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Formulation of perturbed saddle

point problems (PSPPs)



Notation

Consider the following setting:

• V and Q denote Hilbert spaces,

• for the norms ‖ · ‖V and ‖ · ‖Q ,

• induced by the scalar products (·, ·)V and (·, ·)Q ,

respectively.

Y := V × Q denotes their product space, endowed with the norm ‖ · ‖Y :

‖y‖2Y = (y , y)Y = (v , v)V + (q, q)Q = ‖v‖2V + ‖q‖2Q ∀y = (v ; q) ∈ Y .

Next, consider an abstract bilinear form A((· ; ·), (· ; ·)) on Y × Y :

A((u; p), (v ; q)) := a(u, v) + b(v , p) + b(u, q)− c(p, q) (1)

composed from the bilinear forms:

• a(·, ·) on V × V and c(·, ·) on Q × Q, being SPSD and bounded,

• b(·, ·) on V × Q, being bounded.
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Abstract perturbed saddle-point problem (PSPP)

Each of these bilinear forms defines a linear operator as follows:

A : V → V ′ : 〈Au, v〉V ′×V = a(u, v), ∀u, v ∈ V , (2a)

C : Q → Q ′ : 〈Cp, q〉Q′×Q = c(p, q), ∀p, q ∈ Q, (2b)

B : V → Q ′ : 〈Bv , q〉Q′×Q = b(v , q), ∀v ∈ V ,∀q ∈ Q. (2c)

For the bilinear form in (1), consider the perturbed saddle-point problem

A((u; p), (v ; q)) = F((v ; q)) ∀v ∈ V ,∀q ∈ Q, (3)

which for x = (u; p) ∈ Y we write as A(x , y) = F(y), ∀y = (v ; q) ∈ Y ,

or, in operator form, as

Ax =

(
A B∗

B −C

)(
u

p

)
= F . (4)

A : Y → Y ′ : 〈Ax , y〉Y ′×Y = A(x , y), ∀x , y ∈ Y , (5a)

F ∈ Y ′ : F(y) = 〈F , y〉Y ′×Y ∀y ∈ Y . (5b)
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Babuska’s and Brezzi’s

conditions for stability of PSPPs



Babuska’s theorem

The abstract variational problem (3) is well-posed under the necessary

and sufficient conditions (6) and (7) given in the following theorem.

Theorem 1 [Babuška, 1971]

Let F ∈ Y ′ be a bounded linear functional. Then the saddle-point

problem (3) is well-posed if and only if there exist positive constants C̄

and α for which the conditions

A(x , y) ≤ C̄‖x‖Y ‖y‖Y ∀x , y ∈ Y , (6)

inf
x∈Y

sup
y∈Y

A(x , y)

‖x‖Y ‖y‖Y
≥ α > 0 (7)

hold. The solution x then satisfies the stability estimate

‖x‖Y ≤
1

α
sup
y∈Y

F(y)

‖y‖Y
=:

1

α
‖F‖Y ′ .
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Brezzi’s theorem

For the classical saddle-point problem, i.e., c(·, ·) ≡ 0, we have the

following theorem which we formulate here under the condition

Ker(BT ) := {q ∈ Q : b(v , q) = 0 ∀v ∈ V } = {0}. (8)

Theorem 2 [Brezzi, 1974], [Boffi, Brezzi, Fortin, 2013]

Assume that the bilinear forms a(·, ·) and b(·, ·) are continuous on V ×V

and on V × Q, respectively, a(·, ·) is symmetric positive semidefinite, and

also that

a(v , v) ≥ C a‖v‖V , ∀v ∈ Ker(B), (9)

inf
q∈Q

sup
v∈V

b(v , q)

‖v‖V ‖q‖Q
≥ β > 0, (10)

hold. Then the classical saddle-point problem (Problem (3) with

c(·, ·) ≡ 0) is well-posed.

5



What can we say if c(·, ·) 6≡ 0?

If c(·, ·) 6≡ 0 an additional assumption can be used to ensure the

well-posedness of the PSPP. Consider the following auxiliary problem:

ε(p0, q)Q + c(p0, q) = −c(p⊥, q), ∀q ∈ Ker(BT ) (11)

Assumption 1 [Brezzi & Fortin, 1991]

There exists a γ0 > 0 such that for every p⊥ ∈ (Ker(BT ))⊥ and every

ε > 0 the solution p0 ∈ Ker(BT ) of (11) satisfies γ0‖p0‖Q ≤ ‖p⊥‖Q .

