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A FAST ALGORITHM FOR MULTIRESOLUTION MODE
DECOMPOSITION⇤

GAO TANG†
AND HAIZHAO YANG‡

Abstract. Multiresolution mode decomposition (MMD) is an adaptive tool to analyze a time

series f(t) =
PK

k=1

fk(t), where fk(t) is a multiresolution intrinsic mode function (MIMF) of the

form fk(t) =
PN/2�1

n=�N/2 an,k cos(2⇡n�k(t))scn,k(2⇡Nk�k(t)) +
PN/2�1

n=�N/2 bn,k sin(2⇡n�k(t))ssn,k

(2⇡Nk�k(t)) with time-dependent amplitudes, frequencies, and waveforms. The multiresolution
expansion coe�cients {an,k}, {bn,k} and the shape function series {scn,k(t)} and {ssn,k(t)} provide
innovative features for adaptive time series analysis. The MMD aims at identifying these MIMFs
(including their multiresolution expansion coe�cients and shape functions series) from their super-
position. However, due to the lack of e�cient algorithms to solve the MMD problem, the application
of MMD for large-scale data science is prohibitive, especially for real-time data analysis. This paper
proposes a fast algorithm for solving the MMD problem based on recursive di↵eomorphism-based
spectral analysis (RDSA). RDSA admits highly e�cient numerical implementation via the nonuni-
form fast Fourier transform; its convergence and accuracy can be guaranteed theoretically. Numerical
examples from synthetic data and natural phenomena are given to demonstrate the e�ciency of the
proposed method.

Key words. mode decomposition, time series, wave shape functions, multiresolution analysis,
nonuniform Fast Fourier transform, nonparametric regression
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1. Introduction. Oscillatory data analysis is important for a considerable num-
ber of real world applications such as medical electrocardiography (ECG) reading
[1, 25, 30], atomic crystal images in physics [24, 39], mechanical engineering [19, 42],
art investigation [10, 38], geology [20, 28, 40], imaging [3], etc. One single record of the
data might contain several principal components with di↵erent oscillation patterns.
The goal is to extract these components and analyze them individually. A typical
model in mode decomposition is to assume that a signal f(t) defined on [0, 1] consists
of several oscillatory modes like

f(t) =
K

X

k=1

↵
k

(t)e2⇡iNk�k(t) + r(t),(1)

where ↵
k

(t) is a smooth, positive, and nonoscillatory instantaneous amplitude,
N

k

�
k

(t) is a smooth and strictly increasing instantaneous phase, N
k

�0
k

(t) is the
instantaneous frequency, and r(t) is the residual signal. Methods for the mode decom-
position problem in (1) include the empirical mode decomposition approach [18, 31],
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synchrosqueezed transforms [4, 11], time-frequency reassignment methods [2, 6], adap-
tive optimization [12, 16], iterative filters [8, 23], etc.

In complicated applications, sinusoidal oscillatory patterns may lose important
physical information [17, 29, 32, 34, 35], which motivates the introduction of shape
functions {s

k

(t)}
1kK

and the generalized mode decomposition as follows:

f(t) =
K

X

k=1

↵
k

(t)s
k

(2⇡N
k

�
k

(t)) + r(t),(2)

where {s
k

(t)}
1kK

are 2⇡-periodic and zero-mean shape functions with a unit norm
in L2([0, 2⇡]), ↵

k

(t), and �
k

(t) are the same functions as in (1). One such example
is the photoplethysmogram (PPG) signal (see Figure 1) in medical study. Shape
functions reflect complicated evolution patterns of the signal f(t) and contain valuable
information for monitoring the health condition of patients [5, 9, 21, 26, 41].

