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Outline of Talk

@ Conventional Numerical Methods
o Weak Galerkin (WG) Finite Element Methods
o Primal-Dual Weak Galerkin (PDWG) Finite Element Methods
(FEM)
@ Deep Learning (DL)
o Friedrichs Learning: Weak Solutions of PDEs

Chunmei Wang Assistant Professor Department of Mathematics Efficient Numerical Methods for Weak Solutions of Partial Difl



Second Order Elliptic Problems

@ Model Problem: Find v satisfying u|sq = 0, such that
—Au=f, in Q.
@ Weak Form: Find u € H}(Q) such that

(Vu,Vv) = (f,v), VYveHIQ).
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Weak Galerkin Finite Element Methods

Th: polygonal/polytopal partition of the domain Q, shape
regular

Weak Functions

A weak function on the finite element partition 7, refers to a
generalized function v = {v, v} such that vy € L?(T) and

vp € L2(OT) for any T € Ty, with single value v, on shared edges.
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Weak Gradient and Discrete Weak Gradient

The weak gradient of v = {vy, v;} is defined as a bounded linear
functional V,, v in [H(T)]? whose action on each q € [HY(T)]? is
given by

(Vwv,q)k = —/ wV - gdK —i—/ Vpq - Nds.
K K

For computational purpose, the weak gradient needs to be
approximated

Discrete weak gradient
Find Vv € [P,(T)]? such that

/ Vuw,rv-qdK = —/ wV - qu+/ Vpq - nds,
K K oK

for all g € [P.(T)]°.
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Weak Finite Element Spaces

@ On each T € Tp, the local finite element space is

Vk(T) = {V = {Vo, Vb} W € Pk(T), Vp € Pk_1(8T)} .

o
Vo € Pk(T)

@
Vp € Pk_l(e)

o Global weak finite element space:
Vi ={v={w,w}: {vo,v}|T € Vk(T),YT € Tp}.
@ Weak finite element space with vanishing boundary value:

VP = {v = {vo, vb} € Vi, vp|oq = 0}.
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Weak Galerkin Finite Element Formulation

Find up = {uo, up} € VP such that

(Vwup, Vwv)+ s(up, v) = (f, vo), Vv = {w, v} € V7,

where
@ V.V € [P_1(T)]9 is computed locally on each element.
@ s(-,-) is a stabilizer enforcing a weak continuity.
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Stabilizer s(-,-)

o Commonly used stabilizer:

W v =p Z h (Qpwo — wp, Qpvo — Vb>8T7
TET,

where Qp is the L2 projection onto Py_1(e),e C T, and
p > 0 is a parameter of free-choice.

@ Discrete and computation-friendly stabilizer:

WV_pZ Z wo — wp)(x;) (vo — vb) (X)),

TeTyp x0T

where {x;} is a set of carefully chosen (nodal) points on OT.
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An Abstract Framework

Abstract Problem
Find u € V such that

a(u,v) =f(v), VveV.

Assume
@ Vj: finite dimensional spaces that approximate V
@ ap(-,-): bilinear forms on Vj, x V}, that approximate a(-, -)

@ f4: linear functionals on V}, that approximate f

@ s(-,-): stabilizers that provide necessary “smoothness”

Find u, € V4 such that

ap(up, v) +s(up,v) = fu(v), VveV,
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PDWG for PDEs in Non-Divergence Form

Model Problem: Find u satisfying u|pg = 0, such that

d
Z a,-J-(?,%-u =f, inQQ.

ij=1

Assumptions:
® a(x) = (a(x))dxd € [L=(Q)]9¢
@ a(x) is symmetric and uniformly positive definite in Q
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PDWG FEM

Assume Q C RY is a bounded convex domain, a(x) € [L*°(Q)]axd
is symmetric and uniformly positive definite in €2, and the Cordes
condition is satisfied. For any given f € L?(Q), there exists a
unique strong solution u € H?(Q) N HY(Q) satisfying

[ull2 < C[[llo-

e Cordes condition: There exists an ¢ € (0, 1] such that

d
D=1 a?j < 1
d = g_
(Ciyan)?  d—1l+4e

in Q.
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Variational Equation

Variational Equation: Find u € X = H2(Q) N H3(Q) such that

b(u,w) = (f,w) VYweY =L*Q).

d
° b(”v W) = (Zi,j:l aijai2ju7 W)
@ b(-,-) satisfies the inf-sup condition

b(v, o)
sup
veX,v£0 [vilx

> A|lo|ly,Vo e Y.
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Discrete Weak Second Order Partial Derivative

W(T)={v={wv, v Vvg}: v € L2(T), vy € L2(8T),vg e [L2(8T)]%}.