Theorem 3 [Brezzi & Fortin, 1991]

Let the conditions of Theorem 2 be satisfied and let c(·, ·) be continuous

and SPSD. Then, under Assumption 1, Problem (3) for every f ∈ V ′ and

every g ∈ Im(B) and F(y) := 〈f , v〉V ′×V + 〈g , q〉Q′×Q has a unique

solution x = (u; p) in Y = V × Q/M where M = Ker(BT ) ∩Ker(C ).

Moreover, for a constant C (C̄a, C̄c ,C a, β, γ0) there holds the estimate

‖u‖V + ‖p‖Q/Ker(BT ) ≤ C (‖f ‖V ′ + ‖g‖Q′).
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Can we dispense with Assumption 1?

In order to ensure the boundedness (continuity) of c(·, ·), it is natural to

include the contribution of c(·, ·) in the norm ‖ · ‖Q , e.g., by defining

‖q‖2Q = |q|2Q + t2c(q, q), ∀q ∈ Q, (12)

for a proper seminorm or norm | · |Q and a parameter t ∈ [0, 1].

Then the stability of the PSPP can be proven under Brezzi’s conditions

for the classical saddle-point problem and the additional condition

inf
u∈V

sup
(v ;q)∈V×Q

a(u, v) + b(u, q)

|||(v ; q)|||
≥ γ > 0, (13)

where |||(v ; q)|||2 := ‖v‖2V + |q|2Q + t2c(q, q), t ∈ [0, 1].

Theorem 4 [Braess, 1996]

Assume that conditions (9) and (10) are fulfilled and (13) holds with

γ > 0 for some t > 0. Then the PSPP (3) is stable under the norm

‖ · ‖Y := |||·||| and the constant α in (7) depends only on β, C a, γ, t.
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A new framework for the

stability analysis of PSPPs



Our goal

• Develop Brezzi like condition for PSPPs which only need to check

two conditions: the coercivity of a(·, ·) and the small inf-sup

condition for b(·, ·).

• The stability constants are uniform with respect to the parameters

appeared in the bilinear forms a(·, ·), b(·, ·) and c(·, ·)
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Key idea: Norm splittings

For fixed t ∈ (0, 1], the norm (12) is equivalent to

‖q‖2Q := |q|2Q + c(q, q) =: 〈Q̄q, q〉Q′×Q (14)

where Q̄ : Q → Q ′ is a linear operator.

Now we introduce the following splitting of the norm ‖ · ‖V defined by

‖v‖2V := |v |2V + |v |2b (15)

where | · |V is a proper seminorm, which is a norm on Ker(B) satisfying

|v |2V h a(v , v), ∀v ∈ Ker(B)

and | · |b is defined by

|v |2b := 〈Bv , Q̄−1Bv〉Q′×Q = ‖Bv‖2Q′ . (16)

Then Q̄−1 : Q ′ → Q is an isometric isomorphism (Riesz isomorphism),

‖Q̄−1Bv‖2Q = ‖Bv‖2Q′ = 〈Q̄Q̄−1Bv , Q̄−1Bv〉Q′×Q = 〈Bv , Q̄−1Bv〉Q′×Q .
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Key idea: Fitted norms

Remark

Note that both | · |V and | · |b can be seminorms as long as they add up

to a full norm. Likewise, only the sum of the seminorms | · |Q and c(·, ·)
has to define a norm.

In order to present our main theoretical result, we make the definition.

Definition 1

Two norms ‖ · ‖Q and ‖ · ‖V on the Hilbert spaces Q and V are called

fitted if they satisfy the splittings (14) and (15), respectively, where | · |Q
is a seminorm on Q and | · |V and | · |b are seminorms on V , the latter

defined according to (16).
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Main stability result

Theorem 5 [H., Kraus, Lymbery, Philo, 2021]

Let ‖ · ‖V and ‖ · ‖Q be fitted norms according to Definition 1, which

immediately implies the continuity of b(·, ·) and c(·, ·) in these norms

with C̄b = 1 and C̄c = 1, cf. (14)–(16). Consider the bilinear form

A((·; ·), (·; ·)) defined in (1) where a(·, ·) is SPSD and continuous, and

c(·, ·) is SPSD. Assume that a(·, ·) satisfies the coercivity estimate

a(v , v) ≥ C a|v |2V , ∀v ∈ V , (17)

and b(·, ·) the inf-sup-type condition that there exists a constant β > 0

s.t.

