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Abstract
Supervised learning from training data with imbalanced class sizes, a commonly encountered sce-
nario in real applications such as anomaly/fraud detection, has long been considered a significant
challenge in machine learning. Motivated by recent progress in curriculum and self-paced learn-
ing, we propose to adopt a semi-supervised learning paradigm by training a deep neural network,
referred to as SelectNet, to selectively add unlabelled data together with their predicted labels to
the training dataset. Unlike existing techniques designed to tackle the difficulty in dealing with
class imbalanced training data such as resampling, cost-sensitive learning, and margin-based learn-
ing, SelectNet provides an end-to-end approach for learning from important unlabelled data “in
the wild” that most likely belong to the under-sampled classes in the training data, thus gradually
mitigates the imbalance in the data used for training the classifier. We demonstrate the efficacy of
SelectNet through extensive numerical experiments on standard datasets in computer vision.
Keywords: Imbalanced data, semi-supervised learning, classification, deep learning

1. Introduction

The success of supervised learning algorithms largely hinges upon high quality training data. Due
to resource constraints and the nature of the specific applications, it can often be difficult to train a
classifier on a training data set with balanced numbers of samples within each class, especially in
scenarios such as anomaly detection (Hodge and Austin, 2004) and rare event discovery (Hospedales
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et al., 2013). in some instances, the difference between sample sizes within classes can differ by
several orders of magnitude, easily causing serious inductive bias that leads to poor prediction per-
formance for minor classes (Dong et al., 2019; Buda et al., 2018). Unfortunately, often times in
these applications it is much more important to successfully predict the minor class samples, such
as disease discovery and fraud detection (Hospedales et al., 2013).
Existing techniques for tackling the data imbalance problem can be roughly divided into two cat-
egories. One is to adopt balanced strategies for the class imbalanced training data, such as boot-
strapping the minor classes or downsampling the major classes, or a combination of both, usu-
ally following an ensemble learning paradigm (Chawla et al., 2002; Liu et al., 2009; Maciejewski
and Stefanowski, 2011); the other is to adjust the learning objective, such as introducing different
weights for samples from the major or minor classes respectively or employing a boosting strategy
adapted to the heterogeneous sampling density (Zadrozny et al., 2003; He and Garcia, 2008). The
two categories of methods are not mutually exclusive — in fact it is often beneficial to combine the
benefits of each type of methods to achieve even better results in practice. It is worth pointing out
that, however, all these techniques are crafted towards fully exploiting the structure of the skewed
training data, which suffers from the deficiency in the minor training data classes.
Inspired by the emerging trend of semi-supervised learning in the past decades, in this paper we
propose to borrow powers from the unlabelled data “in the wild,” which are relatively easy to obtain
(e.g. from modern search engines or web scrapers) but may be difficult or expensive to label (due to
lack of time or human power). We hope to enlarge the training data set with more data instances of
the minor classes, which balances out the skewness in the original training data, at the slight expense
of incorporating few unlabelled data that are mistakenly treated as belonging to a minor class; we
introduce an iterative learning strategy that is more reluctant at accepting a misclassified unlabelled
data at beginning, but eventually gains more confidence and leverages the full power of unlabelled
data to mitigate the imbalance issue in the original training data set. The gradual adjustment of the
“attitude” towards unlabelled data is motivated by recent work in curriculum learning (Weinshall
et al., 2018; Jiang et al., 2017) and self-paced learning (Kumar et al., 2010; Jiang et al., 2015); we
implement this mechanism in an end-to-end fashion by means of a deep neural network, dubbed
SelectNet. We demonstrate using extensive numerical experiments that this architecture is capable
of recognizing important samples from the unlabeled data that most effectively reduces the class
imbalance issue in the original training data, in such a way that the minor class prediction accuracy
gets improved at no expense of sacrificing the major class prediction accuracy.
In summary, the key contributions of this paper are as follows:

• Unlike existing techniques that strive to find an appropriate way to deal with the class im-
balanced issues in the original data set, we propose the novel paradigm of leveraging the
unlabelled data in a semi-supervised fashion;

• We design an end-to-end deep neural network architecture, the SelectNet, which automati-
cally learns to pick important data samples from the pool of unlabelled data and use them for
improving the classifier;

• The SelectNet can be realized as an additional regularization term for a deep neural network
based classifier, which can be trained along with the main classification DNN in the same
computational workflow;
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• Extensive numerical experiments are conducted to compare the performance of SelectNet
against competing methods over standard computer vision benchmarks, and the results speak
of the superior power of SelectNet in the face of severe class imbalance in the training data.

