A New Practical Framework for the Stability Analysis of Perturbed Saddle-point Problems and Applications

Morgan State University, CBMS Conference

Qingguo Hong June 19-23, 2023

Department of Mathematics

Pennsylvania State University (PSU)

Formulation of perturbed saddle point problems (PSPPs)

Babuska's and Brezzi's conditions for stability of PSPPs

A new framework for the stability analysis of PSPPs

Application to operator preconditioning in vector Laplacian equation

Applications to operator preconditioning in poromechanics

Formulation of perturbed saddle point problems (PSPPs)

Notation

Consider the following setting:

- V and Q denote Hilbert spaces,
- for the norms $\|\cdot\|_V$ and $\|\cdot\|_Q$,
- induced by the scalar products $(\cdot, \cdot)_V$ and $(\cdot, \cdot)_Q$,

respectively.

 $Y := V \times Q \text{ denotes their product space, endowed with the norm } \| \cdot \|_{Y}:$ $\|y\|_{Y}^{2} = (y, y)_{Y} = (v, v)_{V} + (q, q)_{Q} = \|v\|_{V}^{2} + \|q\|_{Q}^{2} \quad \forall y = (v; q) \in Y.$

Next, consider an abstract bilinear form $\mathcal{A}((\cdot; \cdot), (\cdot; \cdot))$ on $Y \times Y$:

$$\mathcal{A}((u; p), (v; q)) := a(u, v) + b(v, p) + b(u, q) - c(p, q)$$
(1)

composed from the bilinear forms:

- $a(\cdot, \cdot)$ on $V \times V$ and $c(\cdot, \cdot)$ on $Q \times Q$, being SPSD and bounded,
- $b(\cdot, \cdot)$ on $V \times Q$, being bounded.

Abstract perturbed saddle-point problem (PSPP)

Each of these bilinear forms defines a linear operator as follows:

$$A: V \to V': \langle Au, v \rangle_{V' \times V} = a(u, v), \qquad \forall u, v \in V,$$
(2a)

$$C: Q \to Q': \langle Cp, q \rangle_{Q' \times Q} = c(p, q), \quad \forall p, q \in Q,$$
 (2b)

$$B: V o Q': \langle Bv, q \rangle_{Q' imes Q} = b(v, q), \qquad orall v \in V, orall q \in Q.$$
 (2c)

For the bilinear form in (1), consider the perturbed saddle-point problem

$$\mathcal{A}((u; p), (v; q)) = \mathcal{F}((v; q)) \qquad \forall v \in V, \forall q \in Q,$$
(3)

which for $x = (u; p) \in Y$ we write as $\mathcal{A}(x, y) = \mathcal{F}(y), \forall y = (v; q) \in Y$, or, in operator form, as

$$\mathcal{A}x = \begin{pmatrix} A & B^* \\ B & -C \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \mathcal{F}.$$
 (4)

$$\mathcal{A}: Y \to Y': \langle \mathcal{A}x, y \rangle_{Y' \times Y} = \mathcal{A}(x, y), \qquad \forall x, y \in Y,$$
 (5a)

$$\mathcal{F} \in Y' : \mathcal{F}(y) = \langle \mathcal{F}, y \rangle_{Y' \times Y} \quad \forall y \in Y.$$
 (5b)

Babuska's and Brezzi's conditions for stability of PSPPs

The abstract variational problem (3) is well-posed under the necessary and sufficient conditions (6) and (7) given in the following theorem.

Theorem 1 [Babuška, 1971]

Let $\mathcal{F} \in Y'$ be a bounded linear functional. Then the saddle-point problem (3) is well-posed if and only if there exist positive constants \overline{C} and α for which the conditions

$$A(x,y) \leq \bar{C} \|x\|_{Y} \|y\|_{Y} \quad \forall x,y \in Y,$$

$$\inf_{x \in Y} \sup_{y \in Y} \frac{\mathcal{A}(x,y)}{\|x\|_{Y} \|y\|_{Y}} \geq \underline{\alpha} > 0$$
(7)

hold. The solution x then satisfies the stability estimate

$$\|x\|_{Y} \leq \frac{1}{\underline{\alpha}} \sup_{y \in Y} \frac{\mathcal{F}(y)}{\|y\|_{Y}} =: \frac{1}{\underline{\alpha}} \|\mathcal{F}\|_{Y'}.$$

For the classical saddle-point problem, i.e., $c(\cdot, \cdot) \equiv 0$, we have the following theorem which we formulate here under the condition

$$\operatorname{Ker}(B^{\mathsf{T}}) := \{ q \in Q : b(v, q) = 0 \,\,\forall v \in V \} = \{ 0 \}.$$
(8)

Theorem 2 [Brezzi, 1974], [Boffi, Brezzi, Fortin, 2013]

Assume that the bilinear forms $a(\cdot, \cdot)$ and $b(\cdot, \cdot)$ are continuous on $V \times V$ and on $V \times Q$, respectively, $a(\cdot, \cdot)$ is symmetric positive semidefinite, and also that

$$a(v,v) \ge \underline{C}_a \|v\|_V, \quad \forall v \in \operatorname{Ker}(B),$$
 (9)

$$\inf_{q \in Q} \sup_{v \in V} \frac{b(v,q)}{\|v\|_V \|q\|_Q} \ge \beta > 0, \tag{10}$$

hold. Then the classical saddle-point problem (Problem (3) with $c(\cdot,\cdot)\equiv 0)$ is well-posed.

If $c(\cdot, \cdot) \not\equiv 0$ an additional assumption can be used to ensure the well-posedness of the PSPP. Consider the following auxiliary problem:

$$\epsilon(p_0,q)_Q + c(p_0,q) = -c(p^{\perp},q), \qquad \forall q \in \operatorname{Ker}(B^{\mathsf{T}})$$
(11)

Assumption 1 [Brezzi & Fortin, 1991]

There exists a $\gamma_0 > 0$ such that for every $p^{\perp} \in (\text{Ker}(B^{\top}))^{\perp}$ and every $\epsilon > 0$ the solution $p_0 \in \text{Ker}(B^{\top})$ of (11) satisfies $\gamma_0 ||p_0||_Q \le ||p^{\perp}||_Q$.

