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Formulation of perturbed saddle
point problems (PSPPs)



Consider the following setting:

e V and Q denote Hilbert spaces,
e for the norms || - ||v and || - || @,
e induced by the scalar products (-, )y and (-, -)q,

respectively.
Y := V x Q denotes their product space, endowed with the norm || - ||y:

Ivlly = y)y =(v,vIv+(g,9)e = IVIV + gl Yy =(viq) €Y.

Next, consider an abstract bilinear form A((-;-),(-;-)) on Y x Y:
A((u;p), (v q)) := a(u, v) + b(v, p) + b(u,q) — c(p,q) (1)
composed from the bilinear forms:

e a(-,-)on V x Vand c(,-) on Q x Q, being SPSD and bounded,
e b(-,-) on V x Q, being bounded.



Abstract perturbed saddle-point problem (PSPP)

Each of these bilinear forms defines a linear operator as follows:
AV = V' (Au, vvixy = a(u, v), Yu,v eV, (2a)
C:Q—Q:(Cp,q)axe=c(p.q), VYP,q€eQ, (2b)
B:V— Q' :(Bv,q)qxq = b(v,q), Vv € V,Vq € Q. (2¢)

For the bilinear form in (1), consider the perturbed saddle-point problem
A((u;p),(viq)) = F((vig)) VveV,VgeQ, (3)

which for x = (u; p) € Y we write as A(x,y) = F(y), Yy =(v;q) € Y,
or, in operator form, as

A B* u
AT .

A Y =Y (Axy)yixcy = A(x, y), Vx,y €Y, (5a)
FeY : Fly)=(F.y)yxy VyeY. (5b)



Babuska’s and Brezzi’s
conditions for stability of PSPPs



Babuska’s theorem

The abstract variational problem (3) is well-posed under the necessary
and sufficient conditions (6) and (7) given in the following theorem.

Theorem 1 [Babuska, 1971]

Let 7 € Y’/ be a bounded linear functional. Then the saddle-point
problem (3) is well-posed if and only if there exist positive constants C
and « for which the conditions

Alx,y) < Clixlivlylly  Vx,y €Y, (6)

inf SUPMZQ>O (7)
xeerv ||XHY||YHY

hold. The solution x then satisfies the stability estimate

Fly) _

T *II [y
v Iyl

1
Ixlly < = o sup



Brezzi's theorem

For the classical saddle-point problem, i.e., c(+,-) =0, we have the
following theorem which we formulate here under the condition

Ker(BT):={q€ Q: b(v,q) =0 Vv € V} = {0}. (8)

Theorem 2 [Brezzi, 1974], [Boffi, Brezzi, Fortin, 2013]
Assume that the bilinear forms a(-, -) and b(+,-) are continuous on V x V
and on V x Q, respectively, a(-,-) is symmetric positive semidefinite, and
also that
a(v,v) > C|Ivllv, Vv € Ker(B), (9)
inf sup M_B>O (10)
220 ey [vilvialie

hold. Then the classical saddle-point problem (Problem (3) with
c(+,-) =0) is well-posed.



What can we say if c(-,-) # 0?

If c(-,-) # 0 an additional assumption can be used to ensure the
well-posedness of the PSPP. Consider the following auxiliary problem:

e(po, 9)@ + c(po, q) = —c(pL, q), Vq € Ker(BT) (11)

Assumption 1 [Brezzi & Fortin, 1991]

There exists a 7o > 0 such that for every p € (Ker(B'))L and every
€ > 0 the solution py € Ker(BT) of (11) satisfies vo|polle < |Ip* |-

Theorem 3 [Brezzi & Fortin, 1991]

Let the conditions of Theorem 2 be satisfied and let c(-,-) be continuous
and SPSD. Then, under Assumption 1, Problem (3) for every f € V' and
every g € Im(B) and F(y) := (f,vV)v/xv + (g, 9)¢'x @ has a unique
solution x = (u; p) in Y = V x Q/M where M = Ker(BT) N Ker(C).
Moreover, for a constant C(C,, C., C,, 3,70) there holds the estimate

lullv + [Pl o/xeremy < CUIFllv + ligller)-



Can we dispense with Assumption 1?7

In order to ensure the boundedness (continuity) of ¢(-, ), it is natural to
include the contribution of ¢(+,-) in the norm | - ||¢, e.g., by defining

lal% = laly + tc(q,q), Vg€ @, (12)
for a proper seminorm or norm | - | and a parameter t € [0, 1].

