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Machine learning for solving PDEs

• Neural network discretizations

• Operator learning in PDEs

• Training algorithms
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machine learning.
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✓ Lu, L., Jin, P., & Karniadakis, G. E. (2019). Deeponet: Learning nonlinear operators for identifying differential equations
✓ Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhattacharya, K., Stuart, A., & Anandkumar, A. (2020). Fourier neural operator
✓ You, H., Zhang, Q., Ross, C. J., Lee, C. H., & Yu, Y. (2022). Learning deep implicit fourier neural operators (IFNOs) 

✓ Siegel, J. W., Hong, Q., Jin, X., Hao, W., & Xu, J. (2021). Greedy Training Algorithms for Neural Networks for PDEs
✓ Wang, B., & Ye, Q. (2023). Improving Deep Neural Networks’ Training With Nonlinear Conjugate Gradient-Style Adaptive 

Momentum. 



• We consider the following Laplace’s equation

ቐ

−Δ𝑣 = 𝑓 𝑣  𝑖𝑛 Ω
𝜕𝑣

𝜕𝑛
= 0 𝑜𝑛 𝜕Ω

where Ω ⊂ 𝑅𝑑 and 𝜕Ω is the boundary of the domain.

• Energy functional

min 
𝑤

 𝐽 w = Ω
∇𝑤 2 − 𝐺 𝑤 𝑑𝑥

• Neural network discretizations

• How to solve 𝜽 to get a numerical approximation?

Problem setup



Three different approaches

• Variational energy minimization

min 
𝜽

 𝐿(𝜽) = 
Ω

∇𝑢(𝑥; 𝜽) 2 − 𝐺 𝑢(𝑥; 𝜽) 𝑑𝑥

• L2 residual minimization

 min 
𝜽

  σ𝑖 | Δ𝑢 𝑥𝑖; 𝜽 + 𝑓 𝑢 𝑥𝑖; 𝜽 |2 + σ𝑗 ||
𝜕𝑢 𝑥𝑗;𝜽

𝜕n
||2

• A system of nonlinear equations

𝑭 𝜽 = ൞

Δ𝑢 𝑥𝑖; 𝜽 + 𝑓 𝑢 𝑥𝑖; 𝜽 , 𝑖 = 1, ⋯ , 𝑁

𝜕𝑢 𝑥𝑗; 𝜽

𝜕n
, 𝑗 = 1, ⋯ , 𝑛

= 𝟎

֞ min 
𝜽

𝑭 𝜽
2

2



Gradient descent methods

• Variational energy minimization

∇𝜃𝐿(𝜃) = න
Ω

∇𝑢 𝑥; 𝜃 ∇𝜃∇𝑢(𝑥; 𝜃) − 𝑓 𝑢 𝑥; 𝜃 ∇𝜃𝑢(𝑥; 𝜃)𝑑𝑥

• L2 residual minimization

 ∇𝜃 𝑭 𝜃
2

2
= 2(∇𝜃𝑭 𝜃 )𝑇𝑭 𝜽

• Gradient descent method for solving nonlinear systems is written as 
𝜃𝑘+1 = 𝜃𝑘 − 𝜂𝑘(∇𝜃𝑭 𝜃𝑘 )𝑇𝑭 𝜽𝒌

where 𝜂𝑘 =
𝑣𝑇𝑭 𝜽𝒌

𝑣𝑇𝑣
 and 𝑣 = ∇𝜃𝑭(𝜃𝑘)(∇𝜃𝑭 𝜃𝑘 )𝑇𝑭 𝜽𝒌 .

 

Hao, W. (2021). A gradient descent method for solving a system of nonlinear equations. Applied Mathematics Letters, 112, 106739.



