Efficient Numerical Methods for Weak Solutions of Partial Differential Equations

Chunmei Wang Assistant Professor Department of Mathematics University of Florida Supported by NSF Grants DMS-2136380 and DMS-2206332

CBMS Conference: Deep Learning and Numerical PDEs Morgan State University

Conventional Numerical Methods

- Weak Galerkin (WG) Finite Element Methods
- Primal-Dual Weak Galerkin (PDWG) Finite Element Methods (FEM)
- 2 Deep Learning (DL)
 - Friedrichs Learning: Weak Solutions of PDEs

() Model Problem: Find *u* satisfying $u|_{\partial\Omega} = 0$, such that

$$-\Delta u = f$$
, in Ω .

2 Weak Form: Find $u \in H_0^1(\Omega)$ such that

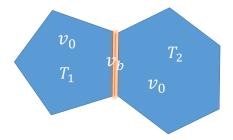
$$(\nabla u, \nabla v) = (f, v), \quad \forall v \in H_0^1(\Omega).$$

Weak Galerkin Finite Element Methods

 \mathcal{T}_h : **polygonal/polytopal partition** of the domain Ω , shape regular

Weak Functions

A weak function on the finite element partition \mathcal{T}_h refers to a generalized function $v = \{v_0, v_b\}$ such that $v_0 \in L^2(\mathcal{T})$ and $v_b \in L^2(\partial \mathcal{T})$ for any $\mathcal{T} \in \mathcal{T}_h$ with single value v_b on shared edges.



Weak Gradient and Discrete Weak Gradient

The **weak gradient** of $v = \{v_0, v_b\}$ is defined as a bounded linear functional $\nabla_w v$ in $[H^1(T)]^2$ whose action on each $q \in [H^1(T)]^2$ is given by

$$\langle \nabla_w v, q \rangle_{\mathcal{K}} := -\int_{\mathcal{K}} v_0 \nabla \cdot q d\mathcal{K} + \int_{\partial \mathcal{K}} v_b q \cdot \mathbf{n} ds.$$

For computational purpose, the weak gradient needs to be approximated

Discrete weak gradient

Find $abla_{w,r} v \in [P_r(T)]^2$ such that

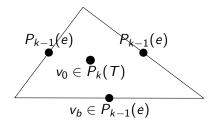
$$\int_{\mathcal{K}} \nabla_{w,r} \mathbf{v} \cdot \mathbf{q} d\mathcal{K} = -\int_{\mathcal{K}} \mathbf{v}_0 \nabla \cdot \mathbf{q} d\mathcal{K} + \int_{\partial \mathcal{K}} \mathbf{v}_b \mathbf{q} \cdot \mathbf{n} ds,$$

for all $q \in [P_r(T)]^2$.

Weak Finite Element Spaces

• On each $T \in \mathcal{T}_h$, the local finite element space is

$$V_k(T) := \{v = \{v_0, v_b\}: v_0 \in P_k(T), v_b \in P_{k-1}(\partial T)\}.$$



• Global weak finite element space:

$$V_h := \{v = \{v_0, v_b\} : \{v_0, v_b\}|_T \in V_k(T), \forall T \in \mathcal{T}_h\}.$$

• Weak finite element space with vanishing boundary value:

$$V_h^0 := \{ v = \{ v_0, v_b \} \in V_h, v_b |_{\partial \Omega} = 0 \}.$$

Weak Galerkin Finite Element Formulation

WG-FEM

Find
$$u_h = \{u_0, u_b\} \in V_h^0$$
 such that

$$(\nabla_w u_h, \nabla_w v) + s(u_h, v) = (f, v_0), \qquad \forall v = \{v_0, v_b\} \in V_h^0,$$

where

- $\nabla_w v \in [P_{k-1}(T)]^d$ is computed locally on each element.
- 2 $s(\cdot, \cdot)$ is a stabilizer enforcing a weak continuity.

• Commonly used stabilizer:

$$s(w,v) = \rho \sum_{T \in \mathcal{T}_h} h_T^{-1} \langle Q_b w_0 - w_b, Q_b v_0 - v_b \rangle_{\partial T},$$

where Q_b is the L^2 projection onto $P_{k-1}(e), e \subset \partial T$, and $\rho > 0$ is a parameter of free-choice.

