
The Effects of Activation Functions on the Over-smoothing Issue of
Graph Convolutional Networks

Bao Wang
Department of Mathematics

Scientific Computing and Imaging Institute
The University of Utah

CBMS Conference: Deep Learning and Numerical PDEs
Morgan State University

Partially supported by DOE and NSF.

Shih-Hsin Wang*, Justin Baker*, Cory Hauck, and Bao Wang, The Effects of Activation Functions
on the Over-smoothing Issue of Graph Convolutional Networks, submitted.

Learning Non-Euclidean Data?

• Graph is a flexible structure to represent non-Euclidean data.

Graph convolutional networks
• Let G = (V ,E) be an undirected graph where V = {vi}ni=1 is the set of nodes and E is the
set of edges.

• Let A ∈ Rn×n be the adjacency matrix of G .

• Let G := (D + I)− 1
2 (I + A)(D + I)− 1

2 = D̃− 1
2 ÃD̃− 1

2 be the (augmented) normalized
adjacency matrix.

• Graph convolutional layer (GCL):

H l = σ(W lH l−1G),

where σ is the activation function, W l ∈ Rd×d is a learnable weight matrix, and H0 :=

[h1, . . . ,hn] ∈ Rd×n with hi being the i th node feature. A message-passing scheme rather than
exact convolution.

Kipf and Welling, ICLR, 2017.

Graph learning tasks

• Node classification

• Link prediction

• Graph classification and generation

Applications: Recommender system

Link prediction

Applications: Social network

Node classification

Over-smoothing of GNN

• All eigenvalues of G lie in the interval (−1, 1].

• H l = W lH l−1G , i.e., vec(H l) = G⊤ ⊗W lvec(H l−1), can be considered as a low-pass filter,
indicating that each GCL “smooths” node features.

• As the GCN architecture gets deep, all nodes’ representation – within each connected
component – will become "indistinguishable", which is referred to as over-smoothing.

• Learning long-range dependencies (“long-range interaction”) is hard.

Existing Theory

Mathematical characterization of the over-smoothing - I (Oono & Suzuki, ICLR, 2019.)

• Distance of the node features H l to the eigenspace M – the eigenspace corresponding to the
largest eigenvalue of G – goes to zero.

> Suppose the graph G has m connected components, i.e. we can decompose
V =

⋃m
i=1 Vi . Let ui = (1{k∈Vi})1≤k≤n be the indicator vector of the i th component Vi .

> The nonegative vectors {D̃ 1
2 ui/∥D̃

1
2 ui∥}1≤i≤m form an orthonormal basis of M.

• Let Rd ⊗M be the subspace of Rd×n consisting of the sum
∑m

i=1 wi ⊗ ei where wi ∈ Rd

and {ei}mi=1 is an orthonormal basis of the eigenspace M. Then the distance of H l to M is

∥H l∥M⊥ := inf
Y∈Rd⊗M

∥H l − Y ∥F =
∥∥∥H l −

m∑
i=1

H leie⊤
i

∥∥∥
F
.

• ∥H l∥M⊥ ≤ slλ∥H l−1∥M⊥ when σ is ReLU. Here, λ = max{|λi | | λi < 1} is the second
largest magnitude of G ’s eigenvalues, and sl is the largest singular value of W l .

Effects of ReLU

• ∥σ(Z)∥M⊥ ≤ ∥Z∥M⊥ for any matrix Z when σ is ReLU, i.e. ReLU reduces the distance to
eigenspace M. – Oono & Suzuki, ICLR, 2019

Mathematical characterization of the over-smoothing - II (Cai & Wang, arXiv:2006.13318)

• Dirichlet energy of node features:

∥H∥2
E := Trace(H∆̃H⊤),

where ∆̃ = I − G is the (augmented) normalized Laplacian.

• ∥H l∥E ≤ slλ∥H l−1∥E when σ is ReLU or leaky ReLU.

