
1/29

Feature Affinity Assisted Knowledge Distillation
and Quantization

Penghang Yin

Department of Math and Stats, SUNY Albany

CBMS Conference: Deep Learning and Numerical PDEs

June 19-23, 2023

2/29

Outline

Knowledge Distillation

Quantization

Experiments

3/29

Knowledge Distillation

▶ Knowledge distillation is the process of transferring knowledge
from a large model (teacher) to a smaller one (student) to
improve the performance of student model.

▶ The so-called distillation loss [Hinton et al.’15]

LKD(θ; x) = CE (softmax(ft(x)/τ), softmax(fs(θ; x)/τ))

fs(θ; x) and ft(x) are logits of the student and teacher resp.,
τ > 0 is a hyperparameter called temperature,

softmax(z)i =
exp(zi)∑k
j=1 exp(zj)

,

CE is the cross entropy CE (p, q) = −
∑k

i=1 pi log qi

4/29

Knowledge Distillation (Cont’d)

When the (one-hot) label y is available, the regular training loss on
the student network is

LTrue(θ; x) = λCE (softmax(fs(θ; x)), y)

The knowledge distillation framework[Hinton et al.’15] requires to
solve

min
θ

1

N

N∑
i=1

LKD(θ; xi) + λ LTrue(θ; xi)

where λ > 0 is a regularization param.

5/29

Feature Affinity Matrix

▶ Consider a (reshaped) feature matrix

F = [f1, . . . , fwh] ∈ Rc×wh,

the feature affinity matrix H ∈ Rwh×wh is given by the
pairwise cosine similarity between two (pixel-wise) feature
vectors fi , fj ∈ Rc :

Hij :=
⟨fi , fj⟩
∥fi∥∥fj∥

= cos θij

where θij is the angle between fi and fj .

6/29

Feature Affinity Loss

▶ At a given pair of layers from student and teacher networks
resp., let Fs(θ; x) ∈ Rcs×wh and Ft(x) ∈ Rct×wh be the
features with cs < ct , and let Hs(θ; x), Ht(x) be the induced
feature affinity matrices.

▶ The feature affinity loss given by l pairs of intermediate
features is

LFA(θ; x) =
l∑

j=1

1

w2
j h

2
j

∥Hj
s(θ; x)−Hj

t(x)∥2F

▶ Feature affinity assisted knowledge distillation gives the
sample loss:

L(θ; x) = LKD(θ; x) + λ1 LTrue(θ; x) + λ2 LFA(θ; x)

Drop the second term if labels are unavailable (label-free
distillation).

7/29

Knowledge Distillation Framework

Figure 1: Feature affinity assisted knowledge distillation framework by
comparing two sets of feature pairs from the student and teacher.

8/29

Existence of Low-Dimensional Feature Embeddings

Denote the cosine similarity by ∥f − g∥cos := ⟨f ,g⟩
∥f ∥ ∥g∥ .

Proposition (Johnson-Lindenstrauss-like Lemma)

Given any ϵ ∈ (0, 1), a feature map F = [f1, . . . , fn] ∈ Rd×n, with
k = O(ϵ−2 log n), there exists a linear map T : Rd → Rk , such
that

(1− ϵ)∥fi − fj∥cos ≤ ∥T (fi)− T (fj)∥cos ≤ (1 + ϵ)∥fi − fj∥cos, ∀i , j

9/29

Fast Feature Affinity Loss

▶ Note that

LFA(θ) := Ez∼N (0,I)∥(Hs(θ; x)−Ht(x))z∥2

▶ Consider the fast FA loss with k ensembles (k ≪ wh):

LfFA,k(θ) =
1

k

k∑
i=1

∥(Hs(θ; x)−Ht(x))zi∥2

where zi ∼ N (0, I) ∈ Rwh

▶ Concentration inequality:

P
(
|LfFA,k(θ)− LFA(θ)| > ϵ

)
≤ C

ϵ2k
,

where C = O(LFA(θ)
4).

10/29

Outline

Knowledge Distillation

Quantization

Experiments

11/29

Floating Point Representation

There are 3 elements in a floating point (FP) representation.