Weak Second Order Partial Derivative

The weak second order partial derivative of v € W(T) is defined as a
bounded linear functional 97 , v on H?(T) so that its action on each
© € H?(T) is given by

(05 wv, ©)k = (v, 850)k — (vini, i) ok + (Vi ;)oK

Discrete Weak Second Order Partial Derivative

A discrete weak second order partial derivative of v € W(T),
denoted by ag.,w,,,Kv, is defined as the unique polynomial satisfying

(05 w.rk Vs @)k = (vo, 050)k — (vbni, ) ok + (Vei, onj)ok, Y € Pr(T).
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Naive WG-FEM

Find up = {ug, up,ug} such that
bp(up,0) = (f,0), Yo,

where by(up,0) == Y 1oy 51 (2502 ,, un, 0) T
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PDWG - FEM

PDWG as constrained optimization

Find up = {uo, up, ug} € VP such that

: 1
up = arg min —sp(v, V).
ve V,?,bh(v,o):(f,o),VUG Wy,

@ Stabilizer that enforces weak continuity:

sh(v, V) = Z h;—3<V0—Vb, Vo—Vb>aT—|—h;—1<VV0—Vg, VVo—Vg>3T
TETh
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PDWG - FEM in Euler-Lagrange Form

PDWG Algorithm

Find (up; Ap) € V,? x W, satisfying

sh(up, v) + bp(v, Ap) =0, vv e VP,
bh(uh,a) = (f,a), Vo € Wh.

Weak finite element space V}, consisting of
Pi(T)/P(e)/[Pr-1(e)l

e W, : Lagrange multiplier finite element space of Px_o(T) or
Pi—_1(T)

Primal equation: bp(up,0) = (f,0)

Dual equation: bp(v,Ap) =0

Linker: the stabilizer sp(up, v)
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Inf-Sup Condition

Assume that the coefficient matrix a = {ajj}qxd is uniformly
piecewise continuous in Q. For any o € Wy, there exists v, € V,?
satisfying
L 2
by(vo,0) > 5”"”0:

2 2
Vollzp < Clloll.

Here,

d
WIBn= D 11> Qu(aidivo)llF + sa(v, v).

TeT, i,j=1
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Error Estimates

Assume that the coefficient functions aj; are uniformly piecewise
continuous in Q. Let u and (up; \p) € V,? x W}, be the exact
solution and PDWG solution. There exists a constant C such that

lun — Qnullz.n + [|IAe — QuAllo < CH* Y ull kg1
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Numerical Tests

e Exact solution u = sin(xy)sin(x2)
o Q=(-1,1)?
1
@ a1 = 1+ |x1], a12 = a21 = 0.5|x1x2|3, ax = 1+ |x2]

Table: numerical error and convergence order (), is piecewise linear)

2/h lleollo order | |leg||;2 | order | || Apllo | order
1 0.177 - 1.25 - 0.00390 -
2 0.0357 230 | 0.486 1.36 | 0.00820 | -1.07
4 0.00360 | 3.31 0.130 1.90 | 0.00324 | 1.34
8 | 2.78e-004 | 3.70 | 0.0318 | 2.03 | 0.00151 1.10
16 | 2.02e-005 | 3.78 | 0.00783 | 2.02 | 7.42e-004 | 1.03
32 | 2.37e-006 | 3.09 | 0.00194 | 2.01 | 3.68e-004 | 1.01
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Numerical Tests

Table: numerical error and convergence order (), is piecewise constant)

