Deep neural operators with reliable extrapolation for multiphysics, multiscale & multifidelity problems

Lu Lu

Department of Chemical and Biomolecular Engineering Applied Mathematics and Computational Science University of Pennsylvania

Geological carbon sequestration

Funnell, et al., GNS Science Report, 2008

Modeling of geological carbon sequestration

Multiphase flow in porous media ($\alpha = CO_2$ or brine)

$$\frac{\partial M^{\alpha}}{\partial t} = -\nabla \cdot \left(\mathbf{F}^{\alpha}|_{adv} + \mathbf{F}^{\alpha}|_{dif}\right) + q^{\alpha}$$

• Mass: $M^{\alpha} = \phi \sum_{p} S_{p} \rho_{p} X_{p}^{\alpha}$ • Advective mass flux: $\mathbf{F}^{\alpha}|_{adv} = \sum_{p} X_{p}^{\alpha} \rho_{p} \mathbf{u}_{p}$ • Darcy velocity: $\mathbf{u}_p = -k \left(\nabla P_p - \rho_p \mathbf{g} \right) k_{rp} / \mu_p$ • ϕ : Porosity • X_n^{α} : Mass fraction • g: Gravitational acceleration • S_p : Saturation • P_p : Fluid pressure • k: Absolute permeability

- ρ_n : Density μ_n : Viscosity k_{rn} : Relative permeability

Challenge: Numerical simulation is computationally expensive.

- Multiphysics & Multiscale
- Large spatial scale (12.5m–200m \times 1,000,000m) & temporal scale (30 years)

Our approach: Surrogate modeling via machine learning to enable fast prediction

Data example

Wen et al., Adv Water Resour, 2022

Horizontal axis is truncated for better visualization. 4/20

Standard networks

Aim: Discrete output in 2D space & 1D time (3D)

- Convolutional neural network (CNN): 3D U-Net
- Fourier neural operator (FNO): 3D FNO
 - Learning in the Fourier space

U-FNO: 3D U-Net + 3D FNO

- Good prediction accuracy
- High computational cost

Multiple-input deep operator network (MIONet)

Idea: Continuous output in space & time

• Output is a scalar function of $\boldsymbol{\xi} = (x,y,t)$

- Low computational cost
- Hard to learn detailed structure in space

Jin, Meng, Lu[†], SIAM J Sci Comput, 2022

Fourier-MIONet

- Standard: U-FNO (3D U-Net + 3D FNO)
 - Accurate, Expensive
- MIONet
 - Efficient, Hard to learn detailed structure in space
- Fourier-MIONet: MIONet + U-FNO
 - Time: Trunk net input
 - ► Space: 2D U-FNO as the decoder ("Merge net")

Prediction: Gas saturation

Fourier-MIONet vs. U-FNO

• Accuracy: Almost the same

	\mathbb{R}^2	MAE
U-FNO	0.992	0.0031
FMIONet	0.987	0.0033

• Training: Much less resources

	# Parameters	CPU memory (GiB)	GPU memory (GiB)	Time (hours)
U-FNO	33,097,829	103	15.9	42.6
FMIONet	3,685,325	15	5.6	12.3

• Prediction: Much less resources

	CPU memory	GPU memory	Time
	(GiB)	(GiB)	(s)
U-FNO	15.3	7.1	0.075
FMIONet	5.1	3.5	0.041

Jiang, ..., Lu[†], arXiv:2303.04778, 2023

Prediction for unseen time

50% training data

25% training data

Good generalization even for unseen time!

• Fourier-MIONet obeys physics: Continuity over time.

Jiang, ..., **Lu**[†], *arXiv:2303.04778*, 2023

Nonuniform sampling of training data

 $R^2 > 0.97$ with only 6 different time data for training

Jiang, ..., Lu[†], arXiv:2303.04778, 2023

Machine learning models, including DeepONets, are limited to interpolation.

Extrapolation?

Operator learning extrapolation

Learn an operator $\mathcal{G}: v(x) \mapsto u(\xi)$

- Gaussian random field (GRF): $v(x) \sim \mathcal{GP}(0, k_l(x_1, x_2))$
- Radial-basis function (RBF) kernel: $k_l(x_1, x_2) = \exp\left(-\frac{\|x_1 x_2\|^2}{2l^2}\right)$
- *l*: Correlation length

