The Effects of Activation Functions on the Over-smoothing Issue of Graph Convolutional Networks

Bao Wang
Department of Mathematics
Scientific Computing and Imaging Institute The University of Utah

CBMS Conference: Deep Learning and Numerical PDEs Morgan State University

Shih-Hsin Wang*, Justin Baker*, Cory Hauck, and Bao Wang, The Effects of Activation Functions on the Over-smoothing Issue of Graph Convolutional Networks, submitted.

Learning Non-Euclidean Data?

- Graph is a flexible structure to represent non-Euclidean data.

Social Graph (Facebook, Wikipedia)

3D Mesh

G_{1}

Molecular Graph

Graph convolutional networks

- Let $G=(V, E)$ be an undirected graph where $V=\left\{v_{i}\right\}_{i=1}^{n}$ is the set of nodes and E is the set of edges.
- Let $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ be the adjacency matrix of G.
- Let $\boldsymbol{G}:=(\boldsymbol{D}+\boldsymbol{I})^{-\frac{1}{2}}(\boldsymbol{I}+\boldsymbol{A})(\boldsymbol{D}+\boldsymbol{I})^{-\frac{1}{2}}=\tilde{\boldsymbol{D}}^{-\frac{1}{2}} \tilde{\boldsymbol{A}}^{-\frac{1}{2}}$ be the (augmented) normalized adjacency matrix.
- Graph convolutional layer (GCL):

$$
\boldsymbol{H}^{\prime}=\sigma\left(\boldsymbol{W}^{\prime} \boldsymbol{H}^{\prime-1} \boldsymbol{G}\right)
$$

where σ is the activation function, $\boldsymbol{W}^{\prime} \in \mathbb{R}^{d \times d}$ is a learnable weight matrix, and $\boldsymbol{H}^{0}:=$ $\left[\boldsymbol{h}_{1}, \ldots, \boldsymbol{h}_{n}\right] \in \mathbb{R}^{d \times n}$ with \boldsymbol{h}_{i} being the $i^{t h}$ node feature. A message-passing scheme rather than exact convolution.

Kipf and Welling, ICLR, 2017.

Graph learning tasks

- Node classification
- Link prediction
- Graph classification and generation

User-item Interaction Graph

Link prediction

Applications: Social network

Node classification

Over-smoothing of GNN

- All eigenvalues of \boldsymbol{G} lie in the interval $(-1,1]$.
- $\boldsymbol{H}^{\prime}=\boldsymbol{W}^{\prime} \boldsymbol{H}^{\prime-1} \boldsymbol{G}$, i.e., $\operatorname{vec}\left(\boldsymbol{H}^{\prime}\right)=\boldsymbol{G}^{\top} \otimes \boldsymbol{W}^{\prime} \operatorname{vec}\left(\boldsymbol{H}^{I-1}\right)$, can be considered as a low-pass filter, indicating that each GCL "smooths" node features.
- As the GCN architecture gets deep, all nodes' representation - within each connected component - will become "indistinguishable", which is referred to as over-smoothing.
- Learning long-range dependencies ("long-range interaction") is hard.

Existing Theory

Mathematical characterization of the over-smoothing - I (Oono \& Suzuki, ICLR, 2019.)

- Distance of the node features \boldsymbol{H}^{\prime} to the eigenspace \mathcal{M} - the eigenspace corresponding to the largest eigenvalue of \boldsymbol{G} - goes to zero.
$>$ Suppose the graph G has m connected components, i.e. we can decompose $V=\bigcup_{i=1}^{m} V_{i}$. Let $\boldsymbol{u}_{i}=\left(1_{\left\{k \in V_{i}\right\}}\right)_{1 \leq k \leq n}$ be the indicator vector of the $i^{\text {th }}$ component V_{i}.
$>$ The nonegative vectors $\left\{\tilde{\boldsymbol{D}}^{\frac{1}{2}} \boldsymbol{u}_{i} /\left\|\tilde{\boldsymbol{D}}^{\frac{1}{2}} \boldsymbol{u}_{i}\right\|\right\}_{1 \leq i \leq m}$ form an orthonormal basis of \mathcal{M}.
- Let $\mathbb{R}^{d} \otimes \mathcal{M}$ be the subspace of $\mathbb{R}^{d \times n}$ consisting of the sum $\sum_{i=1}^{m} \boldsymbol{w}_{i} \otimes \boldsymbol{e}_{i}$ where $\boldsymbol{w}_{i} \in \mathbb{R}^{d}$ and $\left\{\boldsymbol{e}_{i}\right\}_{i=1}^{m}$ is an orthonormal basis of the eigenspace \mathcal{M}. Then the distance of \boldsymbol{H}^{\prime} to \mathcal{M} is

$$
\left\|\boldsymbol{H}^{\prime}\right\|_{\mathcal{M}^{\perp}}:=\inf _{\boldsymbol{\gamma} \in \mathbb{R}^{d} \otimes \mathcal{M}}\left\|\boldsymbol{H}^{\prime}-\boldsymbol{Y}\right\|_{F}=\left\|\boldsymbol{H}^{\prime}-\sum_{i=1}^{m} \boldsymbol{H}^{\prime} \boldsymbol{e}_{\boldsymbol{i}} \boldsymbol{e}_{i}^{\top}\right\|_{F} .
$$

- $\left\|\boldsymbol{H}^{\prime}\right\|_{\mathcal{M}^{\perp}} \leq s_{l} \lambda\left\|\boldsymbol{H}^{\prime-1}\right\|_{\mathcal{M}^{\perp}}$ when σ is ReLU. Here, $\lambda=\max \left\{\left|\lambda_{i}\right| \mid \lambda_{i}<1\right\}$ is the second largest magnitude of \boldsymbol{G} 's eigenvalues, and s_{l} is the largest singular value of \boldsymbol{W}^{\prime}.

Effects of ReLU

- $\|\sigma(\boldsymbol{Z})\|_{\mathcal{M}^{\perp}} \leq\|\boldsymbol{Z}\|_{\mathcal{M}^{\perp}}$ for any matrix \boldsymbol{Z} when σ is ReLU, i.e. ReLU reduces the distance to eigenspace M. - Oono \& Suzuki, ICLR, 2019
- Dirichlet energy of node features:

$$
\|\boldsymbol{H}\|_{E}^{2}:=\operatorname{Trace}\left(\boldsymbol{H} \tilde{\Delta} \boldsymbol{H}^{\top}\right)
$$

where $\tilde{\Delta}=\boldsymbol{I}-\boldsymbol{G}$ is the (augmented) normalized Laplacian.