2. Related Work

2.1. Learning with Imbalanced Data

Dataset Resampling Two naive but effective way of resampling techniques are oversampling,
which repeatedly sample data from the minor class until reaching the desired amount, and down-
sampling, which sample the same amount of data from major class to match with minor class (He
and Garcia, 2008; Chawla et al., 2002; Oquab et al., 2014). When using traditional machine learning
methods like linear classifiers, oversampling can cause serious overfitting (Chawla et al., 2002). In
the setting of deep neural networks, oversampling shows better compatibility while missing infor-
mation in the downsampling strategy shows a critical disadvantage (Buda et al., 2018).

Cost-sensitive learning Cost-sensitive learning strategies aims that adjusting the weights in the
objective loss function for training samples from different classes. Popular weight adjusting strate-
gies include assigning weights according to inverse class frequency (Huang et al., 2016; Wang et al.,
2017), or with respect to the “hardness” of the training samples, e.g., those samples that are wrongly
classified by the classifier being trained (Lin et al., 2017; Dong et al., 2017). In a sense, resampling
from origin class imbalanced training data set plays a similar role as assigning higher weights for
the wrongly predicted samples.

2.2. Semi-supervised Learning

Self-paced Learning In (Kumar et al., 2010), the authors proposed self-paced learning, an it-
erative approach to select “easy” training samples based on the current parameters of the neural
network. The number of samples selected at each iteration is gradually annealed such that in the
later learning stage well-trained model can learn more samples with better tolerance to noise. In
light of this, people begin to use self-paced learning and pseudo labels to refine training result, like
in (Jiang et al., 2014).
A related regime is co-training (Blum and Mitchell, 1998), which alternately trains two or more
classifiers, and passes “confident training samples” determined by one classifier to another classi-
fier as training data, together with the “confidently” predicted label.
We give a slightly more detailed account of the paradigm of self-paced learning here, as this is an
important motivation for our approach for tackling the imbalanced data issue. For a training data
set D = {(x1, y1), ..., (xn, yn)}, self-paced learning uses a vector v ∈ {0, 1}n to indicate whether
or not each training sample should be included in the current training stage (vi = 1 if the ith sample
is included in the current iteration). The overall target function including v at iteration t is

(wt+1, vt+1) = arg min
w∈Rd,v∈{0,1}n

n∑
i=1

viL(yi, f(xi,w))− λ
n∑
i=1

vi (1)

where L(yi, f(xi,w)) denote the loss function of a convolutional neural network (CNN) model and
w refer to the model weights. When this model is relaxed to v ∈ [0, 1]n, a straightforward derivation
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easily reveals a rule for the optimal value for each entry vi as

vi =

{
1 L(yi, f(xi,w)) < λ,
0 otherwise.

(2)

In this formulation, the two sets of variables are model weights w and indicator vector v, and a
common training strategy is to alternatively fix one set of variables and optimize the other set.

MentorNet The architecture of MentorNet was proposed in (Jiang et al., 2017) to further improve
the loss thresholding strategy of self-paced learning. Instead of alternatively updating the “cur-
riculum,” the authors suggest that we use a network to directly learn the weighing curriculum (the
vector v) from the training data, which is trained on a subset of the training data that is cleaned up
and labeled with either “right” or “wrong,” indicating whether the input classification label of one
sample is the true label or manually disturbed one. The output vector of MentorNet is used as the
weight for the loss of each training sample. MentorNet and the corresponding base net (StudentNet)
are trained alternatively to provide better-labeled training data and improve the overall accuracy on
noisy-labeled datasets. Inspired by its idea, we expanded our sample choosing vector into a network
output, which will produce better sign of confidence than the loss value used in self-paced training.

SPARC Zhou et al. (2018) proposed the schema SPARC for learning network representation from
rare category data, with an additional unlabeled data set. The minor groups in networks are empha-
sized for generating good network representations. To capture the underlying distribution of rare
category examples, the predictions of both labeled and unlabeled data are considered in weighing
training samples, which jointly produce separable margins between minor groups and major groups.
The idea of enhancing the margin also motivated us to reuse labeled data to secure the boundary
performance.

