
Numerical Analysis 101 for Neural Networks

Hongkai Zhao
Duke University

Joint work with Shijung Zhang, Haomin Zhou and Yimin Zhong

Research partially supported by NSF DMS-2012860,
DMS-2309551.

Least square approximation

General form: given a target function f(x), x ∈ D ⊂ Rd , and a chosen
parametrized representation h(x;α)

min
α

l(α) = ‖h(·;α) − f(·)‖2L2(D)

Basic numerical analysis questions of practice importance:

I the best accuracy one can achieve given a finite machine precision,

I stability with respect to perturbations,

I the computation cost to achieve a given accuracy.

Least square approximation

General form: given a target function f(x), x ∈ D ⊂ Rd , and a chosen
parametrized representation h(x;α)

min
α

l(α) = ‖h(·;α) − f(·)‖2L2(D)

Basic numerical analysis questions of practice importance:

I the best accuracy one can achieve given a finite machine precision,

I stability with respect to perturbations,

I the computation cost to achieve a given accuracy.

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G−1f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical question:

V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G, G, G!

I Choice of the basis is the key!
I spectral property of G
I sparsity of G
I computation cost of G, G−1.

For nonlinear least square problem: a non-convex optimization has to be
taken into account!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G−1f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical question: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G, G, G!

I Choice of the basis is the key!
I spectral property of G
I sparsity of G
I computation cost of G, G−1.

For nonlinear least square problem: a non-convex optimization has to be
taken into account!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G−1f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical question: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions:

G, G, G!

I Choice of the basis is the key!
I spectral property of G
I sparsity of G
I computation cost of G, G−1.

For nonlinear least square problem: a non-convex optimization has to be
taken into account!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G−1f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical question: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G,

G, G!

I Choice of the basis is the key!
I spectral property of G
I sparsity of G
I computation cost of G, G−1.

For nonlinear least square problem: a non-convex optimization has to be
taken into account!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G−1f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical question: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G, G,

G!

I Choice of the basis is the key!
I spectral property of G
I sparsity of G
I computation cost of G, G−1.

For nonlinear least square problem: a non-convex optimization has to be
taken into account!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G−1f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical question: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G, G, G!

I Choice of the basis is the key!
I spectral property of G
I sparsity of G
I computation cost of G, G−1.

For nonlinear least square problem: a non-convex optimization has to be
taken into account!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G−1f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical question: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G, G, G!

I Choice of the basis is the key!

I spectral property of G
I sparsity of G
I computation cost of G, G−1.

For nonlinear least square problem: a non-convex optimization has to be
taken into account!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G−1f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical question: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G, G, G!

I Choice of the basis is the key!
I spectral property of G

I sparsity of G
I computation cost of G, G−1.

For nonlinear least square problem: a non-convex optimization has to be
taken into account!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G−1f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical question: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G, G, G!

I Choice of the basis is the key!
I spectral property of G
I sparsity of G

I computation cost of G, G−1.

For nonlinear least square problem: a non-convex optimization has to be
taken into account!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G−1f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical question: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G, G, G!

I Choice of the basis is the key!
I spectral property of G
I sparsity of G
I computation cost of G, G−1.

For nonlinear least square problem: a non-convex optimization has to be
taken into account!

Least square approximation

Linear representation: given a target function f(x), x ∈ D ⊂ Rd , choose a
set of basis functions ψi(x), h(x;α) =

∑n
i=1 aiψi(x), α = (a1, . . . , an)T

min
α

l(α) = ‖
n∑

i=1

aiψi(·) − f(·)‖2L2(D)

⇒ α∗ = argminαl(α) = G−1f,

G is Gram matrix, G(i, j) = 〈ψi , ψj〉D , f = (〈f , ψ1〉D , . . . , 〈f , ψn〉D)T .

I Important mathematical question: V = span{ψ1, . . . , ψn}, dist(f ,V).

I Important numerical questions: G, G, G!

I Choice of the basis is the key!
I spectral property of G
I sparsity of G
I computation cost of G, G−1.

For nonlinear least square problem: a non-convex optimization has to be
taken into account!

Set up of neural network (NN)
Two layer NN with reLU activation function σ(t) = max(0, t):

h(x) =
n∑

i=1

aiσ(wi · x − bi), x ∈ Rd .