Effects of activation function: Existing theory

• ∥σ(Z)∥M⊥ ≤ ∥Z∥M⊥ for any matrix Z when σ is ReLU, i.e. ReLU reduces the
distance to eigenspace M. – Oono & Suzuki, ICLR, 2019

• ∥σ(Z)∥E ≤ ∥Z∥E for any matrix Z when σ is ReLU or leaky ReLU. – Cai & Wang,
arXiv:2006.13318, 2020

• ∥H∥M⊥ and ∥H∥E are two equivalent seminorms, i.e. there exist two constants
α, β > 0 s.t. α∥H∥M⊥ ≤ ∥H∥E ≤ β∥H∥M⊥ for any H ∈ Rd×n.
> ∥σ(Z)∥M⊥ ≤ ∥Z∥M⊥ , when σ is ReLU or leaky ReLU.

Bottlenecks of the existing theory

• Existing smoothness notions – distant to M and Dirichlet energy of node features –
do not take the magnitude of feature vectors into account and they are not scaling free.
Multiplying feature vectors by a constant will result in corresponding changes in their
distance to M and their Dirichlet energy but do not affect graph node classification.

• Existing theory do not reveal a mechanism to control the smoothness of the learned
node features when taking the activation functions into consideration.

Geometry Underlying the Input & Output of
ReLU and Leaky ReLU

Geometric characterization of the effect of ReLU

• We have the decomposition H = HM + HM⊥ for any matrix H := [h1,h2, . . . ,hn] ∈ Rd×n

HM =
m∑
i=1

Heie⊤
i , and HM⊥ =

n∑
i=m+1

Heie⊤
i .

• Let Z ∈ Rd×n be an arbitrary matrix and H = σ(Z) with σ(x) = max{0, x} being ReLU.

• Proposition 1. For any Z = ZM +ZM⊥ ∈ Rd×n, let H = σ(Z) = HM +HM⊥ with σ being
ReLU, then HM⊥ lies on the high dimensional sphere centered at ZM⊥/2 with the radius

r :=
(
∥ZM⊥/2∥2

F − ⟨Z+
M,Z−

M⟩F
)1/2

.

In particular, HM⊥ lies inside the ball centered at ZM⊥/2 with radius ∥ZM⊥/2∥F and hence
we have ∥HM⊥∥F ≤ ∥ZM⊥∥F . [Reduced distance to M!]

• Z+ = max(Z , 0) and Z− = max(−Z , 0).

Geometric characterization of the effect of leaky ReLU

• Let Z ∈ Rd×n be an arbitrary matrix and H = σa(Z) with σa being leaky ReLU:

σa(x) =

{
x if x ≥ 0,
ax otherwise,

where 0 < a < 1 is a positive scalar.

• Proposition 2. For any Z = ZM + ZM⊥ , let H = σa(Z) = HM + HM⊥ with σa being leaky
ReLU, then HM⊥ lies on the high dimensional sphere centered at (1 + a)ZM⊥/2 with radius

ra :=
(
∥(1 − a)ZM⊥/2∥2

F − (1 − a)2⟨Z+
M,Z−

M⟩F
)1/2

.

In particular, HM⊥ lies inside the high-dimensional ball centered at (1 + a)ZM⊥/2 with radius
∥(1 − a)ZM⊥/2∥F and hence we see that a∥Z∥M⊥ ≤ ∥H∥M⊥ ≤ ∥Z∥M⊥ .

Geometric characterization of the effect of activation functions

• σ: center ZM⊥/2, radius r :=
(
∥ZM⊥/2∥2

F − ⟨Z+
M,Z−

M⟩F
)1/2

.

• σa: center (1 + a)ZM⊥/2, radius ra :=
(
∥(1 − a)ZM⊥/2∥2

F − (1 − a)2⟨Z+
M,Z−

M⟩F
)1/2

.

• Prop. 1 and 2 imply the precise location of HM⊥ (or the smoothness ∥HM⊥∥F = ∥H∥M⊥)
depends on the center and the radius of the spheres. Given a fixed ZM⊥ , the center of the
spheres remains unchanged and their radii r and ra are only affected by changes in ZM.

• Next, we focus on analyzing how changes in ZM impact ∥H∥M⊥ , i.e. the smoothness of
node features.

How changes in ZM impact ∥H∥M⊥?

Distance to the eigenspace M

• Prop 1 and 2 show that both ReLU and leaky ReLU reduce the distance of node
features to the eigenspace M, i.e. ∥H∥M⊥ ≤ ∥Z∥M⊥ .