▶ sign

▶ exponent

▶ mantissa/fraction

Take FP32 (32-bit) as an example:

(−1)b31 · 2(b30b29...b23)2−127 ·
(
1 +

b22
2

+
b21
22

+ · · ·+ b0
223

)
with each bi ∈ {0, 1}.

12/29

Integer Representation

For 8-bit integer (INT8):

▶ signed integer: −127,−126 . . . , 127

(−1)b7 · (b6b5 . . . b0)2

▶ unsigned integer: 0, 1, . . . , 255

(b7b6 . . . b0)2

INT is more efficient than FP in terms of speed, but lacks of
precision. Instead consider the scaled INT:

δ · (−1)b7 · (b6b5 . . . b0)2 or δ · (b7b6 . . . b0)2

allowing some multiplicative FP scalar δ > 0.

12/29

Integer Representation

For 8-bit integer (INT8):

▶ signed integer: −127,−126 . . . , 127

(−1)b7 · (b6b5 . . . b0)2

▶ unsigned integer: 0, 1, . . . , 255

(b7b6 . . . b0)2

INT is more efficient than FP in terms of speed, but lacks of
precision. Instead consider the scaled INT:

δ · (−1)b7 · (b6b5 . . . b0)2 or δ · (b7b6 . . . b0)2

allowing some multiplicative FP scalar δ > 0.

13/29

INT Quantization

▶ Learn (scaled) low-bit INT representation (e.g., INT8) for the
weights and activation functions of neural networks. (both
the FP scalars and integers)

▶ In inference phase, accelerate the forward propagation through
linear layers:

W ∗ A =(δ ·W int) ∗ (α · Aint)

= (δ · α) · (W int ∗ Aint)

where W and A are quantized weights and activations, resp.

▶ The FP scalars δ, α > 0 are shared by the whole linear layer
and activation layer, resp. (so-called layer-wise quantization).

13/29

INT Quantization

▶ Learn (scaled) low-bit INT representation (e.g., INT8) for the
weights and activation functions of neural networks. (both
the FP scalars and integers)

▶ In inference phase, accelerate the forward propagation through
linear layers:

W ∗ A =(δ ·W int) ∗ (α · Aint)

= (δ · α) · (W int ∗ Aint)

where W and A are quantized weights and activations, resp.

▶ The FP scalars δ, α > 0 are shared by the whole linear layer
and activation layer, resp. (so-called layer-wise quantization).

14/29

▶ Empirically see an up to 16× increase in energy efficiency and
a 4× memory savings by going from FP32 to INT8
quantization.

15/29

Hardware Implementation

Figure 2: Running INT8 Stable Diffusion model (1B+ params) on
Android phones powered by Snapdragon mobile platform takes
comparable inference time to that of FP32 model on cloud.

16/29

Computational Challenges for Quantization

Solve an optimization problem with

▶ highly non-convex objective of high dimension

▶ discrete constraint (quantized weights)

▶ piecewise constant objective with inapplicable gradient a.e.
zero (quantized activations)

17/29

Goal: design simple algorithm that

▶ search along non-gradient based descent direction.

▶ compute projection efficiently (weight quantization).

▶ effectively avoid bad local minima.

18/29

Training Fully Quantized Neural Networks

min
w,α

f (w,α) :=
1

N

N∑
i=1

ℓi (w,α) subject to w ∈ W.

▶ ℓi (w,α) = ℓ(wL ∗ σ(· · ·σ(w1 ∗ xi , α1), . . . , αL−1); yi) is the
sample loss with or without knowledge distillation.

▶ σ(x , α): unsigned INTq activation function.

σ(x , α) =
2q−2∑
k=1

kα · 1{(k−1)α<x≤kα} + (2q − 1)α · 1{x>(2q−2)α}

▶ W = R+ × {±1}n for INT1 (a single sign bit), and
W = R+ ×{0,±1, . . . ,±(2b−1 − 1)}n for signed INTb, b ≥ 2.

