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Solving Problems with Mathematical Expressions 

• Learning the solution of high-dimensional PDEs:       

                                                                    

• Learning mathematical operators or governing equations:       

                                                                   

• Others in the future

f : ℝd → ℝO(1)

f : 𝒳 → 𝒴

Finite Expression Method (FEX)



Overview of PDE Solvers

Mesh-based methods: 

• Finite difference method, finite element 
method, etc. 

• High accuracy with numerical convergence 

• Curse of dimensionality in approximation: 
 parametersO(1/ϵd) ϵ = h = O ( 1

n ) ⇔ n = O ( 1
ϵ )



Overview of PDE Solvers
Mesh-free methods: 

Neural network-based methods   

• e.g.,            and         

• A neural network  is constructed to approximate the solution  via least square fitting 

            

            or numerically 

 

            where  is a hyperparameter

𝒟(u) = f in Ω ℬ(u) = g on ∂Ω

ϕ(x; θ*) u

θ* = arg min
θ

ℒ(θ) := arg min
θ

∥𝒟ϕ(x; θ) − f(x)∥2
2 + λ∥ℬϕ(x; θ) − g(x)∥2
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|ℬϕ(xj; θ) − g(xj) |2

λ > 0



Overview of PDE Solvers

Neural network advantage 

No curse of dimensionality in approximation  

 parameters to achieve arbitrary accuracy, Shen, Y., Zhang, 
arXiv:2107.02397, JMLR, 2022
O(d2)

https://arxiv.org/abs/2107.02397


Overview of PDE Solvers
Neural network challenges 

Neural network optimization 

            

            or numerically 

 

            where  is a hyper parameter 

Monte Carlo error  

Non-convex optimization  

May require exponentially large number of iterations (E and Wojtowytsch, arXiv:2005.10815)
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Question: How to obtain a numerical solver accurate in high dimensions? 

Idea:  

• Solutions with structures 

• Machine learning to identify structures



Finite Expression Method (FEX)

Motivating Problem: 

A structured high-dimensional Poisson equation  

                                                                       

     with a solution  of low complexity , i.e.,  operators in this expression 

Idea: 

Find an explicit expression that approximates the solution of a PDE 

Function space with finite expressions 

• Mathematical expressions: a combination of symbols with rules to form a valid function, e.g.,  

• -finite expression: a mathematical expression with at most  operators 

• Function space in FEX:  as the set of -finite expressions with 

−Δu = f  for x ∈ Ω, u = g for x ∈ ∂Ω

u(x) =
1
2

d

∑
i=1

x2
i O(d) O(d)

sin(2x) + 5

k k

𝕊k s s ≤ k

Liang and Y. arXiv:2206.10121 

https://arxiv.org/abs/2206.10121


Finite Expression Method (FEX)

Advantages: No curse of dimensionality in approximation 

Theorem (Liang and Y. 2022) Suppose the function space  is  generated with operators including  
``+", ``-", `` ", ``/",  `` ", ``sin(x)", and `` ". Let . For any      in the Holder 
function class  and , there exists a k-finite expression  in  such that 

 ,  

if  

.

𝕊k

× max{0,x} 2x p ∈ [1, + ∞) f
ℋα

μ([0,1]d) ε > 0 ϕ 𝕊k

∥f − ϕ∥Lp ≤ ε

k ≥ 𝒪(d2(log d + log
1
ε

)2)

Liang and Y. arXiv:2206.10121 

https://arxiv.org/abs/2206.10121


Finite Expression Method (FEX)

Advantages:  

• Lessen the curse of dimensionality in numerical computation for structured 
problems  

• To be proved numerically

Liang and Y. arXiv:2206.10121 

https://arxiv.org/abs/2206.10121


Finite Expression Method
Least square based FEX 

• e.g.,            and         

• A mathematical expression  to approximate the PDE solution via 

                                                        

• Or numerically 

 

Question: how to solve this combinatorial optimization problem?