sup
v∈V
v 6=0

b(v , q)

‖v‖V
≥ β|q|Q , ∀q ∈ Q. (18)

Then, A((·; ·), (·; ·)) is continuous and inf-sup stable under the combined

norm ‖ · ‖Y defined by ‖y‖2Y = ‖v‖2V + ‖q‖2Q , ∀y = (v ; q) ∈ Y = V ×Q.
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Various applications

More details and various applications of the presented framework

including

• generalized Poisson and generalized Stokes equations,

• Stokes-Darcy interface problem,

• vector Laplace equation (Maxwell),

• various formulations of Biot’s model

can be found in

Q. Hong, J. Kraus, M. Lymbery, F. Philo: A new practical framework

for the stability analysis of perturbed saddle-point problems and

applications. Mathematics of Computation, 2023, Vol. 92, 607-634.
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Application to operator

preconditioning in vector

Laplacian equation



Vector Laplace equation example: preliminaries

Mixed variational formulation of the vector Laplace equation: find

p ∈ H0(curl,Ω),u ∈ H0(div,Ω), such that

(αp,q)− (u, curlq) = 0, ∀q ∈ H0(curl,Ω),

−(curlp, v)− (divu,divv) = (f , v), ∀v ∈ H0(div,Ω),

where α is a positive scalar.

We rewrite the above equations as

(divu,divv) + (curlp, v) = −(f , v), ∀v ∈ H0(div,Ω),

(u, curlq)− (αp,q) = 0, ∀q ∈ H0(curl,Ω).
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Vector Laplace equation example: preliminaries

Mixed variational formulation of the vector Laplace equation: find

p ∈ H0(curl,Ω),u ∈ H0(div,Ω), such that

(αp,q)− (u, curlq) = 0, ∀q ∈ H0(curl,Ω),

−(curlp, v)− (divu,divv) = (f , v), ∀v ∈ H0(div,Ω),

where α is a positive scalar.

We rewrite the above equations as

(divu,divv) + (curlp, v) = −(f , v), ∀v ∈ H0(div,Ω),

(u, curlq)− (αp,q) = 0, ∀q ∈ H0(curl,Ω).

13



Vector Laplace equation: bilinear forms

The bilinear forms that define A((·; ·), (·; ·)) are

a(u, v) := (divu,divv), ∀u, v ∈ V ,

b(v ,p) := (curlp, v), ∀v ∈ V ,∀p ∈ Q,

c(p,q) := (αp,q), ∀p,q ∈ Q,

where V = H0(div,Ω),Q = H0(curl,Ω).

We fix | · |Q and | · |V to be

|q|2Q := ((α + 1)curlq, curlq), ∀q ∈ Q,

|v |2V := (divv ,divv), ∀v ∈ V .

As before, a(v , v) ≥ |v |2V for all v ∈ V , that is, (17) is satisfied with

C a = 1.
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Vector Laplace equation: small inf-sup condition

In addition, noting that B := curl∗ : V → Q ′, we have

‖q‖2Q := |q|2Q + c(q,q) = ((α + 1)curlq, curlq) + (αq,q)

= 〈Q̄q,q〉Q′×Q , ∀q ∈ Q,

‖v‖2V := |v |2V + 〈Bv , Q̄−1Bv〉Q′×Q
= (divv ,divv) +

(
(αI + curl∗(α + 1)curl)−1curl∗v , curl∗v

)
, ∀v ∈ V .

Next, for any q ∈ Q, choose v0 = curlq ∈ V to obtain

‖v0‖2V = (div curlq,div curlq)

+
(
(αI + curl∗(α + 1)curl)−1curl∗curlq, curl∗curlq

)
=
(
(αI + curl∗(α + 1)curl)−1curl∗curlq, curl∗curlq

)
≤ (q, (α + 1)−1curl∗curlq)

= ((α + 1)−1curlq, curlq)

and

supv∈V
b(v ,q)
‖v‖V ≥ b(v0,q)

‖v0‖V = (curlq,curlq)
‖v0‖V ≥ (curlq,curlq)

((α+1)−1curlq,curlq)
1
2

= |q|Q .
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Vector Laplace equation: operator preconditioner

Note that

‖v‖2V := (divv ,divv) +
(
(αI + curl∗(α + 1)curl)−1curl∗v , curl∗v

)
is equivalent to

(divv ,divv) + ((α + 1)−1v , v).