- $\left\|\boldsymbol{H}^{\prime}\right\|_{E} \leq s_{l} \lambda\left\|\boldsymbol{H}^{\prime-1}\right\|_{E}$ when σ is ReLU or leaky ReLU.

Effects of activation function: Existing theory

- $\|\sigma(\boldsymbol{Z})\|_{\mathcal{M}^{\perp}} \leq\|\boldsymbol{Z}\|_{\mathcal{M}^{\perp}}$ for any matrix \boldsymbol{Z} when σ is ReLU, i.e. ReLU reduces the distance to eigenspace M. - Oono \& Suzuki, ICLR, 2019
- $\|\sigma(\boldsymbol{Z})\|_{E} \leq\|\boldsymbol{Z}\|_{E}$ for any matrix \boldsymbol{Z} when σ is ReLU or leaky ReLU. - Cai \& Wang, arXiv:2006.13318, 2020
- $\|\boldsymbol{H}\|_{\mathcal{M}^{\perp}}$ and $\|\boldsymbol{H}\|_{E}$ are two equivalent seminorms, i.e. there exist two constants $\alpha, \beta>0$ s.t. $\alpha\|\boldsymbol{H}\|_{\mathcal{M}^{\perp}} \leq\|\boldsymbol{H}\|_{E} \leq \beta\|\boldsymbol{H}\|_{\mathcal{M}^{\perp}}$ for any $\boldsymbol{H} \in \mathbb{R}^{d \times n}$. $>\|\sigma(\boldsymbol{Z})\|_{\mathcal{M}^{\perp}} \leq\|\boldsymbol{Z}\|_{\mathcal{M}^{\perp}}$, when σ is ReLU or leaky ReLU.

Bottlenecks of the existing theory

- Existing smoothness notions - distant to \mathcal{M} and Dirichlet energy of node features do not take the magnitude of feature vectors into account and they are not scaling free. Multiplying feature vectors by a constant will result in corresponding changes in their distance to \mathcal{M} and their Dirichlet energy but do not affect graph node classification.
- Existing theory do not reveal a mechanism to control the smoothness of the learned node features when taking the activation functions into consideration.

Geometry Underlying the Input \& Output of ReLU and Leaky ReLU

Geometric characterization of the effect of ReLU

- We have the decomposition $\boldsymbol{H}=\boldsymbol{H}_{\mathcal{M}}+\boldsymbol{H}_{\mathcal{M}^{\perp}}$ for any matrix $\boldsymbol{H}:=\left[\boldsymbol{h}_{1}, \boldsymbol{h}_{2}, \ldots, \boldsymbol{h}_{n}\right] \in \mathbb{R}^{d \times n}$

$$
\boldsymbol{H}_{\mathcal{M}}=\sum_{i=1}^{m} \boldsymbol{H} \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{\top}, \quad \text { and } \quad \boldsymbol{H}_{\mathcal{M}^{\perp}}=\sum_{i=m+1}^{n} \boldsymbol{H} \boldsymbol{e}_{i} \boldsymbol{e}_{i}^{\top}
$$

- Let $\boldsymbol{Z} \in \mathbb{R}^{d \times n}$ be an arbitrary matrix and $\boldsymbol{H}=\sigma(\boldsymbol{Z})$ with $\sigma(x)=\max \{0, x\}$ being ReLU.
- Proposition 1. For any $\boldsymbol{Z}=\boldsymbol{Z}_{\mathcal{M}}+\boldsymbol{Z}_{\mathcal{M}^{\perp}} \in \mathbb{R}^{d \times n}$, let $\boldsymbol{H}=\sigma(\boldsymbol{Z})=\boldsymbol{H}_{\mathcal{M}}+\boldsymbol{H}_{\mathcal{M}^{\perp}}$ with σ being ReLU, then $\boldsymbol{H}_{\mathcal{M}^{\perp}}$ lies on the high dimensional sphere centered at $\boldsymbol{Z}_{\mathcal{M}^{\perp}} / 2$ with the radius

$$
r:=\left(\left\|\boldsymbol{Z}_{\mathcal{M}^{\perp}} / 2\right\|_{F}^{2}-\left\langle\boldsymbol{Z}_{\mathcal{M}}^{+}, \boldsymbol{Z}_{\mathcal{M}}^{-}\right\rangle_{F}\right)^{1 / 2}
$$

In particular, $\boldsymbol{H}_{\mathcal{M}^{\perp}}$ lies inside the ball centered at $\boldsymbol{Z}_{\mathcal{M}^{\perp}} / 2$ with radius $\left\|\boldsymbol{Z}_{\mathcal{M}^{\perp}} / 2\right\|_{F}$ and hence we have $\left\|\boldsymbol{H}_{\mathcal{M}^{\perp}}\right\|_{F} \leq\left\|\boldsymbol{Z}_{\mathcal{M}^{\perp}}\right\|_{F}$. [Reduced distance to \mathcal{M} !]

- $\boldsymbol{Z}^{+}=\max (\boldsymbol{Z}, 0)$ and $\boldsymbol{Z}^{-}=\max (-\boldsymbol{Z}, 0)$.

Geometric characterization of the effect of leaky ReLU

- Let $\boldsymbol{Z} \in \mathbb{R}^{d \times n}$ be an arbitrary matrix and $\boldsymbol{H}=\sigma_{a}(\boldsymbol{Z})$ with σ_{a} being leaky ReLU:

$$
\sigma_{a}(x)= \begin{cases}x & \text { if } x \geq 0 \\ a x & \text { otherwise }\end{cases}
$$

where $0<a<1$ is a positive scalar.