We study

I linear least square approximation when biases bi are fixed,

I learning dynamics,

I Rashomon set for the parameters,

to show

I why a two layer NN is essentially a ”low pass filter”⇒ stable w.r.t.
noise and over-parametrization and but may compromise for
accuracy,

I the computation cost for training,

I what difference activation functions make,

I why highly oscillatory functions are difficult to approximate by NN,

I some further thoughts.

Set up of neural network (NN)
Two layer NN with reLU activation function σ(t) = max(0, t):

h(x) =
n∑

i=1

aiσ(wi · x − bi), x ∈ Rd .

We study

I linear least square approximation when biases bi are fixed,

I learning dynamics,

I Rashomon set for the parameters,

to show

I why a two layer NN is essentially a ”low pass filter”

⇒ stable w.r.t.
noise and over-parametrization and but may compromise for
accuracy,

I the computation cost for training,

I what difference activation functions make,

I why highly oscillatory functions are difficult to approximate by NN,

I some further thoughts.

Set up of neural network (NN)
Two layer NN with reLU activation function σ(t) = max(0, t):

h(x) =
n∑

i=1

aiσ(wi · x − bi), x ∈ Rd .

We study

I linear least square approximation when biases bi are fixed,

I learning dynamics,

I Rashomon set for the parameters,

to show

I why a two layer NN is essentially a ”low pass filter”⇒ stable w.r.t.
noise and over-parametrization and but may compromise for
accuracy,

I the computation cost for training,

I what difference activation functions make,

I why highly oscillatory functions are difficult to approximate by NN,

I some further thoughts.

Set up of neural network (NN)
Two layer NN with reLU activation function σ(t) = max(0, t):

h(x) =
n∑

i=1

aiσ(wi · x − bi), x ∈ Rd .

We study

I linear least square approximation when biases bi are fixed,

I learning dynamics,

I Rashomon set for the parameters,

to show

I why a two layer NN is essentially a ”low pass filter”⇒ stable w.r.t.
noise and over-parametrization and but may compromise for
accuracy,

I the computation cost for training,

I what difference activation functions make,

I why highly oscillatory functions are difficult to approximate by NN,

I some further thoughts.

Set up of neural network (NN)
Two layer NN with reLU activation function σ(t) = max(0, t):

h(x) =
n∑

i=1

aiσ(wi · x − bi), x ∈ Rd .

We study

I linear least square approximation when biases bi are fixed,

I learning dynamics,

I Rashomon set for the parameters,

to show

I why a two layer NN is essentially a ”low pass filter”⇒ stable w.r.t.
noise and over-parametrization and but may compromise for
accuracy,

I the computation cost for training,

I what difference activation functions make,

I why highly oscillatory functions are difficult to approximate by NN,

I some further thoughts.

Set up of neural network (NN)
Two layer NN with reLU activation function σ(t) = max(0, t):

h(x) =
n∑

i=1

aiσ(wi · x − bi), x ∈ Rd .

We study

I linear least square approximation when biases bi are fixed,

I learning dynamics,

I Rashomon set for the parameters,

to show

I why a two layer NN is essentially a ”low pass filter”⇒ stable w.r.t.
noise and over-parametrization and but may compromise for
accuracy,

I the computation cost for training,

I what difference activation functions make,

I why highly oscillatory functions are difficult to approximate by NN,

I some further thoughts.

Set up of neural network (NN)
Two layer NN with reLU activation function σ(t) = max(0, t):

h(x) =
n∑

i=1

aiσ(wi · x − bi), x ∈ Rd .

We study

I linear least square approximation when biases bi are fixed,

I learning dynamics,

I Rashomon set for the parameters,

to show

I why a two layer NN is essentially a ”low pass filter”⇒ stable w.r.t.
noise and over-parametrization and but may compromise for
accuracy,

I the computation cost for training,

I what difference activation functions make,

I why highly oscillatory functions are difficult to approximate by NN,

I some further thoughts.

Two layer NN in 1D

h(x) =
n∑

i=1

aiσ(x − bi), x, bi ∈ D = (−1, 1), ai ∈ R

In theory, span{σ(x−b1), . . . , σ(x−bn)}=span{P1 finite element basis}.

Numerically, the two sets of basis are very different!

I Finite element basis is local and almost orthogonal⇒ the Gram
matrix is sparse and the condition number is O(1), ideal for least
square approximation in lower dimension.