Newton’s methods

• Variational energy minimization

∇𝜃
2 𝐿 𝜃 = න

Ω

∇𝜃∇𝑢 𝑥; 𝜃 ∇𝜃∇𝑢 𝑥; 𝜃 𝑇 − 𝑓′ 𝑢 𝑥; 𝜃 ∇𝜃𝑢 𝑥; 𝜃 ∇𝜃𝑢 𝑥; 𝜃 𝑇𝑑𝑥

Ω +
∇𝜃

2 𝛻𝑢 𝑥; 𝜃 ⋅ 𝛻𝑢 𝑥; 𝜃 − 𝑓 𝑢 𝑥; 𝜃 𝛻𝜃
2𝑢 𝑥; 𝜃 𝑑𝑥

• Newton’s method becomes 

𝜃𝑘+1 = 𝜃𝑘 − ∇𝜃
2 𝐿 𝜃𝑘 −1

∇𝜃𝐿 𝜃𝑘



Newton’s methods

• The Hessian matrix of 𝐿2 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 is  

∇𝜃𝑭 𝜃 𝑇∇𝜃𝑭 𝜃 + 

𝑖=1

𝑚

𝐹𝑖 𝜃 ∇𝜃
2 𝐹𝑖 𝜃  

• Newton’s method becomes 

𝜃𝑘+1 = 𝜃𝑘 − ∇𝜃𝑭 𝜃𝑘 𝑇
∇𝜃𝑭 𝜃𝑘 + σ𝑖=1

𝑚 𝐹𝑖 𝜃𝑘 ∇𝜃
2 𝐹𝑖 𝜃𝑘

−1
(∇𝜃𝑭 𝜃𝑘 )𝑇𝑭 𝜽𝒌



Gauss Newton’s methods

• The Hessian matrix of 𝐿2 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 is  

∇𝜃𝑭 𝜃 𝑇∇𝜃𝑭 𝜃 + 

𝒊=𝟏

𝒎

𝑭𝒊 𝜽 𝛁𝜽
𝟐𝑭𝒊 𝜽  

• Gauss Newton’s method becomes 

𝜃𝑘+1 = 𝜃𝑘 − ∇𝜃𝑭 𝜃𝑘 𝑇
∇𝜃𝑭 𝜃𝑘

−1

(∇𝜃𝑭 𝜃𝑘 )𝑇𝑭 𝜽𝒌

which is equivalent to solving the linearized least squares problem

𝑝𝑘 = 𝑎𝑟𝑔 min
𝑝

1

2
| ∇𝜃𝑭 𝜃𝑘 𝑝 + 𝑭(𝜃𝑘)|

2

2
.



Newton’s methods

• Newton’s method for solving nonlinear system is 

𝜃𝑘+1 = 𝜃𝑘 − ∇𝜃𝑭 𝜃𝑘
−1

𝑭 𝜽𝒌 .

• If the Jacobian matrix is not an invertible square matrix, we have 

𝜃𝑘+1 = 𝜃𝑘 − ∇𝜃𝑭 𝜃𝑘
+

𝑭 𝜽𝒌 .

where 𝐴+ = 𝐴𝑇𝐴 −1𝐴𝑇 .



Gauss-Newton method

Example 𝐹 𝑥, 𝑦 =
𝑥2 + 𝑦2 − 1

𝑥 + 𝑦 − 1
𝑥 + 휀

, GN is the Newton’s method for 

solving nonlinear systems with small residual. 