- Proposition 2. For any $\boldsymbol{Z}=\boldsymbol{Z}_{\mathcal{M}}+\boldsymbol{Z}_{\mathcal{M}^{\perp}}$, let $\boldsymbol{H}=\sigma_{a}(\boldsymbol{Z})=\boldsymbol{H}_{\mathcal{M}}+\boldsymbol{H}_{\mathcal{M}^{\perp}}$ with σ_{a} being leaky ReLU, then $\boldsymbol{H}_{\mathcal{M}}$ lies on the high dimensional sphere centered at $(1+a) \boldsymbol{Z}_{\mathcal{M}}+/ 2$ with radius

$$
r_{a}:=\left(\left\|(1-a) \boldsymbol{Z}_{\mathcal{M}^{\perp}} / 2\right\|_{F}^{2}-(1-a)^{2}\left\langle\boldsymbol{Z}_{\mathcal{M}}^{+}, \boldsymbol{Z}_{\mathcal{M}}^{-}\right\rangle_{F}\right)^{1 / 2}
$$

In particular, $\boldsymbol{H}_{\mathcal{M}^{\perp}}$ lies inside the high-dimensional ball centered at $(1+a) \boldsymbol{Z}_{\mathcal{M}^{\perp}} / 2$ with radius $\left\|(1-a) \boldsymbol{Z}_{\mathcal{M}^{\perp}} / 2\right\|_{F}$ and hence we see that $a\|\boldsymbol{Z}\|_{\mathcal{M}^{\perp}} \leq\|\boldsymbol{H}\|_{\mathcal{M}^{\perp}} \leq\|\boldsymbol{Z}\|_{\mathcal{M}^{\perp}}$.

Geometric characterization of the effect of activation functions

- σ : center $\boldsymbol{Z}_{\mathcal{M}^{\perp}} / 2$, radius $r:=\left(\left\|\boldsymbol{Z}_{\mathcal{M}^{\perp}} / 2\right\|_{F}^{2}-\left\langle\boldsymbol{Z}_{\mathcal{M}}^{+}, \boldsymbol{Z}_{\mathcal{M}}^{-}\right\rangle_{F}\right)^{1 / 2}$.
- $\sigma_{a}:$ center $(1+a) \boldsymbol{Z}_{\mathcal{M}^{\perp}} / 2$, radius $r_{a}:=\left(\left\|(1-a) \boldsymbol{Z}_{\mathcal{M}^{\perp}} / 2\right\|_{\mathcal{F}}^{2}-(1-a)^{2}\left\langle\boldsymbol{Z}_{\mathcal{M}}^{+}, \boldsymbol{Z}_{\mathcal{M}}^{-}\right\rangle_{F}\right)^{1 / 2}$.
- Prop. 1 and 2 imply the precise location of $\boldsymbol{H}_{\mathcal{M}^{\perp}}$ (or the smoothness $\left\|\boldsymbol{H}_{\mathcal{M}^{\perp}}\right\|_{F}=\|\boldsymbol{H}\|_{\mathcal{M}^{\perp}}$) depends on the center and the radius of the spheres. Given a fixed $\boldsymbol{Z}_{\mathcal{M}^{\perp}}$, the center of the spheres remains unchanged and their radii r and r_{a} are only affected by changes in $\boldsymbol{Z}_{\mathcal{M}}$.
- Next, we focus on analyzing how changes in $\boldsymbol{Z}_{\mathcal{M}}$ impact $\|\boldsymbol{H}\|_{\mathcal{M}^{\perp}}$, i.e. the smoothness of node features.

How changes in $Z_{\mathcal{M}}$ impact $\|\boldsymbol{H}\|_{\mathcal{M}^{+}}$?

- Prop 1 and 2 show that both ReLU and leaky ReLU reduce the distance of node features to the eigenspace \mathcal{M}, i.e. $\|\boldsymbol{H}\|_{\mathcal{M}^{\perp}} \leq\|\boldsymbol{Z}\|_{\mathcal{M}^{\perp}}$.
- Consider $\boldsymbol{Z}, \boldsymbol{Z}^{\prime} \in \mathbb{R}^{d \times n}$ s.t. $\boldsymbol{Z}_{\mathcal{M}^{\perp}}=\boldsymbol{Z}_{\mathcal{M}^{\perp}}^{\prime}$ but $\boldsymbol{Z}_{\mathcal{M}} \neq \boldsymbol{Z}_{\mathcal{M}}^{\prime}$. Let $\boldsymbol{H}, \boldsymbol{H}^{\prime}$ be the output of $\boldsymbol{Z}, \boldsymbol{Z}^{\prime}$ via ReLU or leaky ReLU, respectively.
$>$ We have $\|\boldsymbol{H}\|_{\mathcal{M}^{\perp}} \leq\|\boldsymbol{Z}\|_{\mathcal{M}^{\perp}}$ and $\left\|\boldsymbol{H}^{\prime}\right\|_{\mathcal{M}^{\perp}} \leq\left\|\boldsymbol{Z}^{\prime}\right\|_{\mathcal{M}^{\perp}}$.
$>\boldsymbol{Z}_{\mathcal{M}^{\perp}}=\boldsymbol{Z}_{\mathcal{M}^{\perp}}^{\prime}$ implies that $\|\boldsymbol{Z}\|_{\mathcal{M}^{\perp}}=\left\|\boldsymbol{Z}^{\prime}\right\|_{\mathcal{M}^{\perp}} \Rightarrow\left\|\boldsymbol{H}^{\prime}\right\|_{\mathcal{M}^{\perp}} \leq\|\boldsymbol{Z}\|_{\mathcal{M}^{\perp}}$.
- In other words, when $Z_{\mathcal{M}^{\perp}}=Z_{\mathcal{M}^{\perp}}^{\prime}$ is fixed, changing $\boldsymbol{Z}_{\mathcal{M}}$ to $\boldsymbol{Z}_{\mathcal{M}}^{\prime}$ can not affect the fact that ReLU and leaky ReLU smooth node features. - Resonating with existing theories (Oono \& Suzuki, ICLR 2019, Cai \& Wang, arXiv:2006.13318).

Altering the eigenspace projection

- Let \boldsymbol{z} be a vector with z_{i} being the feature of the $i^{\text {th }}$ node, we consider

$$
z(\alpha)=z-\alpha \boldsymbol{e},
$$

where \boldsymbol{e} is the only eigenvector of \boldsymbol{G} associated with the eigenvalue 1 .