19/29

Weight Quantization

Given weights w(l) ∈ Rn (FP32) at Layer l , obtain the INTb
quantization by solving

min
δ,q

∥δ(l) · q(l) −w(l)∥2

s.t. δ(l) > 0, q(l) ∈ {0,±1, . . . ,±(2b−1 − 1)}n.

Solve by alternating minimization for b ≥ 2.

▶ For b = 1, q(l) ∈ {±1}n, it has closed-form solution
[Rastegari et al.’16].

19/29

Weight Quantization

Given weights w(l) ∈ Rn (FP32) at Layer l , obtain the INTb
quantization by solving

min
δ,q

∥δ(l) · q(l) −w(l)∥2

s.t. δ(l) > 0, q(l) ∈ {0,±1, . . . ,±(2b−1 − 1)}n.

Solve by alternating minimization for b ≥ 2.

▶ For b = 1, q(l) ∈ {±1}n, it has closed-form solution
[Rastegari et al.’16].

20/29

Overcoming Vanished Gradient
In chain rule, replace ∂σ

∂x with the proxy ∂σ̃
∂x (so-called straight

through estimator [Bengio et al.’13; Yin et al.’19]).

∂ℓi (w,α)

∂wL−1
≈σ(XL−2,αL−2)◦ ∂σ̃

∂x
(XL−1,αL−1)◦w⊤

L ◦∇ℓ(XL;ui)

∂ℓi (w,α)

∂αL−2
≈ ∂σ

∂α
(XL−2,αL−2)◦w⊤

L−1◦
∂σ̃
∂x

(XL−1,αL−1)◦w⊤
L ◦∇ℓ(XL;ui).

with Xl = wl ∗ σ(Xl−1, αl−1) the output from the l-th linear layer.

2-bit quantized ReLU σ clipped ReLU σ̃

▶ require no extra cost compared with standard gradient
computation.

21/29

Analysis of Straight Through Estimator

▶ Given input x ∈ Rd and class label y ∈ {1, . . . , k}, consider
the two-layer netowrk with output

o(x;W) = Vσ(Wx) ∈ Rk

with weights V ∈ Rk×m in the second layer fixed and known.
σ is general b-bit activation function:

σ(x) =

0 if x ≤ 0,

ceil(x) if 0 < x < 2b − 1,

2b − 1 if x ≥ 2b − 1.

▶ argmax1≤i≤k o(x ;W)i is the predicted class for x .

22/29

▶ multi-class hinge loss:

ℓ(W; x, y) = max

{
0, 1−

(
o(x;W)y −max

i ̸=y
o(x;W)i

)}
▶ solve the population risk minimization

min
W∈Rm×d

f (W) := E{x,y}∼D [ℓ (W; x, y)] ,

▶ chain rule to compute partial gradient w.r.t. the j-th row w⊤
j

of W:

∇wj ℓ(W; x, y) = (vξ,j − vy ,j) 1{ℓ(W;{x,y})>0}(x)σ
′(w⊤

j x)x

= 0, a.e.

where ξ = argmaxi ̸=y o(x ;W)i .

23/29

Convergence Result

▶ use (partial) coarse gradient by replacing σ′ with µ′

∇̃µ
wj
ℓ(W; x, y) := (vξ,j − vy ,j) 1{ℓ(W;{x,y})>0}(x)µ

′(w⊤
j x)x.

▶ train the network by coarse gradient algorithm:

Wt+1 = Wt − η E{x,y}∼D∇̃µℓ(Wt ; x, y)

Theorem (Long, Yin, Xin’21)

Suppose the data from different classes are located in orthogonal
subspaces of Rd . Choose surrogate function µ : R → R satisfying

1. µ(x) = 0 for x ≤ 0.

2. µ′(x) ∈ [δ, δ̃] for x > 0 with constants 0 < δ < δ̃ < ∞.

Then limt→∞ f (Wt) = 0, leading to perfect classification.

23/29

Convergence Result

▶ use (partial) coarse gradient by replacing σ′ with µ′

∇̃µ
wj
ℓ(W; x, y) := (vξ,j − vy ,j) 1{ℓ(W;{x,y})>0}(x)µ

′(w⊤
j x)x.

