Data-Driven Learning Framework of Nonlocal Models with Uncertainty Quantification”. Submitted, 2022



  

Propose: a linear nonlocal constitutive law for homogenization

 Goal: identify a nonlocal kernel k in 

1) Collect measurements of solution and forcing term:

2) Approximate the kernel with a parameterization:

3) Minimize the residual

subject to solvability and physical constraints.

Nonlocal Operator Regression (NOR)

Step forward towards learning constitutive behavior of heterogeneous materials

Decrease reliance on lab testing.



  

Propose: a linear nonlocal constitutive law for homogenization

 Goal: identify a nonlocal kernel k in 

1) Collect measurements of solution and forcing term:

2) Approximate the kernel with a parameterization:

3) Minimize the residual

subject to solvability and physical constraints.

Nonlocal Operator Regression (NOR)

Key Algorithm Features/Contributions:
● One can selects a set of basis functions for a hypothesis space.
● Learns the functional form of the kernel (previous works only identify discrete parameters!).  

Resolution independent Estimator (Kernel k)

Lu, F., An, Q., & Yu, Y. (2022). Nonparametric learning of kernels in nonlocal operators. arXiv preprint arXiv:2205.11006.



  

Propose: a linear nonlocal constitutive law for homogenization

 Goal: identify a nonlocal kernel k in 

1) Collect measurements of solution and forcing term:

2) Approximate the kernel with a parameterization:

3) Minimize the residual

subject to solvability and physical constraints.

Nonlocal Operator Regression (NOR)

Key Algorithm Features/Contributions:
● The linear model form guarantees physical laws (e.g., linear/angular momentum conservation)
● Constraints can be applied to guarantee that the resultant surrogate model is well-posed.

Generabizable to Different Prediction Tasks

H. You, Y. Yu, S. Silling, M. D’Elia, “Data-driven learning of nonlocal models: from high-fidelity simulations to constitutive laws”. AAAI: MLPS, 2021



  

Propose: a linear nonlocal constitutive law for homogenization

 Goal: identify a nonlocal kernel k in 

1) Collect measurements of solution and forcing term:

2) Approximate the kernel with a parameterization:

3) Minimize the residual

subject to solvability and physical constraints.

Nonlocal Operator Regression (NOR)

Key Algorithm Features/Contributions:
● A regularization term is often necessary, to guarantee that we can find the unique minimizer in 

the function space of identifiability (FSOI) as               and noise reduces.

Identifiability and Robustness to Noise
Lu, F., An, Q., & Yu, Y. (2022). Nonparametric learning of kernels in nonlocal operators. arXiv preprint arXiv:2205.11006.



  

NOR: Convergence and Robustness to Noise
 Training set:                                   , generated from the nonlocal equation 

where        is associated to a manufactured kernel 

 Manufactured kernel:                                                                               where

 Optimization-based learning:  

where k is approximated by B-splines:

When taking the classical 
Tikhonov regularization: 

Convergence of function estimators 
as the data mesh-size ∆x 
decreases from 0.2 to 0.0125:

Noisy data (nsr=1)Clean data (nsr=0)



  

NOR: Convergence and Robustness to Noise
 Training set:                                   , generated from the nonlocal equation 

where        is associated to a manufactured kernel

Theorem (Function space of identifiability) [Lu, An, Yu, 2022]:
Consider the problem of identifying the kernel k, the function space of identifiability, in which the 
true kernel is the unique minimizer of the loss functional, is an RKHS (denoted by HG) with 
reproducing kernel:

where      is the density of an empirical probability density                                                                 .

Theorem (Characterization of the RKHS space) [Lu, An, Yu, 2022]:
The RKHS HG with G as reproducing kernel satisfies                               , where LG is an integral 
operator defined by

The eigenvalues of LG converges to zero, and its eigen-functions              can form a complete 
orthonormal basis of            . The optimal kernel satisfies:                       .

Lu, F., An, Q., & Yu, Y. (2022). Nonparametric learning of kernels in nonlocal operators. arXiv preprint arXiv:2205.11006.