- It is clear that

$$
\boldsymbol{z}(\alpha)_{\mathcal{M}^{\perp}}=\boldsymbol{z}_{\mathcal{M}^{\perp}} \text { and } \boldsymbol{z}(\alpha)_{\mathcal{M}}=\boldsymbol{z}_{\mathcal{M}}-\alpha \boldsymbol{e}
$$

where we see that α only alters $\boldsymbol{z}_{\mathcal{M}}$ while preserves $\boldsymbol{z}_{\mathcal{M}^{\perp}}$.

- Consider a connected graph with 100 nodes with each being assigned a random degree between 2 to 10 . Then we assign an initial node feature $\boldsymbol{x} \in \mathbb{R}^{100}$, sampled uniformly on the interval $[-1.5,1.5]$, with each node feature being a scalar; we study the smoothness of node features $\boldsymbol{z}_{\alpha}=\boldsymbol{x}+\alpha \boldsymbol{e}$, where $\alpha \in[-1.5,1.5]$ is the smoothness control parameter.

Figure: Effects of varying parameter α on the smoothness of output features $\sigma\left(\boldsymbol{z}_{\alpha}\right)$ and $\sigma_{a}\left(\boldsymbol{z}_{\alpha}\right)$.

Normalized Smoothness

- For the sake of simplicity, we assume the graph is connected, i.e. $m=1$.
- Definition. Let $\boldsymbol{Z} \in \mathbb{R}^{d \times n}$ be the features over n nodes with $\boldsymbol{z}^{(i)} \in \mathbb{R}^{n}(i=1, \ldots, d)$ being the $i^{\text {th }}$ row vector of \boldsymbol{Z}, i.e. the $i^{\text {th }}$ dimension of the features over all nodes. Then we define the normalized smoothness of $\boldsymbol{z}^{(i)}$ as follows:

$$
s\left(\boldsymbol{z}^{(i)}\right):=\frac{\left\|\boldsymbol{z}_{\mathcal{M}}^{(i)}\right\|}{\left\|\boldsymbol{z}^{(i)}\right\|} \in[0,1]
$$

where we set $s\left(\boldsymbol{z}^{(i)}\right)=1$ when $z^{(i)}=0$.

Altering the eigenspace projection

- Let \boldsymbol{z} be a vector with z_{i} being the feature of the $i^{\text {th }}$ node, we consider

$$
z(\alpha)=z-\alpha \boldsymbol{e},
$$

where \boldsymbol{e} is the only eigenvector of \boldsymbol{G} associated with the eigenvalue 1 .

- It is clear that

$$
\boldsymbol{z}(\alpha)_{\mathcal{M}^{\perp}}=\boldsymbol{z}_{\mathcal{M}^{\perp}} \text { and } \boldsymbol{z}(\alpha)_{\mathcal{M}}=\boldsymbol{z}_{\mathcal{M}}-\alpha \boldsymbol{e}
$$

where we see that α only alters $\boldsymbol{z}_{\mathcal{M}}$ while preserves $\boldsymbol{z}_{\mathcal{M}^{\perp}}$.

- Consider a connected graph with 100 nodes with each being assigned a random degree between 2 to 10 . Then we assign an initial node feature $\boldsymbol{x} \in \mathbb{R}^{100}$, sampled uniformly on the interval $[-1.5,1.5]$, with each node feature being a scalar; we study the smoothness of node features $\boldsymbol{z}_{\alpha}=\boldsymbol{x}+\alpha \boldsymbol{e}$, where $\alpha \in[-1.5,1.5]$ is the smoothness control parameter.

Figure: Effects of varying α on the normalized smoothness of output features $\sigma\left(\boldsymbol{z}_{\alpha}\right)$ and $\sigma_{\mathrm{a}}\left(\boldsymbol{z}_{\alpha}\right)$.

Proposition 3. (ReLU) Suppose $\boldsymbol{z}_{\mathcal{M}^{\perp}} \neq 0$. Let $\boldsymbol{h}(\alpha)=\sigma(\boldsymbol{z}(\alpha))$ with σ being ReLU, then

$$
\min _{\alpha} s(\boldsymbol{h}(\alpha))=\sqrt{\frac{\sum_{x_{i}=\max x} d_{i}}{\sum_{j=1}^{n} d_{j}}} \text { and } \max _{\alpha} s(\boldsymbol{h}(\alpha))=1,
$$

where $\boldsymbol{x}:=\tilde{\boldsymbol{D}}^{-\frac{1}{2}} \boldsymbol{z}, \max \boldsymbol{x}=\max _{1 \leq i \leq n} x_{i}$, and $\tilde{\boldsymbol{D}}=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$. Also, the normalized smoothness $s(\boldsymbol{h}(\alpha))$ is monotone increasing as α decreases whenever $\alpha<\left\|\tilde{\boldsymbol{D}}^{\frac{1}{2}} \boldsymbol{u}_{n}\right\| \max \boldsymbol{x}$ and it has range $\left[\min _{\alpha} \boldsymbol{s}(\boldsymbol{h}(\alpha)), 1\right]$.

Figure: Effects of varying α on the normalized smoothness of output features $\sigma\left(\boldsymbol{z}_{\alpha}\right)$ and $\sigma_{\mathrm{a}}\left(\boldsymbol{z}_{\alpha}\right)$.

Proposition 4. (Leaky ReLU) Suppose $\boldsymbol{z}_{\mathcal{M} \perp} \neq 0$. Let $\boldsymbol{h}(\alpha)=\sigma_{a}(\boldsymbol{z}(\alpha))$ with σ_{a} being leaky ReLU, then 1) $\min _{\alpha} s(\boldsymbol{h}(\alpha))=0$, and 2) $\sup _{\alpha} s(\boldsymbol{h}(\alpha))=1$. Also, $s(\boldsymbol{h}(\alpha))$ has range $[0,1)$.

Figure: Effects of varying α on the normalized smoothness of output features $\sigma\left(\boldsymbol{z}_{\alpha}\right)$ and $\sigma_{a}\left(\boldsymbol{z}_{\alpha}\right)$.

