MgNet: Algorithms, Theories, and Applications

Juncai He

Applied Mathematics and Computational Sciences, KAUST juncai.he@kaust.edu.sa

Morgan State University CBMS: Deep Learning and Numerical PDEs June 20th, 2023

Outline

2 Theory: Representation and approximation properties of MgNet

3 Applications of MgNet

Feature extraction: a constrained linear model

Linearly separable feature

Namely

A linear model: given an image g, find its feature u satisfying

$$A * u = g \tag{1}$$
with a constraint
$$u \ge 0. \tag{2}$$
Namely
$$u = \phi(g).$$
Questions:
① What is A? (to be trained ...)
② How to solve (1)?

Iterative method \Rightarrow Multigrid method

Ref: J. He and J. Xu 2019; J. He, L. Zhang, J. Xu and J. Zhu 2021

Multigrid methods for A * u = g (convolution language)

Smoothing and restriction

For
$$\ell = 1 : J$$

For $i = 1 : \nu_{\ell}$

$$u^\ell \leftarrow u^\ell + B^\ell * (g^\ell - A^\ell * u^\ell).$$

Form restricted residual and set initial guess:

$$u^{\ell+1,0} \leftarrow \Pi_{\ell}^{\ell+1} *_2 u^{\ell},$$
$$g^{\ell+1} \leftarrow R_{\ell}^{\ell+1} *_2 (g^{\ell} - A^{\ell} * u^{\ell}) + A^{\ell+1} * u^{\ell+1,0}.$$

Prolongation with post-smoothing

• For $\ell = J - 1 : 1$

$$u_{\ell} \leftarrow u_{\ell} + R_{\ell}^{\ell+1} *_{2}^{\top} (u^{\ell+1} - u^{\ell+1,0}).$$

• For $i = 1 : \nu'_{\ell}$

$$u^\ell \leftarrow u^\ell + [B^\ell]' * (g^\ell - A^\ell * u^\ell)$$

Ref: J. He and J. Xu 2019

Juncai He (KAUST)

MgNet

From multigrid to MgNet

MgNet: From multigrid to CNN

Multigrid:

•
$$A^{\ell}, B^{\ell}, \Pi^{\ell+1}_{\ell}, R^{\ell+1}_{\ell}$$
 are all given a priori.

CNN:

- Almost identically same structure as multigrid!
- $A^{\ell,i}, B^{\ell,i}, R^{\ell+1}_{\ell}$ are all trained!
- Activation, ReLU, is introduced (to drop-off negative pixel values).
- Extra channels are introduced.

- J. Xu, Deep Neural Networks and Multigrid Methods, (Lecture Notes), 2017-2023.
- J. He, J. Xu. MgNet: A Unified Framework of Multigrid and Convolutional Neural Network. Sci China Math, 2019, 62: 1331-1354.
- J. He, L. Li, J. Xu. Approximation Properties of Deep ReLU CNNs. Research in the Mathematical Sciences, 2022, 9(3).
- J. He, J. Xu, L. Zhang, J. Zhu. An Interpretive Constrained Linear Model for ResNet and MgNet. Neural Networks, 2023, 162: 384-392.
- J. Zhu, J. He, J. Xu, L. Zhang. FV-MgNet: Fully Connected V-cycle MgNet for Interpretable Time Series Forecasting. Journal of Computational Science, 2023 69: 102005.
- J. Zhu, J. He, Q. Huang, L. Zhang. An Enhanced V-cycle MgNet Model for Operator Learning in Numerical Partial Differential Equations. Accepted by Computational Geosciences 2023.

Comparisons between MgNet and classic CNNs on CIFAR-10 and CIFAR-100

Model	Accuracy	# Parameters
VGG19	93.56	20.0M
ResNet18	95.28	11.2M
pre-act ResNet18	95.08	10.2M
MgNet[2,2,2,2],256	96.00	8.2M

Table: Comparisons between MgNet and classical CNNs on CIFAR-10

Model	Accuracy	# Parameters
VGG19	70.48	20.04
ResNet18	77.54	11.2M
pre-act ResNet18	77.29	11.2M
MgNet[2,2,2,2],256	79.94	8.3M
MgNet[2,2,2,2],512	81.35	33.1M
MgNet[2,2,2,2],1024	82.46	132.2M