• Discrete and computation-friendly stabilizer:

$$s(w,v) = \rho \sum_{T \in \mathcal{T}_h} \sum_{x_j \in \partial T} (w_0 - w_b)(x_j) (v_0 - v_b)(x_j),$$

where $\{x_j\}$ is a set of carefully chosen (nodal) points on ∂T .

Abstract Problem

Find $u \in V$ such that

$$a(u,v) = f(v), \qquad \forall v \in V.$$

Assume

- V_h: finite dimensional spaces that approximate V
- $a_h(\cdot,\cdot)$: bilinear forms on $V_h imes V_h$ that approximate $a(\cdot,\cdot)$
- f_h : linear functionals on V_h that approximate f
- $s(\cdot, \cdot)$: stabilizers that provide necessary "smoothness"

Abstract WG

Find $u_h \in V_h$ such that

$$a_h(u_h, v) + s(u_h, v) = f_h(v), \quad \forall \ v \in V_h.$$

Model Problem: Find *u* satisfying $u|_{\partial\Omega} = 0$, such that

$$\sum_{i,j=1}^d a_{ij}\partial_{ij}^2 u = f, \quad \text{in } \Omega.$$

Assumptions:

•
$$a(x) = (a_{ij}(x))_{d imes d} \in [L^{\infty}(\Omega)]^{d imes d}$$

• *a*(*x*) is symmetric and uniformly positive definite in Ω

Theorem

Assume $\Omega \subset \mathbb{R}^d$ is a bounded convex domain, $a(x) \in [L^{\infty}(\Omega)]_{d \times d}$ is symmetric and uniformly positive definite in Ω , and the Cordès condition is satisfied. For any given $f \in L^2(\Omega)$, there exists a unique strong solution $u \in H^2(\Omega) \cap H^1_0(\Omega)$ satisfying

 $||u||_2 \leq C ||f||_0.$

• Cordès condition: There exists an $\varepsilon \in (0,1]$ such that

$$\frac{\sum_{i,j=1}^{d}a_{ij}^2}{(\sum_{i=1}^{d}a_{ii})^2} \leq \frac{1}{d-1+\varepsilon} \qquad \text{in } \Omega.$$

Variational Equation: Find $u \in X = H^2(\Omega) \cap H^1_0(\Omega)$ such that

$$b(u,w) = (f,w) \qquad \forall w \in Y = L^2(\Omega).$$

•
$$b(u,w) = (\sum_{i,j=1}^{d} a_{ij} \partial_{ij}^2 u, w)$$

• $b(\cdot, \cdot)$ satisfies the **inf-sup** condition

$$\sup_{v\in X, v\neq 0} \frac{b(v,\sigma)}{\|v\|_X} \geq \Lambda \|\sigma\|_Y, \forall \sigma \in Y.$$

$$W(T) = \{ \mathbf{v} = \{ \mathbf{v}_0, \mathbf{v}_b, \mathbf{v}_g \} : \mathbf{v}_0 \in L^2(T), \mathbf{v}_b \in L^2(\partial T), \mathbf{v}_g \in [L^2(\partial T)]^d \}$$

Weak Second Order Partial Derivative

The weak second order partial derivative of $v \in W(T)$ is defined as a bounded linear functional $\partial_{ij,w}^2 v$ on $H^2(T)$ so that its action on each $\varphi \in H^2(T)$ is given by

$$\langle \partial_{ij,w}^2 v, \varphi \rangle_{\mathcal{K}} := (v_0, \partial_{ji}^2 \varphi)_{\mathcal{K}} - \langle v_b n_i, \partial_j \varphi \rangle_{\partial \mathcal{K}} + \langle v_{gi}, \varphi n_j \rangle_{\partial \mathcal{K}}.$$

Discrete Weak Second Order Partial Derivative

A discrete weak second order partial derivative of $v \in W(T)$, denoted by $\partial_{ij,w,r,K}^2 v$, is defined as the unique polynomial satisfying

$$(\partial_{ij,w,r,K}^2 \mathbf{v},\varphi)_{K} = (\mathbf{v}_0,\partial_{ji}^2 \varphi)_{K} - \langle \mathbf{v}_b \mathbf{n}_i,\partial_j \varphi \rangle_{\partial K} + \langle \mathbf{v}_{gi},\varphi \mathbf{n}_j \rangle_{\partial K}, \forall \varphi \in P_r(T).$$

Find
$$u_h = \{u_0, u_b, \mathbf{u}_g\}$$
 such that
 $b_h(u_h, \sigma) = (f, \sigma), \quad \forall \sigma,$
where $b_h(u_h, \sigma) := \sum_{T \in \mathcal{T}_h} \sum_{i,j=1}^d (a_{ij} \partial_{ij,w}^2 u_h, \sigma)_T$.