I ReLU basis is global and can be highly correlated⇒ the Gram
matrix is dense and has a fast spectral decay rate (ill-conditioned)
⇒ only a certain number of leading eigen-modes are used in
numerical computation⇒ low pass filter.

Two layer NN in 1D

h(x) =
n∑

i=1

aiσ(x − bi), x, bi ∈ D = (−1, 1), ai ∈ R

In theory, span{σ(x−b1), . . . , σ(x−bn)}=span{P1 finite element basis}.
Numerically, the two sets of basis are very different!

I Finite element basis is local and almost orthogonal⇒ the Gram
matrix is sparse and the condition number is O(1), ideal for least
square approximation in lower dimension.

I ReLU basis is global and can be highly correlated⇒ the Gram
matrix is dense and has a fast spectral decay rate (ill-conditioned)
⇒ only a certain number of leading eigen-modes are used in
numerical computation⇒ low pass filter.

Two layer NN in 1D

h(x) =
n∑

i=1

aiσ(x − bi), x, bi ∈ D = (−1, 1), ai ∈ R

In theory, span{σ(x−b1), . . . , σ(x−bn)}=span{P1 finite element basis}.
Numerically, the two sets of basis are very different!

I Finite element basis is local and almost orthogonal⇒ the Gram
matrix is sparse and the condition number is O(1), ideal for least
square approximation in lower dimension.

I ReLU basis is global and can be highly correlated⇒ the Gram
matrix is dense and has a fast spectral decay rate (ill-conditioned)
⇒ only a certain number of leading eigen-modes are used in
numerical computation⇒ low pass filter.

Two layer NN in 1D

h(x) =
n∑

i=1

aiσ(x − bi), x, bi ∈ D = (−1, 1), ai ∈ R

In theory, span{σ(x−b1), . . . , σ(x−bn)}=span{P1 finite element basis}.
Numerically, the two sets of basis are very different!

I Finite element basis is local and almost orthogonal⇒ the Gram
matrix is sparse and the condition number is O(1), ideal for least
square approximation in lower dimension.

I ReLU basis is global and can be highly correlated⇒ the Gram
matrix is dense and has a fast spectral decay rate (ill-conditioned)
⇒ only a certain number of leading eigen-modes are used in
numerical computation⇒ low pass filter.

Spectral analysis for the Gram matrix of ReLU basis: 1D
Let G B (Gij) ∈ R

n×n be the Gram matrix

Gij =

∫
D
σ(x−bi)σ(x−bj)dx =

1
12
|bi−bj |

3+
1

12
(2−bi−bj)

(
2(1−bi)(1−bj)−(bi−bj)

2
)

The corresponding continuous kernel

G(x,y)=

∫
D
σ(z−x)σ(z−y)dz =

1
12
|x−y |3+

1
12

(2−x−y)
(
2(1−x)(1−y)−(x−y)2

)
Lemma
The eigenvalues in descending order are: µk = O(k−4). The
corresponding eigenfunctions φk (x) satisfies

φ
(4)
k (x)=µ−1

k φk (x), x ∈ (−1, 1), φk (1)=φ
(1)
k (1)=φ

(2)
k (−1)=φ

(3)
k (−1)=0

The first few leading eigenfunctions are a combination of exponential
functions and Fourier modes, then followed by essentially Fourier modes,
from low to high frequencies.

Spectral analysis for the Gram matrix of ReLU basis: 1D

Theorem
Suppose {bi}

n
i=1 are quasi-evenly spaced on D, bi = −1 +

2(i−1)
n + o

(
1
n

)
.

Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of the Gram matrix G then
|λk −

n
2µk | ≤ C for some constant C = O(1).

Corollary
Suppose bi are i.i.d distributed with probability density function ρ on D

such that 0 < c ≤ ρ(x) ≤ c̄ < ∞. |λk −
n
2µk | ≤

Cn
k 4

√
k
n log p−1 with

probability 1 − p.

Spectral analysis for 1D evenly spaced biases was done in Hong et al.,
2022.

Spectral analysis for the Gram matrix of ReLU basis: 1D

Theorem
Suppose {bi}

n
i=1 are quasi-evenly spaced on D, bi = −1 +

2(i−1)
n + o

(
1
n

)
.

Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of the Gram matrix G then
|λk −

n
2µk | ≤ C for some constant C = O(1).

Corollary
Suppose bi are i.i.d distributed with probability density function ρ on D

such that 0 < c ≤ ρ(x) ≤ c̄ < ∞. |λk −
n
2µk | ≤

Cn
k 4

√
k
n log p−1 with

probability 1 − p.

Spectral analysis for 1D evenly spaced biases was done in Hong et al.,
2022.

Spectral analysis for the Gram matrix basis
ReLU basis in Rd : σ(w · x − b),w ∈ Sd−1, b ∈ R. Use

∂2
bσ(w · x − b)=∆xσ(w · x − b)=δ(w · x − b),

and Radon transform inversion formula

Theorem
Let λk be the eigenvalue of the kernel G

G((w, b), (w′, b ′))=

∫
D
σ(w · x − b)σ(w′ · x − b ′)dx.

There are constants c1, c2 > 0, depending on D and d, such that

c1k−(d+3)/d ≤ λk ≤ c2k−(d+3)/d .

I For σk , λk = O(k−(d+k+2)/d).

I For analytic activation function such as Tanh or Sigmoid, the
eigenvalues decays faster than any polynomial rate.

Implications to numerical computation in practice

I Low pass filter: given the machine precision ε, the eigenvalue
threshold is nελ1. A two-layer neural network can use about
ε−d/(d+3) eigenmodes in d-dimensions or at most all Fourier modes
up to frequency kd = ε−1/(d+3) can be resolved.

single precision ε=2−23: k1 ' 54, k2 ' 25, k3 ' 14, k10 = 4.
double precision ε=2−52: k1 ' 8192, k2 ' 1351, k3 ' 411, k10 = 16.

I Although two layer neural networks have universal approximation
property when the width is increased, in practice, increasing the
width does not help when bi reaches certain density.

I Two layer neural networks can approximate smooth function well but
not functions with significant high frequency components.

I Two layer neural networks is stable with respect to noise and
over-parametrization.

Implications to numerical computation in practice

I Low pass filter: given the machine precision ε, the eigenvalue
threshold is nελ1. A two-layer neural network can use about
ε−d/(d+3) eigenmodes in d-dimensions or at most all Fourier modes
up to frequency kd = ε−1/(d+3) can be resolved.
single precision ε=2−23: k1 ' 54, k2 ' 25, k3 ' 14, k10 = 4.
double precision ε=2−52: k1 ' 8192, k2 ' 1351, k3 ' 411, k10 = 16.

I Although two layer neural networks have universal approximation
property when the width is increased, in practice, increasing the
width does not help when bi reaches certain density.

I Two layer neural networks can approximate smooth function well but
not functions with significant high frequency components.

I Two layer neural networks is stable with respect to noise and
over-parametrization.

Implications to numerical computation in practice

I Low pass filter: given the machine precision ε, the eigenvalue
threshold is nελ1. A two-layer neural network can use about
ε−d/(d+3) eigenmodes in d-dimensions or at most all Fourier modes
up to frequency kd = ε−1/(d+3) can be resolved.
single precision ε=2−23: k1 ' 54, k2 ' 25, k3 ' 14, k10 = 4.
double precision ε=2−52: k1 ' 8192, k2 ' 1351, k3 ' 411, k10 = 16.

I Although two layer neural networks have universal approximation
property when the width is increased, in practice, increasing the
width does not help when bi reaches certain density.

I Two layer neural networks can approximate smooth function well but
not functions with significant high frequency components.

I Two layer neural networks is stable with respect to noise and
over-parametrization.

Implications to numerical computation in practice

I Low pass filter: given the machine precision ε, the eigenvalue
threshold is nελ1. A two-layer neural network can use about
ε−d/(d+3) eigenmodes in d-dimensions or at most all Fourier modes
up to frequency kd = ε−1/(d+3) can be resolved.
single precision ε=2−23: k1 ' 54, k2 ' 25, k3 ' 14, k10 = 4.
double precision ε=2−52: k1 ' 8192, k2 ' 1351, k3 ' 411, k10 = 16.

I Although two layer neural networks have universal approximation
property when the width is increased, in practice, increasing the
width does not help when bi reaches certain density.

I Two layer neural networks can approximate smooth function well but
not functions with significant high frequency components.

I Two layer neural networks is stable with respect to noise and
over-parametrization.