𝒟(u) = f in Ω ℬ(u) = g on ∂Ω

u*

u* = arg min
u∈𝕊k

ℒ(u) := arg min
u∈𝕊k

∥𝒟u − f∥2
2 + λ∥ℬu − g∥2

2

u* = arg min
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ℒ(u) := arg min
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|𝒟u(xi) − f(xi) |2 + λ
1
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m

∑
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|ℬu(xj) − g(xj) |2



Continuous Relaxation of FEX



Finite Expression Method
Least square based FEX 

• e.g.,            and         

• A mathematical expression  to approximate the PDE solution via 

                            

• Continuous relaxation with  probability distributions for selecting  operators 

 

and gradient descent in the space of probability distributions 

• Finally, 

𝒟(u) = f in Ω ℬ(u) = g on ∂Ω

u*

u* = arg min
u∈𝕊k

ℒ(u) := arg min
u∈𝕊k

∥𝒟u − f∥2
2 + λ∥ℬu − g∥2

2

k k
(P*1 , …, P*k ) = arg min

P1,…,Pk

𝔼u∼(P1,…,Pk) [ℒ(u)]
= arg min

P1,…,Pk

𝔼u∼(P1,…,Pk) [∥𝒟u − f∥2
2 + λ∥ℬu − g∥2

2]

u* ∼ (P*1 , …, P*k )



Numerical Comparison

NN method: 
•  Neural networks with a ReLU -activation function 
• ResNet with depth 7 and width 50 

FEX method: 
• Depth 3 binary tree 
• Binary set  
• Unary set 

2

𝔹 = { + , − , × }
𝕌 = {0,1,Id, ( ⋅ )2, ( ⋅ )3, ( ⋅ )4, exp, sin, cos}



Poisson Equation
• Boundary value problem: 

 

 

•   

• True solution  

• Stochastic optimization: 

                                   

    with Monte Carlo discretization of high-dimensional integrals

−Δu = f  for x ∈ Ω

u = g for x ∈ ∂Ω

Ω = [−1,1]d

u(x) =
1
2

d

∑
i=1

x2
i

min
u∈𝕊k

ℒ(u) := min
u∈𝕊k

∥ − Δu(x) − f(x)∥2
L2(Ω) + λ∥u(x) − g(x)∥2

L2(∂Ω)



Poisson Equation



Nonlinear Schrodinger Equation
• Consider 

 

•   for   

•   

• True solution  

• Stochastic optimization: 

                                                    

    with Monte Carlo discretization of high-dimensional integrals

−Δu + u3 + Vu = 0  for x ∈ Ω

V(x) = −
1
9

exp(
2
d

d

∑
i=1

cos xi) +
d

∑
i=1

(
sin2 xi

d2
−

cos xi

d
) x = (x1, ⋯, xd)

Ω = [−1,1]d

u(x) = exp(
1
d

d

∑
j=1

cos(xj))/3

min
u∈𝕊k

ℒ(u) := min
u∈𝕊k

∥ − Δu + u3 + Vu∥2
L2(Ω)/∥u∥3

L2(Ω)



Nonlinear Schrodinger Equation



• Learning the solution of high-dimensional PDEs:       

                                                                    

• Learning mathematical operators or governing equations:       

                                                                  

f : ℝd → ℝO(1)

f : 𝒳 → 𝒴



O
bservational  

D
ata

Discovering Physical Laws from Data Prediction and 
 sim

ulations etc.



Problem Statement

Given nonlinear operator , e.g.,  

Unknown nonlinear operator , e.g.,  

Assumption: a function  satisfies 

  

Given discrete data observations , ,  

Goal: identify  with  

Challenges: 1) non-uniqueness of  (due to data fitting and discretization) 

                               2) noisy data

F : 𝒳 → 𝒴 F(u) =
∂u
∂t

G : 𝒳 → 𝒴 G(u) = − u ⋅ ux + νuxx

u(x, t) ∈ 𝒳

F(u) = G(u) ⇔
∂u
∂t

= − u ⋅ ux + νuxx

u(xi, tj) i = 1,…, m j = 1,…, n

G G ≠ F

G

A Concrete Example: 1D Burgers Equation



Problem Statement

Goal: identify  

What’s operator  after discretization? 