3. Algorithm

Motivated by the methodology of semi-supervised learning, the approach proposed here leverages
both labeled and unlabeled data to mitigate the class imbalance issue. Intuitively, we would like to
“bootstrap” the classifier by adding the unlabelled data predicted as the minor classes by the current
classifier to the training set. This approach is similar toe the “pseudo-label” approach used in prac-
tice Lee (2013); Wu and Prasad (2018); the success of this procedure certainly relies on correctly
identifying minor classes from the unlabelled data, and thus depends on the data distribution and
the actual decision boundary. We propose to use SelectNet to learn which unlabelled data to add to
the training set.

3.1. Formulation

We distinguish two sets of data, labelled and unlabelled, that are used for training. Denote D =
(xi, yi) for the original labeled imbalanced dataset with m classes, where yi are one-hot encodings
of the class labels. Asuume that K out of the m classes are deficient in class size and they will
be referred to as the minor classes. We use Ci to indicate the ith class, and |Ci| for the number of
training data in this class. The ratio maxi |Ci|

mini |Ci| measures the level of imbalance of the original training
set. In addition, we assume an extra “pool” of unlabelled data U = (xi) is available, from which
we collecte more training samples in the minor classes using the current classifier. In practice, these
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unlabelled data may be collected by keywords searching in google or crawled from the internet. The
hypothesis on U is that they have high potential of including data in minor classes.
For a classification task, denote its loss function as Lc(yi, fc(xi,wc)), where fc(xi,wc) is the main
deep neural network with weights wc being trained for the classification task. In each iteration,
the label of an unlabelled sample xi ∈ U is inferred from the main classifier and is denoted as
ŷi = argmax(fc(xi,wc)). In the meanwhile, another deep neural network is trained to determine
which of the unlabelled data will be added to the training sample for the next iteration. The second
neural network is denoted as fs(zi; Θ) with parameters Θ. fs(zi; Θ) takes as input the last layer
feature of an unlabeled data output by fc along with its loss calculated by the classification model,
i.e., zi = (fc(xi,wc),L (fc(xi,wc),wc)). The entire model has the following form:

min
w∈Rd,fs∈{0,1}n×m

F(w, v) =
1

nD

∑
i∈D

Lc(yi, fc(xi,wc))

+
1

nadd

∑
i∈D′∪U ′

[fs(zi; Θ)Lc(ŷi, fc(xi,wc))− λfs(zi; Θ)] ,
(3)

where D′ and U ′ include the data whose top-1 prediction result is a minor class. The training pro-
cedure alternatively updates the main classification network fc(xi,wc) and the selection network
fs(zi; Θ). We remark that the “selection” part includes an additional regularization term with a
penalty parameter λ, since fs will trivially attain zero value at all unlabelled data if λ = 0. More-
over, only samples which are confidently predicted in a minor class are added to the training set
so as to prevent the model from further aggravating data imbalance. Evaluation of the confidence
differs from method to method. For example, in self-paced learning, loss value is directly used as a
sign of confidence. The samples with loss value smaller than a hyperparameter λ will be selected.
We will introduce our indicator of confidence Section 3.3.

3.2. Context Data

When training from class-imbalanced data, the accuracy of the classifier is mainly hampered by
its weak performance on minor classes. There are two sources of this inaccuracy, as schematically
illustrated in Figure 1: the low recall — the situation that samples in minor classes are classified
as a major class, or the low precision, where samples from a major class are classified as a minor
class. Empirically, we observe when training on the original imbalanced dataset that it is the low
recall that affects the prediction accuracy, whereas the precision was relatively high, which is as
expected from a small class size. As more unlabelled minor class data are added to the training set,
the classifier gradually gains higher recall, but the precision drops as well, which we conjectured is
due to the quality of added data, especially those that are added with wrongly predicted labels. This
situation is similar to the “noisy label” setting described in Ma et al. (2018), where the training data
contains incorrect labels. To improve the recall while keeping the precision from dropping, we also
identify samples from the labelled dataset that are wrongly predicted as a minor class, and add them
to the training data; these samples are “hard” to classify, which suggests they play important roles
in characterizing the decision boundary efficiently.
Therefore, in each iteration step of the proposed schema (3), the selected data to be added to training
consist of two parts: the unlabeled data from U and wrongly labeled data from D. We refer to the
second part as context data as it helps differentiating minor class samples from their neighboring
major class samples. The label of each selected sample from the unlabelled data (in the second part
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Figure 1: Decision boundary in different situation

of Formula (3) ŷi) is given by the prediction of fc(xi,wc), while the label for each sample selected
from labelled data is used in both the first term and the second term of Formula (3).