Theorem 1. Suppose $\boldsymbol{z}_{\mathcal{M}^{\perp}} \neq 0$. Let $\boldsymbol{h}(\alpha)=\sigma(\boldsymbol{z}(\alpha))$ or $\sigma_{a}(\boldsymbol{z}(\alpha))$ with σ being ReLU and σ_{a} being leaky ReLU. Then we have $\|z\|_{\mathcal{M}^{\perp}} \geq\|\boldsymbol{h}(\alpha)\|_{\mathcal{M}^{\perp}}$ for any $\alpha \in \mathbb{R}$. However, $s(\boldsymbol{h}(\alpha))$ can be smaller than, larger than, or equal to $s(\boldsymbol{z})$ for different values of α.

Controlling the Smoothness of Node Features

Controlling the smoothness of node features

- Our proposed smoothness control term (SCT):

$$
\boldsymbol{B}_{\boldsymbol{\alpha}^{\prime}}=\sum_{i=1}^{m} \boldsymbol{\alpha}_{i}^{\prime} \boldsymbol{e}_{i}^{\top}
$$

where l is the layer index, $\left\{\boldsymbol{e}_{i}\right\}_{i=1}^{m}$ is the orthonormal basis of the eigenspace \mathcal{M}, and $\boldsymbol{\alpha}^{\prime}$ is a collection of learnable vectors $\left\{\boldsymbol{\alpha}_{i}^{\prime}\right\}_{i=1}^{m}$ with $\boldsymbol{\alpha}_{i}^{\prime} \in \mathbb{R}^{d}$ being approximated by an MLP.

- GCN-SCT:

$$
\boldsymbol{H}^{\prime}=\sigma\left(\boldsymbol{W}^{\prime} \boldsymbol{H}^{\prime-1} \boldsymbol{G}+\boldsymbol{B}_{\boldsymbol{\alpha}^{\prime}}\right) .
$$

- GCNII-SCT:

$$
\boldsymbol{H}^{\prime}=\sigma\left(\left(\left(1-\alpha_{l}\right) \boldsymbol{H}^{\prime-1} \boldsymbol{G}+\alpha_{l} \boldsymbol{H}^{0}\right)\left(\left(1-\beta_{l}\right) \boldsymbol{I}+\beta_{l} \boldsymbol{W}^{\prime}\right)+\boldsymbol{B}_{\boldsymbol{\alpha}^{\prime}}\right),
$$

where the residual connection and identity mapping are consistent with GCNII.

Node feature trajectory

- Consider a connected graph with two nodes with 1D node features. GCL becomes

$$
\boldsymbol{h}^{1}=\sigma\left(w \boldsymbol{h}^{0} \boldsymbol{G}+\boldsymbol{b}_{\alpha}\right),
$$

where $w=1.2, \boldsymbol{h}^{0}, \boldsymbol{h}^{1}, \boldsymbol{b}_{\alpha} \in \mathbb{R}^{2}$, and $\boldsymbol{G} \in \mathbb{R}^{2 \times 2}$. We select a positive definite matrix \boldsymbol{G} with the largest eigenvalue $1 ; \boldsymbol{G}$ is defined to be $[0.592,0.194 ; 0.194,0.908]$. Twenty initial node feature vectors \boldsymbol{h}^{0} are sampled evenly in the domain $[-1,1] \times[-1,1]$.

Figure: Node feature trajectories, with colorized magnitude, for varying smoothness control parameter α. For classical GCN b), the node features converge to the eigenspace \mathcal{M} (red dashed line).

Layers	2	4	16	32	
Cora					
GCN/GCN-SCT	$81.1 / 82.9$	$80.4 / 82.8$	$64.9 / 71.4$	$60.3 / 67.2$	
GCNII/GCNII-SCT	$82.2 / 83.8$	$82.6 / 84.3$	$84.6 / 84.8$	$85.4 / 85.5$	
EGNN/EGNN-SCT	$83.2 / 84.1$	$84.2 / 84.5$	$85.4 / 83.3$	$85.3 / 82.0$	
Citeseer					
GCN/GCN-SCT	$70.3 / 69.9$	$67.6 / 67.7$	$18.3 / 55.4$	$25.0 / 51.0$	
GCNII/GCNII-SCT	$68.2 / 72.8$	$68.9 / 72.8$	$72.9 / 73.8$	$73.4 / 73.4$	
EGNN/EGNN-SCT	$72.0 / 73.1$	$71.9 / 72.0$	$72.4 / 72.6$	$72.3 / 72.9$	
PubMed					
GCN/GCN-SCT	$79.0 / 79.8$	$76.5 / 78.4$	$40.9 / 76.1$	$22.4 / 77.0$	
GCNII/GCNII-SCT	$78.2 / 79.7$	$78.8 / 80.1$	$80.2 / 80.7$	$79.8 / 80.7$	
EGNN/EGNN-SCT	$79.2 / 79.8$	$79.5 / 80.4$	$80.1 / 80.3$	$80.0 / 80.4$	
Coauthor-Physics					
GCN/GCN-SCT	$92.4 / 92.6$	$92.1 / 92.5$	$13.5 / 50.9$	$13.1 / 43.6$	
GCNII/GCNII-SCT	$92.5 / 94.4$	$92.9 / 94.2$	$92.9 / 93.7$	$92.9 / 94.1$	
EGNN/EGNN-SCT	$92.6 / 93.9$	$92.9 / 94.1$	$93.1 / 94.0$	$93.3 / 93.8$	
Ogbn-arxiv					
GCN/GCN-SCT	$70.4 / 72.1$	$71.7 / 72.7$	$70.6 / 72.3$	$68.5 / 72.3$	
GCNII/GCNII-SCT	$70.1 / 72.0$	$71.4 / 72.1$	$71.5 / 72.4$	$70.5 / 72.1$	
EGNN/EGNN-SCT	$68.4 / 68.5$	$71.1 / 71.3$	$72.7 / 72.8$	$72.7 / 72.3$	

Table: Test accuracy for models of varying depth on citation networks with benchmark splits. (Unit:\%)

Cornell	Texas	Wisconsin	Chameleon
$52.70 / 55.95(0.007 / 0.018)$	$52.16 / 62.16(0.007 / 0.008)$	$45.88 / 54.71(0.007 / 0.008)$	$28.18 / 38.44(0.006 / 0.007)$
$74.86 / 75.41(0.020 / 0.020)$	$69.46 / 83.34(0.031 / 0.020)$	$74.12 / 86.08(0.020 / 0.015)$	$60.61 / 64.52(0.015 / 0.013)$

Table: Mean test accuracy results and average computational time per epoch (in the parenthesis) for the WebKB and WikipediaNetwork datasets with fixed $48 / 32 / 20 \%$ splits. First row: GCN/GCN-SCT. Second row: GCNII/GCNII-SCT. (Unit:\% (second))

Shih-Hsin Wang*, Justin Baker*, Cory Hauck, and Bao Wang, The Effects of Activation Functions on the Over-smoothing Issue of Graph Convolutional Networks, preprint, 2023.