PDWG as constrained optimization

Find
$$u_h = \{u_0, u_b, \mathbf{u}_g\} \in V_h^0$$
 such that

$$u_h = \arg \min_{v \in V_h^0, b_h(v,\sigma) = (f,\sigma), \forall \sigma \in W_h} \frac{1}{2} s_h(v,v).$$

• Stabilizer that enforces weak continuity:

$$s_h(v,v) = \sum_{T \in \mathcal{T}_h} h_T^{-3} \langle v_0 - v_b, v_0 - v_b
angle_{\partial T} + h_T^{-1} \langle \nabla v_0 - \mathbf{v}_g, \nabla v_0 - \mathbf{v}_g
angle_{\partial T}$$

PDWG - FEM in Euler-Lagrange Form

PDWG Algorithm

Find $(u_h; \lambda_h) \in V_h^0 imes W_h$ satisfying

 $s_h(u_h, v) + b_h(v, \lambda_h) = 0, \qquad \forall v \in V_h^0, \\ b_h(u_h, \sigma) = (f, \sigma), \qquad \forall \sigma \in W_h.$

- Weak finite element space V_h consisting of P_k(T)/P_k(e)/[P_{k-1}(e)]^d
- W_h : Lagrange multiplier finite element space of $P_{k-2}(T)$ or $P_{k-1}(T)$
- Primal equation: $b_h(u_h, \sigma) = (f, \sigma)$
- Dual equation: $b_h(v, \lambda_h) = 0$
- Linker: the stabilizer $s_h(u_h, v)$

Lemma

Assume that the coefficient matrix $a = \{a_{ij}\}_{d \times d}$ is uniformly piecewise continuous in Ω . For any $\sigma \in W_h$, there exists $v_{\sigma} \in V_h^0$ satisfying

$$egin{array}{rcl} b_h(v_\sigma,\sigma) &\geq& rac{1}{2} \|\sigma\|_0^2, \ \|v_\sigma\|_{2,h}^2 &\leq& C \|\sigma\|_0^2. \end{array}$$

Here,

$$\|v\|_{2,h}^2 = \sum_{T \in \mathcal{T}_h} \|\sum_{i,j=1}^d \mathcal{Q}_h(a_{ij}\partial_{ij}^2v_0)\|_T^2 + s_h(v,v).$$

Theorem

Assume that the coefficient functions a_{ij} are uniformly piecewise continuous in Ω . Let u and $(u_h; \lambda_h) \in V_h^0 \times W_h$ be the exact solution and PDWG solution. There exists a constant C such that

$$\|u_h-Q_hu\|_{2,h}+\|\lambda_h-Q_h\lambda\|_0\leq Ch^{k-1}\|u\|_{k+1}.$$

- Exact solution $u = sin(x_1)sin(x_2)$
- $\Omega = (-1, 1)^2$
- $a_{11} = 1 + |x_1|$, $a_{12} = a_{21} = 0.5|x_1x_2|^{\frac{1}{3}}$, $a_{22} = 1 + |x_2|$

Table: numerical error and convergence order (λ_h is piecewise linear)

2/h	$\ e_0\ _0$	order	$\ \mathbf{e}_g\ _{L^2}$	order	$\ \lambda_h\ _0$	order
1	0.177	-	1.25	-	0.00390	-
2	0.0357	2.30	0.486	1.36	0.00820	-1.07
4	0.00360	3.31	0.130	1.90	0.00324	1.34
8	2.78e-004	3.70	0.0318	2.03	0.00151	1.10
16	2.02e-005	3.78	0.00783	2.02	7.42e-004	1.03
32	2.37e-006	3.09	0.00194	2.01	3.68e-004	1.01