Table: Comparisons between MgNet and classical CNNs on CIFRA-100

lunca	

Comparisons between MgNet and classic CNNs on ImageNet

Model	Accuracy	# Parameters
VGG19	71.30	20.0M
ResNet18	72.12	11.2M
pre-act ResNet18	72.34	11.2M
MgNet[3,4,6,3][64,128,256,512]	73.78	9.9M
ResNet152	77.65	61.0M
DenseNet264	77.85	34.2M
MgNet[2,2,4,2][128,256,512,1024]	77.58	38.5M
MgNet[3,4,8,4][128,256,512,1024], <i>B</i> ℓ, ^{<i>i</i>}	78.73	85.4M

Table: Comparisons between MgNet and classical CNNs on ImageNet

MgNet on CIFRA-10 and CIFRA-100

Dataset	Model	Accuracy	# Parameters
CIFRA-10	MgNet[2,2,2,2],256	96.00	8.2M
CIFRA-10	MgNet[3,4,6,3],256	95.98	8.3M
CIFRA-10	MgNet[3,4,6,3],512	96.48	33.1M
CIFRA-100	MgNet[2,2,2,2],256	79.94	8.3M
CIFRA-100	MgNet[8,2,2,2],256, <i>B</i> ^{ℓ,i}	81.42	14.3M
CIFRA-100	MgNet[2,2,2,2],512	81.35	33.1M
CIFRA-100	MgNet[2,2,2,2],1024	82.46	132.2M

Table: The stability and scalability of MgNet on CIFRA-10 and CIFRA-100

MgNet on ImageNet

Model	Accuracy	# Parameters
MgNet[3,4,6,3][64,128,256,512]	73.78	9.9M
MgNet[2,2,8,2][64,128,256,512], B ^{ℓ,i}	75.18	16.6M
MgNet[2,2,4,2][128,256,512,1024]	77.58	38.5M
MgNet[3,4,6,3][128,256,512,1024], <i>B</i> ^{ℓ,i}	78.59	71.3M
MgNet[3,4,8,4][128,256,512,1024], <i>B</i> ^{ℓ,i}	78.73	85.4M

Table: The stability and scalability of MgNet on ImageNet

MgNet vs Transformer on ImageNet

Model	Туре	Accuracy	Parameters
DeiT-Small	Transformer	79.8	22.1M
PVT-Small	Transformer	79.8	24.5M
ConvMixer	Transformer	80.2	21.1M
CrossViT-Small	Transformer	81.0	26.7M
Swin-Tiny	Transformer	81.2	28.3M
CvT-13	Transformer	81.6	20.0M
CoAtNet-0	Transformer	81.6	25.0M
CaiT-XS-24	Transformer	81.8	26.6M
ResNet-50	CNN	80.4	25.0M
MgNet-small	CNN	81.0	26.1M
MgNet	CNN	82.0	39.3M
CMT-XS	CNN+Transformer	81.8	15.2M
MgNet-CMT-XS	CNN +Transformer	82.6	17.9M
MgNet-CMT	CNN +Transformer	83.4	30.1M

Table: ImageNet results of transformers and CNNs

An encouraging observation:

MgNet has competitive performance with transformer models.

Juncai He (I	KAUST)
--------------	--------

CNN: ResNet and Pre-act ResNet

Figure: From classical CNNs to ResNet and Pre-act ResNet (K. He, X. Zhang, S. Ren and J. Sun, 2015 and 2016)

Mathematical formula

ResNet

$$\mathbf{r}^{\ell,i} = \boldsymbol{\sigma} \left(\mathbf{r}^{\ell,i-1} + \alpha^{\ell,i} * \boldsymbol{\sigma} \circ \boldsymbol{\beta}^{\ell,i} * \mathbf{r}^{\ell,i-1} \right).$$
(3)

Pre-act ResNet

$$\mathbf{r}^{\ell,i} = \mathbf{r}^{\ell,i-1} + \alpha^{\ell,i} * \sigma \circ \beta^{\ell,i} * \boldsymbol{\sigma}(\mathbf{r}^{\ell,i-1}).$$
(4)

Pre-act ResNet: a "residual" version of MgNet

Theorem (MgNet and pre-act ResNet, He and Xu 2019)

The MgNet model recovers the pre-act ResNet (K. He et al 2016) as follows

$$r^{\ell,i} = r^{\ell,i-1} + A^{\ell,i} * \sigma \circ B^{\ell,i} * \sigma(r^{\ell,i-1}), \quad i = 1 : \nu_{\ell},$$
(5)

where

$$r^{\ell,i}=g^\ell-A^\ell*u^{\ell,i}.$$

Proof.