Implications to numerical computation in practice

I Low pass filter: given the machine precision ε, the eigenvalue
threshold is nελ1. A two-layer neural network can use about
ε−d/(d+3) eigenmodes in d-dimensions or at most all Fourier modes
up to frequency kd = ε−1/(d+3) can be resolved.
single precision ε=2−23: k1 ' 54, k2 ' 25, k3 ' 14, k10 = 4.
double precision ε=2−52: k1 ' 8192, k2 ' 1351, k3 ' 411, k10 = 16.

I Although two layer neural networks have universal approximation
property when the width is increased, in practice, increasing the
width does not help when bi reaches certain density.

I Two layer neural networks can approximate smooth function well but
not functions with significant high frequency components.

I Two layer neural networks is stable with respect to noise and
over-parametrization.

Numerical spectrum for Gram matrix (1D)

0.0 0.5 1.0 1.5 2.0

−8

−6

−4

−2

0

2
(

log10 k, log10 λk
)

(
log10 k,−4 log10 k

)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−12

−10

−8

−6

−4

−2

0

2
(

log10 k, log10 λk
)

(
log10 k,−4 log10 k

)

(a) n=100 (uniform bias) (b) n=1000 (uniform bias)

0.0 0.5 1.0 1.5 2.0

−10

−8

−6

−4

−2

0

2 (
log10 k, log10 λk

)
(

log10 k,−4 log10 k
)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−14

−12

−10

−8

−6

−4

−2

0

2 (
log10 k, log10 λk

)
(

log10 k,−4 log10 k
)

(a) n=100 (adaptive bias) (b) n=1000 (adaptive bias)

Numerical spectrum for Gram matrix (2D)

0.0 0.8 1.6 2.4 3.2 4.0

−12

−10

−8

−6

−4

−2

0

2

4
(

log10 k, log10 λk
)

(
log10 k,−2.5 log10 k

)

φ1 φ2 φ3 φ4

φ50 φ100 φ200 φ250

Numerical tests

Stability with respect to noise and over-parametrization

noise data

−1.0 −0.5 0.0 0.5 1.0

−2

−1

0

1

2
True function

FEM (η = 10−3)

−1.0 −0.5 0.0 0.5 1.0

−2

−1

0

1

2
True function

FEM (η = 10−6)

−1.0 −0.5 0.0 0.5 1.0
−2

−1

0

1

2
True function

NN (η = 10−3)

−1.0 −0.5 0.0 0.5 1.0
−2

−1

0

1

2
True function

NN (η = 10−6)

−1.0 −0.5 0.0 0.5 1.0
−2

−1

0

1

2
True function

NN (η = 10−9)

−1.0 −0.5 0.0 0.5 1.0
−2

−1

0

1

2
True function

NN (Adam1)

over-parametrization with 1000 samples and 1500 biases

−1.0 −0.5 0.0 0.5 1.0
−2

−1

0

1

2
True function

FEM (η = 10−15)

−1.0 −0.5 0.0 0.5 1.0
−2

0

2
True function

NN (η = 10−15)

−1.0 −0.5 0.0 0.5 1.0
−2

0

2
True function

NN (Adam)

Adaptive vs uniform biases
Adaptive biases for f(x) = arctan(25x). Define F(x) =

∫ x
−1 |f

′(t)|dt
/ ∫ 1
−1 |f

′(t)|dt , F(bi) = (i − 1)/(n − 1).

Eigenmodes of λk for k = {1, 2, 3}, {4, 5, 6}, 30, 60 with n = 1000.

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

2 λ1 λ2 λ3

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

2 λ4 λ5 λ6

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

λ30

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

2 λ60

Uniformly distributed biases

−1.0 −0.5 0.0 0.5 1.0

−4

−2

0

2
λ1 λ2 λ3

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

λ4 λ5 λ6

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

λ30

−1.0 −0.5 0.0 0.5 1.0

−1

0

1

λ60

adaptively distributed biases

Projection of f on the eigenmodes

0 20 40 60 80 100
−4

−2

0

2

4

0 20 40 60 80 100

−2

0

2

0 200 400 600 800 1000

−1

0

1

0 200 400 600 800 1000

−0.5

0.0

0.5

uniform n = 100 adaptive n = 100 uniform n = 1000 adaptive n = 1000

Training dynamics

Training is the most important process for machine learning.
Training two layer ReLU neural networks h(x, t) =

∑n
i=1 ai(t)σ(x − bi(t))

in 1D following the gradient flow of

E(t) =
1
2
‖h(x, t) − f(x)‖2D , D = (−1, 1)

dai

dt
= −

∫
D

(h(x, t)−f(x))σ(x−bi)dx
dbi

dt
= ai

∫
D

(h(x, t)−f(x))σ′(x−bi)dx.

