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Learning Non-Euclidean Data?

e Graph is a flexible structure to represent non-Euclidean data.
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Graph convolutional networks

o Let G =(V, E) be an undirected graph where V = {v;}7_; is the set of nodes and E is the
set of edges.

e Let A € R"™" be the adjacency matrix of G.

elet G:=(D+1)"z(I+A)Y(D+1)"2 =D 2AD" % be the (augmented) normalized
adjacency matrix.
e Graph convolutional layer (GCL):

H' = s(W'H'1G),

where o is the activation function, W/ € R9*9 is a learnable weight matrix, and H? :=
[hy,..., h,] € R?*" with h; being the i*" node feature. A message-passing scheme rather than
exact convolution.

Kipf and Welling, ICLR, 2017.



Graph learning tasks

o Node classification

e Link prediction

e Graph classification and generation



Applications: Recommender system
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Over-smoothing of GNN

o All eigenvalues of G lie in the interval (—1,1].

e H = W/H'-1G, ie., vec(H') = G @ W'vec(H'™1), can be considered as a low-pass filter,
indicating that each GCL “smooths”’ node features.

o As the GCN architecture gets deep, all nodes’ representation — within each connected
component — will become "indistinguishable", which is referred to as over-smoothing.

e Learning long-range dependencies (“long-range interaction”) is hard.



Existing Theory



Mathematical characterization of the over-smoothing - | (Oono & Suzuki, ICLR, 2019.)

e Distance of the node features H' to the eigenspace M — the eigenspace corresponding to the
largest eigenvalue of G — goes to zero.

> Suppose the graph G has m connected components, i.e. we can decompose
V=U",V. Let u; = (14kev;})1<k<n be the indicator vector of the it" component V;.

> The nonegative vectors {D%u,-/Hﬁ%u;H}lS,-Sm form an orthonormal basis of M.

e Let RY ® M be the subspace of RY*" consisting of the sum Sr, wi ® e where w; € NG
and {€;}7, is an orthonormal basis of the eigenspace M. Then the distance of H' to M is

g

o [|H'|| o < sA|H'=Y| 10 when o is ReLU. Here, A = max{|)\;| | \; < 1} is the second
largest magnitude of G's eigenvalues, and s; is the largest singular value of W'.

m
IH | e = inf [|H' — Y]|r = HH’ ~S Hlee
Y eRIQM 1



Effects of ReLU

o |0(Z)||pr < ||Z]|pqe for any matrix Z when o is ReLU, i.e. RelLU reduces the distance to
eigenspace M. — Oono & Suzuki, ICLR, 2019



Mathematical characterization of the over-smoothing - Il (Cai & Wang, arXiv:2006.13318)

e Dirichlet energy of node features:
|H|% = Trace(HAHT),

where A = I — G is the (augmented) normalized Laplacian.

o |[H'||g < s)A\||H'7Y| g when o is ReLU or leaky RelU.



Effects of activation function: Existing theory

o |l0(Z)|| pr < ||Z]| pqr for any matrix Z when o is ReLU, i.e. ReLU reduces the
distance to eigenspace M. — Oono & Suzuki, ICLR, 2019

e |[0(2)||e < ||Z||g for any matrix Z when o is ReLU or leaky ReLU. — Cai & Wang,
arXiv:2006.13318, 2020

e ||H|[,(1 and ||H||g are two equivalent seminorms, i.e. there exist two constants
a,B>0st. alH|ye < ||H||e < B|/H| pe for any H € RI*7,

> |0(Z)||pme < | Z]| pqe, when o is ReLU or leaky ReLU.



Bottlenecks of the existing theory

e Existing smoothness notions — distant to M and Dirichlet energy of node features —
do not take the magnitude of feature vectors into account and they are not scaling free.
Multiplying feature vectors by a constant will result in corresponding changes in their
distance to M and their Dirichlet energy but do not affect graph node classification.

e Existing theory do not reveal a mechanism to control the smoothness of the learned
node features when taking the activation functions into consideration.