Theorem 3 [Brezzi & Fortin, 1991]

Let the conditions of Theorem 2 be satisfied and let $c(\cdot, \cdot)$ be continuous and SPSD. Then, under Assumption 1, Problem (3) for every $f \in V'$ and every $g \in \text{Im}(B)$ and $\mathcal{F}(y) := \langle f, v \rangle_{V' \times V} + \langle g, q \rangle_{Q' \times Q}$ has a unique solution x = (u; p) in $Y = V \times Q/M$ where $M = \text{Ker}(B^T) \cap \text{Ker}(C)$. Moreover, for a constant $C(\overline{C}_a, \overline{C}_c, \underline{C}_a, \beta, \gamma_0)$ there holds the estimate

$$\|u\|_{V} + \|p\|_{Q/\operatorname{Ker}(B^{T})} \leq C(\|f\|_{V'} + \|g\|_{Q'}).$$

Can we dispense with Assumption 1?

In order to ensure the boundedness (continuity) of $c(\cdot, \cdot)$, it is natural to include the contribution of $c(\cdot, \cdot)$ in the norm $\|\cdot\|_Q$, e.g., by defining

$$\|q\|_Q^2 = |q|_Q^2 + t^2 c(q, q), \qquad \forall q \in Q,$$
 (12)

for a proper seminorm or norm $|\cdot|_Q$ and a parameter $t \in [0, 1]$.

Then the stability of the PSPP can be proven under Brezzi's conditions for the classical saddle-point problem and the additional condition

$$\inf_{u \in V} \sup_{(v;q) \in V \times Q} \frac{a(u,v) + b(u,q)}{|||(v;q)|||} \ge \gamma > 0,$$
(13)

where $|||(v;q)|||^2 := ||v||_V^2 + |q|_Q^2 + t^2 c(q,q), \quad t \in [0,1].$

Theorem 4 [Braess, 1996]

Assume that conditions (9) and (10) are fulfilled and (13) holds with $\gamma > 0$ for some t > 0. Then the PSPP (3) is stable under the norm $\|\cdot\|_{Y} := \|\cdot\|$ and the constant $\underline{\alpha}$ in (7) depends only on β , \underline{C}_{a} , γ , t.

A new framework for the stability analysis of PSPPs

- Develop Brezzi like condition for PSPPs which only need to check two conditions: the coercivity of a(·, ·) and the small inf-sup condition for b(·, ·).
- The stability constants are uniform with respect to the parameters appeared in the bilinear forms $a(\cdot, \cdot), b(\cdot, \cdot)$ and $c(\cdot, \cdot)$

Key idea: Norm splittings

For fixed $t \in (0, 1]$, the norm (12) is equivalent to

$$\|q\|_{Q}^{2} := |q|_{Q}^{2} + c(q,q) =: \langle \bar{Q}q, q \rangle_{Q' \times Q}$$
(14)

where $ar{Q}:Q
ightarrow Q'$ is a linear operator.

Now we introduce the following splitting of the norm $\|\cdot\|_{V}$ defined by

$$\|v\|_{V}^{2} := |v|_{V}^{2} + |v|_{b}^{2}$$
(15)

where $|\cdot|_V$ is a proper seminorm, which is a norm on Ker(B) satisfying

$$|v|_V^2 \approx a(v, v), \qquad \forall v \in \operatorname{Ker}(B)$$

and $|\cdot|_b$ is defined by

$$|v|_{b}^{2} := \langle Bv, \bar{Q}^{-1}Bv \rangle_{Q' \times Q} = \|Bv\|_{Q'}^{2}.$$
 (16)

Then $\bar{Q}^{-1}: Q' \to Q$ is an isometric isomorphism (Riesz isomorphism), $\|\bar{Q}^{-1}Bv\|_Q^2 = \|Bv\|_{Q'}^2 = \langle \bar{Q}\bar{Q}^{-1}Bv, \bar{Q}^{-1}Bv \rangle_{Q' \times Q} = \langle Bv, \bar{Q}^{-1}Bv \rangle_{Q' \times Q}.$

Remark

Note that both $|\cdot|_V$ and $|\cdot|_b$ can be seminorms as long as they add up to a full norm. Likewise, only the sum of the seminorms $|\cdot|_Q$ and $c(\cdot, \cdot)$ has to define a norm.

In order to present our main theoretical result, we make the definition.

Definition 1

Two norms $\|\cdot\|_Q$ and $\|\cdot\|_V$ on the Hilbert spaces Q and V are called fitted if they satisfy the splittings (14) and (15), respectively, where $|\cdot|_Q$ is a seminorm on Q and $|\cdot|_V$ and $|\cdot|_b$ are seminorms on V, the latter defined according to (16).

Theorem 5 [H., Kraus, Lymbery, Philo, 2021]

Let $\|\cdot\|_V$ and $\|\cdot\|_Q$ be fitted norms according to Definition 1, which immediately implies the continuity of $b(\cdot, \cdot)$ and $c(\cdot, \cdot)$ in these norms with $\overline{C}_b = 1$ and $\overline{C}_c = 1$, cf. (14)–(16). Consider the bilinear form $\mathcal{A}((\cdot; \cdot), (\cdot; \cdot))$ defined in (1) where $a(\cdot, \cdot)$ is SPSD and continuous, and $c(\cdot, \cdot)$ is SPSD. Assume that $a(\cdot, \cdot)$ satisfies the coercivity estimate

$$a(v,v) \ge \underline{C}_a |v|_V^2, \quad \forall v \in V,$$
 (17)

and $b(\cdot, \cdot)$ the inf-sup-type condition that there exists a constant $\underline{\beta} > 0$ s.t.

$$\sup_{\substack{v \in V \\ v \neq 0}} \frac{b(v,q)}{\|v\|_{V}} \ge \underline{\beta} |q|_{Q}, \qquad \forall q \in Q.$$
(18)

Then, $\mathcal{A}((\cdot; \cdot), (\cdot; \cdot))$ is continuous and inf-sup stable under the combined norm $\|\cdot\|_Y$ defined by $\|y\|_Y^2 = \|v\|_V^2 + \|q\|_Q^2$, $\forall y = (v; q) \in Y = V \times Q$.

