
Efficient Numerical Methods for Weak
Solutions of Partial Differential Equations

Chunmei Wang
Assistant Professor

Department of Mathematics
University of Florida

Supported by NSF Grants DMS-2136380 and DMS-2206332

CBMS Conference: Deep Learning and Numerical PDEs
Morgan State University

Chunmei Wang Assistant Professor Department of Mathematics University of Florida Supported by NSF Grants DMS-2136380 and DMS-2206332 CBMS Conference: Deep Learning and Numerical PDEs Morgan State UniversityEfficient Numerical Methods for Weak Solutions of Partial Differential Equations



Outline of Talk

1 Conventional Numerical Methods

Weak Galerkin (WG) Finite Element Methods
Primal-Dual Weak Galerkin (PDWG) Finite Element Methods
(FEM)

2 Deep Learning (DL)

Friedrichs Learning: Weak Solutions of PDEs
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Second Order Elliptic Problems

1 Model Problem: Find u satisfying u|∂Ω = 0, such that

−∆u = f , in Ω.

2 Weak Form: Find u ∈ H1
0 (Ω) such that

(∇u,∇v) = (f , v), ∀v ∈ H1
0 (Ω).
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Weak Galerkin Finite Element Methods

Th: polygonal/polytopal partition of the domain Ω, shape
regular

Weak Functions

A weak function on the finite element partition Th refers to a
generalized function v = {v0, vb} such that v0 ∈ L2(T ) and
vb ∈ L2(∂T ) for any T ∈ Th with single value vb on shared edges.

Figure: Finite element partition and weak functions
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Weak Gradient and Discrete Weak Gradient

The weak gradient of v = {v0, vb} is defined as a bounded linear
functional ∇wv in [H1(T )]2 whose action on each q ∈ [H1(T )]2 is
given by

⟨∇wv , q⟩K := −
∫
K
v0∇ · qdK +

∫
∂K

vbq · nds.

For computational purpose, the weak gradient needs to be
approximated

Discrete weak gradient

Find ∇w ,rv ∈ [Pr (T )]2 such that∫
K
∇w ,rv · qdK = −

∫
K
v0∇ · qdK +

∫
∂K

vbq · nds,

for all q ∈ [Pr (T )]2.
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Weak Finite Element Spaces

On each T ∈ Th, the local finite element space is

Vk(T ) := {v = {v0, vb} : v0 ∈ Pk(T ), vb ∈ Pk−1(∂T )} .

Pk−1(e) Pk−1(e)

vb ∈ Pk−1(e)

v0 ∈ Pk(T )

Global weak finite element space:

Vh := {v = {v0, vb} : {v0, vb}|T ∈ Vk(T ),∀T ∈ Th} .

Weak finite element space with vanishing boundary value:

V 0
h := {v = {v0, vb} ∈ Vh, vb|∂Ω = 0} .

Chunmei Wang Assistant Professor Department of Mathematics University of Florida Supported by NSF Grants DMS-2136380 and DMS-2206332 CBMS Conference: Deep Learning and Numerical PDEs Morgan State UniversityEfficient Numerical Methods for Weak Solutions of Partial Differential Equations



Weak Galerkin Finite Element Formulation

WG-FEM

Find uh = {u0, ub} ∈ V 0
h such that

(∇wuh, ∇wv) + s(uh, v) = (f , v0), ∀v = {v0, vb} ∈ V 0
h ,

where

1 ∇wv ∈ [Pk−1(T )]d is computed locally on each element.

2 s(·, ·) is a stabilizer enforcing a weak continuity.
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Stabilizer s(·, ·)

Commonly used stabilizer:

s(w , v) = ρ
∑
T∈Th

h−1
T ⟨Qbw0 − wb,Qbv0 − vb⟩∂T ,

where Qb is the L2 projection onto Pk−1(e), e ⊂ ∂T , and
ρ > 0 is a parameter of free-choice.

Discrete and computation-friendly stabilizer:

s(w , v) = ρ
∑
T∈Th

∑
xj∈∂T

(w0 − wb)(xj) (v0 − vb)(xj),

where {xj} is a set of carefully chosen (nodal) points on ∂T .
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An Abstract Framework

Abstract Problem

Find u ∈ V such that

a(u, v) = f (v), ∀v ∈ V .

Assume

Vh: finite dimensional spaces that approximate V

ah(·, ·): bilinear forms on Vh × Vh that approximate a(·, ·)
fh: linear functionals on Vh that approximate f

s(·, ·): stabilizers that provide necessary “smoothness”

Abstract WG

Find uh ∈ Vh such that

ah(uh, v) + s(uh, v) = fh(v), ∀ v ∈ Vh.
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PDWG for PDEs in Non-Divergence Form

Model Problem: Find u satisfying u|∂Ω = 0, such that

d∑
i ,j=1

aij∂
2
iju = f , in Ω.