Table: numerical error and convergence order (λ_h is piecewise constant)

2/h	$\ e_0\ _0$	order	$\ \mathbf{e}_g\ _{L^2}$	order	$\ \lambda_h\ _0$	order
1	2.80e-006	-	1.76	-	2.10e-006	-
2	0.176	-16.0	0.676	1.38	0.0895	-15.4
4	0.0395	2.15	0.164	2.04	0.0518	0.790
8	0.00896	2.14	0.0386	2.08	0.0190	1.45
16	0.00217	2.05	0.00938	2.04	0.00685	1.47
32	5.37e -004	2.01	0.00231	2.02	0.00288	1.25

Consider

$$\sum_{i,j=1}^{2} (1+\delta_{ij}) \frac{x_i}{|x_i|} \frac{x_j}{|x_j|} \partial_{ij}^2 u = f, \quad \text{in} \quad \Omega = (-1,1)^2,$$
$$u = 0, \quad \text{on} \quad \partial\Omega,$$

with the exact solution $u = (x_1 e^{1-|x_1|} - x_1)(x_2 e^{1-|x_2|} - x_2).$

Table: Numerical error and convergence order (λ_h is piecewise linear).

2/h	$\ e_0\ _0$	order	$\ \mathbf{e}_g\ _{L^2}$	order	$\ \lambda_h\ _0$	order
1	0.0940	-	0.766	-	0.338	-
2	0.249	-1.40	1.35	-0.815	0.642	-0.927
4	0.106	1.23	0.538	1.32	1.28	-1.00
8	0.0306	1.80	0.137	1.97	0.537	1.26
16	0.00749	2.03	0.0327	2.07	0.212	1.34
32	0.00174	2.11	0.00785	2.06	0.0923	1.20

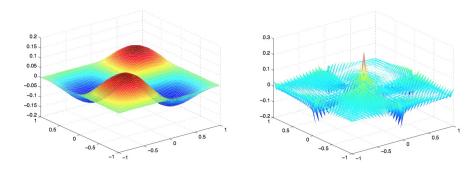


Figure: Figures for WG-solution u_0 and λ_h

Table: Numerical error and convergence order (λ_h is piecewise constant).

2/h	$\ e_0\ _0$	order	$\ \mathbf{e}_g\ _{L^2}$	order	$\ \lambda_h\ _0$	order
1	0.0393	-	0.672	-	0.137	-
2	0.0322	0.284	0.322	1.06	0.104	0.396
4	0.00750	2.10	0.0791	2.03	0.0532	0.963
8	0.00161	2.22	0.0180	2.13	0.0204	1.39
16	3.85e-004	2.07	0.00427	2.08	0.00818	1.32
32	9.52e-005	2.02	0.00104	2.04	0.00371	1.14

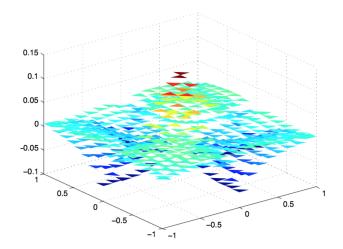


Figure: Figure for the Lagrange multiplier λ_h – an error indicator

$$\sum_{i,j=1}^{2} (\delta_{ij} + \frac{x_i x_j}{|x|^2}) \partial_{ij}^2 u = (2\alpha^2 - \alpha) |x|^{\alpha - 2}, \quad \text{in} \quad (0,1)^2.$$

• Exact solution $u=|x|^{lpha},\ lpha>1$

Table: numerical error and convergence order(λ_h is piecewise linear)

1/h	$\ e_0\ _0$	order	$\ \mathbf{e}_g\ _{L^2}$	order	$\ \lambda_h\ _0$	order
1	0.020	-	0.315	-	0.304	-
2	0.00629	1.68	0.126	1.32	0.248	0.296
4	0.00174	1.86	0.0446	1.50	0.182	0.445
8	4.43e-004	1.97	0.0152	1.56	0.126	0.537
16	1.08e-004	2.03	0.00508	1.58	0.0846	0.570
32	2.60e-005	2.05	0.00169	1.59	0.0564	0.584