Geometry Underlying the Input & Output of
ReLU and Leaky RelLU



Geometric characterization of the effect of ReLU

e We have the decomposition H = Hy + H, . for any matrix H := [hy, hy, ..., h,] € RIX"

m n
HM = ZHe,-e,-T, and HML = Z He,-e,-T.
i=1 i=m+1

o Let Z € RY*" be an arbitrary matrix and H = o(Z) with o(x) = max{0, x} being ReLU.

e Proposition 1. For any Z = Zy + Zy. € R9*", let H = 0(Z) = Hpyq + Hyo with o being
ReLU, then Hj,. lies on the high dimensional sphere centered at Z,,. /2 with the radius

_ 1/2
ri=(1Zae /217 = (250 Zudr)

In particular, Hy 1 lies inside the ball centered at Z,,1 /2 with radius ||Z,1/2||f and hence
we have ||Hy || < ||Zyg2]|F- [Reduced distance to M!]

e Zt =max(Z,0) and Z= = max(—Z,0).



Geometric characterization of the effect of leaky RelLU

o Let Z € RY*" be an arbitrary matrix and H = 0,(Z) with o, being leaky ReLU:

i >
JQ(X):{X if x>0,

ax otherwise,

where 0 < a < 1 is a positive scalar.

e Proposition 2. Forany Z = Zy + Zy1, let H = 0,(Z) = Hyg + Hpqo with o, being leaky
ReLU, then Hy,. lies on the high dimensional sphere centered at (1 + a)Z,,+ /2 with radius

ry = (“(1 —a)Zy 27 - (1 - a)X(Z},, Z/‘_A>F) 1/2'

In particular, Hy . lies inside the high-dimensional ball centered at (1 + a)Z, . /2 with radius
|(1 —a)Zyx/2||F and hence we see that a||Z||pr < [[H|| e < || Z]| pge-



Geometric characterization of the effect of activation functions
. 1/2
o o: center Zy1 /2, radius r = (||zML/2H2F —(Z%,, Z;A>F) .

1/2
o 0,0 center (1+a)Zy /2, radius r, = (||(1 —a)Zy 202 — (1 - 2)2(ZE,, z;A>F) .

e Prop. 1 and 2 imply the precise location of H, . (or the smoothness ||Hx 1 ||r = ||H|| p2)
depends on the center and the radius of the spheres. Given a fixed Z,,., the center of the
spheres remains unchanged and their radii r and r; are only affected by changes in Z,.

e Next, we focus on analyzing how changes in Z,, impact ||H| r(., i.e. the smoothness of
node features.



How changes in Z, impact |H|| .7



Distance to the eigenspace M

e Prop 1 and 2 show that both ReLU and leaky ReLU reduce the distance of node
features to the eigenspace M, ie. ||H|[\ o < [|Z]| pqe-

e Consider Z,Z' e R st. Z,,1 = Z/’VlL but Zy( # Z),. Let H, H' be the output
of Z,Z’' via RelLU or leaky RelLU, respectively.

> We have [|H|| 1 < [ Z]| a2 and [[H[| p0 < (27| pge
> Zyo = Z) . implies that [|Z]| v = [[Z'|| pe = | H

Mt <||Z

/\/lL.

e In other words, when Z,,1 = Zj’\/lL is fixed, changing Zy( to Z), can not affect the
fact that ReLU and leaky ReLU smooth node features. — Resonating with existing
theories (Oono & Suzuki, ICLR 2019, Cai & Wang, arXiv:2006.13318).