Hence we obtain the following norm-equivalent operator preconditioner:

B :=

[
((α + 1)−1I −∇div)−1

(αI + (α + 1)curl∗curl)−1

]
.
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Applications to operator

preconditioning in poromechanics



Examples in poromechanics: preliminaries

In the following, we will make use of the following classical inf-sup

conditions, see, e.g., [Brezzi & Fortin, 1991], for the pairs of spaces

(V ,Q): there exist constants βd and βs such that

inf
q∈Q

sup
v∈V

(divv , q)

‖v‖div‖q‖
≥ βd > 0, (21)

inf
q∈Q

sup
v∈V

(divv , q)

‖v‖1‖q‖
≥ βs > 0, (22)

where the norms ‖ · ‖div, ‖ · ‖1 and ‖ · ‖ denote the standard H(div), H1

and L2 norms and (·, ·) is the L2-inner product.
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Examples in poromechanics: 2-field formulation

The two-field formulation of the quasi-static Biot’s consolidation model

after semidiscretization in time by the implicit Euler method, see, e.g.,

[Lee, Mardal, Winther 2017],

[Adler, Gaspar, Hu, Rodrigo, Zikatanov, 2018]

reads: find (u, pF ) ∈ H1
0 (Ω)× H1

0 (Ω) s.t.

(ε(u), ε(v)) + λ(divu,divv)− α(pF ,divv) = (f , v), ∀v ∈ H1
0 (Ω),

−α(divu, qF )− c0(pF , qF )− (κ∇pF ,∇qF ) = (g , qF ), ∀q ∈ H1
0 (Ω),

where

• λ ≥ 0 is a scaled Lamé coefficient,

• c0 ≥ 0 a storage coefficient,

• κ the (scaled) hydraulic conductivity,

• α the (scaled) Biot-Willis coefficient.
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2-field formulation: bilinear forms and norms

The bilinear forms defining A((·; ·), (·; ·)) are given by

a(u, v) := (ε(u), ε(v)) + λ(divu,divv), ∀u, v ∈ V ,

b(v , qF ) := −α(divv , qF ), ∀v ∈ V ,∀qF ∈ Q,

c(pF , qF ) := c0(pF , qF ) + (κ∇pF ,∇qF ), ∀pF , qF ∈ Q,

where Q := H1
0 (Ω), V := H1

0 (Ω). We define | · |Q , | · |V to be

|qF |2Q := η(qF , qF ), ∀qF ∈ Q,

|v |2V := (ε(v), ε(v)) + λ(divv ,divv), ∀v ∈ V ,

where the parameter η > 0 is to be determined later. As before,

a(v , v) ≥ |v |2V for all v ∈ V , that is, (17) is satisfied with C a = 1.
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2-field formulation: small inf-sup condition

Obviously, there holds

〈Bv , Q̄−1Bv〉Q′×Q ≤
α2

η
(divv ,divv),

where B : V → Q ′, B := −αdiv. Therefore, we obtain

‖v‖2V = (ε(v), ε(v)) + λ(divv ,divv) + 〈Bv , Q̄−1Bv〉Q′×Q
≤ (ε(v), ε(v)) +

(
λ+ α2

η

)
(divv ,divv)≤

(
1 + λ+ α2

η

)
‖v‖21.

We choose v0 such that −divv0 = 1√
1+λ

qF and use (22) to obtain

‖v0‖1 ≤ 1
βs

1√
1+λ
‖qF‖, and finally

supv∈V
b(v , qF )

‖v‖V
≥ b(v0, qF )

‖v0‖V
=

α√
1+λ
‖qF‖2

‖v0‖V
≥

α√
1+λ√(

1 + λ+ α2

η

) ‖qF‖2‖v0‖1

≥ βsα√(
1 + λ+ α2

η

) ‖qF‖2‖qF‖
=

βsα√(
1 + λ+ α2

η

) 1
√
η
|qF |Q .
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2-field formulation: operator preconditioner

For η := α2

(1+λ) > 0 the right-hand side of the previous inequality is

bounded from below by βs√
2
|qF |Q , which shows (18) with β = 1√

2
βs .