$$u^{\ell,i} = u^{\ell,i-1} + \sigma \circ B^{\ell,i} * \sigma(g^{\ell} - A^{\ell} * u^{\ell,i-1}),$$

$$\Rightarrow A^{\ell} * u^{\ell,i} = A^{\ell} * u^{\ell,i-1} + A^{\ell} * \sigma \circ B^{\ell,i} * \sigma(g^{\ell} - A^{\ell} * u^{\ell,i-1}),$$

$$\Rightarrow g^{\ell} - A^{\ell} * u^{\ell,i} = g^{\ell} - A^{\ell} * u^{\ell,i} - A^{\ell} * \sigma \circ B^{\ell,i} * \sigma(g^{\ell} - A^{\ell} * u^{\ell,i-1}),$$

$$\Rightarrow r_{\ell}^{i} = r^{\ell,i} = r^{\ell,i-1} + A^{\ell,i} * \sigma \circ B^{\ell,i} * \sigma(r^{\ell,i-1}).$$
(6)

Approximation power of MgNet and CNNs

Theorem (H, Li and Xu, 2022)

Let $\Omega \subset \mathbb{R}^{d \times d}$ be bounded and $f : \Omega \mapsto \mathbb{R}$, then there exist a MgNet function $\tilde{f} : R^{d \times d} \mapsto \mathbb{R}$ with multi-channel 3×3 kernels with padding, where

depth (number of convolutional layers): $L = \lfloor d/4 \rfloor$, width (number of channels at each layer): $c_{f,\ell} = (4\ell + 1)^2$, $c_{u,\ell} = 2(4\ell - 1)^2$ $\ell = 1 : L - 1$, (7)

and $c_{u,L} = N + 2$, such that

$$\|f-\tilde{f}\|_{L^2(\Omega)} \lesssim N^{-\frac{1}{2}-\frac{3}{2d^2}}.$$
(8)

Main properties:

- For 2D images with or without multi-channel.
- Convolution (the most commonly used type): 3 × 3 kernel with multichannel for both periodic and zero padding.
- Achieve the same asymptotic approximation rate (for example, J. Xu, 2020, J. Siegel and J. Xu. 2021.) to ReLU DNN with one-hidden layer.
- Similar results hold for Classical CNNs, ResNet and pre-act ResNet networks.

Some remarks

Sketch of proof

Connection between DNNs with one hidden layer and CNNs with large kernel and multi-channel.

2 A decomposition theorem for convolution with large kernel

Theorem (H, Li and Xu, 2021)

Let $K \in \mathbb{R}^{1 \times M \times (2k+1) \times (2k+1)}$, then there exists a series of kernels $S^{\ell} \in \mathbb{R}^{c_{\ell-1} \times c_{\ell} \times 3 \times 3}$ and $P \in \mathbb{R}^{c_{\ell-1} \times M \times 3 \times 3}$ such that

$$K * X = P * S^{k-1} * S^{k-2} * \cdots * S^1 * X, \quad \forall X \in \mathbb{R}^{d \times d},$$

where $c_{\ell} = (2\ell + 1)^2$ for $\ell = 1 : k - 1$.

3 Rewrite CNNs with one hidden layer and large kernel as deep CNNs with 3×3 kernels (D.-X. Zhou, 2020).

Related works

C. Bao, Q. Li, S. Zuo, C. Tai, L. Wu and X. Xiang, 2018 & D.-X. Zhou, 2018, 2020(a,b) ► one-dimensional input, convolution ↔ polynomial multiplication.

K. Oono and T. Suzuki, 2019 & P. Petersen and F. Voigtlaender, 2020 & W. Kumagai and A. Sannai, 2020

special function classes, only for periodic padding.

(9)

Applications of MgNet in forecasting problems

Data sets:

- ETT: Two electricity transformers at two stations.
- Electricity: Electricity consumption of clients.
- Exchange: Current exchange of 8 countries.
- Traffic: Occupation rate of freeway system across the State of California.
- Weather: 21 meteorological indicators for a range of 1 year in Germany.
- ILIness: Influenza-like illness patients in the United States.

Math problem: Find (construct) a function

$$\mathcal{F}: \mathbb{R}^{d_i \times c} \mapsto \mathbb{R}^{d_o \times c}, \quad \text{typically} \quad d_i = d_o.$$

One challenge: The memory and inference costs may increase fast as $d_i(d_o)$ increases.

Methodology: Fully connected V-cycle MgNet

Feature extraction and interpolation scheme (Zhu, He, Zhang and Xu 2022):

Input: $f \xrightarrow{\text{feature extraction}} Feature: u \xrightarrow{\text{feature interpolation: } \mathcal{I}} Output: y.$ (10)

Feature extraction: A fully connected V-cycle type MgNet

u = FV-MgNet(f).