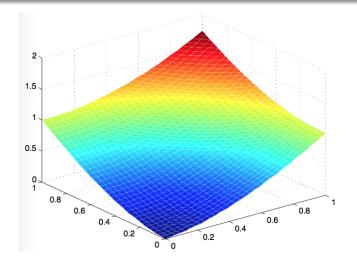


Figure: Figure for WG-solution u_0

Table: numerical error and convergence order (λ_h is piecewise constant)

1/h	$\ e_0\ _0$	order	$\ \mathbf{e}_g\ _{L^2}$	order	$\ \lambda_h\ _0$	order
1	0.00405	-	0.489	-	0.0623	-
2	0.00803	-0.988	0.177	1.46	0.0616	0.0156
4	0.00263	1.61	0.0616	1.53	0.0476	0.372
8	7.90e-004	1.74	0.0210	1.55	0.0327	0.544
16	2.20e-004	1.85	0.00705	1.57	0.0218	0.582
32	5.85e-005	1.91	0.00235	1.59	0.0145	0.593

An Abstract Problem

- Let V and W be two Hilbert spaces
- $b(\cdot, \cdot)$ is a bilinear form on $V \times W$
- The inf-sup condition of Babuska and Brezzi is satisfied.
- The spaces V and W have certain embedded "continuities", such as L², H¹, H(div), H(curl), H², or weighted-version of them.

Abstract Problem

Find $u \in V$ such that b(u, w) = f(w) for all $w \in W$. Here f is a bounded linear functional on W.

PDWG-FEM

Find $u_h \in V_h$ and $\lambda_h \in W_h$ such that

$$\begin{aligned} s_1(u_h, v) - b_h(v, \lambda_h) &= 0, & \forall v \in V_h \\ s_2(\lambda_h, w) + b_h(u_h, w) &= f_h(w), & \forall w \in W_h \end{aligned}$$

- $s_1(\cdot, \cdot)$: stabilizer/smoother in V_h
- $s_2(\cdot, \cdot)$: stabilizer/smoother in W_h

My work on PDWG methods includes

- second-order elliptic equations in non-divergence form
- Fokker-Planck type equations
- ill-posed elliptic Cauchy problem
- convection-diffusion equations arising from Poisson-Nernst-Planck modeling
- first-order transport problems
- second-order elliptic interface problem
- a simplified PDWG for the Fokker-Planck type equation
- a modified PDWG for the second order elliptic equation in non-divergence form

Numerical Experiments

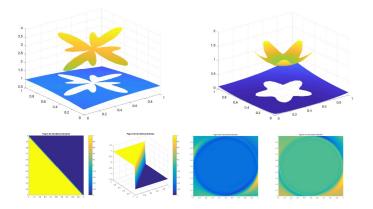


Figure: PDWG solutions.

Deep learning for solving PDEs

Problem

$$\mathcal{D}(u) = f \text{ in } \Omega,$$

 $\mathcal{B}(u) = g \text{ on } \partial \Omega.$

Physics Informed Neural Network (PINN): A deep neural network (DNN) $\phi(\mathbf{x}; \boldsymbol{\theta}^*)$ is constructed to approximate the solution $u(\mathbf{x})$ via

$$\begin{aligned} \boldsymbol{\theta}^* &= \arg\min_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) \\ &:= \arg\min_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{x} \in \Omega} \left[|\mathcal{D}\phi(\boldsymbol{x}; \boldsymbol{\theta}) - f(\boldsymbol{x})|^2 \right] + \\ & \lambda \mathbb{E}_{\boldsymbol{x} \in \partial \Omega} \left[|\mathcal{B}\phi(\boldsymbol{x}; \boldsymbol{\theta}) - g(\boldsymbol{x})|^2 \right], \end{aligned}$$

where $\lambda > 0$.