Zhu, ..., Lu[†], Comput Methods Appl Mech Eng, 2023

Extrapolation examples

An ODE ($x \in [0, 1]$) Diffusion-reaction equation $((x, t) \in [0, 1]^2)$ $\frac{du}{dx} = v(x), \quad u(0) = 0$ $\frac{\partial u}{\partial t} = D\frac{\partial^2 u}{\partial x^2} + ku^2 + v(x)$ $\mathcal{G}: v(x) \mapsto u(x)$ with zero IC/BC, D = 0.01, k = 0.01Correlation length for testing 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Correlation length for testing Ex. Ex. 10-1 Ex. + Ex. + 10-2 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Correlation length for training Correlation length for training $\label{eq:Prediction} \mathsf{Prediction} = \begin{cases} \mathsf{In.} & \mathsf{when} \ l_{\mathsf{train}} = l_{\mathsf{test}} \\ \mathsf{Ex.}^- & \mathsf{when} \ l_{\mathsf{train}} < l_{\mathsf{test}} \\ \mathsf{Ex.}^+ & \mathsf{when} \ l_{\mathsf{train}} > l_{\mathsf{test}} \end{cases}$

Zhu, ..., Lu[†], Comput Methods Appl Mech Eng, 2023

 10^{-1}

 10^{-2}

 10^{-3}

Quantify extrapolation complexity Two GRFs: $f_1 \sim \mathcal{GP}(m_1, k_1)$, $f_2 \sim \mathcal{GP}(m_2, k_2)$

2-Wasserstein (W_2) metric: Distance between two spaces

$$W_2(f_1, f_2) := \left\{ \|m_1 - m_2\|_2^2 + \mathsf{Tr}\left[K_1 + K_2 - 2\left(K_1^{\frac{1}{2}}K_2K_1^{\frac{1}{2}}\right)^{\frac{1}{2}}\right] \right\}^{\frac{1}{2}}$$

where $K_i: L^2(X) \to L^2(X)$ is the covariance operator of k_i

$$[K_i\phi](x) = \int_X k_i(x,s)\phi(s)ds, \quad \forall \phi \in L^2(X)$$

 $\log Extrapolation error$ $<math>\propto \log W_2$

Zhu, ..., Lu[†], Comput Methods Appl Mech Eng, 2023

Reliable extrapolation

- In. or Ex.⁻: Return prediction \tilde{u}
- Ex.⁺: Additional information to correct \tilde{u} (fine-tune or multifidelity learning)
 - Physics: Governing PDEs
 - New data at sparse locations (high-fidelity)

Zhu, ..., Lu[†], Comput Methods Appl Mech Eng, 2023

Global climate change

Daily surface air temperature $T({\bf x})$ & pressure $p({\bf x})$ from 1950 to 2021 NCEP-NCAR Reanalysis Database

$$\mathcal{G}: T(\mathbf{x}) \mapsto p(\mathbf{x})$$

Global climate change

```
\mathcal{G}: T(\mathbf{x}) \mapsto p(\mathbf{x})
```


Data: 100 weather stations

Zhu, ..., Lu^{\dagger} , Unpublished

DeepONets

• A family of DeepONets

- DeepONet (Lu et al., Nature Mach Intell, 2021)
- ► MIONet: Multiple-input operator (Jin, Meng, Lu[†], SIAM J Sci Comput, 2022)
- ▶ POD-DeepONet (Lu et al., Comput Methods Appl Mech Eng, 2022)
- ► Fourier-DeepONet/MIONet (Jiang, ..., Lu[†], arXiv:2303.04778, 2023; Zhu, ..., Lu[†], arXiv:2305.17289)
- DeepM&Mnet (Cai, Wang, Lu, et al., J Comput Phys, 2021; Mao, Lu, et al., J Comput Phys, 2021)
- ► Multifidelity DeepONet (Lu[†] et al., *Phys Rev Res*, 2022)
- ► Reliable extrapolation (Zhu, ..., Lu[†], Comput Methods Appl Mech Eng, 2023)
- Theory
 - ▶ Universal approximation theorem (Jin, Meng, Lu[†], SIAM J Sci Comput, 2022)
 - Error analysis (Deng, Shin, Lu, et al., Neural Netw, 2022)

Accuracy Efficiency Capability

- Multiphysics & Multiscale applications
 - ► High-speed boundary layer (Di Leoni, Lu, et al., J Comput Phys, 2023)
 - ► Electroconvection (Cai, Wang, Lu, et al., J Comput Phys, 2021)
 - ► Hypersonics (Mao, Lu, et al., J Comput Phys, 2021)
 - ► Geological carbon sequestration (Jiang, ..., Lu[†], arXiv:2303.04778, 2023)
 - ► Full waveform inversion (Zhu, ..., Lu[†], arXiv:2305.17289)

Open-source software: **DeepXDE**

Scientific machine learning

>400,000 Downloads >100 Research papers

Physics-informed learning

>1,600 GitHub Stars >50 Contributors around the world

• Universities (>70)

• National labs & Research institutes (>15)

Industry