To better analyze time series with time-dependent amplitudes, phases, and shapes,
the multiresolution mode decomposition (MMD) is proposed in [36] of the form

f(t) =
K

X

k=1

f
k

(t),(3)

where each

f
k

(t) =

Nk/2�1

X

n=�Nk/2

a
n,k

cos(2⇡n�
k

(t))s
cn,k

(2⇡N
k

�
k

(t))(4)

+

Nk/2�1

X

n=�Nk/2

b
n,k

sin(2⇡n�
k

(t))s
sn,k

(2⇡N
k

�
k

(t))

Fig. 1. Decomposition of a real PPG signal in (a). (b), (c), and (d) are the decomposition by
the generalized mode decomposition in (2), while (e), (f), and (g) are decomposition by the MMD
(3). The decomposed results contain one cardiac mode ((b) and (e)), one respiratory mode ((c) and
(f)), and the residual signal ((d) and (g)). The residual signal by MMD is significantly weaker and
behaves more like white noise than that by model (2). Figure 2 below visualizes the whiteness of the
residual signals.
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Fig. 2. Comparison of the whiteness of the residual signal generated by (2) and MMD (3) for
the PPG signal in Figure 1. The autocorrelation of the residual signal by (2), the residual signal
by MMD, and a vector of Gaussian random noise are plotted in the left, middle, and right figures,
respectively. Theoretically, the autocorrelation of white noise is an impulse at lag 0. Hence, the
results here show that the residual signal by MMD is close to white noise, while that by (2) still
contains correlated oscillation.

is a multiresolution intrinsic mode function (MIMF) with shape functions and phase
functions satisfying the same conditions as in (2). MIMF is a generalization of the
model ↵

k

(t)s
k

(2⇡N
k

�
k

(t)) in (2) for more accurate data analysis (see the comparison
of the models (2) and (3) in Figure 1 for the improvement). When s

cn,k

(t) and
s
sn,k

(t) in (4) are equal to the same shape function s
k

(t), the model in (4) is reduced
to ↵

k

(t)s
k

(2⇡N
k

�
k

(t)) once the amplitude function ↵
k

(t) is written in the form of
its Fourier series expansion. When s

cn,k

(t) and s
sn,k

(t) are di↵erent shape functions,
the two summations in (4) lead to time-dependent shape functions to describe the
nonlinear and nonstationary time series adaption.

A recent paper [22] also tried to address the limitation of model (2) by replacing
bs
k

(n)↵
k

(t) with a time-varying function, denoted as B
k,n

(t), i.e., introducing more
variance to amplitude functions. Our model in (4) emphasizes both the time variance
of amplitude and shape functions by introducing multiresolution expansion coe�cients
and shape function series.

It was shown in [36] that the MIMF model can capture the evolution variance,
which is more important than the average evolution patterns of oscillatory data for
detecting diseases and measuring health risk. Let M

`

be the operator for computing
the `-banded multiresolution approximation to a MIMF f(t), i.e.,

M
`

(f)(t) =
`

X

n=�`
a
n

cos(2⇡n�(t))s
cn

(2⇡N�(t)) +
`

X

n=�`
b
n

sin(2⇡n�(t))s
sn

(2⇡N�(t)),

(5)

and R
`

be the operator for the computing of the residual sum

R
`

(f)(t) = f(t)�M
`

(f)(t).(6)

Then the 0-banded multiresolution approximation M
0

(f)(t) = a
0

s
c0

(2⇡N�(t)) de-
scribes the average evolution pattern of the signal, while the rest describe the evolu-
tion variance. Figure 3 shows that, if f(t) is an ECG signal,1 R

0

(f)(t) visualizes the
change of the evolution pattern better than f(t), e.g., the change of the height of R
peaks and the width of QRS and S waves.

1From the PhysiNet https://physionet.org/.

https://physionet.org/


710 GAO TANG AND HAIZHAO YANG

Fig. 3. Top: a motion artifact contaminated ECG signal f(t) modeled by (4). Middle: the 0-
band multiresolution approximation M

0

(f)(t) = a
0

sc0(2⇡N�(t)) of f(t). Bottom: f(t)�M
0

(f)(t),
the variance of the evolution pattern of f(t).