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

Justin Baker*, Qingsong Wang*, Cory Hauck, and Bao Wang, Implicit Graph Neural Networks: A Monotone Operator Viewpoint, ICML, 2023.

Implicit GNNs

- Implicit GNN (IGNN)

$$
\boldsymbol{Z}^{(k+1)}=\sigma\left(\boldsymbol{W} \boldsymbol{Z}^{(k)} \boldsymbol{G}+g_{\boldsymbol{B}}(\boldsymbol{X})\right), \text { for } k=0,1,2, \cdots
$$

where g_{B} is a function parameterized by B, e.g. $g_{B}(X)=B X G$ with $B \in \mathbb{R}^{d \times d}$.

- Finding the fixed point \boldsymbol{Z}^{*} as the representation of input graph.

Gu et al. Implicit graph neural networks, NeurIPS 2020.

- Well-posedness, i.e. the fixed point exists and is unique

$$
\lambda_{1}(|\boldsymbol{W}|)<1
$$

Or all eigenvalues of \boldsymbol{W} are less than one in magnitude.

- The selection of \boldsymbol{W} is limited, limiting the expressivity of IGNN.

Notice that all eigenvalues of $\boldsymbol{G}=\hat{\boldsymbol{A}}$ are in $[-1,1]$ with $\lambda_{1}(\boldsymbol{G})=1$.

- Learning LRD: each node can aggregate information from the nodes that are far apart.
- To learn LRD, $\lambda_{1}(|\boldsymbol{W}|)$ needs to be close to one in magnitude; otherwise, the Picard iteration converges too fast, and each node only aggregates nearby nodes' features.
- Training IGNN with $\lambda_{1}(|\boldsymbol{W}|) \rightarrow 1$, starting from random initialization, may not happen.
- Picard iteration converges slowly when $\lambda_{1}(|\boldsymbol{W}|) \rightarrow 1$

A monotone operator theory viewpoint of IGNN

- Notice that $\boldsymbol{Z}^{(k+1)}=\sigma\left(\boldsymbol{W} \mathbf{Z}^{(k)} \boldsymbol{G}+g_{\boldsymbol{B}}(\boldsymbol{X})\right)$ can be rewritten as the following vectorized equation

$$
\begin{equation*}
\operatorname{vec}\left(\boldsymbol{Z}^{(k+1)}\right)=\sigma\left(\boldsymbol{G}^{\top} \otimes \boldsymbol{W} \operatorname{vec}\left(\boldsymbol{Z}^{(k)}\right)+\operatorname{vec}\left(g_{\boldsymbol{B}}(\boldsymbol{X})\right)\right), \tag{1}
\end{equation*}
$$

where $\boldsymbol{G}^{\top} \otimes \boldsymbol{W}$ denotes the Kronecker product between \boldsymbol{G} and \boldsymbol{W}.

- Finding a fixed point of (1) is equivalent to solving the monotone inclusion problem

$$
\text { find } 0 \in(\mathcal{F}+\mathcal{G})\left(\operatorname{vec}(\boldsymbol{Z})^{*}\right) \text {, }
$$

where

$$
\mathcal{F}(\operatorname{vec}(\boldsymbol{Z}))=\left(\boldsymbol{I}-\boldsymbol{G}^{\top} \otimes \boldsymbol{W}\right) \operatorname{vec}(\boldsymbol{Z})-\operatorname{vec}\left(g_{\boldsymbol{B}}(\boldsymbol{X})\right) \text { and } \mathcal{G}=\partial f
$$

where f is a convex closed proper (CCP) function such that

$$
\sigma(x)=\operatorname{prox}_{f}^{1}(x)=\underset{z}{\operatorname{argmin}}\left\{\frac{1}{2}\|x-z\|^{2}+f(z)\right\} .
$$

- Notice that when σ is ReLU, then $\sigma=\operatorname{prox}_{f}^{\alpha}$ for $\forall \alpha>0$ with f being the indicator of the positive octant, i.e. $f(x)=I\{x \geq 0\}$.
- MIGNN: monotone operator theory viewpoint of IGNN.
- The fixed point \boldsymbol{Z}^{*} exists and is unique if \mathcal{F} is strongly monotone.
- If $\boldsymbol{I}-\boldsymbol{G}^{\top} \otimes \boldsymbol{W} \succeq m \boldsymbol{I}$ for some $m>0$, then \mathcal{F} is strongly monotone.
- We consider the following MIGNN model

$$
\boldsymbol{Z}^{(k+1)}=\sigma\left(\boldsymbol{W} \boldsymbol{Z}^{(k)} \boldsymbol{G}+g_{\boldsymbol{B}}(\boldsymbol{X})\right)
$$

- We let $\boldsymbol{G}=\frac{\boldsymbol{L}}{2}$ where $\boldsymbol{L}:=\boldsymbol{D}^{-1 / 2}(\boldsymbol{D}-\boldsymbol{A}) \boldsymbol{D}^{-1 / 2}$ is the normalized Laplacian.
- We parameterize \boldsymbol{W} with the following monotone parameterization

$$
\boldsymbol{W}=(1-m) \boldsymbol{I}-\boldsymbol{C} \boldsymbol{C}^{\top}+\boldsymbol{F}-\boldsymbol{F}^{\top},
$$

where $\boldsymbol{C}, \boldsymbol{F} \in \mathbb{R}^{d \times d}$ are arbitrary matrices, and $m>0 \in \mathbb{R}$.

- The monotone parameterization guarantees the operator \mathcal{F} to be strongly monotone.
- The monotone parameterization allows the eigenvalues of \boldsymbol{W} to be much less than -1 , which is more flexible than IGNN.

