
1/29

Feature Affinity Assisted Knowledge Distillation
and Quantization

Penghang Yin

Department of Math and Stats, SUNY Albany

CBMS Conference: Deep Learning and Numerical PDEs

June 19-23, 2023



2/29

Outline

Knowledge Distillation

Quantization

Experiments



3/29

Knowledge Distillation

▶ Knowledge distillation is the process of transferring knowledge
from a large model (teacher) to a smaller one (student) to
improve the performance of student model.

▶ The so-called distillation loss [Hinton et al.’15]

LKD(θ; x) = CE (softmax(ft(x)/τ), softmax(fs(θ; x)/τ))

fs(θ; x) and ft(x) are logits of the student and teacher resp.,
τ > 0 is a hyperparameter called temperature,

softmax(z)i =
exp(zi )∑k
j=1 exp(zj)

,

CE is the cross entropy CE (p, q) = −
∑k

i=1 pi log qi
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Knowledge Distillation (Cont’d)

When the (one-hot) label y is available, the regular training loss on
the student network is

LTrue(θ; x) = λCE (softmax(fs(θ; x)), y)

The knowledge distillation framework[Hinton et al.’15] requires to
solve

min
θ

1

N

N∑
i=1

LKD(θ; xi ) + λ LTrue(θ; xi )

where λ > 0 is a regularization param.
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Feature Affinity Matrix

▶ Consider a (reshaped) feature matrix

F = [f1, . . . , fwh] ∈ Rc×wh,

the feature affinity matrix H ∈ Rwh×wh is given by the
pairwise cosine similarity between two (pixel-wise) feature
vectors fi , fj ∈ Rc :

Hij :=
⟨fi , fj⟩
∥fi∥∥fj∥

= cos θij

where θij is the angle between fi and fj .
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Feature Affinity Loss

▶ At a given pair of layers from student and teacher networks
resp., let Fs(θ; x) ∈ Rcs×wh and Ft(x) ∈ Rct×wh be the
features with cs < ct , and let Hs(θ; x), Ht(x) be the induced
feature affinity matrices.

▶ The feature affinity loss given by l pairs of intermediate
features is

LFA(θ; x) =
l∑

j=1

1

w2
j h

2
j

∥Hj
s(θ; x)−Hj

t(x)∥2F

▶ Feature affinity assisted knowledge distillation gives the
sample loss:

L(θ; x) = LKD(θ; x) + λ1 LTrue(θ; x) + λ2 LFA(θ; x)

Drop the second term if labels are unavailable (label-free
distillation).
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Knowledge Distillation Framework

Figure 1: Feature affinity assisted knowledge distillation framework by
comparing two sets of feature pairs from the student and teacher.
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Existence of Low-Dimensional Feature Embeddings

Denote the cosine similarity by ∥f − g∥cos := ⟨f ,g⟩
∥f ∥ ∥g∥ .

Proposition (Johnson-Lindenstrauss-like Lemma)

Given any ϵ ∈ (0, 1), a feature map F = [f1, . . . , fn] ∈ Rd×n, with
k = O(ϵ−2 log n), there exists a linear map T : Rd → Rk , such
that

(1− ϵ)∥fi − fj∥cos ≤ ∥T (fi )− T (fj)∥cos ≤ (1 + ϵ)∥fi − fj∥cos, ∀i , j
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Fast Feature Affinity Loss

▶ Note that

LFA(θ) := Ez∼N (0,I)∥(Hs(θ; x)−Ht(x))z∥2

▶ Consider the fast FA loss with k ensembles (k ≪ wh):

LfFA,k(θ) =
1

k

k∑
i=1

∥(Hs(θ; x)−Ht(x))zi∥2

where zi ∼ N (0, I) ∈ Rwh

▶ Concentration inequality:

P
(
|LfFA,k(θ)− LFA(θ)| > ϵ

)
≤ C

ϵ2k
,

where C = O(LFA(θ)
4).
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Floating Point Representation

There are 3 elements in a floating point (FP) representation.