The MMD problem aims at extracting each MIMF f
k

(t), estimating its corre-
sponding multiresolution expansion coe�cients {a

n,k

}, {b
n,k

}, the shape function
series {s

cn,k

(t)} and {s
sn,k

(t)}, under the assumption that the phase functions {�
k

}
are known. Estimating phase functions has been an active research field in mode
decomposition, and well-established approaches [2, 4, 6, 8, 11, 12, 16, 18, 22, 23, 31]
can be applied to estimate phase functions. Hence, we only focus on the estimation
of other quantities in MMD.

Applying the idea of recursive di↵eomorphism-based regression (RDBR) [34, 36]
has proposed a recursive scheme for decomposing f(t) into several MIMFs, {f

k

(t)}.
Due to the repeated application of the expensive di↵eomorphism-based regression,
the method in [36] is not suitable for analyzing large data sets, especially when real-
time analysis is required. Analyzing a single record of a high-resolution ECG or PPG
signal with a few minutes of duration could take a whole day. Fast Fourier transform
(FFT)-based shape function analysis in [17, 35] is e�cient but can be only applied
to model (2) and sometimes even for the case when K = 1 without any proof of
convergence.

This dilemma motivates the design of the recursive di↵eomorphism-based spectral
analysis (RDSA) in this paper. From the computational point of view, RDSA takes
only O(mL logL) operations to solve the MMD problem by taking advantage of the
nonuniform Fast Fourier transform (NUFFT), where L is the length of the signal and
m is the number of iterations. As we shall see later, the speedup of RDSA over RDBR
in [36] can be as large as 1000. From the theoretical point of view, RDSA builds the
bridge between FFT-based analysis and the RDBR, leading to a complete convergence
analysis and filling the gap of theoretical analysis of FFT-based approaches in [17, 35].

A recent paper [33] proposed a complete framework for estimating all instanta-
neous quantities together in a two-step alternative fitting scheme: (1) fitting shape
functions when amplitude and phase estimations are given and (2) fitting amplitude
and phase functions when shape estimations are given. RDSA can be applied in this
alternative fitting scheme to speed up the convergence. For many challenging numer-
ical examples concerning crossover instantaneous frequencies, close frequencies, and
the elimination of numerical errors in both steps via alternative fitting, the reader is
referred to [33] for more examples.
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We will first introduce RDSA in section 2. The convergence of RDSA is introduced
and asymptotically analyzed2 in section 3. In section 4, we present some numerical
examples to demonstrate the e�ciency of RDSA. Finally, we conclude this paper in
section 5.

2. RDSA.

2.1. Di↵eomorphism-based spectral analysis (DSA) for a single MIMF.
We first introduce the DSA for a single MIMF defined as follows.

Definition 2.1. The generalized shape function class S
M

consists of 2⇡-periodic
functions s(t) in the Wiener algebra with a unit L2([0, 2⇡])-norm and a L1

-norm

bounded by M satisfying the following.

1. The Fourier series of s(t) is uniformly convergent.

2.
P1

n=�1 |bs(n)| M and bs(0) = 0.
3. Let ⇤ be the set of integers {|n| : bs(n) 6= 0}. The greatest common divisor

gcd(s) of all the elements in ⇤ is 1.

Definition 2.2.

f(t) =

N/2�1

X

n=�N/2

a
n

cos(2⇡n�(t))s
cn

(2⇡N�(t)) +

N/2�1

X

n=�N/2

b
n

sin(2⇡n�(t))s
sn

(2⇡N�(t))

(7)

is a MIMF of type (M
0

,M,N, ✏) defined on [0, 1] if the conditions below are satisfied:

• the shape function series {s
cn

(t)} and {s
sn

(t)} are in S
M

;

• the multiresolution expansion coe�cients {a
n

} and {b
n

} satisfy

N/2�1

X

n=�N/2

|a
n

| M,

N/2�1

X

n=�N/2

|b
n

| M,

N/2�1

X

n=�N/2

|a
n

|�
M0�1

X

n=�M0

|a
n

|  ✏,

N/2�1

X

n=�N/2

|b
n

|�
M0�1

X

n=�M0

|b
n

|  ✏;

• �(t) satisfies �(t) 2 C1, 1/M  |�0| M .