More details and various applications of the presented framework including

- generalized Poisson and generalized Stokes equations,
- Stokes-Darcy interface problem,
- vector Laplace equation (Maxwell),
- various formulations of Biot's model

can be found in

Q. Hong, J. Kraus, M. Lymbery, F. Philo: A new practical framework for the stability analysis of perturbed saddle-point problems and applications. Mathematics of Computation, 2023, Vol. 92, 607-634. Application to operator preconditioning in vector Laplacian equation Mixed variational formulation of the vector Laplace equation: find $\boldsymbol{p} \in \boldsymbol{H}_0(\operatorname{curl}, \Omega), \boldsymbol{u} \in \boldsymbol{H}_0(\operatorname{div}, \Omega)$, such that

$$(\alpha \boldsymbol{p}, \boldsymbol{q}) - (\boldsymbol{u}, \operatorname{curl} \boldsymbol{q}) = 0, \quad \forall \boldsymbol{q} \in \boldsymbol{H}_0(\operatorname{curl}, \Omega),$$

 $-(\operatorname{curl} \boldsymbol{p}, \boldsymbol{v}) - (\operatorname{div} \boldsymbol{u}, \operatorname{div} \boldsymbol{v}) = (f, \boldsymbol{v}), \quad \forall \boldsymbol{v} \in \boldsymbol{H}_0(\operatorname{div}, \Omega),$

where α is a positive scalar.

Mixed variational formulation of the vector Laplace equation: find $\boldsymbol{p} \in \boldsymbol{H}_0(\operatorname{curl}, \Omega), \boldsymbol{u} \in \boldsymbol{H}_0(\operatorname{div}, \Omega)$, such that

$$(\alpha \boldsymbol{p}, \boldsymbol{q}) - (\boldsymbol{u}, \operatorname{curl} \boldsymbol{q}) = 0, \quad \forall \boldsymbol{q} \in \boldsymbol{H}_0(\operatorname{curl}, \Omega),$$

 $-(\operatorname{curl} \boldsymbol{p}, \boldsymbol{v}) - (\operatorname{div} \boldsymbol{u}, \operatorname{div} \boldsymbol{v}) = (f, \boldsymbol{v}), \quad \forall \boldsymbol{v} \in \boldsymbol{H}_0(\operatorname{div}, \Omega),$

where α is a positive scalar.

We rewrite the above equations as

$$\begin{aligned} (\operatorname{div} \boldsymbol{u}, \operatorname{div} \boldsymbol{v}) + (\operatorname{curl} \boldsymbol{p}, \boldsymbol{v}) &= -(f, \boldsymbol{v}), & \forall \boldsymbol{v} \in \boldsymbol{H}_0(\operatorname{div}, \Omega), \\ (\boldsymbol{u}, \operatorname{curl} \boldsymbol{q}) - (\alpha \boldsymbol{p}, \boldsymbol{q}) &= 0, & \forall \boldsymbol{q} \in \boldsymbol{H}_0(\operatorname{curl}, \Omega). \end{aligned}$$

The bilinear forms that define $\mathcal{A}((\cdot; \cdot), (\cdot; \cdot))$ are

$$\begin{split} & \boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) := (\operatorname{div}\boldsymbol{u},\operatorname{div}\boldsymbol{v}), \qquad \forall \boldsymbol{u},\boldsymbol{v} \in \boldsymbol{V}, \\ & \boldsymbol{b}(\boldsymbol{v},\boldsymbol{p}) := (\operatorname{curl}\boldsymbol{p},\boldsymbol{v}), \qquad \forall \boldsymbol{v} \in \boldsymbol{V}, \forall \boldsymbol{p} \in \boldsymbol{Q}, \\ & \boldsymbol{c}(\boldsymbol{p},\boldsymbol{q}) := (\alpha \boldsymbol{p},\boldsymbol{q}), \qquad \forall \boldsymbol{p}, \boldsymbol{q} \in \boldsymbol{Q}, \end{split}$$

where $\boldsymbol{V} = \boldsymbol{H}_0(\operatorname{div}, \Omega), \boldsymbol{Q} = \boldsymbol{H}_0(\operatorname{curl}, \Omega).$

We fix $|\cdot|_Q$ and $|\cdot|_V$ to be

$$egin{aligned} &|m{q}|_Q^2 := ((lpha+1) ext{curl}m{q}, ext{curl}m{q}), & orallm{q} \in m{Q}, \ &|m{v}|_V^2 := (ext{div}m{v}, ext{div}m{v}), & orallm{v} \in m{V}. \end{aligned}$$

As before, $a(\mathbf{v}, \mathbf{v}) \ge |\mathbf{v}|_V^2$ for all $\mathbf{v} \in \mathbf{V}$, that is, (17) is satisfied with $\underline{C}_a = 1$.