Then the stability of the PSPP can be proven under Brezzi's conditions
for the classical saddle-point problem and the additional condition

, b(u,
inf sup e tblug) (13)
veV (vgevxe (Vi a)l

2
I -

where [|(v; q)|” == [IVI[}, + lalg + t?c(q,q), t€[0,1].

Theorem 4 [Braess, 1996]

Assume that conditions (9) and (10) are fulfilled and (13) holds with
v > 0 for some t > 0. Then the PSPP (3) is stable under the norm
Il - Iy :== ||| and the constant « in (7) depends only on 3, C,, 7, t.



A new framework for the
stability analysis of PSPPs




e Develop Brezzi like condition for PSPPs which only need to check
two conditions: the coercivity of a(-,-) and the small inf-sup
condition for b(:,-).

e The stability constants are uniform with respect to the parameters
appeared in the bilinear forms a(-,-), b(-,-) and c(-, )



Key idea: Norm splittings

For fixed t € (0, 1], the norm (12) is equivalent to

lall = lalg + c(q,9) =: (Qq, a)o'xq (14)
where @ : Q — @’ is a linear operator.
Now we introduce the following splitting of the norm || - || defined by

VIR = Vg + [vI2 (15)
where | - |y is a proper seminorm, which is a norm on Ker(B) satisfying
Iv]3 = a(v, v), Vv € Ker(B)

and | - | is defined by

V2 = (Bv, @ Bvarxa = IBVI. (16)

Then Q! : Q@ — Q is an isometric isomorphism (Riesz isomorphism),

1071 Bv|3, = [|BvI3, = (QQ~1Bv, 0~1Bv) g = (Bv, @' Br)arxa.



Key idea: Fitted norms

Remark

Note that both | - |y and | - | can be seminorms as long as they add up
to a full norm. Likewise, only the sum of the seminorms | - |q and c(-,")
has to define a norm.

In order to present our main theoretical result, we make the definition.

Definition 1

Two norms || - ||@ and || - ||y on the Hilbert spaces Q and V are called
fitted if they satisfy the splittings (14) and (15), respectively, where | - g
is a seminorm on @ and | - |v and | - |, are seminorms on V/, the latter
defined according to (16).

10



Main stability result

Theorem 5 [H., Kraus, Lymbery, Philo, 2021]

Let || - [|v and || - ||¢ be fitted norms according to Definition 1, which
immediately implies the continuity of b(-,-) and c(+,-) in these norms
with Cp = 1 and C, = 1, cf. (14)—(16). Consider the bilinear form
A((+;+), (+;+)) defined in (1) where a(-,-) is SPSD and continuous, and
c(+,-) is SPSD. Assume that a(-, -) satisfies the coercivity estimate

a(v,v) > C,|lv[}, WveV, (17)

and b(-, ) the inf-sup-type condition that there exists a constant 3 > 0

s.t.
b(v,
sup 209 5 g vgeq. (18)
vey vilv

Then, A((+;-), (+;-)) is continuous and inf-sup stable under the combined
norm | -y defined by [ly[3 = VI3 +[lal%, Wy = (vig) € ¥ = V x Q.

11



Various applications

More details and various applications of the presented framework
including

e generalized Poisson and generalized Stokes equations,

e Stokes-Darcy interface problem,

e vector Laplace equation (Maxwell),

e various formulations of Biot's model

can be found in

@ Q. Hong, J. Kraus, M. Lymbery, F. Philo: A new practical framework
for the stability analysis of perturbed saddle-point problems and
applications. Mathematics of Computation, 2023, Vol. 92, 607-634.
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Application to operator
preconditioning in vector
Laplacian equation




Vector Laplace equation example: preliminaries

Mixed variational formulation of the vector Laplace equation: find
p € Hy(curl,Q), u € Hy(div,Q), such that

(ap,q) — (u,curlg) =0, Vg € Hy(curl, Q),
—(curlp, v) — (divu, divv) = (f, v), Vv € Hy(div,Q),

where « is a positive scalar.