▶ sign

▶ exponent

▶ mantissa/fraction

Take FP32 (32-bit) as an example:

(−1)b31 · 2(b30b29...b23)2−127 ·
(
1 +

b22
2

+
b21
22

+ · · ·+ b0
223

)
with each bi ∈ {0, 1}.
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Integer Representation

For 8-bit integer (INT8):

▶ signed integer: −127,−126 . . . , 127

(−1)b7 · (b6b5 . . . b0)2

▶ unsigned integer: 0, 1, . . . , 255

(b7b6 . . . b0)2

INT is more efficient than FP in terms of speed, but lacks of
precision. Instead consider the scaled INT:

δ · (−1)b7 · (b6b5 . . . b0)2 or δ · (b7b6 . . . b0)2

allowing some multiplicative FP scalar δ > 0.
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INT Quantization

▶ Learn (scaled) low-bit INT representation (e.g., INT8) for the
weights and activation functions of neural networks. (both
the FP scalars and integers)

▶ In inference phase, accelerate the forward propagation through
linear layers:

W ∗ A =(δ ·W int) ∗ (α · Aint)

= (δ · α) · (W int ∗ Aint)

where W and A are quantized weights and activations, resp.

▶ The FP scalars δ, α > 0 are shared by the whole linear layer
and activation layer, resp. (so-called layer-wise quantization).
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▶ Empirically see an up to 16× increase in energy efficiency and
a 4× memory savings by going from FP32 to INT8
quantization.
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Hardware Implementation

Figure 2: Running INT8 Stable Diffusion model (1B+ params) on
Android phones powered by Snapdragon mobile platform takes
comparable inference time to that of FP32 model on cloud.
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Computational Challenges for Quantization

Solve an optimization problem with

▶ highly non-convex objective of high dimension

▶ discrete constraint (quantized weights)

▶ piecewise constant objective with inapplicable gradient a.e.
zero (quantized activations)
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Goal: design simple algorithm that

▶ search along non-gradient based descent direction.

▶ compute projection efficiently (weight quantization).

▶ effectively avoid bad local minima.
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Training Fully Quantized Neural Networks

min
w,α

f (w,α) :=
1

N

N∑
i=1

ℓi (w,α) subject to w ∈ W.

▶ ℓi (w,α) = ℓ(wL ∗ σ(· · ·σ(w1 ∗ xi , α1), . . . , αL−1); yi ) is the
sample loss with or without knowledge distillation.

▶ σ(x , α): unsigned INTq activation function.

σ(x , α) =
2q−2∑
k=1

kα · 1{(k−1)α<x≤kα} + (2q − 1)α · 1{x>(2q−2)α}

▶ W = R+ × {±1}n for INT1 (a single sign bit), and
W = R+ ×{0,±1, . . . ,±(2b−1 − 1)}n for signed INTb, b ≥ 2.
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Weight Quantization

Given weights w(l) ∈ Rn (FP32) at Layer l , obtain the INTb
quantization by solving

min
δ,q

∥δ(l) · q(l) −w(l)∥2

s.t. δ(l) > 0, q(l) ∈ {0,±1, . . . ,±(2b−1 − 1)}n.

Solve by alternating minimization for b ≥ 2.

▶ For b = 1, q(l) ∈ {±1}n, it has closed-form solution
[Rastegari et al.’16].
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Overcoming Vanished Gradient
In chain rule, replace ∂σ

∂x with the proxy ∂σ̃
∂x (so-called straight

through estimator [Bengio et al.’13; Yin et al.’19]).

∂ℓi (w,α)

∂wL−1
≈σ(XL−2,αL−2)◦ ∂σ̃

∂x
(XL−1,αL−1)◦w⊤

L ◦∇ℓ(XL;ui )

∂ℓi (w,α)

∂αL−2
≈ ∂σ

∂α
(XL−2,αL−2)◦w⊤

L−1◦
∂σ̃
∂x

(XL−1,αL−1)◦w⊤
L ◦∇ℓ(XL;ui ).

with Xl = wl ∗ σ(Xl−1, αl−1) the output from the l-th linear layer.