Vector Laplace equation: small inf-sup condition

In addition, noting that
$$B := \operatorname{curl}^* : \mathbf{V} \to \mathbf{Q}'$$
, we have
 $\|\mathbf{q}\|_Q^2 := |\mathbf{q}|_Q^2 + c(\mathbf{q}, \mathbf{q}) = ((\alpha + 1)\operatorname{curl}\mathbf{q}, \operatorname{curl}\mathbf{q}) + (\alpha \mathbf{q}, \mathbf{q})$
 $= \langle \bar{Q}\mathbf{q}, \mathbf{q} \rangle_{Q' \times Q}, \ \forall \mathbf{q} \in \mathbf{Q},$
 $\|\mathbf{v}\|_V^2 := |\mathbf{v}|_V^2 + \langle B\mathbf{v}, \bar{Q}^{-1}B\mathbf{v} \rangle_{Q' \times Q}$
 $= (\operatorname{div}\mathbf{v}, \operatorname{div}\mathbf{v}) + ((\alpha I + \operatorname{curl}^*(\alpha + 1)\operatorname{curl})^{-1}\operatorname{curl}^*\mathbf{v}, \operatorname{curl}^*\mathbf{v}), \ \forall \mathbf{v} \in \mathbf{V}.$
Next, for any $\mathbf{q} \in \mathbf{Q}$, choose $\mathbf{v}_0 = \operatorname{curl}\mathbf{q} \in \mathbf{V}$ to obtain
 $\|\mathbf{v}_0\|_V^2 = (\operatorname{div}\operatorname{curl}\mathbf{q}, \operatorname{div}\operatorname{curl}\mathbf{q})$
 $+ ((\alpha I + \operatorname{curl}^*(\alpha + 1)\operatorname{curl})^{-1}\operatorname{curl}^*\operatorname{curl}\mathbf{q}, \operatorname{curl}^*\operatorname{curl}\mathbf{q})$
 $= ((\alpha I + \operatorname{curl}^*(\alpha + 1)\operatorname{curl})^{-1}\operatorname{curl}^*\operatorname{curl}\mathbf{q}, \operatorname{curl}^*\operatorname{curl}\mathbf{q})$

$$= ((\alpha I + \operatorname{curl}^*(\alpha + 1)\operatorname{curl})^{-1}\operatorname{curl}^*\operatorname{curl}^*\mathbf{q}, \operatorname{curl}^*\mathbf{q})$$

$$\leq (\boldsymbol{q}, (\alpha + 1)^{-1}\operatorname{curl}^*\operatorname{curl}^*\boldsymbol{q})$$

$$= ((\alpha + 1)^{-1}\operatorname{curl}\boldsymbol{q}, \operatorname{curl}\boldsymbol{q})$$

 and

$$\sup_{\boldsymbol{v}\in\boldsymbol{V}}\frac{b(\boldsymbol{v},\boldsymbol{q})}{\|\boldsymbol{v}\|_{\boldsymbol{V}}} \geq \frac{b(\boldsymbol{v}_{0},\boldsymbol{q})}{\|\boldsymbol{v}_{0}\|_{\boldsymbol{V}}} = \frac{(\operatorname{curl}\boldsymbol{q},\operatorname{curl}\boldsymbol{q})}{\|\boldsymbol{v}_{0}\|_{\boldsymbol{V}}} \geq \frac{(\operatorname{curl}\boldsymbol{q},\operatorname{curl}\boldsymbol{q})}{((\alpha+1)^{-1}\operatorname{curl}\boldsymbol{q},\operatorname{curl}\boldsymbol{q})^{\frac{1}{2}}} = |\boldsymbol{q}|_{\boldsymbol{Q}}.$$

Note that

 $\|\boldsymbol{v}\|_{V}^{2} := (\operatorname{div}\boldsymbol{v}, \operatorname{div}\boldsymbol{v}) + ((\alpha I + \operatorname{curl}^{*}(\alpha + 1)\operatorname{curl})^{-1}\operatorname{curl}^{*}\boldsymbol{v}, \operatorname{curl}^{*}\boldsymbol{v})$

is equivalent to

$$(\operatorname{div} \boldsymbol{\nu}, \operatorname{div} \boldsymbol{\nu}) + ((\alpha + 1)^{-1} \boldsymbol{\nu}, \boldsymbol{\nu}).$$

Hence we obtain the following norm-equivalent operator preconditioner:

$$\mathcal{B} := \begin{bmatrix} ((\alpha+1)^{-1}I - \nabla \operatorname{div})^{-1} & \\ & (\alpha I + (\alpha+1)\operatorname{curl}^*\operatorname{curl})^{-1} \end{bmatrix}$$

Applications to operator preconditioning in poromechanics

In the following, we will make use of the following classical inf-sup conditions, see, e.g., [Brezzi & Fortin, 1991], for the pairs of spaces (\mathbf{V}, Q) : there exist constants β_d and β_s such that

$$\inf_{q \in Q} \sup_{\boldsymbol{\nu} \in \boldsymbol{\mathcal{V}}} \frac{(\operatorname{div} \boldsymbol{\nu}, q)}{\|\boldsymbol{\nu}\|_{\operatorname{div}} \|q\|} \ge \beta_d > 0,$$
(21)

$$\inf_{q \in \mathcal{Q}} \sup_{\mathbf{v} \in \mathbf{V}} \frac{(\operatorname{div} \mathbf{v}, q)}{\|\mathbf{v}\|_1 \|q\|} \ge \beta_s > 0,$$
(22)

where the norms $\|\cdot\|_{\text{div}}$, $\|\cdot\|_1$ and $\|\cdot\|$ denote the standard H(div), H^1 and L^2 norms and (\cdot, \cdot) is the L^2 -inner product.

Examples in poromechanics: 2-field formulation

The two-field formulation of the quasi-static Biot's consolidation model after semidiscretization in time by the implicit Euler method, see, e.g.,

[Lee, Mardal, Winther 2017],

[Adler, Gaspar, Hu, Rodrigo, Zikatanov, 2018]

reads: find $(\boldsymbol{u}, p_F) \in \boldsymbol{H}_0^1(\Omega) \times H_0^1(\Omega)$ s.t.