2/h lleollo order | |leg||2 | order I Anllo order
1 2.80e-006 - 1.76 - 2.10e-006 -
2 0.176 -16.0 | 0.676 | 1.38 | 0.0895 | -15.4
4 0.0395 215 | 0.164 | 2.04 | 0.0518 | 0.790
8 0.00896 | 2.14 | 0.0386 | 2.08 | 0.0190 1.45
16 | 0.00217 | 2.05 | 0.00938 | 2.04 | 0.00685 | 1.47
32 | 5.37e-004 | 2.01 | 0.00231 | 2.02 | 0.00288 1.25
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Numerical Tests

Consider

2

Xj Xj .
Z(1+5U)m@a§-u= f, in Q=(-1,1)2
ij=1 !

u=020, on 01,
with the exact solution u = (x;e!=Pl — x;)(xpel 1%l — x,).

Table: Numerical error and convergence order (), is piecewise linear).

2/h | |leollo | order | |leg|l;2 | order | |[Anllo | order
1 0.0940 - 0.766 - 0.338 -
2 0.249 | -1.40 1.35 -0.815 | 0.642 | -0.927
4 0.106 1.23 0.538 1.32 1.28 -1.00
8 0.0306 | 1.80 | 0.137 1.97 | 0.537 1.26
16 | 0.00749 | 2.03 | 0.0327 | 2.07 | 0.212 1.34
32 | 0.00174 | 2.11 | 0.00785 | 2.06 | 0.0923 | 1.20
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Numerical Tests
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Figure: Figures for WG-solution ug and Ap
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Numerical Tests

Table: Numerical error and convergence order (A, is piecewise constant).

2/h lleollo order | ||eg|2 | order | |[Apllo | order

1 0.0393 - 0.672 - 0.137 -
2 0.0322 | 0.284 | 0.322 | 1.06 | 0.104 | 0.396
4 0.00750 | 2.10 | 0.0791 | 2.03 | 0.0532 | 0.963
8 0.00161 222 | 0.0180 | 2.13 | 0.0204 | 1.39
16 | 3.85e-004 | 2.07 | 0.00427 | 2.08 | 0.00818 | 1.32
32 | 9.52e-005 | 2.02 | 0.00104 | 2.04 | 0.00371 | 1.14
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Numerical Tests
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Figure: Figure for the Lagrange multiplier Ay, — an error indicator
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Numerical Tests

2

3 (65 + ’X”‘Z)fﬁ = (a2 —a)x*2,  in  (0,1)

ij=1

e Exact solution u = |x|*, a>1
e a=1.6

Table: numerical error and convergence order(\y is piecewise linear)

1/h lleollo order | |legl|[;2 | order | [[Apllo | order
1 0.020 - 0.315 - 0.304 -
2 0.00629 | 1.68 0.126 1.32 | 0.248 | 0.296
4 0.00174 | 1.86 | 0.0446 | 1.50 | 0.182 | 0.445
8 | 4.43e-004 | 1.97 | 0.0152 | 1.56 | 0.126 | 0.537
16 | 1.08e-004 | 2.03 | 0.00508 | 1.58 | 0.0846 | 0.570
32 | 2.60e-005 | 2.05 | 0.00169 | 1.59 | 0.0564 | 0.584
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Numerical Tests

Figure: Figure for WG-solution ug
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Numerical Tests

Table: numerical error and convergence order (A, is piecewise constant)

1/h lleollo order | |legl/;2 | order | ||Apllo | order
1 0.00405 - 0.489 - 0.0623 -
2 0.00803 | -0.988 | 0.177 | 1.46 | 0.0616 | 0.0156
4 0.00263 | 1.61 | 0.0616 | 1.53 | 0.0476 | 0.372
8 | 7.90e-004 | 1.74 | 0.0210 | 1.55 | 0.0327 | 0.544
16 | 2.20e-004 | 1.85 | 0.00705 | 1.57 | 0.0218 | 0.582
32 | 5.85e-005 | 1.91 | 0.00235 | 1.59 | 0.0145 | 0.593
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An Abstract Problem

Let V and W be two Hilbert spaces
b(-,-) is a bilinear form on V x W
The inf-sup condition of Babuska and Brezzi is satisfied.