𝜺
𝒙𝟎 =

𝟏

𝟐
,
𝟏

𝟑

𝑻

𝒙𝟎 = −
𝟏

𝟐
,
𝟏

𝟑

𝑻

0 6 steps 7 steps

10−2 8 steps 10 steps

10−1 11 steps 13 steps

1 19 steps 19 steps

5 647 steps 651 steps

10 Diverge Diverge



Summary of Newton’s method

Variational formula L2 minimization Nonlinear system

Newton 𝜃𝑘+1 = 𝜃𝑘 − ∇𝜃
2 𝐿 𝜃𝑘 −1

∇𝜃𝐿 𝜃𝑘
𝜃𝑘+1 = 𝜃𝑘 − ∇𝜃𝜃𝑭 𝜃𝑘

−1
(∇𝜃𝑭 𝜃𝑘 )𝑇𝑭 𝜽𝒌 𝜃𝑘+1 = 𝜃𝑘 − ∇𝜃𝑭 𝜃𝑘

+
𝑭 𝜽𝒌

Gauss-Newton ??
𝜃𝑘+1 = 𝜃𝑘 − ∇𝜃𝑭 𝜃𝑘

+
𝑭 𝜽𝒌 N/A



Gauss Newton’s method

• Variational energy minimization

∇𝜃
2 𝐿 𝜃 = න

Ω

∇𝜃∇𝑢 𝑥; 𝜃 ∇𝜃∇𝑢 𝑥; 𝜃 𝑇 − 𝑓′ 𝑢 𝑥; 𝜃 ∇𝜃𝑢 𝑥; 𝜃 ∇𝜃𝑢 𝑥; 𝜃 𝑇𝑑𝑥

𝛀 +
𝛁𝜽

𝟐𝜵𝒖 𝒙; 𝜽 ⋅ 𝜵𝒖(𝒙, 𝜽) − 𝒇 𝒖 𝒙; 𝜽 𝜵𝜽
𝟐𝒖 𝒙; 𝜽 𝒅𝒙

• 𝑄 𝜃 = Ω
∇𝜃

2 𝑢(𝑥, 𝜃)(−Δ𝑢 𝑥; 𝜃 − 𝑓 𝑢 𝑥; 𝜃 𝑑𝑥 + Ω��
∇𝜃

2 𝑢 𝑥, 𝜃
𝜕𝑢 𝑥,𝜃

𝜕𝑛
𝑑𝑠

• Since 𝑄 𝜃 ≤ 휀, Gauss Newton’s method becomes 

𝜃𝑘+1 = 𝜃𝑘 − 𝐽 𝜃𝑘 +
∇𝜃𝐿 𝜃𝑘

𝑱(𝜽)

𝑸(𝜽)

Hao, W., Hong, Q., Jin, X. & Wang, Y. (2023). Gauss Newton method for solving variational problems of 

PDEs with neural network discretizaitons. Submitted, available at arXiv preprint arXiv:2306.08727.



The consistency between Gauss-Newton methods

• By applying the divergence theorem, we have

𝐽(𝜃) = න
Ω

∇𝜃∇𝑢 𝑥; 𝜃 ∇𝜃∇𝑢 𝑥; 𝜃 𝑇 − 𝑓′ 𝑢 𝑥; 𝜃 ∇𝜃𝑢 𝑥; 𝜃 ∇𝜃𝑢 𝑥; 𝜃 𝑇𝑑𝑥

= න
Ω

∇𝜃𝑢 𝑥; 𝜃 (−∇𝜃Δ𝑢 𝑥; 𝜃 − 𝑓′ 𝑢 𝑥; 𝜃 ∇𝜃𝑢 𝑥; 𝜃 𝑑𝑥 + න
𝜕Ω

∇𝜃𝑢 𝑥; 𝜃
𝜕∇𝜃𝑢 𝑥; 𝜃 𝑇

𝜕𝑛
𝑑𝑆

• By applying numerical integrations, we have 

න
Ω

∇𝜃𝑢 𝑥; 𝜃 (−∇𝜃Δ𝑢 𝑥; 𝜃 − 𝑓′ 𝑢 𝑥; 𝜃 ∇𝜃𝑢 𝑥; 𝜃 𝑑𝑥

≈ 

𝑖

𝑤𝑖∇𝜃𝑢 𝑥𝑖; 𝜃 (−∇𝜃Δ𝑢 𝑥𝑖; 𝜃 − 𝑓′ 𝑢 𝑥𝑖; 𝜃 ∇𝜃𝑢 𝑥𝑖; 𝜃

න
𝜕Ω

∇𝜃𝑢 𝑥; 𝜃
𝜕∇𝜃𝑢 𝑥; 𝜃 𝑇

𝜕𝑛
𝑑𝑆 ≈ 

𝑗

𝑤𝑗∇𝜃𝑢 𝑥𝑗; 𝜃
𝜕∇𝜃𝑢 𝑥𝑗; 𝜃

𝑇

𝜕𝑛

• Then we have 𝐽 𝜃 = 𝐺∇𝜃𝐅 𝜃 , 𝑤ℎ𝑒𝑟𝑒 𝐺 = 𝑤𝑖∇𝜃𝑢 𝑥𝑖; 𝜃 𝑖=1
𝑁+𝑛



The consistency between Gauss-Newton methods

• Similarly, we can rewrite the gradient ∇𝜃𝐿 𝜃 = 𝐺∇𝜃𝐹 𝜃 .