13



Vector Laplace equation example: preliminaries

Mixed variational formulation of the vector Laplace equation: find
p € Hy(curl,Q), u € Hy(div,Q), such that

(ap,q) — (u,curlg) =0, Vg € Hy(curl, Q),
—(curlp, v) — (divu, divv) = (f, v), Vv € Hy(div,Q),

where « is a positive scalar.

We rewrite the above equations as

(divu, divv) + (curlp, v) = —(f, v), Vv € Hy(div, Q),
(u,curlqg) — (ap, q) =0, Vq € Hy(curl, Q).

13



Vector Laplace equation: bilinear forms

The bilinear forms that define A((+;-), (;-)) are

a(u, v) := (divu, divv), Yu,veV,
b(v, p) := (curlp, v), Yv € V,Vpc Q,
c(p,q) = (ap,q), Vp,q€Q,
where V = Hy(div, Q), Q = Hp(curl, Q).
We fix | - | and | - |v to be
1q|3 = ((a + 1)curlq, curlq), Vq € Q,
lv|?, = (divv, divv), Yve V.
As before, a(v,v) > |v|?, for all v € V, thatis, (17) is satisfied with

C,=1.

14



Vector Laplace equation: small inf-sup condition

In addition, noting that B := curl* : V — Q’, we have
lqllg := lalg + c(a.q) = ((a + L)curlg, curlq) + (aq, q)

= (Qq.9)¢'x0, Vg € Q,
vy == v} + (Bv, Q' Bv)oxe

= (divv,divv) + ((ef + curl*(a + 1)curl) rewrl*v, curl*v) , Vv € V.
Next, for any g € Q, choose vy = curlg € V to obtain

lvol|2, = (div curlq, div curlq)

+ ((af + curl*(a + 1)curl) 'eurl*curlg, curl*curlq)

((af + curl*(a 4 1)curl)~ curl*curlq,curl*curlq)
< (q, (a4 1) tcurl*curlq)
(

(a +1)"curlg, curlq)

and

b(v,q) > b(vo,q) __ (curlg,curlq) > (curlg,curlq)
SUPvev Tl = Twlv = = Twllv

- ((a+1)*1cur1q,curlq)% B |q‘Q 15



Vector Laplace equation: operator preconditioner

Note that
v} = (divv,divv) + ((af + curl*(a + 1)curl) 'eurl*v, curl*v)

is equivalent to
(divv,divv) 4 ((a 4+ 1)"tv, v).

Hence we obtain the following norm-equivalent operator preconditioner:

B ((+ 1)~ — Vdiv)~!
' (al + (o + 1)curl*curl) !

16



Applications to operator
preconditioning in poromechanics




Examples in poromechanics: preliminaries

In the following, we will make use of the following classical inf-sup
conditions, see, e.g., [Brezzi & Fortin, 1991], for the pairs of spaces
(V, Q): there exist constants 84 and f3s such that

(divv, q)

inf sup > fa >0, 21

a€Quev [viaivqll ()
g

inf sup (divv, q) > fs >0, (22)

a€Quev [vil14l

where the norms || - ||giv, || - [|1 and || - || denote the standard H(div), H*
and L2 norms and (-, -) is the L2-inner product.

17



Examples in poromechanics: 2-field formulation

The two-field formulation of the quasi-static Biot’s consolidation model
after semidiscretization in time by the implicit Euler method, see, e.g.,

[Lee, Mardal, Winther 2017],
[Adler, Gaspar, Hu, Rodrigo, Zikatanov, 2018]
reads: find (u, pr) € H3 () x H}(Q) s.t.
(e(u),e(v)) + A(divu, divv) — apr, divv) = (f, v), Vv € Hi (Q),
—a(divu, gr) — co(pr, gF) — (kVpr, Var) = (8,9F), Vg € Hy(Q),
where
e )\ >0 is a scaled Lamé coefficient,
e ¢y > 0 a storage coefficient,

e x the (scaled) hydraulic conductivity,

e « the (scaled) Biot-Willis coefficient.