The spaces V and W have certain embedded “continuities”,
such as L2, H, H(div), H(curl), H?, or weighted-version of
them.

Abstract Problem

Find u € V such that b(u, w) = f(w) for all w € W. Here f is a
bounded linear functional on W.
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An Abstract PDWG Formulation

Find up € V} and A\ € W), such that

sl(uh, V) = bh(v, /\h)ZO, Yv € V
52(>\h7 W) -+ bh(uh, W):fh(W), Vwe W,

@ si(-,-): stabilizer/smoother in V,

@ sp(-,-): stabilizer/smoother in W
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My work on PDWG methods includes

@ second-order elliptic equations in non-divergence form

o Fokker-Planck type equations

@ ill-posed elliptic Cauchy problem

@ convection-diffusion equations arising from
Poisson-Nernst-Planck modeling

@ first-order transport problems

@ second-order elliptic interface problem

@ a simplified PDWG for the Fokker-Planck type equation

@ a modified PDWG for the second order elliptic equation in

non-divergence form
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Numerical Experiments

Figure: PDWG solutions.
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Deep learning for solving PDEs

Problem
D(u)=1f inQ,
B(u) =g on 0Q.
Physics Informed Neural Network (PINN):

A deep neural network (DNN) ¢(x; 8*) is constructed to
approximate the solution u(x) via

0" = arg minL(0)
0

arg min Exeq |[Do(x; 0) — F(x)| +
2]

NExeon ||Bo(x;6) — g(x)F] .

where A > 0.
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Friedrichs Learning for Weak Solutions of PDEs

@ Original PDE problem:

find veV st. Tu=f for fel.
or equivalently,
(Tu,v), = (f,v), VveL
@ New MinMax Formulation:

min max IC Tv)f —(, V)L‘.
ueV veVvx HTVHL
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Friedrichs Learning for Weak Solutions of PDEs

Friedrichs Learning:
(9_55 e_t) = arg rr;in meax L(¢s(x;05), dt(x; 0¢))

= arg min max |(¢S(X1 05), 7~_¢t(~x; Gt))Q — (f7 ¢t(x; 0t))Q|
b O [ Toe(x:6:)llo

under the constraints

)

ds(x;05) € V and ¢¢(x; ;) € V™.

Parametrization:
@ Tanh network ¢; for smooth test functions in V*
@ RelU network ¢s € H' to approximate solutions in V = [?

e Future: discontinuous networks for L2 solutions
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Numerical Tests: Advection-Reaction Equation

Model Problem:
pu+B-Vu=fin Q= (-1,1)2
u=g,on Q" ={x€09Q; 3 -n<0}.
@ assume there exists po > 0 such that

1
u(x) — EV -B(x) > po >0, ae. inQ

e B=(1,9/10)T, u=1
@ Exact solution:

. [ sin(m(x+1)?/4)sin(n(y — $x)/2) -1<x<1, Sx<y< 1
e e~ 50— 1)) —1<x<1, -1<y< &x
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Numerical Tests: Advection-Reaction Equation
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(c) Comparison with PINN.
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Numerical Tests: High-Dimensional Scalar Elliptic

Equation

Model Problem:
—V - (a(x)Vu) =f in Q=(-1,1)1,
u=g on 011,

o a=1+|x? u* =sin(%) cos(™52)

107t
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.
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Figure: The relative error versus iteration.
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Numerical Tests: Linear Transport Equation

us + uyx =0, for (t,x,y) € Q,
u=sin(x +y),for t =0,

o u*(t,x,y) =sin(x+y —t).

= L2 error
max error

-0.25

Relative error

-0.50

= outflow boundary
— inflow boundary
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-075

0 2000 4000 6000 8000 10000
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(a) Domain. (b) The relative error versus iterations.
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Thank you very much for your attention!

Chunmei Wang
Assistant Professor
Department of Mathematics, University of Florida
Email: chunmei.wang®@ufl.edu
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