• Consider Z ,Z ′ ∈ Rd×n s.t. ZM⊥ = Z ′
M⊥ but ZM ̸= Z ′

M. Let H ,H ′ be the output
of Z ,Z ′ via ReLU or leaky ReLU, respectively.

> We have ∥H∥M⊥ ≤ ∥Z∥M⊥ and ∥H ′∥M⊥ ≤ ∥Z ′∥M⊥ .
> ZM⊥ = Z ′

M⊥ implies that ∥Z∥M⊥ = ∥Z ′∥M⊥ ⇒ ∥H ′∥M⊥ ≤ ∥Z∥M⊥ .

• In other words, when ZM⊥ = Z ′
M⊥ is fixed, changing ZM to Z ′

M can not affect the
fact that ReLU and leaky ReLU smooth node features. — Resonating with existing
theories (Oono & Suzuki, ICLR 2019, Cai & Wang, arXiv:2006.13318).

Altering the eigenspace projection

• Let z be a vector with zi being the feature of the i th node, we consider

z(α) = z − αe,

where e is the only eigenvector of G associated with the eigenvalue 1.

• It is clear that
z(α)M⊥ = zM⊥ and z(α)M = zM − αe,

where we see that α only alters zM while preserves zM⊥ .

• Consider a connected graph with 100 nodes with each being assigned a random degree
between 2 to 10. Then we assign an initial node feature x ∈ R100, sampled uniformly on the
interval [−1.5, 1.5], with each node feature being a scalar; we study the smoothness of node
features zα = x + αe, where α ∈ [−1.5, 1.5] is the smoothness control parameter.

1.0 0.5 0.0 0.5 1.0
Parameter ()

0

5

10
Sm

oo
th

ne
ss

 (s
)

	z	
	(z)	
	a(z)	

Figure: Effects of varying parameter α on the smoothness of output features σ(zα) and σa(zα).

Normalized Smoothness

Dimension-wise normalized smoothness

• For the sake of simplicity, we assume the graph is connected, i.e. m = 1.

• Definition. Let Z ∈ Rd×n be the features over n nodes with z (i) ∈ Rn (i = 1, . . . , d) being
the i th row vector of Z , i.e. the i th dimension of the features over all nodes. Then we define
the normalized smoothness of z (i) as follows:

s(z (i)) :=
∥z (i)

M∥
∥z (i)∥

∈ [0, 1],

where we set s(z (i)) = 1 when z (i) = 0.

Altering the eigenspace projection

• Let z be a vector with zi being the feature of the i th node, we consider

z(α) = z − αe,

where e is the only eigenvector of G associated with the eigenvalue 1.

• It is clear that
z(α)M⊥ = zM⊥ and z(α)M = zM − αe,

where we see that α only alters zM while preserves zM⊥ .

• Consider a connected graph with 100 nodes with each being assigned a random degree
between 2 to 10. Then we assign an initial node feature x ∈ R100, sampled uniformly on the
interval [−1.5, 1.5], with each node feature being a scalar; we study the smoothness of node
features zα = x + αe, where α ∈ [−1.5, 1.5] is the smoothness control parameter.

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Parameter ()

0.0

0.5

1.0

Sm
oo

th
ne

ss
 (s

)

s(z)
s((z))
s(a(z))

Figure: Effects of varying α on the normalized smoothness of output features σ(zα) and σa(zα).

Proposition 3. (ReLU) Suppose zM⊥ ̸= 0. Let h(α) = σ(z(α)) with σ being ReLU, then

min
α

s(h(α)) =

√∑
xi=max x di∑n

j=1 dj
and max

α
s(h(α)) = 1,

where x := D̃− 1
2 z , max x = max1≤i≤n xi , and D̃ = diag(d1, d2, . . . , dn). Also, the normalized

smoothness s(h(α)) is monotone increasing as α decreases whenever α < ∥D̃ 1
2 un∥max x and

it has range [minα s(h(α)), 1].

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Parameter ()

0.0

0.5

1.0
Sm

oo
th

ne
ss

 (s
)

s(z)
s((z))
s(a(z))

Figure: Effects of varying α on the normalized smoothness of output features σ(zα) and σa(zα).