Hence we obtain the following norm-equivalent operator preconditioner:

B :=

[
(−divε− (1 + λ)∇div)−1 ((

c0 + α2/(1 + λ)
)
I − divκ∇

)−1
]

By introducing pS = −λdivu and substituting

• αpF → pF ,

• c0α
−2 → c0,

• κα−2 → κ,

• α−1g → g

in the two-field formulation we obtain the following three-field variational

formulation of Biot’s model, see [Lee, Mardal, Winther 2017]:
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Solid-pressure-based 3-field formulation: bilinear forms

(ε(u), ε(v))− (pS + pF ,divv) = (f , v), ∀v ∈ H1
0 (Ω),

−(divu, qS)− λ−1(pS , qS) = 0, ∀qS ∈ L20(Ω),

−(divu, qF )− c0(pF , qF )− (κ∇pF ,∇qF ) = (g , qF ), ∀qF ∈ H1
0 (Ω).

The bilinear forms that determine A((·; ·), (·; ·)) are

a(u, v) := (ε(u), ε(v)), ∀u, v ∈ V ,

b(v ,q) := −(divv , qS)− (divv , qF ), ∀v ∈ V ,∀q ∈ Q,

c(p,q) := λ−1(pS , qS) + c0(pF , qF ) + (κ∇pF ,∇qF ), ∀p,q ∈ Q,

where V = H1
0 (Ω), Q = L20(Ω)× H1

0 (Ω) and p = (pS ; pF ), q = (qS ; qF ).

Then the operator B is given by

B :=

(
−div
−div

)
.
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Solid-pressure-based 3-field formulation: norms

We define | · |Q , | · |V to be

|q|2Q :=

((
I I

I I

)(
qS
qF ,0

)
,

(
qS
qF ,0

))
= ‖qS + qF ,0‖2, ∀q ∈ Q,

|v |2V := (ε(v), ε(v)), ∀v ∈ V ,

where qF ,0 := P0qF and P0 is the L2 projection from L2(Ω) to L20(Ω).

Then

‖q‖2Q =

((
I I

I I

)(
qS
qF ,0

)
,

(
qS
qF ,0

))
+

((
λ−1I 0

0 c0I − divκ∇

)(
qS
qF

)
,

(
qS
qF

))

=

((
(1 + λ−1)I P0

P0 P0 + c0I − divκ∇

)(
qS
qF

)
,

(
qS
qF

))
= (Q̄q,q).

As in the previous examples, (17) is satisfied with C a = 1.
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Solid-pressure-based 3-field formulation: small inf-sup cond.

Next, we choose v0 such that −divv0 = qS + qF ,0 for which we have

‖v0‖1 ≤ β−1s ‖qS + qF ,0‖.

Then b(v0,q) = ‖qS + qF ,0‖2 = |q|2Q and

‖v0‖2V = (ε(v0), ε(v0)) + (Q̄−1Bv0,Bv0)

= (ε(v0), ε(v0)) +

(
Q̄−1

(
−divv0
−divv0

)
,

(
−divv0
−divv0

))

≤ ‖v0‖21 +
1

4

(
Q̄−1

(
I P0

P0 P0

)(
divv0
divv0

)
,

(
I P0

P0 P0

)(
divv0
divv0

))

≤ ‖v0‖21 +
1

4

((
I P0

P0 P0

)(
divv0
divv0

)
,

(
divv0
divv0

))
= ‖v0‖21 + (divv0,divv0)

≤ β−2s ‖qS + qF ,0‖2 + ‖qS + qF ,0‖2 = (β−2s + 1)|q|2Q .
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Solid-pressure-based 3-field formulation: preconditioner

Now (18) follows:

sup
v∈V

b(v ,q)

‖v‖V
≥ b(v0,q)

‖v0‖V
≥

|q|2Q√
(β−2s + 1)|q|Q

=: β|q|Q , ∀q ∈ Q.