 

• A high-dimensional function 

• Traditional parametrization methods: the curse 
of dimensionality 

• Neural network parametrization: no 
interpretability

G(u) = − u ⋅ ux + νuxx

G

G : ℝm → ℝm

A Concrete Example: 1D Burgers Equation



Jiang, Wang, Y. arXiv:2305.08342 

Idea: 

Find an explicit expression that approximates the unknown operator  

Function space with finite expressions 

• -finite expression: a mathematical expression with at most  operators 

e.g.,  and  

• Function space:  as the set of -finite expressions with 

G

k k

sin(2x) + 5ex 5
∂
∂t

(u)

𝕊k s s ≤ k

Finite Expression Method (FEX)



Finite Expression Method
Jiang, Wang, Y. arXiv:2305.08342 

Least square based FEX 

• e.g.,          

• A mathematical expression  to approximate the unknown operator via 

                                                        

• Or numerically 

 

Continuous relaxation to solve this combinatorial optimization problem

∂u
∂t

= G(u) = − u ⋅ ux + νuxx

G*

G* = arg min
G∈𝕊k

ℒ(G) := arg min
G∈𝕊k

∥G(u) − ut∥2
2

G* = arg min
G∈𝕊k

ℒ(G) := arg min
G∈𝕊k

1
mn

n

∑
j=1

m

∑
i=1

|G(u)(xi, tj) − ut(xi, tj) |2



Key Features of FEX
No curse of dimensionality in approximation theory v.s. traditional methods 

Interpretable learning outcomes v.s. blackbox neural networks 

Higher accuracy v.s. existing symbolic regression tools 

A nonlinear approach to generate a large set of expressions from a small collection of operators 

• SINDy : require a large manually designed dictionary 

• PDE-Net : only capable of polynomials of operators 

• GP: Genetic programming with poor accuracy 

• SPL : Monte Carlo tree search with poor accuracy

1

2

3

1. Brunton, Proctor, Nathan, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, PNAS, 2016 
2. Long, Lu, Dong, PDE-Net 2.0: Learning PDEs from data with a numeric-symbolic hybrid deep network, Journal of Computational Physics 2019 
3. Sun et al. Symbolic Physics Learner: Discovering governing equations via Monte Carlo tree search. ICLR 2023



Numerical Example 1: 

2D Burgers equation with periodic boundary conditions on : 

 

 

 

 

(x, y, t) ∈ [0,2π]2 × [0,10]
∂u
∂t

= − u
∂u
∂x

− v
∂u
∂y

+ ν(
∂2u
∂x2

+
∂2u
∂y2

)

∂v
∂t

= − u
∂v
∂x

− v
∂v
∂y

+ ν(
∂2v
∂x2

+
∂2v
∂y2

)

u(x, y,0) = u0(x, y)

v(x, y,0) = v0(x, y)

ν = 0.1



Numerical Example 1: 
Noise Robustness



Numerical Example 2: 

PDE with varying coefficients and periodic boundary conditions: 

 

 

 

ut(x, t) = a(t)uux + νuxx, ∀(x, t) ∈ [−8,8] × [0,10],

u(x,0) = exp( − (x + 1)2)

a(t) = 1 +
1
4

sin t

ν = 0.1



Numerical Example 2: 

Visualization of the recovery error of varying coefficients 



Numerical Example 3: 
Johnson-Mehl-Avrami-Kolmogorov nonlinear equation: 

 y = 1 − exp (−ktn)



Finite Expression Method
Summary 

Curse of dimensionality in computation with finite precision  

• Addressed in theory for all continuous functions 

• Lessened for structured problems numerically 

Monte Carlo error 

• Lessened for structured problems numerically 

Challenging optimization 

• Continuous relaxation for mix-integer optimization 

• Randomized algorithms with multiple trials for non-convex optimization 

• Good performance for structured problem numerically
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Poisson Equation

Convergence Test: 

• True solution  

• Binary set  
• Unary set  
• No expression tree to exactly represent u(x)

u(x) =
1
2

d

∑
i=1

x2
i

𝔹 = { + , − , × }
𝕌 = {0,1,Id, ( ⋅ )3, ( ⋅ )4, exp, sin, cos}