Altering the eigenspace projection

e Let z be a vector with z; being the feature of the i*" node, we consider
z(a) =z — ae,

where e is the only eigenvector of G associated with the eigenvalue 1.

o |t is clear that
z(a) g = zpq1 and Zz(a)p =z — e,

where we see that a only alters zyq while preserves z, . .



e Consider a connected graph with 100 nodes with each being assigned a random degree
between 2 to 10. Then we assign an initial node feature x € R% sampled uniformly on the
interval [—1.5,1.5], with each node feature being a scalar; we study the smoothness of node
features z, = x + ae, where a € [—1.5,1.5] is the smoothness control parameter.
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Normalized Smoothness



Dimension-wise normalized smoothness

e For the sake of simplicity, we assume the graph is connected, i.e. m = 1.

e Definition. Let Z € RY*" be the features over n nodes with z() € R" (i = 1,...,d) being
the it row vector of Z, i.e. the /_'t” dimension of the features over all nodes. Then we define
the normalized smoothness of z() as follows:

e
|20

s(z() = € [0,1],

where we set s(z()) = 1 when z() = 0.



Altering the eigenspace projection

e Let z be a vector with z; being the feature of the i*" node, we consider
z(a) =z — ae,

where e is the only eigenvector of G associated with the eigenvalue 1.

o |t is clear that
z(a) g = zpq1 and Zz(a)p =z — e,

where we see that a only alters zyq while preserves z, . .



e Consider a connected graph with 100 nodes with each being assigned a random degree
between 2 to 10. Then we assign an initial node feature x € R%, sampled uniformly on the
interval [—1.5,1.5], with each node feature being a scalar; we study the smoothness of node
features z, = x + ae, where o € [—1.5,1.5] is the smoothness control parameter.
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Proposition 3. (ReLU) Suppose zy1 # 0. Let h(a) = o(z(a)) with o being ReLU, then

mins(h(a)) = /| —5——— and maxs(h(a)) =1,
o Zj:l d; o
where x .= D=2z, maxx = maxi<ij<n Xj, and D= diag(di, da, ..., d,). Also, the normalized

smoothness s(h(«)) is monotone increasing as « decreases whenever a < |[D? u,| max x and
it has range [min, s(h(«)), 1].
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Proposition 4. (Leaky ReLU) Suppose zy 1 # 0. Let h(«) = 0,(z(a)) with o, being leaky
ReLU, then 1) min, s(h(a)) =0, and 2) sup, s(h(«)) = 1. Also, s(h(a)) has range [0,1).
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Theorem 1. Suppose zy . # 0. Let h(a) = o(z(a)) or 0,(z(a)) with o being ReLU and o,
being leaky ReLU. Then we have ||z| . > ||h(a)|| 0 for any a € R. However, s(h(«)) can
be smaller than, larger than, or equal to s(z) for different values of «.



Controlling the Smoothness of Node Features



Controlling the smoothness of node features

e Our proposed smoothness control term (SCT):

m
_ § I, T
Ba/ == Ot,-e,- 3
i=1

where / is the layer index, {€;}™, is the orthonormal basis of the eigenspace M, and o' is a
collection of learnable vectors {a!}™, with a! € R? being approximated by an MLP.

e GCN-SCT:
H' =os(W'H'-1G + B,)).

e GCNII-SCT:
H' =o(((1 - a)H'™G 4 aH)((1 - B))I + BIW') + B,),

where the residual connection and identity mapping are consistent with GCNII.



Node feature trajectory

e Consider a connected graph with two nodes with 1D node features. GCL becomes
h* = o(wh°G + b,),

where w = 1.2, h° h', b, € R?, and G € R?*2. We select a positive definite matrix G with
the largest eigenvalue 1; G is defined to be [0.592,0.194;0.194,0.908]. Twenty initial node
feature vectors h° are sampled evenly in the domain [—1,1] x [-1,1].

T

a) a =-0.25 b) « =0.0 c)a=10
Figure: Node feature trajectories, with colorized magnitude, for varying smoothness control parameter
a. For classical GCN b), the node features converge to the eigenspace M (red dashed line).