3.3. SelectNet

Ideally, the minor class samples in U should be correctly identified, which will maximize the effect
of using extra data. As this rarely occurs in practice, weighing the gain of collecting more infor-
mation about the minor class samples and the loss of training with noisy labels is critical. This is
trade-off is reflected in the second line of Formula (3), where fs are indicators of whether a sample
should be added into loss calculation or not, and the parameter λ balances out the “gain” and the
conceptual “loss.” In previous works such as self-paced training, fs represents the decision made
according to a predefined choosing rule, often resulted from comparison between the loss value and
a threshold λ, which is exactly the derivative result of Formula 1 with respect to the hyperparameter
λ:

fs =

{
1 if L (yi, fc (xi,wc)) < λ

0 otherwise.
(4)

Such a deterministic rule for determining fs imposes a dependence on the correct choice of hyperpa-
rameter λ, which limits the flexibility of the proposed method. We thus propose a data-driven way,
using a regression model to produce fs for each sample, motivated by the architecture of MentorNet
(Jiang et al., 2017) which proposed similar idea for resolving the noisy label issue in supervised
learning. In their setting, the extra network is trained on a predefined small set of samples for decid-
ing whether a predicted label is correct or not, which can not be directly used for solving the class
imbalanced issue in our problem. The intuition of turning fs into a data-driven indicator is more on
directly expanding the search space of overall target function (3).
Based on these considerations, we revise the target objective function for training fs as

f̂si := arg min
Θ

1

nadd

∑
i∈D′

f̂s(zi; Θ)(Lci − λ), (5)

and fs is assigned with respect to

fsi =

{
1 f̂si > λ

0 otherwise
(6)

As fs is trained to minimize the formulation in (5), the choice of λ is insensitive in a range, for the
update of fs will try to fit to it.
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The purpose of training in this step is to have the second network produce accurate approximate
loss value given a classification output for an unlabeled data point, which will be used by the main
network to estimate the confidence of using the output as fake label.
In the experiment we train fs using a simple two-fully-connected-layer network. No groundtruth
label is used in training fs. Instead, the input is the classification output from the main network, and
training target is the loss of the main network incurred at the particular training sample.
Our final algorithm, the SelectNet, incorporates the ideas of using context data, and alternatively
updates the selection part f̂s and the base part of the model on the selected samples. The full
algorithm is described in Algorithm 1.

Algorithm 1 SelectNet
Input: labeled dataset D, unlabeled dataset U , minor classes C
Output: classifier with weights w
Initialize model weight w0 by training on D with oversampling
Update w by repeat below routine t times:
1. D′={prediction(D ∪ U , wt−1) in C}
2. Update f̂ ts by {fc(D′, wt−1), Lc(D′, wt−1)}, as formula (5)
3. f ts = 1(prediction(D′,f̂ ts)>β), as formula (6)
4. Decide new data to be added in this routine Dadd = {D′ when fst = 1}
5. Combine the labeled data and new data to be the training data of this routine Dttrain = D ∪Dadd
6. Train and update wt−1 to wt using Dttrain

4. Numerical Experiments

We present numerical results to support the proposed SelectNet and compare it with baselines and
state-of-the-art algorithms, e.g. the imbalanced training results, methods based on oversampling
(Chawla et al., 2002; Kubat et al., 1997), the application of self-paced method in imbalanced prob-
lem (Jiang et al., 2015; Zhou et al., 2018), methods based on context data (Zhou et al., 2018), and
also a class-balancing loss method(Cui et al., 2019) as summarized in Section 4.2.

4.1. Datasets

CIFAR-10 and CIFAR-100 datasets (Krizhevsky and Hinton, 2009) are adopted throughout this pa-
per. Note that CIFAR-10 and CIFAR-100 contain equal amounts of training samples in each class.
Hence, the classification accuracy of the original balanced datasets serves as the upper bound of the
achievable classification accuracy.
We artificially create imbalanced datasets using CIFAR-10 and CIFAR-100. In CIFAR-10 experi-
ments, after selecting the minor classes, e.g., classes [0,2,6,7] in our experiments, we create imbal-
anced datasets with an imbalanced ratio 90. In particular, 1% of training samples in the selected
minor classes are kept as labeled data and the other 99% of data in the selected monirity classes are
left as unlabeled data. Similarly, we select clases [10,20,60,70] and [5,10,11,18,30,45,55,79,86,98]
as the minor clases. Then, 90% of the data belonging to a major class are kept as labeled data and the
other 10% of data in the major class are put into the unlabeled dataset. In CIFAR-100 experiments,
we create imbalanced datasets with an imbalanced ratio 14 by keeping 5% of training samples in
minor classes and 90% of training samples in major classes.
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Recently, a long-tailed CIFAR dataset was proposed in (Cui et al., 2019) and a new method for
imbalanced dataset based on a class-balanced-loss was also proposed in (Cui et al., 2019). Hence,
we compare SelectNet with the class-balanced-loss method using the long-tailed CIFAR dataset. In
this experiment, all the unused training samples are collected as unlabeled samples.