Basic questions:

I can the training process obtain the optimal ai , bi?

I what is the computation cost of the training process?

Training dynamics

Training is the most important process for machine learning.
Training two layer ReLU neural networks h(x, t) =

∑n
i=1 ai(t)σ(x − bi(t))

in 1D following the gradient flow of

E(t) =
1
2
‖h(x, t) − f(x)‖2D , D = (−1, 1)

dai

dt
= −

∫
D

(h(x, t)−f(x))σ(x−bi)dx
dbi

dt
= ai

∫
D

(h(x, t)−f(x))σ′(x−bi)dx.

Basic questions:

I can the training process obtain the optimal ai , bi?

I what is the computation cost of the training process?

Training dynamics

Training is the most important process for machine learning.
Training two layer ReLU neural networks h(x, t) =

∑n
i=1 ai(t)σ(x − bi(t))

in 1D following the gradient flow of

E(t) =
1
2
‖h(x, t) − f(x)‖2D , D = (−1, 1)

dai

dt
= −

∫
D

(h(x, t)−f(x))σ(x−bi)dx
dbi

dt
= ai

∫
D

(h(x, t)−f(x))σ′(x−bi)dx.

Basic questions:

I can the training process obtain the optimal ai , bi?

I what is the computation cost of the training process?

Training dynamics
We show that training of high frequency components can be slow (even if
the training process converges to the optimal solution).

Theorem
It takes at least O(m) time steps to get the initial error in Fourier mode m
reduced by half.

Remark

1. In practice, it can be worse!

2. Our result does not depend on convergence and is fully discrete
(instead of letting n → ∞ and using mean field formulation).

3. With some mild condition, the time step bound is O(m2).

4. With fixed biases, the time step bound is O(m3).

5. Smoother the activation function, the slower the training dynamics
for high frequency components.

6. Experiments suggest Adam following a similar law at the initially.

Training dynamics
We show that training of high frequency components can be slow (even if
the training process converges to the optimal solution).

Theorem
It takes at least O(m) time steps to get the initial error in Fourier mode m
reduced by half.

Remark

1. In practice, it can be worse!

2. Our result does not depend on convergence and is fully discrete
(instead of letting n → ∞ and using mean field formulation).

3. With some mild condition, the time step bound is O(m2).

4. With fixed biases, the time step bound is O(m3).

5. Smoother the activation function, the slower the training dynamics
for high frequency components.

6. Experiments suggest Adam following a similar law at the initially.

Key ideas in the proof I

Target function: f(x), x ∈(−1,1).
Two layer NN: h(x,t)=

∑n
i=1ai(t)σ(x−bi(t)).

Important facts:
1. ∂2

xσ(x − b) = ∂2
bσ(x − b) = δ(x − b).

2. The eigenvalues (in descending order) and eigenfunctions of kernel

G(x, y) =

∫
D
σ(z − x)σ(z − y)dz, D = (−1, 1)

are: λk = O(k−4) and φk (x) (an orthonormal basis) satisfying

φ
(4)
k (x)=λ−1

k φk (x), x ∈ (−1, 1), φk (1)=φ
(1)
k (1)=φ

(2)
k (−1)=φ

(3)
k (−1)=0.

Key ideas in the proof II
Define

θk (t)=
n∑

j=1

aj(t)φk (bj(t)) −
pk

λk
,

where p(b)=
∫

Df(x)σ(x − b)dx, p(b)=
∑

k≥1 pkφk (b).

dθk (t)
dt

= −
∞∑

l=1

λl [Mlk (t) + Slk (t)] θl(t)

where Mlk(t)=
∑n

i=1φl(bi(t))φk (bi(t)),Slk(t)=
∑n

i=1|ai(t)|2φ′k (bi(t))φ′l (bi(t)).