18



2-field formulation: bilinear forms and norms

The bilinear forms defining A((-;-), (-;-)) are given by

a(u,v) := (e(u),e(v)) + A(divu, divv), Yu,v eV,
b(v, gr) := —a(divv, gf), Vv € V,Vqr € Q,
c(pr, qrF) := colpr, qr) + (kVprF, VaE), VprE, gF € Q,

where Q := H}(Q), V := H}(Q). We define | - |q, | - |v to be

lar |G == n(ar,qF),  Var € Q,
lv|3 = (e(v),e(v)) + A(divv, divv), Vv eV,

where the parameter 77 > 0 is to be determined later. As before,
a(v,v) > |v[} forall v € V, thatis, (17) is satisfied with C, = 1.

19



2-field formulation: small inf-sup condition

Obviously, there holds
2

(Bv, Q7 'BV)qixg < %(divv,divv),
where B: V — @', B := —adiv. Therefore, we obtain
Ivl? = (e(v),e(v)) + A(divv,divv) + (Bv, Q7 1BV)g/xq
< (e(v), e(v)) + ()\ + %) (divv, divv)< (1 FA+ T) Iv]32.
We choose vy such that —divyy = ﬁqp and use (22) to obtain
Ivolls < 3 5= llar . and finally

e 2 @
wup,, 2ae) o bwae) _ il i el
Volvilv T wllv T liwlly T 2\ [[vollx
Jer+2)
Bsax g l? Bsax 1
> = ||CIF| = : ﬁ\CIF|Q~
(1+2+2) (1+2+2)



2-field formulation: operator preconditioner

%2/\) > 0 the right-hand side of the previous inequality is
bounded from below by %\qpkp, which shows (18) with 3 = %ﬂs.

For n = 0

Hence we obtain the following norm-equivalent operator preconditioner:

B (—dive — (1 + A\)Vdiv) !

((co+a2/(1+\)) | — diveV)

By introducing ps = —Adivu and substituting

® QpPr — PF,

° cocf2 — 0,

e ka2 — K,

salg—g
in the two-field formulation we obtain the following three-field variational
formulation of Biot's model, see [Lee, Mardal, Winther 2017]:

21



Solid-pressure-based 3-field formulation: bilinear forms

(e(u),e(v)) — (ps + pr,divv) = (f,v), Vv e Hy(Q),
—(divu, gs) — A" *(ps, gs) = 0, Vgs € L3(Q),
—(divu, gr) — co(pr, gr) — (kVPr, Var) = (8, gF), Var € Hy(Q).
The bilinear forms that determine A((+;-), (+;-)) are
a(u, v) = (e(u),e(v)), Yu,veV,
b(v,q) := —(divv, gs) — (divv, gF), Yv e V.,Vq e Q,
c(p,q) :== A '(ps, qs) + colpr, qF) + (vVpF, VaF),  Vp,q € Q,

where V = H} (), Q = L3(Q) x H3(Q) and p = (ps; pr), 9 = (gs; gF).
Then the operator B is given by

B = (—d%v) .
—div

22



Solid-pressure-based 3-field formulation: norms

We define | -

Q |- |v to be

[
g% = BN S )) =llgs +arol>,.  Vge@,
I 1] \agro qr o

lv[3 = (e(v),e(v)), Yv eV,

where gr o := Pogr and Py is the L2 projection from L%(Q) to L3(Q).
Then

2 I q q )\71/ 0 g @
lalle = ((/ l) <q:0) ’ (qFS,())) +<< 0 ol - divmV) (qf—) ’ (;))
(@AY P AN A\
— (( Po Po+ col — diw-cV) <qF> ’ (qp>> =(Qq,q).

As in the previous examples, (17) is satisfied with C, = 1.

23



Solid-pressure-based 3-field formulation: small inf-sup cond.

Next, we choose vy such that —divvy = gs + gr o for which we have
Ivollx < B llgs + g oll-

Then b(vo, q) = |lgs + grol® = |q|2Q and

Iwoll}, = (e(v0), £(w)) + (@~ Bvo, Bwp)
-t (@ (). ()
<||vO||%+i<@1 <,i i) (3></§ ﬁ) <j>>
< ol + 3 ((,ﬁ ﬁ) (3V> ’ (j»

= ||V0||% + (diVVo, diVVo)

< B:llas + arol® + llas + groll® = (852 + 1) ql3-

24



Solid-pressure-based 3-field formulation: preconditioner

Now (18) follows:

b b 2
sup (V7q) > (Van) > |q|Q

vev [vllv 7 lwllv — D =:Blale, Vg€ Q.