 $\begin{aligned} (\varepsilon(\boldsymbol{u}),\varepsilon(\boldsymbol{v})) + \lambda(\operatorname{div}\boldsymbol{u},\operatorname{div}\boldsymbol{v}) - \alpha(p_F,\operatorname{div}\boldsymbol{v}) &= (\boldsymbol{f},\boldsymbol{v}), \quad \forall \boldsymbol{v} \in \boldsymbol{H}_0^1(\Omega), \\ -\alpha(\operatorname{div}\boldsymbol{u},q_F) - c_0(p_F,q_F) - (\kappa \nabla p_F,\nabla q_F) &= (g,q_F), \quad \forall q \in \boldsymbol{H}_0^1(\Omega), \end{aligned}$ where

• $\lambda \ge 0$ is a scaled Lamé coefficient,

- $c_0 \ge 0$ a storage coefficient,
- κ the (scaled) hydraulic conductivity,
- α the (scaled) Biot-Willis coefficient.

The bilinear forms defining $\mathcal{A}((\cdot; \cdot), (\cdot; \cdot))$ are given by

$$\begin{aligned} &\boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) := (\varepsilon(\boldsymbol{u}),\varepsilon(\boldsymbol{v})) + \lambda(\operatorname{div}\boldsymbol{u},\operatorname{div}\boldsymbol{v}), & \forall \boldsymbol{u},\boldsymbol{v} \in \boldsymbol{V}, \\ &\boldsymbol{b}(\boldsymbol{v},q_F) := -\alpha(\operatorname{div}\boldsymbol{v},q_F), & \forall \boldsymbol{v} \in \boldsymbol{V}, \forall q_F \in \boldsymbol{Q}, \\ &\boldsymbol{c}(p_F,q_F) := c_0(p_F,q_F) + (\kappa \nabla p_F,\nabla q_F), & \forall p_F,q_F \in \boldsymbol{Q}, \end{aligned}$$

where $Q := H_0^1(\Omega)$, $\boldsymbol{V} := \boldsymbol{H}_0^1(\Omega)$. We define $|\cdot|_Q$, $|\cdot|_V$ to be

$$\begin{split} |q_F|_Q^2 &:= \eta(q_F, q_F), \quad \forall q_F \in Q, \\ |\boldsymbol{v}|_V^2 &:= (\varepsilon(\boldsymbol{v}), \varepsilon(\boldsymbol{v})) + \lambda(\operatorname{div} \boldsymbol{v}, \operatorname{div} \boldsymbol{v}), \quad \forall \boldsymbol{v} \in \boldsymbol{V}, \end{split}$$

where the parameter $\eta > 0$ is to be determined later. As before, $a(\mathbf{v}, \mathbf{v}) \ge |\mathbf{v}|_V^2$ for all $\mathbf{v} \in \mathbf{V}$, that is, (17) is satisfied with $\underline{C}_a = 1$.

2-field formulation: small inf-sup condition

Obviously, there holds

$$\langle B\boldsymbol{v}, \bar{Q}^{-1}B\boldsymbol{v} \rangle_{Q' \times Q} \leq \frac{\alpha^2}{\eta} (\operatorname{div} \boldsymbol{v}, \operatorname{div} \boldsymbol{v}),$$

where $B: \mathbf{V} \to Q'$, $B:=-\alpha {
m div}.$ Therefore, we obtain

$$\begin{split} \|\boldsymbol{v}\|_{V}^{2} &= (\varepsilon(\boldsymbol{v}), \varepsilon(\boldsymbol{v})) + \lambda(\operatorname{div}\boldsymbol{v}, \operatorname{div}\boldsymbol{v}) + \langle B\boldsymbol{v}, \bar{Q}^{-1}B\boldsymbol{v} \rangle_{Q' \times Q} \\ &\leq (\varepsilon(\boldsymbol{v}), \varepsilon(\boldsymbol{v})) + \left(\lambda + \frac{\alpha^{2}}{\eta}\right) (\operatorname{div}\boldsymbol{v}, \operatorname{div}\boldsymbol{v}) \leq \left(1 + \lambda + \frac{\alpha^{2}}{\eta}\right) \|\boldsymbol{v}\|_{1}^{2}. \end{split}$$

We choose \mathbf{v}_0 such that $-\operatorname{div} \mathbf{v}_0 = \frac{1}{\sqrt{1+\lambda}}q_F$ and use (22) to obtain $\|\mathbf{v}_0\|_1 \leq \frac{1}{\beta_s} \frac{1}{\sqrt{1+\lambda}} \|q_F\|$, and finally

$$\begin{aligned} \sup_{\boldsymbol{v}\in\boldsymbol{V}} \frac{b(\boldsymbol{v},q_F)}{\|\boldsymbol{v}\|_{\boldsymbol{V}}} &\geq \frac{b(\boldsymbol{v}_0,q_F)}{\|\boldsymbol{v}_0\|_{\boldsymbol{V}}} = \frac{\frac{\alpha}{\sqrt{1+\lambda}} \|q_F\|^2}{\|\boldsymbol{v}_0\|_{\boldsymbol{V}}} \geq \frac{\frac{\alpha}{\sqrt{1+\lambda}}}{\sqrt{\left(1+\lambda+\frac{\alpha^2}{\eta}\right)}} \frac{\|q_F\|^2}{\|\boldsymbol{v}_0\|_1} \\ &\geq \frac{\beta_s \alpha}{\sqrt{\left(1+\lambda+\frac{\alpha^2}{\eta}\right)}} \frac{\|q_F\|^2}{\|q_F\|} = \frac{\beta_s \alpha}{\sqrt{\left(1+\lambda+\frac{\alpha^2}{\eta}\right)}} \frac{1}{\sqrt{\eta}} |q_F|_{\boldsymbol{Q}}.\end{aligned}$$

2-field formulation: operator preconditioner

For $\eta := \frac{\alpha^2}{(1+\lambda)} > 0$ the right-hand side of the previous inequality is bounded from below by $\frac{\beta_s}{\sqrt{2}} |q_F|_Q$, which shows (18) with $\underline{\beta} = \frac{1}{\sqrt{2}}\beta_s$.