Proposition 4. (Leaky ReLU) Suppose zM⊥ ̸= 0. Let h(α) = σa(z(α)) with σa being leaky
ReLU, then 1) minα s(h(α)) = 0, and 2) supα s(h(α)) = 1. Also, s(h(α)) has range [0, 1).

1.0 0.5 0.0 0.5 1.0 1.5 2.0
Parameter ()

0.0

0.5

1.0

Sm
oo

th
ne

ss
 (s

)
s(z)
s((z))
s(a(z))

Figure: Effects of varying α on the normalized smoothness of output features σ(zα) and σa(zα).

Theorem 1. Suppose zM⊥ ̸= 0. Let h(α) = σ(z(α)) or σa(z(α)) with σ being ReLU and σa

being leaky ReLU. Then we have ∥z∥M⊥ ≥ ∥h(α)∥M⊥ for any α ∈ R. However, s(h(α)) can
be smaller than, larger than, or equal to s(z) for different values of α.

Controlling the Smoothness of Node Features

Controlling the smoothness of node features

• Our proposed smoothness control term (SCT):

Bαl =
m∑
i=1

αl
ie

⊤
i ,

where l is the layer index, {ei}mi=1 is the orthonormal basis of the eigenspace M, and αl is a
collection of learnable vectors {αl

i}mi=1 with αl
i ∈ Rd being approximated by an MLP.

• GCN-SCT:
H l = σ(W lH l−1G + Bαl).

• GCNII-SCT:

H l = σ(((1 − αl)H l−1G + αlH0)((1 − βl)I + βlW l) + Bαl),

where the residual connection and identity mapping are consistent with GCNII.

Node feature trajectory

• Consider a connected graph with two nodes with 1D node features. GCL becomes

h1 = σ(wh0G + bα),

where w = 1.2, h0,h1,bα ∈ R2, and G ∈ R2×2. We select a positive definite matrix G with
the largest eigenvalue 1; G is defined to be [0.592, 0.194; 0.194, 0.908]. Twenty initial node
feature vectors h0 are sampled evenly in the domain [−1, 1]× [−1, 1].

a) α = −0.25 b) α = 0.0 c) α = 1.0
Figure: Node feature trajectories, with colorized magnitude, for varying smoothness control parameter
α. For classical GCN b), the node features converge to the eigenspace M (red dashed line).

Layers 2 4 16 32

Cora
GCN/GCN-SCT 81.1/82.9 80.4/82.8 64.9/71.4 60.3/67.2

GCNII/GCNII-SCT 82.2/83.8 82.6/84.3 84.6/84.8 85.4/85.5
EGNN/EGNN-SCT 83.2/84.1 84.2/84.5 85.4/83.3 85.3/82.0

Citeseer
GCN/GCN-SCT 70.3/69.9 67.6/67.7 18.3/55.4 25.0/51.0

GCNII/GCNII-SCT 68.2/72.8 68.9/72.8 72.9/73.8 73.4/73.4
EGNN/EGNN-SCT 72.0/73.1 71.9/72.0 72.4/72.6 72.3/72.9

PubMed
GCN/GCN-SCT 79.0/79.8 76.5/78.4 40.9/76.1 22.4/77.0

GCNII/GCNII-SCT 78.2/79.7 78.8/80.1 80.2/80.7 79.8/80.7
EGNN/EGNN-SCT 79.2/79.8 79.5/80.4 80.1/80.3 80.0/80.4

Coauthor-Physics
GCN/GCN-SCT 92.4/92.6 92.1/92.5 13.5/50.9 13.1/43.6

GCNII/GCNII-SCT 92.5/94.4 92.9/94.2 92.9/93.7 92.9/94.1
EGNN/EGNN-SCT 92.6/93.9 92.9/94.1 93.1/94.0 93.3/93.8

Ogbn-arxiv
GCN/GCN-SCT 70.4/72.1 71.7/72.7 70.6/72.3 68.5/72.3

GCNII/GCNII-SCT 70.1/72.0 71.4/72.1 71.5/72.4 70.5/72.1
EGNN/EGNN-SCT 68.4/68.5 71.1/71.3 72.7/72.8 72.7/72.3

Table: Test accuracy for models of varying depth on citation networks with benchmark splits. (Unit:%)