  

NOR: Convergence and Robustness to Noise
 Training set:                                   , generated from the nonlocal equation 

where        is associated to a manufactured kernel

Theorem (Function space of identifiability) [Lu, An, Yu, 2022]:
Consider the problem of identifying the kernel k, the function space of identifiability, in which the 
true kernel is the unique minimizer of the loss functional, is an RKHS (denoted by HG) with 
reproducing kernel:

where      is the density of an empirical probability density                                                                 .

Theorem (Characterization of the RKHS space) [Lu, An, Yu, 2022]:
The RKHS HG with G as reproducing kernel satisfies                               , where LG is an integral 
operator defined by

The eigenvalues of LG converges to zero, and its eigen-functions              can form a complete 
orthonormal basis of            . The optimal kernel satisfies:                       .

Lu, F., An, Q., & Yu, Y. (2022). Nonparametric learning of kernels in nonlocal operators. arXiv preprint arXiv:2205.11006.

Two fundamental challenges:

1. The inverse problem is well-defined,  
but only in the function space of 
identifiability.
2. Outside the function space of 
identifiability, it is ill-posed.



  

NOR: Convergence and Robustness to Noise
 Training set:                                   , generated from the nonlocal equation 

where        is associated to a manufactured kernel 

 Manufactured kernel:                                                                               where

 Optimization-based learning:  

where k is approximated by B-splines:

 SIDA-RKHS regularization: 

Noisy data (nsr=1)Clean data (nsr=0)



  

 Training set: oscillating source and plane wave obtained using a DNS solver that computes the 
velocity exactly, with t from 0 to 2.
Oscillating source:
Plane wave 1:
Plane wave 2:

 Experiments:
Coarse data set 1: we train the estimator using ``coarse'' dataset (∆x=0.05) 
                                of oscillating source and plane wave 1.
Coarse data set 2: we train the estimator using ``coarse'' dataset (∆x=0.05) 
                                of oscillating source and plane wave 2.
Fine data set: we train the estimator using ``fine'' dataset (∆x=0.025) of 
                        oscillating source and plane wave 1.

NOR: Wave propagation in a heterogeneous bar



  

 Training set: oscillating source and plane wave obtained using a DNS solver that computes the 
velocity exactly, with t from 0 to 2.
Oscillating source:
Plane wave 1:
Plane wave 2:

 Experiments:
Coarse data set 1: we train the estimator using ``coarse'' dataset (∆x=0.05) 
                                of oscillating source and plane wave 1.
Coarse data set 2: we train the estimator using ``coarse'' dataset (∆x=0.05) 
                                of oscillating source and plane wave 2.
Fine data set: we train the estimator using ``fine'' dataset (∆x=0.025) of 
                        oscillating source and plane wave 1.

NOR: Wave propagation in a heterogeneous bar

 investigate the 
sensitivity of the
inverse problem.



  

 Training set: oscillating source and plane wave obtained using a DNS solver that computes the 
velocity exactly, with t from 0 to 2.
Oscillating source:
Plane wave 1:
Plane wave 2:

 Experiments:
Coarse data set 1: we train the estimator using ``coarse'' dataset (∆x=0.05) 
                                of oscillating source and plane wave 1.
Coarse data set 2: we train the estimator using ``coarse'' dataset (∆x=0.05) 
                                of oscillating source and plane wave 2.
Fine data set: we train the estimator using ``fine'' dataset (∆x=0.025) of 
                        oscillating source and plane wave 1.

NOR: Wave propagation in a heterogeneous bar

 investigate the 
convergence of the

inverse problem.



  

 Training set: oscillating source and plane wave obtained using a DNS solver that computes the 
velocity exactly

NOR: Wave propagation in a heterogeneous bar

Kernel 
convergence

matching 
DNS indicates 
physical 
consistency

>0 indicates 
physical 
stability



  

 Training set: oscillating source and plane wave obtained using a DNS solver that computes the 
velocity exactly, with t from 0 to 2.
Oscillating source:
Plane wave 1:
Plane wave 2:

 Test set: wave packet obtained using a DNS solver with a different loading and domain, from the 
training dataset, and with a much longer simulation time (t from 0 to 100). 
Wave packet: 

NOR: Wave propagation in a heterogeneous bar

The relative L2 errors of long 
term (T=100) displacement 
prediction on the test dataset:



  

NOR: Coarse-grained MD model for graphene
● Given: a collection of samples of coarse-grained MD displacements 

and forcing

● Model: linearized peridynamic solid (LPS) model

where the kernel K is approximated by Bernstein polynomials:

● Goal: approximate the kernel K(|y-x|), the Youngs modulus E and 
the Poisson ratio      subject to solvability constraints.