Using the fitted norms for the constructions of a norm-equivalent

preconditioner results in

B :=

(−divε)−1 (
(1 + λ−1)I P0

P0 P0 + c0I − divκ∇

)−1 .
In [Lee, Mardal, Winther 2017], the authors showed that the

solid-pressure-based three-field formulation is not stable under the

Q-seminorm defined by |q|2Q = ‖pS‖2 + ‖pF‖2.
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Total-pressure-based 3-field formulation: bilinear forms

By introducing the total pressure pT = pS + pF in the previous example,

another discrete in time three-field formulation of the quasi-static Biot’s

consolidation model, see [Lee, Mardal, Winther 2017], is obtained:

(ε(u), ε(v))− (pT ,divv) = (f , v), ∀v ∈ H1
0 (Ω),

−(divu, qT )− (λ−1pT , qT ) + (αλ−1pF , qT ) = 0, ∀qT ∈ L2(Ω),

(αλ−1pT , qF )− ((α2λ−1 + c0)pF , qF )

−(κ∇pF ,∇qF ) = (g , qF ), ∀qF ∈ H1
0 (Ω).

Here, A((·; ·), (·; ·)) is constructed from

a(u, v) :=(ε(u), ε(v)), ∀u, v ∈ V ,

b(v ,q) :=− (divv , qT ), ∀v ∈ V ,∀q ∈ Q,

c(p,q) :=(λ−1pT , qT )− (αλ−1pF , qT )− (αλ−1pT , qF )

+ ((α2λ−1 + c0)pF , qF ) + (κ∇pF ,∇qF ), ∀p,q ∈ Q,

where V = H1
0 (Ω), Q = L2(Ω)×H1

0 (Ω) and p = (pT ; pF ), q = (qT ; qF ).
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Total-pressure-based 3-field formulation: norms & small inf-sup

Obviously, the operator B : V → Q ′ is defined by B :=

(
−div

0

)
.

We next set

|q|2Q := (qT ,0, qT ,0), ∀q ∈ Q,

|v |2V := (ε(v), ε(v)), ∀v ∈ V ,

where qT ,0 := P0qT is the L2 projection of qT ∈ L2(Ω) to L20(Ω).

Using similar arguments as in the previous examples, we obtain for v0
with −divv0 = qT ,0 for which we have ‖v0‖1 ≤ β−1s ‖qT ,0‖:

‖v0‖2V = (ε(v0), ε(v0)) + 〈Bv0, Q̄−1Bv0〉 ≤ (ε(v0), ε(v0)) + (divv0,divv0)

≤ 2‖v0‖21 ≤ 2β−2s |q|2Q .

Again, (17) is satisfied with C a = 1 while (18) follows from

sup
v∈V

b(v ,q)

‖v‖V
≥ b(v0,q)

‖v0‖V
≥ βs

|q|2Q
|q|Q

=: β|q|Q , ∀q ∈ Q.
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Total-pressure-based 3-field formulation: preconditioner

Thus, the fitted norms generate the norm-equivalent preconditioner

B :=

(−divε)−1 (
λ−1I + P0 −αλ−1I
−αλ−1I α2λ−1I + c0I − divκ∇

)−1 .
Remark

The arguments presented above are valid also for a vanishing storage

coefficient, i.e., c0 = 0. Moreover, this analysis shows how solid- and

total-pressure formulation are related to each other.

In fact, by the transformation(
pT
pF

)
=

(
I I

0 I

)(
pS
pF

)
or, equivalently,

(
pS
pF

)
=

(
I −I
0 I

)(
pT
pF

)
,

we can derive stability and preconditioners for the two formulations from

each other.
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Total-pressure-based 3-field formulation: preconditioner

Note that for c0 ≥ α2λ−1, as considered in [Lee, Mardal, Winther 2017],

it is easy to show that

‖q‖2Q h
(
(qT ,0, qT ,0) + (λ−1qT , qT ) + (α2λ−1qF , qF ) + (κ∇qF ,∇qF )

)
from which one obtains the stability result and the norm-equivalent

preconditioner presented in [Lee, Mardal, Winther 2017], i.e.,

B0 :=

(−divε)−1 (
λ−1I + P0

α2λ−1I − divκ∇

)−1 .
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Conclusion

We have proposed a new abstract framework for the stability analysis of

perturbed saddle-point problems (PSPPs) with arbitrary large

perturbations based on a concept of norm fitting and a small inf-sup type

condition which

• is applicable to many PDE-based models, including vector Laplacian

and various formulations of Biot’s model,

• can be used to prove the uniform well-posedness of PSPPs in proper

parameter-dependent norms,

• governs the construction of norm-equivalent preconditioners and

optimal splitting schemes.

The framework [H., Kraus, Lymbery, Philo, 2021] also applies to discrete

models, see e.g., [H., Kraus, Kuchta, Lymbery, Mardal, Rognes, 2021].
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