▶ train the network by coarse gradient algorithm:

Wt+1 = Wt − η E{x,y}∼D∇̃µℓ(Wt ; x, y)

Theorem (Long, Yin, Xin’21)

Suppose the data from different classes are located in orthogonal
subspaces of Rd . Choose surrogate function µ : R → R satisfying

1. µ(x) = 0 for x ≤ 0.

2. µ′(x) ∈ [δ, δ̃] for x > 0 with constants 0 < δ < δ̃ < ∞.

Then limt→∞ f (Wt) = 0, leading to perfect classification.

24/29

Full Quantization Algorithm

Algorithm 1 One iteration of Blended Coarse Gradient Descent

Input: mini-batch empirical loss function ft(w,α), blending param-
eter ρ = 10−5, learning rate ηtw for the weights w, learning rate ηtα
for the resolutions α (one component per activation layer).
Do:

Evaluate the mini-batch coarse gradient (∇̃wft , ∇̃αft) at
(wt

Q ,α
t).

wt+1 = (1−ρ)wt+ρwt
Q−ηtw∇̃wft(wt

Q ,α
t) // blended gradient

update for weights
αt+1 = αt − ηtα∇̃αft(wt

Q ,α
t) // ηtα = 0.01 · ηtw

wt+1
Q = projW(wt+1) // quantize the weights

Remark: {wt} is a sequence of FP-precision auxiliary parameters.

25/29

Outline

Knowledge Distillation

Quantization

Experiments

26/29

Experiments

Bitwidth 1W 2W 4W

Cifar-10
ResNet20 (FP): 92.21 %, Teacher ResNet110

label-free 89.88% 91.23% 92.19%

with supervision 90.56% 91.65% 92.43%

Cifar-100
ResNet56 (FP): 72.96%, Teacher ResNet164

label-free 72.78% 74.35% 74.90%

with supervision 73.35% 74.40% 75.31%

Tiny ImageNet
ResNet18 (FP): 64.23%, Teacher ResNet34

label-free FAQD 64.37% 65.05% 65.40%

FAQD with Supervision 65.13% 65.67% 65.92%

Table 1: Wight Quantization (1-bit, 2-bit, or 4-bit) with Feature Affinity
Assisted Knowledge Distillation

27/29

CIFAR-10
Pretrained ResNet20: 32W1A-91.89%, 32W4A-92.01%

Model 1W1A 4W4A

ResNet20 89.70% 92.53%

CIFAR-100
Pretrained ResNet56: 32W1A-70.96%, 32W4A-71.42%

Model 1W1A 4W4A

ResNet56 68.18 73.53%

Tiny ImageNet
Pretrained ResNet18: 32W1A-63.82%, 32W4A-64.15%

Model 1W1A 4W4A

ResNet18 65.01 65.55%

Table 2: Full quantization on CIFAR-10, CIFAR-100 and Tiny ImageNet,
with teacher networks.

28/29

Acknowledgement

Zhijian Li, Biao Yang, Jack Xin (UC Irvine)

Shuai Zhang, Jiancheng Lyu, Yingyong Qi (Qualcomm)

Ziang Long (Meta)

Stanley Osher (UCLA)

Partially supported by NSF grants DMS-1924935 and
DMS-2208126.

29/29

References

P. Yin, J. Lyu, S. Zhang, S. Osher, Y. Qi, J. Xin, Understanding
Straight-Through Estimator in Training Activation Quantized Neural Nets,
ICLR 2019.

P. Yin, S. Zhang, J. Lyu, S. Osher, Y. Qi, J. Xin, Blended Coarse Gradient
Descent for Full Quantization of Deep Neural Networks, Research in the
Mathematical Sciences, 2019.

Z. Long, P. Yin, J. Xin, Learning Quantized Neural Nets by Coarse Gradient
Method for Non-linear Classification, Research in the Mathematical Sciences,
2021.

Z. Li, B. Yang, P. Yin, Y. Qi, J. Xin, Feature Affinity Assisted Knowledge

Distillation and Quantization of Deep Neural Networks on Label-Free Data,

arXiv:2302.10899.

Thank you for your attention!

	Knowledge Distillation
	Quantization
	Experiments