H. You, Y. Yu*, S. Silling, M. D’Elia, “A data-driven peridynamic continuum model for upscaling molecular dynamics”. CMAME, 2022.



  

NOR: Coarse-grained MD model for graphene
● When the kernel K is non-negative and not too singular, this linearized model is 

guaranteed to be solvable. 

● However, the non-negative assumption is too restricted.

● We numerically discretize the model with the meshfree quadrature rule, then 
imposed the solvability constraint in a discrete manner:

H. You, Y. Yu*, S. Silling, M. D’Elia, “A data-driven peridynamic continuum model for upscaling molecular dynamics”. CMAME, 2022.

Theorem (Well-posedness of the discretized nonlocal model):
The discrete nonlocal coercivity and inf-sup conditions are satisfied if

(Coercivity)                               
(Inf-Sup)                             

where A and B are the discrete matrices of the following nonlocal operators



  

NOR: Coarse-grained MD model for graphene
● Perform MD modeling of a perfect graphene sheet under loads 
with different frequencies for 70 training samples:

● Compute the coarse-grained displacements with grid size Δx=5 
and normalize each sample such that  

MD displacement at 300K
Smoothed in time

MD velocity at 300K
NOT smoothed



  

● Perform MD modeling and coarse graining of a perfect graphene sheet under point 
loads for 10 validation samples:

validation sample, 300K

● This dataset has the same domain and grids but 
under substantially different loading conditions. 

NOR: Coarse-grained MD model for graphene



  

NOR: Coarse-grained MD model for graphene

● We first study the perfect graphene crystal structure at 0K, essentially no 
noise.

● Optimal parameters:

● Optimal Kernel K: 

[1] Qin, Huasong, et al. "Negative Poisson's ratio in rippled graphene." Nanoscale 9.12 (2017): 4135-4142.
[2] Jiang, Jin-Wu, et al. "Intrinsic negative Poisson’s ratio for single-layer graphene." Nano letters 16.8 (2016): 5286-5290.

-0.38 in [1]
-0.33 in [2]



  

● Perform MD modeling and coarse graining of a perfect graphene sheet for 4 test 
samples with circular domain and zero loading:

validation sample, 300K

● This dataset has substantially different domain and loading conditions. 

Model parameters: 0K or 300K, Δx=5Å

Testing domain: A circular object with radius 100Å

Sample testing forcing term: 

NOR: Coarse-grained MD model for graphene



  

● Perform MD modeling and coarse graining of a perfect graphene sheet for 4 test 
samples with circular domain and zero loading:

validation sample, 300K

Training set Young’s
modulus 

Poisson 
ratio

Training 
Loss

Training 
error in u

Validation 
Loss

Validation 
error in u

Test error 
in u

0K 0.91 TPa -0.43 2.8 9.81% 11.72% 13.28% 7.16% 6.75%

300K, Low 0.90 TPa -0.42 2.6 9.82% 13.16% 18.08% 8.88% 9.21%

(recall) validation sample(recall) training sample Testing sample: MD data

NOR: Coarse-grained MD model for graphene



  

● Employing the learnt peridynamic model in predicting crack propagation.

NOR: Coarse-grained MD model for graphene

Prediction 
at 20 steps

Prediction 
at 40 steps

Learn the 
kernel and 
critical 
stretch 
ratio on 
Δx=5, and 
apply on 
Δx=2.5



What is the BEST nonlocal model?

1. Is this simple formula general 

enough?