The key auxiliary function: w(b , t)=
∑∞

k=1 λkθk (t)φk (b) ∈ H2
D , satisfying

∂2
bw(b , t) = h(b , t) − f(b).

The dynamics for the ”Fourier” mode ŵ(η, t) satisfy

d
dt

ŵ(m, t) = −
n
|πη|4

µ̂0w(η, t) −
n
|πη|4

(iηπ)µ̂2∂bw(η, t),

where µ0(b , t)= 1
n

∑n
i=1 δ(b−bi(t)), µ2(b , t)= 1

n

∑n
i=1 |ai(t)|2δ(b−bi(t)).

Key ideas in the proof II
Define

θk (t)=
n∑

j=1

aj(t)φk (bj(t)) −
pk

λk
,

where p(b)=
∫

Df(x)σ(x − b)dx, p(b)=
∑

k≥1 pkφk (b).

dθk (t)
dt

= −
∞∑

l=1

λl [Mlk (t) + Slk (t)] θl(t)

where Mlk(t)=
∑n

i=1φl(bi(t))φk (bi(t)),Slk(t)=
∑n

i=1|ai(t)|2φ′k (bi(t))φ′l (bi(t)).

The key auxiliary function: w(b , t)=
∑∞

k=1 λkθk (t)φk (b) ∈ H2
D , satisfying

∂2
bw(b , t) = h(b , t) − f(b).

The dynamics for the ”Fourier” mode ŵ(η, t) satisfy

d
dt

ŵ(m, t) = −
n
|πη|4

µ̂0w(η, t) −
n
|πη|4

(iηπ)µ̂2∂bw(η, t),

where µ0(b , t)= 1
n

∑n
i=1 δ(b−bi(t)), µ2(b , t)= 1

n

∑n
i=1 |ai(t)|2δ(b−bi(t)).

Key ideas in the proof II
Define

θk (t)=
n∑

j=1

aj(t)φk (bj(t)) −
pk

λk
,

where p(b)=
∫

Df(x)σ(x − b)dx, p(b)=
∑

k≥1 pkφk (b).

dθk (t)
dt

= −
∞∑

l=1

λl [Mlk (t) + Slk (t)] θl(t)

where Mlk(t)=
∑n

i=1φl(bi(t))φk (bi(t)),Slk(t)=
∑n

i=1|ai(t)|2φ′k (bi(t))φ′l (bi(t)).

The key auxiliary function: w(b , t)=
∑∞

k=1 λkθk (t)φk (b) ∈ H2
D , satisfying

∂2
bw(b , t) = h(b , t) − f(b).

The dynamics for the ”Fourier” mode ŵ(η, t) satisfy

d
dt

ŵ(m, t) = −
n
|πη|4

µ̂0w(η, t) −
n
|πη|4

(iηπ)µ̂2∂bw(η, t),

where µ0(b , t)= 1
n

∑n
i=1 δ(b−bi(t)), µ2(b , t)= 1

n

∑n
i=1 |ai(t)|2δ(b−bi(t)).

Rashomon set for two layer NN

Given a target function f(x), x ∈ D = Bd(1). Denote QHn to be the
parameter domain for the two-layer ReLU neural network class

Hn = {h(x)|h(x) =
1
n

n∑
j=1

ajσ(wj · x − bj),wj ∈ S
d−1, |aj | ≤ A , |bj | ≤ 1}

The Rashomon set Rε(f) ⊂ QHn

Rε(f) := {(wj , aj , bj) ∈ QHn , s.t .‖h(·; wj , aj , bj) − f(·)‖L2(D) ≤ ε‖f‖L2(D)}

Normalize the measure on QHn , size of Rε(f) characterizes the likelihood
that the loss is under certain threshold of relative error or how ”easy” f
can be approximated by Hn.

Rashomon set for two layer NN

Theorem
Suppose f ∈ C(D) such that there exists g ∈ C2

0 (D) that ∆g = f , then

P(Rε) ≤ exp

−n(1 − ε)2‖f‖4L2(D)

2A2κ2

 , κ := sup
(w,b)

∫
x∈D,w·x=b}

g(x)dHd−1(x).

Remark
I If f oscillates with frequency ν in all directions, then κ ≈ ν−2

⇒ P(Rε) ∼ exp(−O(ν−4)), which makes the approximation of
oscillatory function difficult.

I Similar result holds for other bounded activation functions.