• Then we have 𝐽 𝜃 +∇𝜃𝐿 𝜃 = ∇𝜃𝐹 𝜃 +(𝐺+𝐺)𝑭 𝜽 .

• If 𝐺 is column full rank, then we have 𝐺+𝐺 = 𝐼.

• This is possible if the number of grid points N + n is less than or equal to 
the number of parameters dim 𝜃 .

Hao, W., Hong, Q., Jin, X. & Wang, Y. (2023). Gauss Newton method for solving variational problems of 

PDEs with neural network discretizaitons. Submitted, available at arXiv preprint arXiv:2306.08727.



Summary of Newton’s method

Variational formula L2 minimization Nonlinear system

Newton 𝜃𝑘+1 = 𝜃𝑘 − ∇𝜃
2 𝐿 𝜃𝑘 −1

∇𝜃𝐿 𝜃𝑘
𝜃𝑘+1 = 𝜃𝑘 − ∇𝜃𝜃𝑭 𝜃𝑘

−1
(∇𝜃𝑭 𝜃𝑘 )𝑇𝑭 𝜽𝒌 𝜃𝑘+1 = 𝜃𝑘 − ∇𝜃𝑭 𝜃𝑘

+
𝑭 𝜽𝒌

Gauss-Newton 𝜃𝑘+1 = 𝜃𝑘 − ∇𝜃𝑭 𝜃𝑘
+

𝐺+𝐺𝑭 𝜽𝒌 𝜃𝑘+1 = 𝜃𝑘 − ∇𝜃𝑭 𝜃𝑘
+

𝑭 𝜽𝒌 N/A



Solution structure
All dimensional solutions for a given  polynomial system:

• Points + Curves + Surfaces+…

The irreducible decomposition for Z=V(f) is:

•  

•   

•  

•  

•  

•  

Semi-regular zeros (positive 
dimensional zeros)

Regular zeros (isolated zeros)



Semi-regular zeros of ∇𝜃𝐿 𝜃 = 0

• Dimension of zeros for a system of nonlinear equations.

• Example 𝑥2 + 𝑦2 − 1 = 0

• We define 𝜙 𝑧 = cos z , sin z
𝑇

. 𝜙𝑧 𝑧 = − sin 𝑧 , cos 𝑧 𝑇 , 𝑟𝑎𝑛𝑘 𝜙𝑍 𝑍 = 1



Semi-regular zeros of ∇𝜃𝐿 𝜃 = 0

• Regularity of non-isolated zeros

• Example 𝑥2 + 𝑦2 − 1 = 0

• 𝐻 𝑥, 𝑦 = 2𝑥, 2𝑦 𝑇  and rank H x, y = 1



Semi-regular zeros of ∇𝜃𝐿 𝜃 = 0

• Finite element method case: Let us consider the finite element space and define 𝑉𝑁 
as the set of functions that can be represented as a linear combination of the basis 
functions 𝜙𝑖(𝑥), where 𝑎𝑖 ∈ 𝑅 and 𝑖 = 1 ⋯ 𝑚. Then we have 𝑢 𝑥; 𝜃 = σ𝑖 𝛼𝑖𝜙𝑖 𝑥 . 
In this case, we have a linear system ∇𝐿 𝜃 = 𝐴𝜃 − 𝑔, where 𝜃 = 𝛼1, ⋯ , 𝛼𝑚 .

• Regular zero: if 𝐴 is full rank, we have an isolated regular zero.

• Semiregular zero: if rank 𝐴 = 𝑟 < 𝑚, ker(𝐴)=span(𝜃1, ⋯ , 𝜃𝑚−𝑟), then we define

𝜙 𝑧 = 𝜃 = 𝜃∗ + 𝛿1𝜃1 + ⋯ 𝜎𝑚−𝑟𝜃𝑚−𝑟 and 𝑧 = 𝛿1, ⋯ , 𝛿𝑚−𝑟 .