Part II
Learning Nonlocal Neural Operators 

for Heterogeneous Models
[1] N. Liu, Y. Yu*, H. You, N. Tatikola.  “INO: Invariant Neural Operator for Learning 
Complex Physical Systems with Momentum Conservation”, AISTATS, 2023
[2] H. You, Y. Yu*, M. D’Elia, T. Gao, S. Silling, “Nonlocal Kernel Network (NKN): a stable and 
resolution independent deep neural network”. JCP, 2022
[3] L. Zhang, H. You, T. Gao, M. Yu, C-H. Lee, Y. Yu*, “MetaNO: How to Transfer Your 
Knowledge on Learning Hidden Physics”, Under Review, 2023.
[4] H. You, Q. Zhang, C. Ross, C-H. Lee, Y. Yu*, “Learning Deep Implicit Fourier Neural Operators 
(IFNOs) with Applications to Heterogeneous Material Modeling”. CMAME, 2022.
[5] H. You, Q. Zhang, C. Ross, C-H. Lee, M-C. Hsu, Y. Yu*, “A Physics-Guided Neural Operator 
Learning Approach to Model Biological Tissues from Digital Image Correlation Measurements”. 
Journal of Biomechanical Engineering, 2022.



  

Propose: a nonlocal neural constitutive law for nonlinear and 
heterogeneous materials

 Idea: the material response is governed by a constitutive law, parameterized as a neural operator:

where f(x) is the external loading, and u(x) is the corresponding material responses.

Nonlocal Neural Operators

Mechanical Testing of heart valve leaflet

Exemplar 
problem: heart 
valve leaflet 
modeling.

Exemplar 
problem: 
crack on 
glass-
ceramics. 

Crack propagation simulations using peridynamics.



  

Propose: a nonlocal neural constitutive law for nonlinear and 
heterogeneous materials

 Assume: an unknown governing equation

 Learn the neural operator                          , such that for each data pairs,  G[u]=f.
 Advantages:

1. Only require observed data pairs                     , and hence can be applied when the underlying 
constitutive law is unknown.
2. G allows nonlinear and heterogeneous material responses.
3. No further modification or tuning will be required for different resolutions and discretizations.

 Cons:
1. Does not guarantee well-posedness nor physical laws.

Nonlocal Neural Operators

1L. Lu, P. Jin, G. Pang, Z. Zhang, G. E. Karniadakis, Learning nonlinear operators via deeponet based on the universal approximation theorem of operators, Nature 
Machine Intelligence 3 (3) (2021) 218–229.
2Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Neural operator: Graph kernel network for partial differential equations, arXiv 
preprint arXiv:2003.03485.
3Chen, Ke, Chunmei Wang, and Haizhao Yang. "Deep Operator Learning Lessens the Curse of Dimensionality for PDEs." arXiv preprint arXiv:2301.12227 (2023).



  

 Question: How to impose basic physical laws into neural operators?
Approach 1: As an additional penalization term: PINO, Physics-informed DeepONet, PG-IFNO, 
etc.
Approach 2: Hard-coded into the NN architecture.

 Propose: a neural operator in the form of a state-based peridynamics formulation 

which guarantees the balances of total force and torque.

INO: Neural Operator with Conservation Laws

How to design the stress state operator, T?



  

 Question: How to impose basic physical laws into neural operators?
Approach 1: As an additional penalization term: PINO, Physics-informed DeepONet, PG-IFNO, 
etc.
Approach 2: Hard-coded into the NN architecture.

Noether’s theorem (Connections between symmetry and conservation laws):
Consider a system whose dynamical state at a given instant of time t can be described by a set of 
generalized coordinates x=[x1,x2,…xf], and a set of generalized velocities p=[p1,p2,…,pf], and for 
which there exists a Lagrangian function L(t,x,p) which, when substituted into Lagrange’s equations 
of motion, determines the dynamical behavior of the system.
1) If the Lagrangian function, L, is invariant under a translation in a particular direction, the total 
linear momentum of the system is a constant of the motion.
2) If the Lagrangian is invariant under a rotation in space, then the angular momentum of the 
system is a constant of the motion.

INO: Neural Operator with Conservation Laws

Desloge, E. A., & Karch, R. I. (1977). Noether’s theorem in classical mechanics. American Journal of Physics, 45(4), 336-339.



  

 Question: How to impose basic physical laws into neural operators?
Approach 1: As an additional penalization term: PINO, Physics-informed DeepONet, PG-IFNO, 
etc.
Approach 2: Hard-coded into the NN architecture.