4.2. Methods for Comparison

Imbalanced Training In this method, the classifier is only trained with the labeled imbalanced
dataset.

Oversampling The oversampling method aims at creating a balanced training dataset using the
original imbalanced dataset. Suppose a certain class is minor, it repeatedly samples with replace-
ment from the data in this class and put them together untill the number of samples is as large as that
of a major class. Then these new samples are added to augment the training data. Such a process
is repeated to eliminate minor classes to achieve a balanced training dataset. Finally, a classifier is
trained with this new balanced dataset.

Self-paced training The idea of self-paced training can be simply migrated to the data imbalance
problem. Suppose an unlabeled dataset is available for the self-paced training. After every n epochs
of iterations, a certain amount of data is selected from the unlabeled dataset to augment the labeled
dataset with labels given by the current classifier. The augmented dataset serves as the new training
data for the next n epochs. The selection process is controlled by a threshold λ, which is set as 0.6
in this paper. When an unlabeled sample is predicted as the minor class with a loss smaller than λ
using the current classifier, this sample will be added to the training dataset.

Context data As described in Section 3.2, in addition to the selection of unlabeled data as in the
self-paced training, labeled data which are classified as minor classes by the current classifier can
also be added to the training dataset for latter training. This approach is named as the context data
method. Similar to the self-paced method, a threshold 0.6 is set to control the selection process.
When a labeled sample is predicted as the minor class with a loss smaller than λ, this sample will
be duplicated and added to the training dataset.

SelectNet As described in Section 3.3, after every n epochs, a deep neural network is trained to
decide whether a sample should be added in the next stage of training. The model we use is a fully-
connected ReLU neural network with two hidden layers of width 8 and 4, respectively. The output
of this network is a 1-d scalar from a Sigmoid activation. If the output of the network is larger than
a hyperparameter λ = 0.6, the corresponding input sample will be added to the training dataset for
latter iterations.
For the first two methods, we set the number of epochs to be 200, while for the last three methods,
we update the training samples every 10 epochs for 20 iterations, i.e., the total number of epochs is
also 200.

4.3. Comparison on CIFAR imbalanced dataset

In this experiment, we show the universal advantage of the proposed SelectNet over various deep
learning methods like the imbalanced train method, the oversampling method, the self-paced method,
and the context data method. To make consistent comparisons, we fix the same kind of deep neural
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Table 1: CIFAR accuracy comparison

CIFAR-10 CIFAR-100

4 minors 4 minors 10 minors
Method Simple net ResNet20 ResNet56 ResNet20 ResNet56 ResNet56

Imbalanced train 0.5617 0.5659 0.5672 0.5729 0.5806 0.589
Oversampling 0.5744 0.6629 0.6897 0.5749 0.6128 0.6014
Self-paced 0.6933 0.7894 0.7951 0.5971 0.5901 0.5974
Context data 0.7403 0.7881 0.7864 0.5889 0.6285 0.6165
SelectNet 0.7424 0.7895 0.8011 0.5921 0.6290 0.6171

Table 2: CIFAR-10: class-wise prediction accuracy.

0 1 2 3 4 5 6 7 8 9

Oversampling 0.05 0.85 0.02 0.41 0.49 0.50 0.06 0.09 0.68 0.79
Self-paced 0.71 0.90 0.20 0.52 0.71 0.64 0.52 0.72 0.86 0.86
SelectNet 0.74 0.89 0.54 0.57 0.71 0.69 0.72 0.76 0.86 0.85