Cornell Texas Wisconsin Chameleon
52.70/55.95 (0.007/0.018) 52.16/62.16 (0.007/0.008) 45.88/54.71 (0.007/0.008) 28.18/38.44 (0.006/0.007)
74.86/75.41 (0.020/0.020) 69.46/83.34 (0.031/0.020) 74.12/86.08 (0.020/0.015) 60.61/64.52 (0.015/0.013)

Table: Mean test accuracy results and average computational time per epoch (in the parenthesis) for
the WebKB and WikipediaNetwork datasets with fixed 48/32/20% splits. First row: GCN/GCN-SCT.
Second row: GCNII/GCNII-SCT. (Unit:% (second))

References

Shih-Hsin Wang*, Justin Baker*, Cory Hauck, and Bao Wang, The Effects of
Activation Functions on the Over-smoothing Issue of Graph Convolutional Networks,
preprint, 2023.

Implicit Graph Neural Networks: A Monotone Operator Viewpoint

Justin Baker*, Qingsong Wang*, Cory Hauck, and Bao Wang, Implicit Graph Neural Networks: A
Monotone Operator Viewpoint, ICML, 2023.

Implicit GNNs

• Implicit GNN (IGNN)

Z (k+1) = σ
(
WZ (k)G + gB(X)

)
, for k = 0, 1, 2, · · · ,

where gB is a function parameterized by B, e.g. gB(X) = BXG with B ∈ Rd×d .

• Finding the fixed point Z∗ as the representation of input graph.

Gu et al. Implicit graph neural networks, NeurIPS 2020.

Issue 1: Well-posedness of IGNN limits its expressivity of IGNN

• Well-posedness, i.e. the fixed point exists and is unique

λ1(|W |) < 1.

Or all eigenvalues of W are less than one in magnitude.

• The selection of W is limited, limiting the expressivity of IGNN.

Notice that all eigenvalues of G = Â are in [−1, 1] with λ1(G) = 1.

Issue 2: When IGNN learns long-range dependencies (LRD)

• Learning LRD: each node can aggregate information from the nodes that are far apart.

• To learn LRD, λ1(|W |) needs to be close to one in magnitude; otherwise, the Picard
iteration converges too fast, and each node only aggregates nearby nodes’ features.

• Training IGNN with λ1(|W |) → 1, starting from random initialization, may not
happen.

• Picard iteration converges slowly when λ1(|W |) → 1

A monotone operator theory viewpoint of IGNN

• Notice that Z (k+1) = σ
(
WZ (k)G + gB(X)

)
can be rewritten as the following

vectorized equation

vec(Z (k+1)) = σ
(
G⊤ ⊗ W vec(Z (k)) + vec(gB(X))

)
, (1)

where G⊤ ⊗ W denotes the Kronecker product between G and W .

A monotone operator theory viewpoint of IGNN

• Finding a fixed point of (1) is equivalent to solving the monotone inclusion problem

find 0 ∈ (F + G)(vec(Z)∗),

where

F(vec(Z)) = (I − G⊤ ⊗ W)vec(Z)− vec(gB(X)) and G = ∂f ,

where f is a convex closed proper (CCP) function such that

σ(x) = prox1
f (x) = argmin

z

{1
2
∥x − z∥2 + f (z)

}
.

• Notice that when σ is ReLU, then σ = proxαf for ∀α > 0 with f being the indicator
of the positive octant, i.e. f (x) = I{x ≥ 0}.

Well-posedness of MIGNN

• MIGNN: monotone operator theory viewpoint of IGNN.

• The fixed point Z ∗ exists and is unique if F is strongly monotone.

• If I − G⊤ ⊗ W ⪰ mI for some m > 0, then F is strongly monotone.

Monotone parameterization of MIGNN: Enhancing expressivity of IGNN

• We consider the following MIGNN model

Z (k+1) = σ
(
WZ (k)G + gB(X)

)
.

• We let G = L
2 where L := D−1/2(D − A)D−1/2 is the normalized Laplacian.