Noether’s theorem (Connections between symmetry and conservation laws):
Consider a system whose dynamical state at a given instant of time t can be described by a set of 
generalized coordinates x=[x1,x2,…xf], and a set of generalized velocities p=[p1,p2,…,pf], and for 
which there exists a Lagrangian function L(t,x,p) which, when substituted into Lagrange’s equations 
of motion, determines the dynamical behavior of the system.
1) If the Lagrangian function, L, is invariant under a translation in a particular direction, the total 
linear momentum of the system is a constant of the motion.
2) If the Lagrangian is invariant under a rotation in space, then the angular momentum of the 
system is a constant of the motion.

INO: Neural Operator with Conservation Laws

Desloge, E. A., & Karch, R. I. (1977). Noether’s theorem in classical mechanics. American Journal of Physics, 45(4), 336-339.

E.g., on material displacement modeling:

Translational Invariant         Linear Momentum Conservation

Rotational Equivariant         Angular Momentum Conservation



  

 Equivariant Graph Neural Network(EGNN): learn graph neural networks equivariant to 
rotations, translations, reflections and permutations

 h=node features, m=edge features

GNN:

EGNN:

EGNN: Equivariance in GNNs

1Satorras, V. G., Hoogeboom, E., & Welling, M. (2021). E (n) equivariant graph neural networks. In International conference on machine learning (pp. 
9323-9332). PMLR.



  

 Question: How to impose basic physical laws into neural operators?

 Propose: a invariant neural operator in the form of a state-based peridynamics formulation 

where

INO: Neural Operator with Conservation Laws

EGNN



  

● Perform MD modeling and coarse graining of a perfect graphene sheet for 4 test 
samples with circular domain and zero loading:

validation sample, 300K

Model Young’s
modulus 

Poisson 
ratio

Validation 
Loss

Validation 
error in u

Test error 
in u

NOR 0.91 TPa -0.43 2.8 13.28% 7.16% 6.75%

INO N/A N/A N/A 9.80% 3.20% 3.40%

(recall) validation sample(recall) training sample Testing sample: MD data

INO example 1: MD dataset



  

 200 training and 25 test samples:  generated from the Holzapfel-Gasser-Odgen (HGO) model

with: E=0.973, 𝜈=0.265, k1=0.1, k2=1.5, α=π/2. material is anisotropic and nonlinear.

INO example 2: synthetic dataset

(Ground-truth) strain energy density function:

Body 
load

Displacement 
field

Learnt 
Kernel m:

Test 
error:

4.15%



  

● We proposed two new data-driven nonlocal constitutive models, NORs and 
INOs, which learns continuous integrants for material learning tasks.

● For linear & homogenized model learning tasks, the nonlocal operator 
regression (NOR) model is proposed, which learns optimal kernel functions 
directly from data.

● For nonlinear & heterogeneous material modeling tasks, the invariant 
neural operator (INO) model is proposed, which guarantees the linear and 
angular momentum conservation laws, and resembles nonlinear peridynamics.

● We employed NOR and INO to learn several exemplar material models directly 
from high-fidelity simulations/experimental measurements, and show that the 
learnt nonlocal operators are generalizable to different resolutions and loading 
scenarios.

Conclusion



  

● Collaborators:

Huaiqian You (Ph.D. student), Siavash Jafarzadeh (postdoc), Neeraj Tatikola (master student),  Lehigh 
University

Stewart Silling, Sandia National Lab, Marta D’Elia, Meta, Ning Liu, GEM.

Fei Lu, Qingci An, JHU
● Funding support:
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● Computational Resources: Lehigh HPC systems
● References:
● [1] Lu, F., An, Q., & Yu, Y. (2022). Nonparametric learning of kernels in nonlocal operators. arXiv preprint 

arXiv:2205.11006.

[2] H. You, Y. Yu, S. Silling, M. D’Elia, “A data-driven peridynamic continuum model for upscaling molecular 
dynamics”. CMAME, 2022.

[3] N. Liu, Y. Yu, H. You, N. Tatikola.  “INO: Invariant Neural Operator for Learning Complex Physical 
Systems with Momentum Conservation”, AISTATS, 2023.

Thank you!
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