Therefore, 𝑟𝑎𝑛𝑘 𝐴 + 𝑟𝑎𝑛𝑘 𝜙𝑧 𝑧 = 𝑚



Semi-regular zeros of ∇𝜃𝐿 𝜃 = 0

• Neural network discretization: we consider a simple neural network in 1D with 
domain Ω = −1,1 :

 𝑢 𝑥; 𝜃 = σ𝑖 𝑎𝑖𝑅𝑒𝐿𝑈𝑘 𝑤𝑖𝑥 + 𝑏𝑖 , 𝑎𝑖 ∈ 𝑅, 𝑏𝑖 ∈ −1 − 𝛿, 1 + 𝛿 , 𝑤𝑖 ∈ {−1,1}.

• Simple case of 𝒎 = 𝟏 𝒂𝒏𝒅 𝑵 = 𝟏:  we consider 𝑢(𝑥, 𝜃) =
𝑎1𝑅𝑒𝐿𝑈(𝑥 + 𝑏1) when 𝑥1 + 𝑏1

∗ < 0
• Semi-regular zero:

Hao, W., Hong, Q., Jin, X. & Wang, Y. (2023). Gauss Newton method for solving variational problems of 

PDEs with neural network discretizaitons. Submitted, available at arXiv preprint arXiv:2306.08727.



Convergence analysis

Theorem Let 𝐿 𝜃  be a sufficiently smooth target function of 𝜃. Then 
for every open neighborhood Ω1 of 𝜃∗, the sequence generated by 
Gauss Newton converges in Ω1. Furthermore, the sequence  has at 
least linear convergence.

Sketch of proof h<1



Convergence analysis

Sketch of proof



Numerical examples

We consider the following differential equation

൝
−𝑢𝑥𝑥 + 𝑢 = (𝜋2 + 1)cos (𝜋𝑥)

𝑢𝑥 −1 = 𝑢𝑥 1 = 0
 



Numerical examples

We consider the following differential equation

൝
−𝑢𝑥𝑥 + 𝑢 = (𝜋2 + 1)cos (𝜋𝑥)

𝑢𝑥 −1 = 𝑢𝑥 1 = 0
 



Numerical examples

We confirm the consistency of two Gauss-Newton methods for 
variational and L2 minimization problems.

Variational form                      L2 minimization Variational form                      L2 minimization

N=500, m=128,dim 𝜃 = 384N=100, m=128 ,dim 𝜃 = 384



Numerical examples

We consider the random Gauss-Newton’s method



Artificial neural networks

Aghbashlo, Mortaza, et al. "Machine learning technology in 

biodiesel research: A review." Progress in Energy and 
Combustion Science 85 (2021): 100904.



Application to Alzheimer’s disease

Dr. Alois Alzheimer (1864-1915) was the physician who first reported 
on a patient with dementia, later termed as "Alzheimer's Disease."



The history of Alzheimer’s disease

Ferrari, C, Sorbi, S (2021). The complexity of Alzheimer's disease: an evolving puzzle. Physiol Rev, 101, 3:1047-1081.



AD clinical biomarkers

Janeiro, M. H., Ardanaz, C. G., Sola-Sevilla, N., Dong, J., Cortés-Erice, M., Solas, M., ... & Ramírez, M. J. (2021). Biomarkers in Alzheimer’s
disease. Advances in Laboratory Medicine/Avances en Medicina de Laboratorio, 2(1), 27-37.



Biomarkers dynamics



Model the dynamics of biomarkers

• 𝑥 𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑡)

• Logistic growth model
𝑑𝑥

𝑑𝑡
= 𝜆𝑥 1 −

𝑥

𝐾

𝐷𝑃𝑆𝑖 = 𝛼𝑖𝑡 + 𝛽𝑖

Ghazi, M. M., Nielsen, M., Pai, A., Modat, M., Cardoso, M. J., Ourselin, S., & Sørensen, L. (2021). Robust parametric modeling of Alzheimer’s 
disease progression. NeuroImage, 225, 117460.



Mathematical models on the population level

• We can write the model as follows

• 𝑥 𝑡 = σ𝑤𝑖𝜎(𝛼𝑖𝑡 + 𝛽𝑖)



Model verification

• We learn a system of ODEs by using the clinical data
𝑑𝒙

𝑑𝑡
= 𝑮 𝒙 , 𝒙 = 𝐴𝛽 , 𝜏𝑝, 𝜏𝑜, 𝑁, 𝐶

𝑻
.