Hence we obtain the following norm-equivalent operator preconditioner:

$$\mathcal{B} := \begin{bmatrix} (-\mathrm{div}\varepsilon - (1+\lambda)\nabla\mathrm{div})^{-1} \\ & \left(\left(c_0 + \alpha^2/(1+\lambda) \right) I - \mathrm{div}\kappa\nabla \right)^{-1} \end{bmatrix}$$

By introducing $p_{S} = -\lambda \operatorname{div} \boldsymbol{u}$ and substituting

- $\alpha p_F \rightarrow p_F$,
- $c_0 \alpha^{-2} \rightarrow c_0$,
- $\kappa \alpha^{-2} \rightarrow \kappa$,
- $\alpha^{-1}g \rightarrow g$

in the *two-field formulation* we obtain the following three-field variational formulation of Biot's model, see [Lee, Mardal, Winther 2017]:

$$\begin{aligned} (\varepsilon(\boldsymbol{u}),\varepsilon(\boldsymbol{v})) - (p_S + p_F, \operatorname{div} \boldsymbol{v}) &= (\boldsymbol{f}, \boldsymbol{v}), & \forall \boldsymbol{v} \in \boldsymbol{H}_0^1(\Omega), \\ -(\operatorname{div} \boldsymbol{u}, q_S) - \lambda^{-1}(p_S, q_S) &= 0, & \forall q_S \in L_0^2(\Omega), \\ -(\operatorname{div} \boldsymbol{u}, q_F) - c_0(p_F, q_F) - (\kappa \nabla p_F, \nabla q_F) &= (g, q_F), & \forall q_F \in \boldsymbol{H}_0^1(\Omega). \end{aligned}$$

The bilinear forms that determine $\mathcal{A}((\cdot; \cdot), (\cdot; \cdot))$ are

$$\begin{split} & \boldsymbol{a}(\boldsymbol{u},\boldsymbol{v}) := (\varepsilon(\boldsymbol{u}),\varepsilon(\boldsymbol{v})), \qquad \forall \boldsymbol{u},\boldsymbol{v} \in \boldsymbol{V}, \\ & \boldsymbol{b}(\boldsymbol{v},\boldsymbol{q}) := -(\operatorname{div}\boldsymbol{v},q_S) - (\operatorname{div}\boldsymbol{v},q_F), \qquad \forall \boldsymbol{v} \in \boldsymbol{V}, \forall \boldsymbol{q} \in \boldsymbol{Q}, \\ & \boldsymbol{c}(\boldsymbol{p},\boldsymbol{q}) := \lambda^{-1}(p_S,q_S) + c_0(p_F,q_F) + (\kappa \nabla p_F, \nabla q_F), \qquad \forall \boldsymbol{p}, \boldsymbol{q} \in \boldsymbol{Q}, \\ & \text{where } \boldsymbol{V} = \boldsymbol{H}_0^1(\Omega), \ \boldsymbol{Q} = L_0^2(\Omega) \times H_0^1(\Omega) \text{ and } \boldsymbol{p} = (p_S;p_F), \ \boldsymbol{q} = (q_S;q_F). \end{split}$$

Then the operator B is given by

$$B := \begin{pmatrix} -\operatorname{div} \\ -\operatorname{div} \end{pmatrix}$$

We define $|\cdot|_Q$, $|\cdot|_V$ to be

$$\begin{split} |\boldsymbol{q}|_Q^2 &:= \left(\begin{pmatrix} I & I \\ I & I \end{pmatrix} \begin{pmatrix} q_S \\ q_{F,0} \end{pmatrix}, \begin{pmatrix} q_S \\ q_{F,0} \end{pmatrix} \right) = \|q_S + q_{F,0}\|^2, \qquad \forall \boldsymbol{q} \in \boldsymbol{Q}, \\ |\boldsymbol{v}|_V^2 &:= (\varepsilon(\boldsymbol{v}), \varepsilon(\boldsymbol{v})), \qquad \forall \boldsymbol{v} \in \boldsymbol{V}, \end{split}$$

where $q_{F,0} := P_0 q_F$ and P_0 is the L^2 projection from $L^2(\Omega)$ to $L^2_0(\Omega)$. Then

$$\begin{aligned} \|\boldsymbol{q}\|_{Q}^{2} &= \left(\begin{pmatrix} I & I \\ I & I \end{pmatrix} \begin{pmatrix} q_{S} \\ q_{F,0} \end{pmatrix}, \begin{pmatrix} q_{S} \\ q_{F,0} \end{pmatrix} \right) + \left(\begin{pmatrix} \lambda^{-1}I & 0 \\ 0 & c_{0}I - \operatorname{div}\kappa\nabla \end{pmatrix} \begin{pmatrix} q_{S} \\ q_{F} \end{pmatrix}, \begin{pmatrix} q_{S} \\ q_{F} \end{pmatrix} \right) \\ &= \left(\begin{pmatrix} (1 + \lambda^{-1})I & P_{0} \\ P_{0} & P_{0} + c_{0}I - \operatorname{div}\kappa\nabla \end{pmatrix} \begin{pmatrix} q_{S} \\ q_{F} \end{pmatrix}, \begin{pmatrix} q_{S} \\ q_{F} \end{pmatrix} \right) = (\bar{Q}\boldsymbol{q}, \boldsymbol{q}). \end{aligned}$$

As in the previous examples, (17) is satisfied with $\underline{C}_a = 1$.

Solid-pressure-based 3-field formulation: small inf-sup cond.

Next, we choose \mathbf{v}_0 such that $-\operatorname{div} \mathbf{v}_0 = q_S + q_{F,0}$ for which we have $\|\mathbf{v}_0\|_1 \leq \beta_s^{-1} \|q_S + q_{F,0}\|$.