• We parameterize W with the following monotone parameterization

W = (1 −m)I − CC⊤ + F − F⊤,

where C ,F ∈ Rd×d are arbitrary matrices, and m > 0 ∈ R.

Monotone parameterization of MIGNN: Enhancing expressivity of IGNN

• The monotone parameterization guarantees the operator F to be strongly monotone.

• The monotone parameterization allows the eigenvalues of W to be much less than
−1, which is more flexible than IGNN.

Orthogonal parameterization of MIGNN: Stabilizing learning LRD

• Consider the following MIGNN model

Z (k+1) = σ
(
WZ (k)G + gB(X)

)
.

• We parameterize W using the following scaled Cayley map

W = ϕ(γ)(I − S)(I + S)−1,

where ϕ(·) is the sigmoid function. S = C − C⊤ is a skew-symmetric matrix with
C ∈ Rd×d an arbitrary matrix.

• Notice that the matrix (I − S)(I + S)−1 is orthogonal.

Finding the fixed point of the equilibrium equation

• Picard iteration may not converge for MIGNN with monotone parameterization, i.e.,
W = (1 −m)I − CC⊤ + F = F⊤.

• Picard iteration suffers from slow convergence for MIGNN with orthogonal
parameterization, i.e., W = (I − S)(I + S)−1 with S = C − C⊤.

• Need new algorithms to find the fixed point of MIGNN.

Forward-backward splitting (FB): MIGNN with monotone parameterization

• Finding the fixed point of MIGNN, Z (k+1) = σ
(
WZ (k)G + gB(X)

)
, with monotone parameterization

Z (k+1) := FFB
α (Z (k)) := proxα

f

(
Z (k) − α ·

(
Z (k) − WZ (k)G − gB(X)

))
,

where α > 0 is an appropriate constant.

•
Z (k+1/2) = Z (k) − α ·

(
Z (k) − WZ (k)G − gB(X)

)
Z (k+1) = proxα

f (Z
(k+1/2)).

• Resulting the model MIGNN-Mon.

Peaceman-Rachford splitting (PR): MIGNN with orthogonal parameterization

• PR finds the solution Z ∗ of the MIGNN by letting

Z ∗ = proxαf (U
∗),

where U∗ is the solution of the following fixed point iterations:

vec(U(k+1)) = FPR
α (vec(U(k))) := CFCG(vec(U(k))),

where

RT = (I + αT)−1,

and
CT = 2RT − I.

Peaceman-Rachford splitting (PR): MIGNN with orthogonal parameterization

• Let uk := vec(U(k)), then we can formulate PR as follows

uk+1 := FPR
α (uk) = 2V

(
2proxαf (u

k)− uk + α vec(gB(X))
)
− 2proxαf (u

k) + uk ,

where the matrix V := (I + α(I − G⊤ ⊗ W))−1 and u0 is the zero vector.

• Computing V (xk) is expensive:

> Bartels–Stewart algorithm, which requires diagonalizing the matrix G and W .

PR with Neumann series approximation

• Notice that
V (uk) = (I + α(I − G⊤ ⊗ W))−1(uk)

=
1

1 + α

(
I − G⊤ ⊗ W

1 + 1/α

)−1

(uk)

=
1

1 + α

∞∑
i=0

vec
(
W iU(k)G i

)
(1 + 1/α)i

.

• K -th order Neumann series approximation of V (uk):

NK (vec(Uk)) :=
1

1 + α

K∑
i=0

vec
(
W iUkG i

)
(1 + 1/α)i

.

• K -th order Neumann series approximation of PR iteration

uk+1 := F̃PR,K
α (uk) = 2NK

(
2proxα

f (u
k)− uk + α vec(gB(X))

)
− 2proxα

f (u
k) + uk .

MIGNN with diffusion convolution

• We can set G to be the combination of higher powers of Â or L, making each node
to aggregate multi-hops neighbors’ features in each iteration.

• We let G = D̃−1/2(A + · · ·+ AP)D̃−1/2 for any positive integer P , where D̃ is the
degree matrix with D̃ii =

∑n
j=1

∑P
k=1(A

k)ij .

• MIGNN with P-th order diffusion matrix G

Z = σ(WZD̃−1/2(A + A2 + · · ·+ AP)D̃−1/2 + gB(X)).