• We use a polynomial basis to approximate the right-hand side, namely,

𝑮 𝒙, 𝒑 = 

ℓ

𝑤ℓ𝝓(𝒙) .

• The system of ODEs can be rewritten as

𝒙 𝑡 − 𝒙 0 = 

ℓ

𝑤ℓ න
0

𝑡

𝝓 𝒙 𝑠 𝑑𝑠 .

Zheng, H, Petrella, JR, Doraiswamy, PM, Lin, G, Hao, W (2022). Data-driven causal model discovery 

and personalized prediction in Alzheimer's disease. NPJ Digit Med, 5, 1:137.



Model verification

• By choosing 𝑡 = 𝑡𝑖, and denoting 

 𝐷 = 0

𝑡𝑖 𝝓 𝒙 𝑠 𝑑𝑠 , 𝑏 =(𝒙 𝑡𝑖 − 𝒙 0 ),

 we have the following Lasso optimization 
min

𝑤
𝐷𝑤 − 𝑏 + 𝜆 𝑤

1
,

where 𝑤
1

 enforces the sparsity.  



Disease progression scores

• For different subjects in ADNI, the onset of disease and rate of progression 
are different within and among subject classes of CN, LMCI and AD.

• We introduce DPS 𝑠𝑖(𝑡) as a linear function of the patient's age 𝑡 for each 
patient: 𝑠𝑖 𝑡 = 𝛼𝑖 + 𝛽𝑖𝑡.

• The parameters of the ODE model are fitted based on the ADNI dataset by 
minimizing the sum of squared differences between the data and the 
solution of the causal model, namely

min
𝑤𝑘



𝑖,𝑗 ∈𝐼𝑘

𝑥𝑖𝑗𝑘 − 𝑥𝑘 𝛼𝑖 + 𝛽𝑖𝑡; 𝑤𝑘

2

where 𝑥𝑖𝑗𝑘 is k-th biomarker data for i-th patient at j-th visit. 



Disease progression scores

• Since the biomarkers for each patient will generally increases or 
decreases monotonically, we consider fitting DPSs as a least square 
linear regression problem, namely, 

min
𝛼𝑖,𝛽𝑖



𝑗,𝑘 ∈𝐼𝑖

𝜎𝑘 𝑥𝑖𝑗𝑘 − 𝑥𝑘 𝛼𝑖 + 𝛽𝑖𝑡; 𝑤𝑘

2

where 𝜎𝑘 is the normalization constant for k-th biomarker. 
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Data-driven modeling approach
A general causal model is learned from 
the ADNI dataset 

Zheng, H, Petrella, JR, Doraiswamy, PM, Lin, G, Hao, W (2022). Data-driven causal model discovery and personalized prediction in Alzheimer's disease. NPJ Digit Med, 5, 1:137.



Results of population model

Histogram of biomarkers in ADNI The population model on three groups



Results of personalized models

The personalized causal model for one AD patient with patient ID =126.



Results of personalized models

Groups DPS diff Abeta Tau Hippo ADAS13

CN 0.78 ± 0.64 97.2 ± 3.5% 93.3 ± 3.9% 97.8 ± 1.9% 88.5 ± 5.8%

MCI & AD 0.58 ± 0.17 97.4 ± 1.5% 93.7 ± 3.8% 96.0 ± 2.9% 88.6 ± 5.7%

CN 0.78 ± 0.64 86.8 ± 7.6% 81.4 ± 7.4% 82.6 ± 8.2% 76.3 ± 10.1%

MCI & AD 0.58 ± 0.17 85.5 ± 7.8% 81.4 ± 8.2% 85.8 ± 7.5% 77.3 ± 7.9%

Zheng, H, Petrella, JR, Doraiswamy, PM, Lin, G, Hao, W (2022). Data-driven causal model discovery 

and personalized prediction in Alzheimer's disease. NPJ Digit Med, 5, 1:137.



Conclusions

• Gauss-Newton method has been developed for the 
variational formulation of partial differential equations using 
neural network discretizations.

• The proposed method has been analyzed to demonstrate 
superlinear convergence.

• A mathematical model of Alzheimer’s disease (AD) is built to 
describe the progression of AD clinical biomarkers through a 
public patient dataset.
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