Feature interpolation: A one-hidden layer ReLU NN

$$y = \mathcal{I}(u) \approx W^2 \sigma \left(W^1 u \right)$$

Accuracy of FV-MgNet

Me	thods	FV-N	IgNet	Fil	LM	N-H	liTS	ETSf	ormer	FEDf	ormer	Autof	ormer
M	etric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
Γm_2	96 192	0.173 0.230	0.253 0.296	0.165 0.222	0.256 0.296	0.176 0.245	0.255 0.305	0.189 0.253	0.280 0.319	0.203 0.269	0.287 0.328	0.255 0.281	0.339 0.340
ET	336	0.279	0.329	0.277	0.333	0.295	0.346	0.314	0.357	0.325	0.366	0.339	0.372
	720	0.367	0.385	0.371	0.389	0.401	0.426	0.414	0.413	0.421	0.415	0.422	0.419
lectricity	96	0.144	0.250	0.154	0.267	0.147	0.249	0.187	0.304	0.183	0.297	0.201	0.317
	192	0.163	0.262	0.164	0.258	0.167	0.269	0.199	0.315	0.195	0.308	0.222	0.334
	336	0.176	0.276	0.188	0.283	0.186	0.290	0.212	0.329	0.212	0.313	0.231	0.338
	720	0.212	0.308	0.249	0.338	0.243	0.340	0.233	0.345	0.231	0.343	0.254	0.361
Exchange	96	0.082	0.206	0.079	0.204	0.092	0.211	0.085	0.204	0.139	0.276	0.197	0.323
	192	0.184	0.314	0.159	0.292	0.208	0.322	0.182	0.303	0.256	0.369	0.300	0.369
	336	0.307	0.416	0.270	0.398	0.371	0.443	0.348	0.428	0.426	0.464	0.509	0.524
	720	0.554	0.582	0.830	0.721	0.888	0.723	1.025	0.774	1.090	0.800	1.447	0.941
Traffic	96	0.396	0.285	0.416	0.294	0.402	0.282	0.607	0.392	0.562	0.349	0.613	0.388
	192	0.417	0.295	0.408	0.288	0.420	0.297	0.621	0.399	0.562	0.346	0.616	0.382
	336	0.436	0.302	0.425	0.298	0.448	0.313	0.622	0.396	0.570	0.323	0.622	0.337
	720	0.468	0.315	0.520	0.353	0.539	0.353	0.632	0.396	0.596	0.368	0.660	0.408
W eather	96	0.155	0.196	0.199	0.262	0.158	0.195	0.197	0.281	0.217	0.296	0.266	0.336
	192	0.201	0.239	0.228	0.288	0.211	0.247	0.237	0.312	0.276	0.336	0.307	0.367
	336	0.244	0.279	0.267	0.323	0.274	0.300	0.298	0.353	0.339	0.380	0.359	0.395
	720	0.313	0.329	0.319	0.361	0.351	0.353	0.352	0.388	0.403	0.428	0.419	0.428
ITI	24	1.647	0.764	1.970	0.875	1.862	0.869	2.527	1.020	2.203	0.963	3.483	1.287
	36	1.841	0.839	1.982	0.859	2.071	0.969	2.615	1.007	2.272	0.976	3.103	1.148
	48	1.831	0.853	1.868	0.896	2.346	1.042	2.359	0.972	2.209	0.981	2.669	1.085
	60	1.765	0.814	2.057	0.929	2.560	1.073	2.487	1.016	2.545	1.061	2.770	1.125

More observations: Capturing high frequencies ?

(a) *ETTh*1

(b) *ETTh*2

(c) Weather

Juncai He (KAUST)

Applications of MgNet in numerical PDEs

Problem:

$$\mathcal{L}(u; a) = f$$

Motivation:

• For linear operator: given f find u when \mathcal{L} is linear and elliptic

Multigrid $\approx (\mathcal{L})^{-1}$.

• For nonlinear operator: given a find u or \mathcal{L} is nonlinear

multilevel representation:
$$u = \sum_{\ell=1}^{\infty} (I_{\ell} - I_{\ell-1}) u$$

V-cycle MgNet for operator learning

Example: $a(x) \mapsto u(x)$ with fixed f(x) = 1 for Darcy flow:

$$\begin{cases} -\nabla \cdot (a(x)\nabla u(x)) = f(x) & x \in (0,1)^2 \\ u(x) = 0 & x \in \partial(0,1)^2 \end{cases}$$

Naive idea:

Convolutional V-cycle MgNet (V-MgNet) $\Rightarrow u \approx V$ -MgNet(a)

Error in Fourier domain (with four random examples):