Then $b(\mathbf{v}_0, \mathbf{q}) = ||q_S + q_{F,0}||^2 = |\mathbf{q}|_Q^2$ and

$$\begin{aligned} \|\boldsymbol{v}_{0}\|_{\boldsymbol{V}}^{2} &= (\varepsilon(\boldsymbol{v}_{0}), \varepsilon(\boldsymbol{v}_{0})) + (\bar{Q}^{-1}B\boldsymbol{v}_{0}, B\boldsymbol{v}_{0}) \\ &= (\varepsilon(\boldsymbol{v}_{0}), \varepsilon(\boldsymbol{v}_{0})) + \left(\bar{Q}^{-1}\begin{pmatrix} -\operatorname{div}\boldsymbol{v}_{0}\\ -\operatorname{div}\boldsymbol{v}_{0} \end{pmatrix}, \begin{pmatrix} -\operatorname{div}\boldsymbol{v}_{0}\\ -\operatorname{div}\boldsymbol{v}_{0} \end{pmatrix} \right) \\ &\leq \|\boldsymbol{v}_{0}\|_{1}^{2} + \frac{1}{4}\left(\bar{Q}^{-1}\begin{pmatrix} I & P_{0}\\ P_{0} & P_{0} \end{pmatrix}\begin{pmatrix} \operatorname{div}\boldsymbol{v}_{0}\\ \operatorname{div}\boldsymbol{v}_{0} \end{pmatrix}, \begin{pmatrix} I & P_{0}\\ P_{0} & P_{0} \end{pmatrix}\begin{pmatrix} \operatorname{div}\boldsymbol{v}_{0}\\ \operatorname{div}\boldsymbol{v}_{0} \end{pmatrix} \right) \\ &\leq \|\boldsymbol{v}_{0}\|_{1}^{2} + \frac{1}{4}\left(\begin{pmatrix} I & P_{0}\\ P_{0} & P_{0} \end{pmatrix}\begin{pmatrix} \operatorname{div}\boldsymbol{v}_{0}\\ \operatorname{div}\boldsymbol{v}_{0} \end{pmatrix}, \left(\operatorname{div}\boldsymbol{v}_{0}\\ \operatorname{div}\boldsymbol{v}_{0} \end{pmatrix} \right) \\ &= \|\boldsymbol{v}_{0}\|_{1}^{2} + (\operatorname{div}\boldsymbol{v}_{0}, \operatorname{div}\boldsymbol{v}_{0}) \\ &\leq \beta_{s}^{-2}\|\boldsymbol{q}_{s} + \boldsymbol{q}_{F,0}\|^{2} + \|\boldsymbol{q}_{s} + \boldsymbol{q}_{F,0}\|^{2} = (\beta_{s}^{-2} + 1)\|\boldsymbol{q}\|_{Q}^{2}. \end{aligned}$$

Solid-pressure-based 3-field formulation: preconditioner

Now (18) follows:

$$\sup_{\boldsymbol{v}\in V}\frac{b(\boldsymbol{v},\boldsymbol{q})}{\|\boldsymbol{v}\|_V}\geq \frac{b(\boldsymbol{v}_0,\boldsymbol{q})}{\|\boldsymbol{v}_0\|_V}\geq \frac{|\boldsymbol{q}|_Q^2}{\sqrt{(\beta_s^{-2}+1)}|\boldsymbol{q}|_Q}=:\underline{\beta}|\boldsymbol{q}|_Q,\quad\forall\boldsymbol{q}\in\boldsymbol{Q}.$$

Using the fitted norms for the constructions of a norm-equivalent preconditioner results in

$$\mathcal{B} := \begin{bmatrix} (-\operatorname{div} \varepsilon)^{-1} & & \\ & \begin{pmatrix} (1+\lambda^{-1})I & P_0 \\ & P_0 & P_0 + c_0I - \operatorname{div} \kappa \nabla \end{pmatrix}^{-1} \end{bmatrix}.$$

In [Lee, Mardal, Winther 2017], the authors showed that the solid-pressure-based three-field formulation is not stable under the Q-seminorm defined by $|\boldsymbol{q}|_Q^2 = ||\boldsymbol{p}_S||^2 + ||\boldsymbol{p}_F||^2$.

Total-pressure-based 3-field formulation: bilinear forms

By introducing the total pressure $p_T = p_S + p_F$ in the previous example, another discrete in time three-field formulation of the quasi-static Biot's consolidation model, see [Lee, Mardal, Winther 2017], is obtained:

$$(\varepsilon(\boldsymbol{u}), \varepsilon(\boldsymbol{v})) - (p_T, \operatorname{div} \boldsymbol{v}) = (\boldsymbol{f}, \boldsymbol{v}), \quad \forall \boldsymbol{v} \in \boldsymbol{H}_0^1(\Omega),$$
$$-(\operatorname{div} \boldsymbol{u}, q_T) - (\lambda^{-1} p_T, q_T) + (\alpha \lambda^{-1} p_F, q_T) = 0, \quad \forall q_T \in L^2(\Omega),$$
$$(\alpha \lambda^{-1} p_T, q_F) - ((\alpha^2 \lambda^{-1} + c_0) p_F, q_F)$$
$$-(\kappa \nabla p_F, \nabla q_F) = (g, q_F), \quad \forall q_F \in \boldsymbol{H}_0^1(\Omega)$$

Here, $\mathcal{A}((\cdot; \cdot), (\cdot; \cdot))$ is constructed from

$$\begin{aligned} a(\boldsymbol{u},\boldsymbol{v}) &:= (\varepsilon(\boldsymbol{u}),\varepsilon(\boldsymbol{v})), & \forall \boldsymbol{u},\boldsymbol{v} \in \boldsymbol{V}, \\ b(\boldsymbol{v},\boldsymbol{q}) &:= -(\operatorname{div}\boldsymbol{v},q_T), & \forall \boldsymbol{v} \in \boldsymbol{V}, \forall \boldsymbol{q} \in \boldsymbol{Q}, \\ c(\boldsymbol{p},\boldsymbol{q}) &:= (\lambda^{-1}p_T,q_T) - (\alpha\lambda^{-1}p_F,q_T) - (\alpha\lambda^{-1}p_T,q_F) \\ &+ ((\alpha^2\lambda^{-1} + c_0)p_F,q_F) + (\kappa\nabla p_F,\nabla q_F), & \forall \boldsymbol{p}, \boldsymbol{q} \in \boldsymbol{Q}, \end{aligned}$$

where $\boldsymbol{V} = \boldsymbol{H}_0^1(\Omega)$, $\boldsymbol{Q} = L^2(\Omega) \times H_0^1(\Omega)$ and $\boldsymbol{p} = (p_T; p_F)$, $\boldsymbol{q} = (q_T; q_F)$.