network to implement different classification methods above. To see the influence of different net-
work architectures on the performance of the classification methods, commonly used architectures
have been explored in the test, e.g., the standard network example in Keras (Chollet et al., 2015),
ResNet-20, and ResNet-56.
Table 1 summarizes the experiment results for CIFAR imbalanced datasets. Numerical results show
that SelectNet is almost consisently better than other methods for both CIFAR-10 and CIFAR-100
datasets and various network structures. There is only one case in which SelectNet is the second
best method with an accuracy only slightly smaller than that of the self-paced method, when the
network is ResNet20 and the dataset is CIFAR-100.
Note that SelectNet is build on top of the context data method and an extra deep neural network
for adaptively update training data. Hence, the results of the SelectNet is always better than the
context data method, the results of which is already very promising. The consistent advantage of
the SelectNet over the context data method validates the proposal of an extra deep neural network
for updating training data adaptively.
Table 2 shows the category-wise f1-score of three methods for CIFAR-10 in the simple net exper-
iment. The bold numbers are the performance of the minor classes. Each of these suffers poor
accuracy when using the oversampling method. The latter two methods, with the help of additional
data, considerably increased the performance of minor classes. Meanwhile, our propose SelectNet
exhibits the best improvements.

Table 1 compares various methods in terms of the overall classification accuracy for all classes,
while Table 2 compares these methods in terms of the classification accuracy within individual
classes. It is worth emphasizing that the SelectNet significantly outperforms other methods in the
classification of minor classes, which is of special interest in real applications, especially in medical
applications where minor classes are more valuable.
To check the number of extra training samples added during the training of SelectNet, we choose

9



SELECTNET

Figure 2: Number of data chosen during training.

Table 3: Long-Tailed CIFAR accuracy comparison.

Method CIFAR-10-0.01 CIFAR-100-0.01

Class-Balanced Loss 0.7457 0.3960
SelectNet 0.7576 0.4056

the case when networks are carried out via the simple one in Keras (Chollet et al., 2015) and vi-
sualize the numbers in Figure 2. The “labeled-confused” number represents the number of labeled
samples that are wrongly predicted (no matter major or minor) and added to the training dataset.
The “labeled-minor” number denotes the number of labeled samples that are correctly classified
as a minor sample. Similarly, the “unlabeled-confused” and “unlabeled-minor” numbers mean the
numbers in the case of unlabeled samples. These numbers seem to be bounded by a constant num-
ber, which means that the mistakes SelectNet makes would not increase after a certain number of
epochs. The “unlabeled-minor” number is significantly larger than other numbers, indicating the
effectness of the SelectNet since most of the selections it makes are correct.

4.4. Comparison on long-tailed CIFAR dataset

Here, we compare SelectNet with the newly proposed class-balanced-loss method in (Cui et al.,
2019) using the long-tailed CIFAR dataset therein. Since there is no class that has a number of
samples significantly smaller than others, we treat half classes with a smaller amount of data as the
minor classes. In particular, in the long-tailed CIFAR-10 dataset, the minor classes are 5,6,7,8,9;
while in the case of long-tailed CIFAR-100, the minor classes are 50 to 99. All the other settings
remain the same as in previous experiments. The comparison is conducted with ResNet32 and the
results are summarized in Table 4. The proposed SelectNet outperforms the class-balanced-loss
method by 1% classification accuracy. Which shows a universal efficacy of our method.

4.5. The choice of λ

The algorithm is designed to let the overall model fit to the hyperparameter λ, therefore the value
of λ is insensitive in a range. Our experiments shows choosing λ in [0.5, 0.7] will not affect the
performance.
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Table 4: λ schema comparison.

λ CIFAR-10, 4 minors, Simple Net

fixed, 0.6 0.7424
0.4 to 0.6 in 20 iterations 0.7328
0.6 to 0.4 in 20 iterations 0.7109

We also considered an schema to moving the value of λ during training. The result are worse, as
shown in 4. Which may indicate that the whole process is indeed fitting to the hyperparameter as
we expected, so the change of this parameter will not work.

5. Conclusion

In this work, we drew an analogy between the imbalanced data problem and semi-supervised learn-
ing, and proposed a simple yet powerful approach, referred to as SelectNet, to mitigate the class
imbalance issue using unlabeled data “in the wild.” We began with the observation that incorpo-
rating “context data” into training significantly improves the classification performance, then gen-
eralized the 0-1 selection rule to a continuously valued regression network that takes real values
between 0 and 1 as “selection.” Combining the idea of context data and minor class data selection
provides significant improvement of the classification performance over existing works. We expect
other cost-sensitive learning techniques to benefit from this “data side improvement” as well; we
will explore this in a future work. Besides, how distribution of unlabeled data affect the classifier
as well as the possible bias introduced to the classifier, are also interesting topics that can be further
explored.
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