An enhanced V-MgNet for operator learning

Smoother in original V-MgNet:

$$u^{\ell,i} = u^{\ell,i-1} + \sigma \circ B^{\ell,i} * \sigma \left(f^{\ell} - A^{\ell} * u^{\ell,i-1} \right)$$

Enhanced V-MgNet (EV-MgNet) by correcting low frequencies explicitly:

$$u^{\ell,i} = u^{\ell,i-1} + \sigma \circ B^{\ell,i} * \sigma \left(f^{\ell} - A^{\ell} * u^{\ell,i-1} \right) + \sigma \circ \mathcal{F}^{-1} \mathcal{W}^{\ell,i} \mathcal{F} \left(f^{\ell} - A^{\ell} * u^{\ell,i-1} \right)$$

- F: Fourier transform
- $W^{\ell,i}$: a linear operator defined only on coefficients of low frequencies.

Ref: Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar 2021; J. Zhu, J. He and Q. Huang. 2023.

Error after the low-frequency correction

Numerical example: 2D Darcy flow

Problem: Approximate the operator $a \mapsto u$ with f = 1.

$$\begin{cases} -\nabla \cdot (\mathbf{a}(x)\nabla u(x)) = f(x), & x \in (0,1)^2, \\ u(x) = 0, & x \in \partial(0,1)^2. \end{cases}$$

Model	85 imes 85	141 × 141	211 × 211	421 × 421
GNO LNO MGNO FNO GT MWT Leg MWT Cheb	$\begin{array}{c} 3.46 \times 10^{-2} \\ 5.20 \times 10^{-2} \\ 4.16 \times 10^{-2} \\ 1.08 \times 10^{-2} \\ 8.51 \times 10^{-3} \\ 8.54 \times 10^{-3} \\ 9.43 \times 10^{-3} \end{array}$	$\begin{array}{c} 3.32 \times 10^{-2} \\ 4.61 \times 10^{-2} \\ 4.28 \times 10^{-2} \\ 1.09 \times 10^{-2} \\ 8.40 \times 10^{-3} \\ 7.32 \times 10^{-3} \\ 8.28 \times 10^{-3} \end{array}$	$\begin{array}{c} 3.42 \times 10^{-2} \\ 4.45 \times 10^{-2} \\ 4.28 \times 10^{-2} \\ 1.09 \times 10^{-2} \\ 8.50 \times 10^{-3} \\ 7.27 \times 10^{-3} \\ 8.83 \times 10^{-3} \end{array}$	$\begin{array}{c} 3.69\times 10^{-2} \\ - \\ 4.20\times 10^{-2} \\ 0.98\times 10^{-2} \\ 8.93\times 10^{-3} \\ 6.86\times 10^{-3} \\ 8.74\times 10^{-3} \end{array}$
V-MgNet EV-MgNet	$\begin{array}{c} 5.07 \times 10^{-3} \\ 4.57 \times 10^{-3} \end{array}$	$\begin{array}{c} 1.07 \times 10^{-2} \\ 3.79 \times 10^{-3} \end{array}$	$\begin{array}{c} 2.63 \times 10^{-2} \\ 3.79 \times 10^{-3} \end{array}$	$5.16 \times 10^{-2} \\ 3.83 \times 10^{-3}$

More results: 1D Burgers' equation, 1D KDV equation, and 2D Navier-Stokes equations.

Ref: J. Zhu, J. He and Q. Huang. 2023.

Operator learning with different resolutions

Motivation: multigrid with convolutional form is independent from mesh size of input. Practical issue: training with lower cost.

Example of 1D Burgers' equation: Approximate the operator $a \mapsto u$.

$$\begin{cases} \partial_t u(x,t) + \partial_x \left(u^2(x,t)/2 \right) = \nu \partial_{xx} u(x,t), & x \in (0,1), t \in (0,1], \\ u(x,0) = a(x), & x \in (0,1), \\ u(0,t) = u(1,t), & t > 0. \end{cases}$$

Table: EV-MgNet model trained at low resolutions and predicted at high resolutions

Test Train	2048	4096	8192
128	$3.99 imes10^{-3}$	$4.11 imes 10^{-3}$	$4.19 imes10^{-3}$
256	$8.93 imes10^{-4}$	$9.26 imes10^{-4}$	$9.39 imes10^{-4}$
512	$6.46 imes10^{-4}$	$6.56 imes10^{-4}$	$6.62 imes10^{-4}$

Conclusions and future works

- Multigrid and convolutional neural networks
 - MgNet;
 - data-feature mapping;
 - approximation;
 - applications:
 - forecasting problems;
 - operator learning.
- Future works:
 - involve more properties of MG;
 - 2 apply CNN to MG;
 - graphic CNNs;

THANK YOU!