Key observations

h(x) =
1
n

n∑
j=1

ajσ(wj · x − bj) ⇒ ∆h(x) =
1
n

n∑
j=1

ajδ(wj · x − bj)

⇒ 〈h, f〉
∆g=f

= 〈∆h, g〉 =
1
n

n∑
j=1

Xj , Xj = aj

∫
wj ·x=bj

g(x)dHd−1(x)

Xj are i.i.d in [−Aκ,Aκ], E[Xj] = 0, κ := sup(w,b)

∫
{x∈D,w·x=b} g(x)dHd−1(x)

P
[
‖h−f‖L2(D)≤ε‖f‖L2(D)

]
≤P

[
〈h, f〉≥(1−ε)‖f‖2L2(D)

]
≤exp

−n(1−ε)2‖f‖4L2(D)

2A2κ2


by Hoeffding’s inequality

P

1
n

n∑
j=1

Xj − E[Xj] ≥ t

 ≤ exp

(
−

nt2

2A2κ2

)
.

σ(x) does not see oscillations well!

〈σ, f〉 =
∫
{x∈D,w·x=b}∆

−1f(x)dHd−1(x)

Key observations

h(x) =
1
n

n∑
j=1

ajσ(wj · x − bj) ⇒ ∆h(x) =
1
n

n∑
j=1

ajδ(wj · x − bj)

⇒ 〈h, f〉
∆g=f

= 〈∆h, g〉 =
1
n

n∑
j=1

Xj , Xj = aj

∫
wj ·x=bj

g(x)dHd−1(x)

Xj are i.i.d in [−Aκ,Aκ], E[Xj] = 0, κ := sup(w,b)

∫
{x∈D,w·x=b} g(x)dHd−1(x)

P
[
‖h−f‖L2(D)≤ε‖f‖L2(D)

]
≤P

[
〈h, f〉≥(1−ε)‖f‖2L2(D)

]
≤exp

−n(1−ε)2‖f‖4L2(D)

2A2κ2


by Hoeffding’s inequality

P

1
n

n∑
j=1

Xj − E[Xj] ≥ t

 ≤ exp

(
−

nt2

2A2κ2

)
.

σ(x) does not see oscillations well! 〈σ, f〉 =
∫
{x∈D,w·x=b}∆

−1f(x)dHd−1(x)

Further discussions
I Activation functions of the form σ(w · x − b) is global and see

smooth and large structure well.

I Difficult to approximate highly oscillatory functions.

I ReLU is the best in terms of approximation property and learning
dynamics.

Questions:

I Deep NNs, Transformers, network structure,

I For challenging problems, problem specific knowledge should be
involved.

Reference:
Why Shallow Networks Struggle with Approximating and Learning High
Frequency: A Numerical Study,
S. Zhang, H. Zhao, Y. Zhong and H. Zhou. arXiv:2306.17301, 2023.

A 2D test example:

f(x) =
∑

ij

aijsin(bixi + cijxixj)cos(bjxj + dijx2
i)

Further discussions
I Activation functions of the form σ(w · x − b) is global and see

smooth and large structure well.

I Difficult to approximate highly oscillatory functions.

I ReLU is the best in terms of approximation property and learning
dynamics.

Questions:

I Deep NNs, Transformers, network structure,

I For challenging problems, problem specific knowledge should be
involved.

Reference:
Why Shallow Networks Struggle with Approximating and Learning High
Frequency: A Numerical Study,
S. Zhang, H. Zhao, Y. Zhong and H. Zhou. arXiv:2306.17301, 2023.

A 2D test example:

f(x) =
∑

ij

aijsin(bixi + cijxixj)cos(bjxj + dijx2
i)

Further discussions
I Activation functions of the form σ(w · x − b) is global and see

smooth and large structure well.

I Difficult to approximate highly oscillatory functions.

I ReLU is the best in terms of approximation property and learning
dynamics.

Questions:

I Deep NNs, Transformers, network structure,

I For challenging problems, problem specific knowledge should be
involved.

Reference:
Why Shallow Networks Struggle with Approximating and Learning High
Frequency: A Numerical Study,
S. Zhang, H. Zhao, Y. Zhong and H. Zhou. arXiv:2306.17301, 2023.

A 2D test example:

f(x) =
∑

ij

aijsin(bixi + cijxixj)cos(bjxj + dijx2
i)