2-bit quantized ReLU σ clipped ReLU σ̃

▶ require no extra cost compared with standard gradient
computation.
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Analysis of Straight Through Estimator

▶ Given input x ∈ Rd and class label y ∈ {1, . . . , k}, consider
the two-layer netowrk with output

o(x;W) = Vσ(Wx) ∈ Rk

with weights V ∈ Rk×m in the second layer fixed and known.
σ is general b-bit activation function:

σ(x) =


0 if x ≤ 0,

ceil(x) if 0 < x < 2b − 1,

2b − 1 if x ≥ 2b − 1.

▶ argmax1≤i≤k o(x ;W )i is the predicted class for x .
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▶ multi-class hinge loss:

ℓ(W; x, y) = max

{
0, 1−

(
o(x;W)y −max

i ̸=y
o(x;W)i

)}
▶ solve the population risk minimization

min
W∈Rm×d

f (W) := E{x,y}∼D [ℓ (W; x, y)] ,

▶ chain rule to compute partial gradient w.r.t. the j-th row w⊤
j

of W:

∇wj ℓ(W; x, y) = (vξ,j − vy ,j) 1{ℓ(W;{x,y})>0}(x)σ
′(w⊤

j x)x

= 0, a.e.

where ξ = argmaxi ̸=y o(x ;W )i .
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Convergence Result

▶ use (partial) coarse gradient by replacing σ′ with µ′

∇̃µ
wj
ℓ(W; x, y) := (vξ,j − vy ,j) 1{ℓ(W;{x,y})>0}(x)µ

′(w⊤
j x)x.

▶ train the network by coarse gradient algorithm:

Wt+1 = Wt − η E{x,y}∼D∇̃µℓ(Wt ; x, y)

Theorem (Long, Yin, Xin’21)

Suppose the data from different classes are located in orthogonal
subspaces of Rd . Choose surrogate function µ : R → R satisfying

1. µ(x) = 0 for x ≤ 0.

2. µ′(x) ∈ [δ, δ̃] for x > 0 with constants 0 < δ < δ̃ < ∞.

Then limt→∞ f (Wt) = 0, leading to perfect classification.
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Full Quantization Algorithm

Algorithm 1 One iteration of Blended Coarse Gradient Descent

Input: mini-batch empirical loss function ft(w,α), blending param-
eter ρ = 10−5, learning rate ηtw for the weights w, learning rate ηtα
for the resolutions α (one component per activation layer).
Do:

Evaluate the mini-batch coarse gradient (∇̃wft , ∇̃αft) at
(wt

Q ,α
t).

wt+1 = (1−ρ)wt+ρwt
Q−ηtw∇̃wft(wt

Q ,α
t) // blended gradient

update for weights
αt+1 = αt − ηtα∇̃αft(wt

Q ,α
t) // ηtα = 0.01 · ηtw

wt+1
Q = projW(wt+1) // quantize the weights

Remark: {wt} is a sequence of FP-precision auxiliary parameters.
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Experiments

Bitwidth 1W 2W 4W

Cifar-10
ResNet20 (FP): 92.21 %, Teacher ResNet110

label-free 89.88% 91.23% 92.19%

with supervision 90.56% 91.65% 92.43%

Cifar-100
ResNet56 (FP): 72.96%, Teacher ResNet164

label-free 72.78% 74.35% 74.90%

with supervision 73.35% 74.40% 75.31%

Tiny ImageNet
ResNet18 (FP): 64.23%, Teacher ResNet34

label-free FAQD 64.37% 65.05% 65.40%

FAQD with Supervision 65.13% 65.67% 65.92%

Table 1: Wight Quantization (1-bit, 2-bit, or 4-bit) with Feature Affinity
Assisted Knowledge Distillation
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CIFAR-10
Pretrained ResNet20: 32W1A-91.89%, 32W4A-92.01%

Model 1W1A 4W4A

ResNet20 89.70% 92.53%

CIFAR-100
Pretrained ResNet56: 32W1A-70.96%, 32W4A-71.42%

Model 1W1A 4W4A

ResNet56 68.18 73.53%

Tiny ImageNet
Pretrained ResNet18: 32W1A-63.82%, 32W4A-64.15%

Model 1W1A 4W4A

ResNet18 65.01 65.55%

Table 2: Full quantization on CIFAR-10, CIFAR-100 and Tiny ImageNet,
with teacher networks.
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