Using the fitted norms for the constructions of a norm-equivalent
preconditioner results in

(—dive)™!
=i
B:= (1 9P )\71)1 Py
Po Po + Col —diveV

In [Lee, Mardal, Winther 2017], the authors showed that the
solid-pressure-based three-field formulation is not stable under the
@-seminorm defined by |q|3 = |Ips||> + || pe |-

25



Total-pressure-based 3-field formulation: bilinear forms

By introducing the total pressure pr = ps + pr in the previous example,
another discrete in time three-field formulation of the quasi-static Biot's
consolidation model, see [Lee, Mardal, Winther 2017], is obtained:

(e(u),e(v)) — (pr,divv) = (f v), Vv H}Q),
—(divu,q7) — (A7 pr, 1) + (X pF, g7) = Var € [*(Q),
(aX"'pr,gF) = ((PAF + o) pr, gF)
)=

—(kVpe,Var (g:9F), Var € H(%(Q)-

Here, A((+;-), (;+)) is constructed from
a(u,v) :=(c(u),e(v)), Vu,vev,
b(v, q) := — (divv, q7), Vv € V,Vq € Q,
c(p,q) :=(A\"'pr.qr) — (@A pF, g7) — (@A T, gF)

((a2/\ + CO)pF7 qF) + (:‘iva, VQ'F)7 Vp,q € Q,

where V = H}(Q), Q = L?(Q) x H}(Q) and p = (pT; pr), 9 = (97; 9F)-
26



Total-pressure-based 3-field formulation: norms & small inf-sup

Obviously, the operator B : V — Q' is defined by B := (‘31\1).

We next set
lal% == (97,0, 97.0), Vq € Q,
v[} = (e(v),e(v)), Vv eV,
where g7 := Pogr is the L? projection of g1 € L?(Q2) to L3(Q).

Using similar arguments as in the previous examples, we obtain for v
with —divvg = g7, for which we have ||wl1 < ;g7 0ll:

[vol|? = (e(w), e(w)) + (Bvo, @ 1Bwy) < (g(w),e(w)) + (divwg, divwg)
< 2l|wo|l} < 26.%|al%-
Again, (17) is satisfied with C, = 1 while (18) follows from

b(v, b
sup (v,q)Z (v, q)
vev |vilv [ vollv

915
l9lo

> Bs = ﬁ\‘ﬂQa Vg e Q.

27



Total-pressure-based 3-field formulation: preconditioner

Thus, the fitted norms generate the norm-equivalent preconditioner
(—dive) ™

=l
B = A7+ Py —aX71
—aX AT + gl — diveV

Remark

The arguments presented above are valid also for a vanishing storage
coefficient, i.e., co = 0. Moreover, this analysis shows how solid- and
total-pressure formulation are related to each other.

In fact, by the transformation

pr\ (I I\ [ps . ps\ (I —I\ (pr
= or, equivalently, = 5
PF 0 1) \pr PF o PF

we can derive stability and preconditioners for the two formulations from
each other.

28



Total-pressure-based 3-field formulation: preconditioner

Note that for g > a?A~1, as considered in [Lee, Mardal, Winther 2017],
it is easy to show that

laliz = ((a7.0,97.0) + (A" a7, 97) + (a®A7'qF, 9F) + (KVaF, Var))

from which one obtains the stability result and the norm-equivalent
preconditioner presented in [Lee, Mardal, Winther 2017], i.e.,

(—dive) ™

—1
BO = )\71, + Po
A1 — divkV

29



Conclusion

We have proposed a new abstract framework for the stability analysis of
perturbed saddle-point problems (PSPPs) with arbitrary large
perturbations based on a concept of norm fitting and a small inf-sup type
condition which

e is applicable to many PDE-based models, including vector Laplacian
and various formulations of Biot's model,

e can be used to prove the uniform well-posedness of PSPPs in proper
parameter-dependent norms,

e governs the construction of norm-equivalent preconditioners and
optimal splitting schemes.

The framework [H., Kraus, Lymbery, Philo, 2021] also applies to discrete
models, see e.g., [H., Kraus, Kuchta, Lymbery, Mardal, Rognes, 2021].
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