Orthogonal parameterization of MIGNN: Stabilizing learning LRD

- Consider the following MIGNN model

$$
\boldsymbol{Z}^{(k+1)}=\sigma\left(\boldsymbol{W} \boldsymbol{Z}^{(k)} \boldsymbol{G}+g_{\boldsymbol{B}}(\boldsymbol{X})\right)
$$

- We parameterize \boldsymbol{W} using the following scaled Cayley map

$$
\boldsymbol{W}=\phi(\gamma)(\boldsymbol{I}-\boldsymbol{S})(\boldsymbol{I}+\boldsymbol{S})^{-1}
$$

where $\phi(\cdot)$ is the sigmoid function. $\boldsymbol{S}=\boldsymbol{C}-\boldsymbol{C}^{\top}$ is a skew-symmetric matrix with $\boldsymbol{C} \in \mathbb{R}^{d \times d}$ an arbitrary matrix.

- Notice that the matrix $(\boldsymbol{I}-\boldsymbol{S})(\boldsymbol{I}+\boldsymbol{S})^{-1}$ is orthogonal.

Finding the fixed point of the equilibrium equation

- Picard iteration may not converge for MIGNN with monotone parameterization, i.e., $\boldsymbol{W}=(1-m) \boldsymbol{I}-\boldsymbol{C} \boldsymbol{C}^{\top}+\boldsymbol{F}=\boldsymbol{F}^{\top}$.
- Picard iteration suffers from slow convergence for MIGNN with orthogonal parameterization, i.e., $\boldsymbol{W}=(\boldsymbol{I}-\boldsymbol{S})(\boldsymbol{I}+\boldsymbol{S})^{-1}$ with $\boldsymbol{S}=\boldsymbol{C}-\boldsymbol{C}^{\top}$.
- Need new algorithms to find the fixed point of MIGNN.

Forward-backward splitting (FB): MIGNN with monotone parameterization

- Finding the fixed point of MIGNN, $\boldsymbol{Z}^{(k+1)}=\sigma\left(\boldsymbol{W} \boldsymbol{Z}^{(k)} \boldsymbol{G}+g_{\boldsymbol{B}}(\boldsymbol{X})\right)$, with monotone parameterization

$$
\boldsymbol{Z}^{(k+1)}:=F_{\alpha}^{\mathrm{FB}}\left(\boldsymbol{Z}^{(k)}\right):=\operatorname{prox}_{f}^{\alpha}\left(\boldsymbol{Z}^{(k)}-\alpha \cdot\left(\boldsymbol{Z}^{(k)}-\boldsymbol{W} \boldsymbol{Z}^{(k)} \boldsymbol{G}-g_{\boldsymbol{B}}(\boldsymbol{X})\right)\right)
$$

where $\alpha>0$ is an appropriate constant.

$$
\begin{aligned}
\boldsymbol{Z}^{(k+1 / 2)} & =\boldsymbol{Z}^{(k)}-\alpha \cdot\left(\boldsymbol{Z}^{(k)}-\boldsymbol{W} \boldsymbol{Z}^{(k)} \boldsymbol{G}-g_{\boldsymbol{B}}(\boldsymbol{X})\right) \\
\boldsymbol{Z}^{(k+1)} & =\operatorname{prox}_{f}^{\alpha}\left(\boldsymbol{Z}^{(k+1 / 2)}\right)
\end{aligned}
$$

- Resulting the model MIGNN-Mon.
- PR finds the solution Z^{*} of the MIGNN by letting

$$
\boldsymbol{Z}^{*}=\operatorname{prox}_{f}^{\alpha}\left(\boldsymbol{U}^{*}\right)
$$

where \boldsymbol{U}^{*} is the solution of the following fixed point iterations:

$$
\operatorname{vec}\left(\boldsymbol{U}^{(k+1)}\right)=F_{\alpha}^{\mathrm{PR}}\left(\operatorname{vec}\left(\boldsymbol{U}^{(k)}\right)\right):=\mathcal{C}_{\mathcal{F}} \mathcal{C}_{\mathcal{G}}\left(\operatorname{vec}\left(\boldsymbol{U}^{(k)}\right)\right)
$$

where

$$
\mathcal{R}_{\mathcal{T}}=(\mathcal{I}+\alpha \mathcal{T})^{-1}
$$

and

$$
\mathcal{C}_{\mathcal{T}}=2 \mathcal{R}_{\mathcal{T}}-\mathcal{I}
$$

Peaceman-Rachford splitting (PR): MIGNN with orthogonal parameterization

- Let $\boldsymbol{u}^{k}:=\operatorname{vec}\left(\boldsymbol{U}^{(k)}\right)$, then we can formulate PR as follows

$$
\boldsymbol{u}^{k+1}:=F_{\alpha}^{\mathrm{PR}}\left(\boldsymbol{u}^{k}\right)=2 \boldsymbol{V}\left(2 \operatorname{prox}_{f}^{\alpha}\left(\boldsymbol{u}^{k}\right)-\boldsymbol{u}^{k}+\alpha \operatorname{vec}\left(g_{\boldsymbol{B}}(\boldsymbol{X})\right)\right)-2 \operatorname{prox}_{f}^{\alpha}\left(\boldsymbol{u}^{k}\right)+\boldsymbol{u}^{k}
$$ where the matrix $\boldsymbol{V}:=\left(\boldsymbol{I}+\alpha\left(\boldsymbol{I}-\boldsymbol{G}^{\top} \otimes \boldsymbol{W}\right)\right)^{-1}$ and \boldsymbol{u}^{0} is the zero vector.

- Computing $\boldsymbol{V}\left(\boldsymbol{x}^{k}\right)$ is expensive:
$>$ Bartels-Stewart algorithm, which requires diagonalizing the matrix \boldsymbol{G} and \boldsymbol{W}.