Assumptions:

a(x) = (aij(x))d×d ∈ [L∞(Ω)]d×d

a(x) is symmetric and uniformly positive definite in Ω
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PDWG FEM

Theorem

Assume Ω ⊂ Rd is a bounded convex domain, a(x) ∈ [L∞(Ω)]d×d

is symmetric and uniformly positive definite in Ω, and the Cordès
condition is satisfied. For any given f ∈ L2(Ω), there exists a
unique strong solution u ∈ H2(Ω) ∩ H1

0 (Ω) satisfying

∥u∥2 ≤ C∥f ∥0.

Cordès condition: There exists an ε ∈ (0, 1] such that∑d
i ,j=1 a

2
ij

(
∑d

i=1 aii )
2
≤ 1

d − 1 + ε
in Ω.

Chunmei Wang Assistant Professor Department of Mathematics University of Florida Supported by NSF Grants DMS-2136380 and DMS-2206332 CBMS Conference: Deep Learning and Numerical PDEs Morgan State UniversityEfficient Numerical Methods for Weak Solutions of Partial Differential Equations



Variational Equation

Variational Equation: Find u ∈ X = H2(Ω) ∩ H1
0 (Ω) such that

b(u,w) = (f ,w) ∀w ∈ Y = L2(Ω).

b(u,w) = (
∑d

i ,j=1 aij∂
2
iju,w)

b(·, ·) satisfies the inf-sup condition

sup
v∈X ,v ̸=0

b(v , σ)

∥v∥X
≥ Λ∥σ∥Y ,∀σ ∈ Y .
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Discrete Weak Second Order Partial Derivative

W (T ) = {v = {v0, vb, vg} : v0 ∈ L2(T ), vb ∈ L2(∂T ), vg ∈ [L2(∂T )]d}.

Weak Second Order Partial Derivative

The weak second order partial derivative of v ∈ W (T ) is defined as a
bounded linear functional ∂2

ij,wv on H2(T ) so that its action on each

φ ∈ H2(T ) is given by

⟨∂2
ij,wv , φ⟩K := (v0, ∂

2
jiφ)K − ⟨vbni , ∂jφ⟩∂K + ⟨vgi , φnj⟩∂K .

Discrete Weak Second Order Partial Derivative

A discrete weak second order partial derivative of v ∈ W (T ),
denoted by ∂2

ij,w ,r ,Kv , is defined as the unique polynomial satisfying

(∂2
ij,w ,r ,Kv , φ)K = (v0, ∂

2
jiφ)K − ⟨vbni , ∂jφ⟩∂K + ⟨vgi , φnj⟩∂K ,∀φ ∈ Pr (T ).
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Naive WG-FEM

Find uh = {u0, ub,ug} such that

bh(uh, σ) = (f , σ), ∀σ,

where bh(uh, σ) :=
∑

T∈Th
∑d

i ,j=1(aij∂
2
ij ,wuh, σ)T .
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PDWG - FEM

PDWG as constrained optimization

Find uh = {u0, ub,ug} ∈ V 0
h such that

uh = arg min
v∈V 0

h ,bh(v ,σ)=(f ,σ),∀σ∈Wh

1

2
sh(v , v).

Stabilizer that enforces weak continuity:

sh(v , v) =
∑
T∈Th

h−3
T ⟨v0−vb, v0−vb⟩∂T+h−1

T ⟨∇v0−vg ,∇v0−vg ⟩∂T
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PDWG - FEM in Euler-Lagrange Form

PDWG Algorithm

Find (uh;λh) ∈ V 0
h ×Wh satisfying

sh(uh, v) + bh(v , λh) = 0, ∀v ∈ V 0
h ,

bh(uh, σ) = (f , σ), ∀σ ∈ Wh.

Weak finite element space Vh consisting of
Pk(T )/Pk(e)/[Pk−1(e)]

d

Wh : Lagrange multiplier finite element space of Pk−2(T ) or
Pk−1(T )

Primal equation: bh(uh, σ) = (f , σ)

Dual equation: bh(v , λh) = 0

Linker: the stabilizer sh(uh, v)
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Inf-Sup Condition

Lemma

Assume that the coefficient matrix a = {aij}d×d is uniformly
piecewise continuous in Ω. For any σ ∈ Wh, there exists vσ ∈ V 0

h

satisfying

bh(vσ, σ) ≥ 1

2
∥σ∥20,

∥vσ∥22,h ≤ C∥σ∥20.