Layers 2 4 16 32
Cora
GCN/GCN-SCT 81.1/82.9 80.4/82.8 64.9/71.4 60.3/67.2
GCNII/GCNII-SCT | 82.2/83.8 82.6/84.3 84.6/84.8 85.4/85.5
EGNN/EGNN-SCT | 83.2/84.1 84.2/84.5 85.4/83.3 85.3/82.0
Citeseer
GCN/GCN-SCT 70.3/69.9 67.6/67.7 18.3/55.4 25.0/51.0
GCNII/GCNII-SCT | 68.2/72.8 68.9/72.8 72.9/73.8 73.4/73.4
EGNN/EGNN-SCT | 72.0/73.1 71.9/72.0 72.4/72.6 72.3/72.9
PubMed
GCN/GCN-SCT | 79.0/79.8 76.5/78.4 40.0/76.1 22.4/77.0
GCNII/GCNII-SCT | 78.2/79.7 78.8/80.1 80.2/80.7 79.8/80.7
EGNN/EGNN-SCT 79.2/79.8 79.5/80.4 80.1/80.3 80.0/80.4
Coauthor-Physics
GCN/GCN-SCT 92.4/92.6 92.1/92.5 13.5/50.9 13.1/43.6
GCNII/GCNII-SCT | 92.5/94.4 02.9/94.2 92.9/93.7 92.9/94.1
EGNN/EGNN-SCT | 92.6/93.9 92.9/94.1 93.1/94.0 93.3/93.8
Ogbn-arxiv
GCN/GCN-SCT 70.4/72.1 71.7/72.7 70.6/72.3 68.5/72.3
GCNII/GCNII-SCT | 70.1/72.0 71.4/72.1 71.5/72.4 70.5/72.1
EGNN/EGNN-SCT | 68.4/68.5 71.1/71.3 72.7/72.8 72.7/72.3

Table: Test accuracy for models of varying depth on citation networks with benchmark splits. (Unit:%)



Cornell Texas Wisconsin Chameleon

52.70/55.95 (0.007/0.018) _ 52.16/62.16 (0.007/0.008) _ 45.88/54.71 (0.007/0.008) _ 25.18/38.44 (0.006/0.007)
74.86/75.41 (0.020/0.020)  69.46/83.34 (0.031/0.020)  74.12/86.08 (0.020/0.015)  60.61/64.52 (0.015/0.013)

Table: Mean test accuracy results and average computational time per epoch (in the parenthesis) for
the WebKB and WikipediaNetwork datasets with fixed 48/32/20% splits. First row: GCN/GCN-SCT.
Second row: GCNII/GCNII-SCT. (Unit:% (second))
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Implicit Graph Neural Networks: A Monotone Operator Viewpoint
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Implicit GNNs

o Implicit GNN (IGNN)
Z0H) = o (WZ™G + gg(X)), for k=0,1,2,-,

where gg is a function parameterized by B, e.g. gg(X) = BXG with B € R9*9,

e Finding the fixed point Z* as the representation of input graph.

Gu et al. Implicit graph neural networks, NeurlPS 2020.



Issue 1: Well-posedness of IGNN limits its expressivity of IGNN

e Well-posedness, i.e. the fixed point exists and is unique
M(|W)) < 1

Or all eigenvalues of W are less than one in magnitude.

e The selection of W is limited, limiting the expressivity of IGNN.

Notice that all eigenvalues of G = A are in [~1,1] with A1(G) = 1.



Issue 2: When IGNN learns long-range dependencies (LRD)

e Learning LRD: each node can aggregate information from the nodes that are far apart.

e To learn LRD, A;(|W/|) needs to be close to one in magnitude; otherwise, the Picard
iteration converges too fast, and each node only aggregates nearby nodes’ features.

e Training IGNN with A;(|W]) — 1, starting from random initialization, may not
happen.

e Picard iteration converges slowly when A\;(|W|) — 1



A monotone operator theory viewpoint of IGNN

e Notice that Z(k+1) = J(WZ(k)G + gB(X)) can be rewritten as the following
vectorized equation

vec(ZKH1)) = O'(GT ® Wec(ZK) + vec(gg(X))),

where GT @ W denotes the Kronecker product between G and W.