PR with Neumann series approximation

- Notice that

$$
\begin{aligned}
\boldsymbol{V}\left(\boldsymbol{u}^{k}\right) & =\left(\boldsymbol{I}+\alpha\left(\boldsymbol{I}-\boldsymbol{G}^{\top} \otimes \boldsymbol{W}\right)\right)^{-1}\left(\boldsymbol{u}^{k}\right) \\
& =\frac{1}{1+\alpha}\left(\boldsymbol{I}-\frac{\boldsymbol{G}^{\top} \otimes \boldsymbol{W}}{1+1 / \alpha}\right)^{-1}\left(\boldsymbol{u}^{k}\right) \\
& =\frac{1}{1+\alpha} \sum_{i=0}^{\infty} \frac{\operatorname{vec}\left(\boldsymbol{W}^{i} \boldsymbol{U}^{(k)} \boldsymbol{G}^{i}\right)}{(1+1 / \alpha)^{i}}
\end{aligned}
$$

- K-th order Neumann series approximation of $\boldsymbol{V}\left(\boldsymbol{u}^{k}\right)$:

$$
\boldsymbol{N}_{K}\left(\operatorname{vec}\left(\boldsymbol{U}^{k}\right)\right):=\frac{1}{1+\alpha} \sum_{i=0}^{K} \frac{\operatorname{vec}\left(\boldsymbol{W}^{i} \boldsymbol{U}^{k} \boldsymbol{G}^{i}\right)}{(1+1 / \alpha)^{i}}
$$

- K-th order Neumann series approximation of PR iteration

$$
\boldsymbol{u}^{k+1}:=\tilde{F}_{\alpha}^{\mathrm{PR}, \mathrm{~K}}\left(\boldsymbol{u}^{k}\right)=2 \boldsymbol{N}_{K}\left(2 \operatorname{prox}_{f}^{\alpha}\left(\boldsymbol{u}^{k}\right)-\boldsymbol{u}^{k}+\alpha \operatorname{vec}\left(g_{\boldsymbol{B}}(\boldsymbol{X})\right)\right)-2 \operatorname{prox}_{f}^{\alpha}\left(\boldsymbol{u}^{k}\right)+\boldsymbol{u}^{k}
$$

- We can set \boldsymbol{G} to be the combination of higher powers of $\hat{\boldsymbol{A}}$ or \boldsymbol{L}, making each node to aggregate multi-hops neighbors' features in each iteration.
- We let $\boldsymbol{G}=\tilde{\boldsymbol{D}}^{-1 / 2}\left(\boldsymbol{A}+\cdots+\boldsymbol{A}^{P}\right) \tilde{\boldsymbol{D}}^{-1 / 2}$ for any positive integer P, where $\tilde{\boldsymbol{D}}$ is the degree matrix with $\tilde{D}_{i i}=\sum_{j=1}^{n} \sum_{k=1}^{P}\left(\boldsymbol{A}^{k}\right)_{i j}$.
- MIGNN with P-th order diffusion matrix \boldsymbol{G}

$$
\boldsymbol{Z}=\sigma\left(\boldsymbol{W} \boldsymbol{Z} \tilde{\boldsymbol{D}}^{-1 / 2}\left(\boldsymbol{A}+\boldsymbol{A}^{2}+\cdots+\boldsymbol{A}^{P}\right) \tilde{\boldsymbol{D}}^{-1 / 2}+g_{\boldsymbol{B}}(\boldsymbol{X})\right)
$$

- We denote the model as MIGNN-NKDP when it is implemented by using the P-th order diffusion and the K-th order Neumann series approximated PR iteration.

Directed chain classification

Figure: The accuracy of IGNN and MIGNN for classifying directed chains of different lengths.

Directed chain classification

Figure: MIGNN-N2D5 vs. IGNN for three class chains classification (length: 140).

Graph node classification: Citation networks

Datasets	Cora	Citeseer	Pubmed
Geom-GCN	85.27	77.99	90.05
GCNII	88.49	77.08	89.57
APPNP	85.09	75.73	79.73
GCN+GDC	83.58	73.35	89.22
GIND	88.25	76.81	87.66
IGNN	85.80	75.24	87.92
EIGNN (Ours)	85.89	75.31	88.00
MIGN-Mon (Ours)	86.82	76.59	83.55
MIGNN-N5D1	87.04	74.91	

Table: Node classification mean accuracy (\%) for 10-fold cross-validation.

Graph classification: bioinformatics-related tasks

Datasets	MUTAG	PTC	COX2	PROTEINS	NCI1
\# graphs/Avg \# nodes	$188 / 17.9$	$344 / 25.5$	$467 / 41.2$	$1113 / 39.1$	$4110 / 29.8$
WL	84.1 ± 1.9	58.0 ± 2.5	83.2 ± 0.2	74.7 ± 0.5	84.5 ± 0.5
DCNN	67.0	56.6	-	61.3	62.6
DGCNN	85.8	58.6	-	75.5	74.4
GIN	89.4 ± 5.6	64.6 ± 7.0	-	76.2 ± 3.4	82.7 ± 1.7
FDGNN	88.5 ± 3.8	63.4 ± 5.4	83.3 ± 2.9	76.8 ± 2.9	77.8 ± 1.6
IGNN	76.0 ± 13.4	60.5 ± 6.4	79.7 ± 3.4	76.5 ± 3.4	73.5 ± 1.9
GIND	89.3 ± 7.4	66.9 ± 6.6	84.8 ± 4.2	77.2 ± 2.9	78.8 ± 2.9
GSN	92.2 ± 7.5	68.2 ± 7.2	-	76.6 ± 5.0	83.5 ± 2.0
SIN	-7	-	76.5 ± 3.3	82.8 ± 2.2	
CIN	92.7 ± 6.1	68.2 ± 5.6	-	77.0 ± 4.3	83.6 ± 1.4
MIGNN-Mon	81.8 ± 9.1	72.6 ± 6.7	85.0 ± 5.3	77.9 ± 3.4	73.6 ± 2.0
MIGNN-N1D1	86.1 ± 9.1	70.9 ± 6.5	86.5 ± 2.8	79.0 ± 3.3	78.4 ± 1.2
MIGNN-N3D1	91.4 ± 7.5	71.2 ± 3.2	88.2 ± 4.1	80.1 ± 3.8	80.8 ± 1.81

Table: Graph classification mean accuracy (\%) \pm standard deviation for 10 -fold cross-validation.

Figure: $\lambda_{\mathbf{1}}(|\boldsymbol{W}|)$ of MIGNN-Mon vs. Epoch on MUTAG.
I. How activation functions affect the smoothness of node features.
I. 1 Geometric characterization
I. 2 Smoothness control
II. Monotone operator-based implicit graph neural networks
I.1 Stable and accurate graph deep learning
I. 2 Fast convergence and learning long-range dependencies