Here,

∥v∥22,h =
∑
T∈Th

∥
d∑

i ,j=1

Qh(aij∂
2
ijv0)∥2T + sh(v , v).
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Error Estimates

Theorem

Assume that the coefficient functions aij are uniformly piecewise
continuous in Ω. Let u and (uh;λh) ∈ V 0

h ×Wh be the exact
solution and PDWG solution. There exists a constant C such that

∥uh − Qhu∥2,h + ∥λh −Qhλ∥0 ≤ Chk−1∥u∥k+1.
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Numerical Tests

Exact solution u = sin(x1)sin(x2)

Ω = (−1, 1)2

a11 = 1 + |x1|, a12 = a21 = 0.5|x1x2|
1
3 , a22 = 1 + |x2|

Table: numerical error and convergence order (λh is piecewise linear)

2/h ∥e0∥0 order ∥eg∥L2 order ∥λh∥0 order

1 0.177 - 1.25 - 0.00390 -

2 0.0357 2.30 0.486 1.36 0.00820 -1.07

4 0.00360 3.31 0.130 1.90 0.00324 1.34

8 2.78e-004 3.70 0.0318 2.03 0.00151 1.10

16 2.02e-005 3.78 0.00783 2.02 7.42e-004 1.03

32 2.37e-006 3.09 0.00194 2.01 3.68e-004 1.01
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Numerical Tests

Table: numerical error and convergence order (λh is piecewise constant)

2/h ∥e0∥0 order ∥eg∥L2 order ∥λh∥0 order

1 2.80e-006 - 1.76 - 2.10e-006 -

2 0.176 -16.0 0.676 1.38 0.0895 -15.4

4 0.0395 2.15 0.164 2.04 0.0518 0.790

8 0.00896 2.14 0.0386 2.08 0.0190 1.45

16 0.00217 2.05 0.00938 2.04 0.00685 1.47

32 5.37e -004 2.01 0.00231 2.02 0.00288 1.25
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Numerical Tests

Consider

2∑
i ,j=1

(1 + δij)
xi
|xi |

xj
|xj |

∂2
iju = f , in Ω = (−1, 1)2,

u = 0, on ∂Ω,

with the exact solution u = (x1e
1−|x1| − x1)(x2e

1−|x2| − x2).

Table: Numerical error and convergence order (λh is piecewise linear).

2/h ∥e0∥0 order ∥eg∥L2 order ∥λh∥0 order

1 0.0940 - 0.766 - 0.338 -

2 0.249 -1.40 1.35 -0.815 0.642 -0.927

4 0.106 1.23 0.538 1.32 1.28 -1.00

8 0.0306 1.80 0.137 1.97 0.537 1.26

16 0.00749 2.03 0.0327 2.07 0.212 1.34

32 0.00174 2.11 0.00785 2.06 0.0923 1.20
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Numerical Tests

Figure: Figures for WG-solution u0 and λh
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Numerical Tests

Table: Numerical error and convergence order (λh is piecewise constant).

2/h ∥e0∥0 order ∥eg∥L2 order ∥λh∥0 order

1 0.0393 - 0.672 - 0.137 -

2 0.0322 0.284 0.322 1.06 0.104 0.396

4 0.00750 2.10 0.0791 2.03 0.0532 0.963

8 0.00161 2.22 0.0180 2.13 0.0204 1.39

16 3.85e-004 2.07 0.00427 2.08 0.00818 1.32

32 9.52e-005 2.02 0.00104 2.04 0.00371 1.14
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Numerical Tests

Figure: Figure for the Lagrange multiplier λh – an error indicator
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Numerical Tests

2∑
i ,j=1

(δij +
xixj
|x |2

)∂2
iju = (2α2 − α)|x |α−2, in (0, 1)2.

Exact solution u = |x |α, α > 1

α = 1.6

Table: numerical error and convergence order(λh is piecewise linear)

1/h ∥e0∥0 order ∥eg∥L2 order ∥λh∥0 order

1 0.020 - 0.315 - 0.304 -

2 0.00629 1.68 0.126 1.32 0.248 0.296

4 0.00174 1.86 0.0446 1.50 0.182 0.445

8 4.43e-004 1.97 0.0152 1.56 0.126 0.537

16 1.08e-004 2.03 0.00508 1.58 0.0846 0.570

32 2.60e-005 2.05 0.00169 1.59 0.0564 0.584
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Numerical Tests

Figure: Figure for WG-solution u0
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Numerical Tests

Table: numerical error and convergence order (λh is piecewise constant)

1/h ∥e0∥0 order ∥eg∥L2 order ∥λh∥0 order

1 0.00405 - 0.489 - 0.0623 -

2 0.00803 -0.988 0.177 1.46 0.0616 0.0156

4 0.00263 1.61 0.0616 1.53 0.0476 0.372

8 7.90e-004 1.74 0.0210 1.55 0.0327 0.544

16 2.20e-004 1.85 0.00705 1.57 0.0218 0.582

32 5.85e-005 1.91 0.00235 1.59 0.0145 0.593
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An Abstract Problem

Let V and W be two Hilbert spaces

b(·, ·) is a bilinear form on V ×W

The inf-sup condition of Babuska and Brezzi is satisfied.