A monotone operator theory viewpoint of IGNN

e Finding a fixed point of (1) is equivalent to solving the monotone inclusion problem
find 0 € (F + G)(vec(Z)"),
where
F(vee(Z)) = (I — GT @ W)vec(Z) — vec(gs(X)) and G = df,

where f is a convex closed proper (CCP) function such that

o(x) = proxp(x) = argzmin{;Hx — 7|2 + f(z)}.

e Notice that when o is RelLU, then o = prox¢ for Var > 0 with f being the indicator
of the positive octant, i.e. f(x) = I{x > 0}.



Well-posedness of MIGNN

e MIGNN: monotone operator theory viewpoint of IGNN.

e The fixed point Z* exists and is unique if F is strongly monotone.

olf I — G" ® W = ml for some m > 0, then F is strongly monotone.



Monotone parameterization of MIGNN: Enhancing expressivity of IGNN

e We consider the following MIGNN model

zH) = o (Wz G + gg(X)).

o We let G = £ where L := D71/2(D — A)D~%/2 is the normalized Laplacian.

e We parameterize W with the following monotone parameterization
W=@1-m)Jl—-CC"+F—FT,

where C, F € RY*9 are arbitrary matrices, and m > 0 € R.



Monotone parameterization of MIGNN: Enhancing expressivity of IGNN

e The monotone parameterization guarantees the operator F to be strongly monotone.

e The monotone parameterization allows the eigenvalues of W to be much less than
—1, which is more flexible than IGNN.



Orthogonal parameterization of MIGNN: Stabilizing learning LRD

e Consider the following MIGNN model

zUH) = 5(WZW G + gg(X)).

e We parameterize W using the following scaled Cayley map
W = ¢()(I - S)(1 + S)71,

where ¢(+) is the sigmoid function. § = C — C is a skew-symmetric matrix with
C € RY%9 an arbitrary matrix.

e Notice that the matrix (I — S)(/ 4+ §)~! is orthogonal.



Finding the fixed point of the equilibrium equation

e Picard iteration may not converge for MIGNN with monotone parameterization, i.e.,
W=(1-m)Jl—-CCT +F=FT.

e Picard iteration suffers from slow convergence for MIGNN with orthogonal
parameterization, i.e., W = (I — S)(/1 +S) * with S =C - C".

e Need new algorithms to find the fixed point of MIGNN.



Forward-backward splitting (FB): MIGNN with monotone parameterization

e Finding the fixed point of MIGNN, Z**1) = 5 (WZ¥ G + gg(X)), with monotone parameterization
ZUH = FEB(Z(k)) = proxy (Z(k) —a- (Z(k) —wz®g ng(X))) ,

where o > 0 is an appropriate constant.

Z(k+1/2) _ Z(K) _ . (Z(k) —wz®e - gB(X))

zZU = prox?‘(z(k+1/2)).

e Resulting the model MIGNN-Mon.



Peaceman-Rachford splitting (PR): MIGNN with orthogonal parameterization

e PR finds the solution Z* of the MIGNN by letting
Z* = proxz (U"),
where U* is the solution of the following fixed point iterations:
vee(UKH)) = FPR(vec(UK))) := CrCo(vec(UX)),
where

Rr=(Z+aT)},

and
Cr=2Rr—-1.



Peaceman-Rachford splitting (PR): MIGNN with orthogonal parameterization

o Let u* := vec(UW), then we can formulate PR as follows

uk+l = FPR(yky = 2V<2prox?‘(uk) —uk g avec(gB(X))> — 2prox?(u¥) + u*,

«

where the matrix V := (I + o(l — GT ® W))~! and u® is the zero vector.

e Computing V/(x*) is expensive:

> Bartels—Stewart algorithm, which requires diagonalizing the matrix G and W.