Friedrichs Learning for Weak Solutions of PDEs

• Original PDE problem:

find
$$u \in V$$
 s.t. $Tu = f$ for $f \in L$.

or equivalently,

$$(Tu, v)_L = (f, v)_L, \quad \forall v \in L.$$

• New MinMax Formulation:

$$\min_{u \in V} \max_{v \in V^*} \frac{|(u, \tilde{T}v)_L - (f, v)_L|}{\|\tilde{T}v\|_L}.$$

Friedrichs Learning for Weak Solutions of PDEs

Friedrichs Learning:

$$\begin{split} (\bar{\theta}_s, \bar{\theta}_t) &= \arg\min_{\theta_s} \max_{\theta_t} L(\phi_s(\mathbf{x}; \theta_s), \phi_t(\mathbf{x}; \theta_t)) \\ &= \arg\min_{\theta_s} \max_{\theta_t} \frac{|(\phi_s(\mathbf{x}; \theta_s), \tilde{T}\phi_t(\mathbf{x}; \theta_t))_{\Omega} - (f, \phi_t(\mathbf{x}; \theta_t))_{\Omega}|}{\|\tilde{T}\phi_t(\mathbf{x}; \theta_t)\|_{\Omega}}, \end{split}$$

under the constraints

$$\phi_s(\mathbf{x}; \theta_s) \in V \text{ and } \phi_t(\mathbf{x}; \theta_t) \in V^*.$$

Parametrization:

- Tanh network ϕ_t for smooth test functions in V^*
- ReLU network $\phi_s \in H^1$ to approximate solutions in $V = L^2$
- Future: discontinuous networks for L^2 solutions

Numerical Tests: Advection-Reaction Equation

Model Problem:

$$\mu u + \boldsymbol{\beta} \cdot \nabla u = f, \text{ in } \Omega = (-1, 1)^2,$$
$$u = g, \text{ on } \partial \Omega^- = \{ \boldsymbol{x} \in \partial \Omega; \boldsymbol{\beta} \cdot \boldsymbol{n} < 0 \}.$$

• assume there exists $\mu_0 > 0$ such that

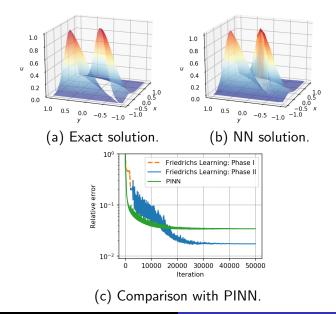
$$\mu(\mathbf{x}) - \frac{1}{2} \nabla \cdot \boldsymbol{\beta}(\mathbf{x}) \ge \mu_0 > 0, \text{ a.e. in } \Omega$$

•
$$oldsymbol{eta}=(1,9/10)^\intercal$$
, $\mu=1$

• Exact solution:

$$u^* = \begin{cases} \sin(\pi(x+1)^2/4)\sin(\pi(y-\frac{9}{10}x)/2) & -1 \le x \le 1, \ \frac{9}{10}x < y \le 1\\ e^{-5(x^2+(y-\frac{9}{10}x)^2)} & -1 \le x \le 1, \ -1 \le y \le \frac{9}{10}x \end{cases}$$

Numerical Tests: Advection-Reaction Equation



Numerical Tests: High-Dimensional Scalar Elliptic Equation

Model Problem:

$$-\nabla \cdot (\mathbf{a}(\mathbf{x})\nabla u) = f \quad \text{in } \Omega = (-1,1)^{15}, \\ u = g \quad \text{on } \partial\Omega,$$

•
$$a = 1 + |\mathbf{x}|^2$$
, $u^* = \sin(\frac{\pi x_1}{2})\cos(\frac{\pi x_2}{2})$

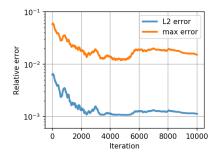


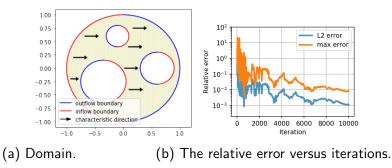
Figure: The relative error versus iteration.

Chunmei Wang Assistant Professor Department of Mathematics Efficient Numerical Methods for Weak Solutions of Partial Diff

Numerical Tests: Linear Transport Equation

$$u_t + u_x = 0, \text{ for } (t, x, y) \in \Omega,$$
$$u = \sin(x + y), \text{ for } t = 0,$$

•
$$u^*(t, x, y) = \sin(x + y - t).$$



Thank you very much for your attention!

Chunmei Wang Assistant Professor Department of Mathematics, University of Florida Email: chunmei.wang@ufl.edu