• We denote the model as MIGNN-NKDP when it is implemented by using the P-th
order diffusion and the K -th order Neumann series approximated PR iteration.

Directed chain classification

50 100 150 200 250 300
Chain Length

60

80

100

Ac
cu

ra
cy

(%
)

50 100 150 200
Chain Length

40

60

80

100

Ac
cu

ra
cy

(%
)

IGNN
IGNN-D5

MIGNN-N3D3
MIGNN-N3D5

Binary Three-class
Figure: The accuracy of IGNN and MIGNN for classifying directed chains of different lengths.

Directed chain classification

0 200 400 600 800 1000
Epoch

40

60

80

100

Ac
cu

ra
cy

(%
)

0 200 400 600 800 1000
Epoch

0

100

200

300

Ite

ra
tio

ns

0 200 400 600 800
Epoch

0.0

0.2

0.4

0.6

Ti
m

e
El

ap
se

d
(s

) IGNN
N2D5

Figure: MIGNN-N2D5 vs. IGNN for three class chains classification (length: 140).

Graph node classification: Citation networks

Datasets Cora Citeseer Pubmed
Geom-GCN 85.27 77.99 90.05

GCNII 88.49 77.08 89.57
APPNP 85.09 75.73 79.73

GCN+GDC 83.58 73.35 78.72
GIND 88.25 76.81 89.22
IGNN 85.80 75.24 87.66

EIGNN (Ours) 85.89 75.31 87.92
MIGNN-Mon (Ours) 86.82 76.59 88.00

MIGNN-N5D1 87.04 74.91 83.55
Table: Node classification mean accuracy (%) for 10-fold cross-validation.

Graph classification: bioinformatics-related tasks

Datasets MUTAG PTC COX2 PROTEINS NCI1
graphs/Avg # nodes 188/17.9 344/25.5 467/41.2 1113/39.1 4110/29.8

WL 84.1 ± 1.9 58.0 ± 2.5 83.2 ± 0.2 74.7 ± 0.5 84.5 ± 0.5
DCNN 67.0 56.6 — 61.3 62.6

DGCNN 85.8 58.6 — 75.5 74.4
GIN 89.4 ± 5.6 64.6 ± 7.0 — 76.2 ± 3.4 82.7 ± 1.7

FDGNN 88.5 ± 3.8 63.4 ± 5.4 83.3 ± 2.9 76.8 ± 2.9 77.8 ± 1.6
IGNN 76.0 ± 13.4 60.5 ± 6.4 79.7 ± 3.4 76.5 ± 3.4 73.5 ± 1.9
GIND 89.3 ± 7.4 66.9 ± 6.6 84.8 ± 4.2 77.2 ± 2.9 78.8 ± 2.9
GSN 92.2 ± 7.5 68.2 ± 7.2 — 76.6 ± 5.0 83.5 ± 2.0
SIN — — — 76.5 ± 3.3 82.8 ± 2.2
CIN 92.7 ± 6.1 68.2 ± 5.6 — 77.0 ± 4.3 83.6 ± 1.4

MIGNN-Mon 81.8 ± 9.1 72.6 ± 6.7 85.0 ± 5.3 77.9 ± 3.4 73.6 ± 2.0
MIGNN-N1D1 86.1 ± 9.1 70.9 ± 6.5 86.5 ± 2.8 79.0 ± 3.3 78.4 ± 1.2
MIGNN-N3D1 91.4 ± 7.5 71.2 ± 3.2 88.2 ± 4.1 80.1 ± 3.8 80.8 ± 1.81

Table: Graph classification mean accuracy (%) ± standard deviation for 10-fold cross-validation.

Graph classification: bioinformatics-related tasks

0 200 400 600 800 1000
Epoch

0

5

10

15
1(

|W
|)

Fold-1
Fold-5
Fold-10

Figure: λ1(|W |) of MIGNN-Mon vs. Epoch on MUTAG.

Summary

I. How activation functions affect the smoothness of node features.

I.1 Geometric characterization

I.2 Smoothness control

II. Monotone operator-based implicit graph neural networks

I.1 Stable and accurate graph deep learning

I.2 Fast convergence and learning long-range dependencies