PR with Neumann series approximation

o Notice that
Vw)=(+ao(l -G" o W))™? uk)

1 ,_GT®W
l+a l+1/a
Uk G

1 vec(
:1+az (1+1/a)

i=0

e K-th order Neumann series approximation of V/(u):

(WU G')
(1+1/a)

3 vec
Ny (vec(UY)) : 1+az

K
i=0

e K-th order Neumann series approximation of PR iteration

uft = FPRE (k) — oy (Zproxf( K —uf + avec(gB(X))) — 2prox®(u*) + u*.



MIGNN with diffusion convolution

e We can set G to be the combination of higher powers of A or L, making each node
to aggregate multi-hops neighbors' features in each iteration.

e We let G =D Y2(A+---+ AP)D~1/2 for any positive integer P, where D is the

degree matrix with D = 37, S (AR

e MIGNN with P-th order diffusion matrix G

Z=0(WZD A+ A%+ ...+ APYDY/2 4 gg(X)).

e We denote the model as MIGNN-NKDP when it is implemented by using the P-th
order diffusion and the K-th order Neumann series approximated PR iteration.



Directed chain classification
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Figure: The accuracy of IGNN and MIGNN for classifying directed chains of different lengths.



Directed chain classification
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Figure: MIGNN-N2D5 vs. IGNN for three class chains classification (length: 140).



Graph node classification: Citation networks

Datasets Cora Citeseer Pubmed
Geom-GCN 85.27 77.99 90.05
GCNII 88.49 77.08 89.57
APPNP 85.09 75.73 79.73
GCN+GDC 83.58 73.35 78.72
GIND 88.25 76.81 89.22
IGNN 85.80 75.24 87.66
EIGNN (Ours) 85.89 75.31 87.92
MIGNN-Mon (Ours) 86.82 76.59 88.00
MIGNN-N5D1 87.04 74.91 83.55

Table: Node classification mean accuracy (%) for 10-fold cross-validation.



Graph classification: bioinformatics-related tasks

Datasets MUTAG PTC COX2 PROTEINS NCI1
# graphs/Avg # nodes 188/17.9 344/25.5 467/41.2 1113/39.1 4110/29.8
WL 841+19 58.0+25 832X£02 747+X05 845105
DCNN 67.0 56.6 — 61.3 62.6
DGCNN 85.8 58.6 — 75.5 74.4
GIN 89.4+5.6 64.6 +7.0 — 76.2+3.4 82717
FDGNN 88.5+3.8 63.4+54 833+£29 76.8 2.9 77.8+1.6
IGNN 76.0+13.4 605+64 79.7+£34 765+ 3.4 73.5+1.9
GIND 89.3+74 66.91+6.6 84.8+4.2 77.24+29 78.8 2.9
GSN 92.2+75 68.24+7.2 — 76.6 =5.0 83.5+2.0
SIN — — — 76.5+3.3 82.8 22
CIN 92.7£6.1 68.2 + 5.6 — 77.0+4.3 83.6 1.4
MIGNN-Mon 81.8£0.1 726 E£6.7 85.0£53 779+34 73.6 £2.0
MIGNN-N1D1 86.1+9.1 70.9+65 865+238 79.0 3.3 78.4+1.2
MIGNN-N3D1 91.4+75 71.24+32 882+41 80.1+3.8 80.8 +1.81
Table: Graph classification mean accuracy (%) =+ standard deviation for 10-fold cross-validation.



Graph classification: bioinformatics-related tasks
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Figure: A1(|W]) of MIGNN-Mon vs. Epoch on MUTAG.



Summary

|. How activation functions affect the smoothness of node features.

|.1 Geometric characterization

|.2 Smoothness control

Il. Monotone operator-based implicit graph neural networks

[.1 Stable and accurate graph deep learning

[.2 Fast convergence and learning long-range dependencies