Total-pressure-based 3-field formulation: norms & small inf-sup

Obviously, the operator $B: \mathbf{V} \to \mathbf{Q}'$ is defined by $B := \begin{pmatrix} -\text{div} \\ 0 \end{pmatrix}$. We next set

$$egin{aligned} & |m{q}|_Q^2 := (q_{\mathcal{T},0},q_{\mathcal{T},0}), & \forall m{q} \in m{Q}, \ & |m{v}|_V^2 := (arepsilon(m{v}),arepsilon(m{v})), & \forall m{v} \in m{V}, \end{aligned}$$

where $q_{T,0} := P_0 q_T$ is the L^2 projection of $q_T \in L^2(\Omega)$ to $L^2_0(\Omega)$.

Using similar arguments as in the previous examples, we obtain for v_0 with $-\operatorname{div} v_0 = q_{T,0}$ for which we have $\|v_0\|_1 \leq \beta_s^{-1} \|q_{T,0}\|$:

$$\begin{aligned} \|\boldsymbol{v}_0\|_{\boldsymbol{V}}^2 &= (\varepsilon(\boldsymbol{v}_0), \varepsilon(\boldsymbol{v}_0)) + \langle B\boldsymbol{v}_0, \bar{Q}^{-1}B\boldsymbol{v}_0 \rangle \leq (\varepsilon(\boldsymbol{v}_0), \varepsilon(\boldsymbol{v}_0)) + (\operatorname{div} \boldsymbol{v}_0, \operatorname{div} \boldsymbol{v}_0) \\ &\leq 2 \|\boldsymbol{v}_0\|_1^2 \leq 2\beta_s^{-2} \|\boldsymbol{q}\|_Q^2. \end{aligned}$$

Again, (17) is satisfied with $\underline{C}_a = 1$ while (18) follows from

$$\sup_{\boldsymbol{v}\in V}\frac{b(\boldsymbol{v},\boldsymbol{q})}{\|\boldsymbol{v}\|_{V}} \geq \frac{b(\boldsymbol{v}_{0},\boldsymbol{q})}{\|\boldsymbol{v}_{0}\|_{V}} \geq \beta_{s}\frac{|\boldsymbol{q}|_{Q}^{2}}{|\boldsymbol{q}|_{Q}} =: \underline{\beta}|\boldsymbol{q}|_{Q}, \qquad \forall \boldsymbol{q}\in \boldsymbol{Q}.$$

Total-pressure-based 3-field formulation: preconditioner

Thus, the fitted norms generate the norm-equivalent preconditioner

$$\mathcal{B} := \begin{bmatrix} (-\operatorname{div}\varepsilon)^{-1} & & \\ & \begin{pmatrix} \lambda^{-1}I + P_0 & -\alpha\lambda^{-1}I \\ & -\alpha\lambda^{-1}I & \alpha^2\lambda^{-1}I + c_0I - \operatorname{div}\kappa\nabla \end{pmatrix}^{-1} \end{bmatrix}.$$

Remark

The arguments presented above are valid also for a vanishing storage coefficient, i.e., $c_0 = 0$. Moreover, this analysis shows how solid- and total-pressure formulation are related to each other.

In fact, by the transformation

$$\begin{pmatrix} p_T \\ p_F \end{pmatrix} = \begin{pmatrix} I & I \\ 0 & I \end{pmatrix} \begin{pmatrix} p_S \\ p_F \end{pmatrix} \text{ or, equivalently, } \begin{pmatrix} p_S \\ p_F \end{pmatrix} = \begin{pmatrix} I & -I \\ 0 & I \end{pmatrix} \begin{pmatrix} p_T \\ p_F \end{pmatrix},$$

we can derive stability and preconditioners for the two formulations from each other. Note that for $c_0 \ge \alpha^2 \lambda^{-1}$, as considered in [Lee, Mardal, Winther 2017], it is easy to show that

$$\|\boldsymbol{q}\|_Q^2 \approx \left((q_{T,0}, q_{T,0}) + (\lambda^{-1}q_T, q_T) + (\alpha^2 \lambda^{-1}q_F, q_F) + (\kappa \nabla q_F, \nabla q_F) \right)$$

from which one obtains the stability result and the norm-equivalent preconditioner presented in [Lee, Mardal, Winther 2017], i.e.,

$$\mathcal{B}_{0} := \begin{bmatrix} \left(-\mathrm{div}\varepsilon\right)^{-1} & & \\ & \left(\lambda^{-1}I + P_{0} & \\ & \alpha^{2}\lambda^{-1}I - \mathrm{div}\kappa\nabla\right)^{-1} \end{bmatrix}.$$

We have proposed a new abstract framework for the stability analysis of perturbed saddle-point problems (PSPPs) with *arbitrary large perturbations* based on a concept of norm fitting and a small inf-sup type condition which

- is applicable to many PDE-based models, including vector Laplacian and various formulations of Biot's model,
- can be used to prove the uniform well-posedness of PSPPs in proper parameter-dependent norms,
- governs the construction of norm-equivalent preconditioners and optimal splitting schemes.

The framework [H., Kraus, Lymbery, Philo, 2021] also applies to discrete models, see e.g., [H., Kraus, Kuchta, Lymbery, Mardal, Rognes, 2021].

THANK YOU FOR YOUR ATTENTION!