The spaces V and W have certain embedded “continuities”,
such as L2, H1, H(div), H(curl), H2, or weighted-version of
them.

Abstract Problem

Find u ∈ V such that b(u,w) = f (w) for all w ∈ W . Here f is a
bounded linear functional on W .

Chunmei Wang Assistant Professor Department of Mathematics University of Florida Supported by NSF Grants DMS-2136380 and DMS-2206332 CBMS Conference: Deep Learning and Numerical PDEs Morgan State UniversityEfficient Numerical Methods for Weak Solutions of Partial Differential Equations



An Abstract PDWG Formulation

PDWG-FEM

Find uh ∈ Vh and λh ∈ Wh such that

s1(uh, v)− bh(v , λh)=0, ∀v ∈ Vh

s2(λh,w) + bh(uh,w)=fh(w), ∀ w ∈ Wh.

s1(·, ·): stabilizer/smoother in Vh

s2(·, ·): stabilizer/smoother in Wh
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My work on PDWG methods includes

second-order elliptic equations in non-divergence form

Fokker-Planck type equations

ill-posed elliptic Cauchy problem

convection-diffusion equations arising from
Poisson-Nernst-Planck modeling

first-order transport problems

second-order elliptic interface problem

a simplified PDWG for the Fokker-Planck type equation

a modified PDWG for the second order elliptic equation in
non-divergence form
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Numerical Experiments

Figure: PDWG solutions.
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Deep learning for solving PDEs

Problem
D(u) = f in Ω,

B(u) = g on ∂Ω.

Physics Informed Neural Network (PINN):
A deep neural network (DNN) ϕ(x ;θ∗) is constructed to
approximate the solution u(x) via

θ∗ = arg min
θ

L(θ)

:= arg min
θ

Ex∈Ω

[
|Dϕ(x ;θ)− f (x)|2

]
+

λEx∈∂Ω

[
|Bϕ(x ;θ)− g(x)|2

]
,

where λ > 0.
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Friedrichs Learning for Weak Solutions of PDEs

Original PDE problem:

find u ∈ V s.t. Tu = f for f ∈ L.

or equivalently,

(Tu, v)L = (f , v)L, ∀ v ∈ L.

New MinMax Formulation:

min
u∈V

max
v∈V ∗

|(u, T̃ v)L − (f , v)L|
∥T̃ v∥L

.
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Friedrichs Learning for Weak Solutions of PDEs

Friedrichs Learning:

(θ̄s , θ̄t) = argmin
θs

max
θt

L(ϕs(x ; θs), ϕt(x ; θt))

= argmin
θs

max
θt

|(ϕs(x ; θs), T̃ϕt(x ; θt))Ω − (f , ϕt(x ; θt))Ω|
∥T̃ϕt(x ; θt)∥Ω

,

under the constraints

ϕs(x ; θs) ∈ V and ϕt(x ; θt) ∈ V ∗.

Parametrization:

Tanh network ϕt for smooth test functions in V ∗

ReLU network ϕs ∈ H1 to approximate solutions in V = L2

Future: discontinuous networks for L2 solutions
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Numerical Tests: Advection-Reaction Equation

Model Problem:

µu + β · ∇u =f , in Ω = (−1, 1)2,

u =g , on ∂Ω− = {x ∈ ∂Ω;β · n < 0}.

assume there exists µ0 > 0 such that

µ(x)− 1

2
∇ · β(x) ≥ µ0 > 0, a.e. in Ω

β = (1, 9/10)⊺, µ = 1

Exact solution:

u∗ =

{
sin(π(x + 1)2/4) sin(π(y − 9

10x)/2) −1 ≤ x ≤ 1, 9
10x < y ≤ 1

e−5(x2+(y− 9
10 x)

2) −1 ≤ x ≤ 1, −1 ≤ y ≤ 9
10x
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Numerical Tests: Advection-Reaction Equation

(a) Exact solution. (b) NN solution.

(c) Comparison with PINN.
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Numerical Tests: High-Dimensional Scalar Elliptic
Equation

Model Problem:

−∇ ·
(
a(x)∇u

)
=f in Ω = (−1, 1)15,

u =g on ∂Ω,

a = 1 + |x |2, u∗ = sin(πx12 ) cos(πx22 )

Figure: The relative error versus iteration.
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Numerical Tests: Linear Transport Equation

ut + ux =0, for (t, x , y) ∈ Ω,

u =sin(x + y), for t = 0,

u∗(t, x , y) = sin(x + y − t).

(a) Domain. (b) The relative error versus iterations.
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Thank you very much for your attention!

Chunmei Wang
Assistant Professor

Department of Mathematics, University of Florida
Email: chunmei.wang@ufl.edu
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