As usual, we assume that the phase function N�(t) and N are available; these
quantities can be estimated using time-frequency concentration methods [2, 4, 6, 11],
or adaptive optimization [7, 12, 16]. With the abuse of notations, we will use the same
notation for continuous and discrete functions or transforms for simplicity. Without
loss of generality, we assume that the signal f(t) is uniformly sampled on [0, 1] with
L grid points

⇢

t
`

:=
`

L
: 0  `  L� 1, ` 2 Z

�

;(8)

the discrete Fourier transform of f denoted as bf(⇠) (or F(f)) is defined on {⇠ 2 Z :
�L

2

 ⇠  L

2

� 1}.

2Notations in the asymptotic analysis: we shall use the O(✏) notation, as well as the related
notations . and &; in particular, we write F = O(✏)G if there exists a constant C (which we will not
specify further) such that |F |  C✏|G|; here C may depend on some general parameters as detailed
just before Theorem 3.4.
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We further assume that f(t) satisfies a periodic boundary condition only in
theoretical analysis for simplicity; in the case of nonperiodic boundary condition,
the proposed method still works. In all of our numerical examples, signals are
nonperiodic.

When f(t) is a MIMF, the smooth function �(t) serves as a di↵eomorphism map-
ping cos(2⇡m�(t))f(t) to

h(t) = (cos (2⇡m�) f) � ��1(t)(9)

=

N/2�1

X

n=�N/2

a
n

2
(cos(2⇡(m+ n)t) + cos(2⇡(m� n)t)) s

cn

(2⇡Nt)

+

N/2�1

X

n=�N/2

b
n

2
(sin(2⇡(n+m)t) + sin(2⇡(n�m)t)) s

sn

(2⇡Nt).

Let us define a scaling operator T
N

mapping a function g(⇠) to a function T
N

(g)
via T

N

(g)(⇠) := g(N⇠). In the discrete case, this is equivalent to subsampling the
function g(⇠) at the grid points {N⇠}

⇠2Z. After Fourier transform and subsampling,
we have

T
N

⇣

bh(⇠)
⌘

= 21�|sgn(m)| am
2

X

`

bs
cm

(`)�(⇠ � `),(10)

where �(·) denotes the Dirac delta function. In practice, bh(⇠) can be evaluated via the
NUFFT of cos(2⇡m�(t))f(t) on nonuniform grids { 

`

:= �( `
L

) : 0  `  L�1, ` 2 Z}.
Equations (9) and (10) result in

a
m

s
cm

(2⇡t) = 2|sgn(m)|F�1

�

T
N

�

F
�

(cos (2⇡m�) f) � ��1

���

(t),(11)

and similarly we have

b
m

s
sm

(2⇡t) = 2|sgn(m)|F�1

�

T
N

�

F
�

(sin (2⇡m�) f) � ��1

���

(t)(12)

for t 2 [0, 1]. Since all shape functions have a unit L2([0, 2⇡])-norm,3 we have

a
m

=
p
2⇡k2|sgn(m)|F�1

�

T
N

�

F
�

(cos (2⇡m�) f) � ��1

���

k
L

2
([0,1])

(13)

and

b
m

=
p
2⇡k2|sgn(m)|F�1

�

T
N

�

F((sin (2⇡m�) f) � ��1)
��

k
L

2
([0,1])

,(14)

where the prefactor
p
2⇡ comes from changing the integral domain from [0, 2⇡] to

[0, 1]. Hence,

s
cm

(2⇡t) =

(

1

am
2|sgn(m)|F�1

�

T
N

�

F((cos(2⇡m�)f) � ��1)
��

(t), a
m

6= 0,

0, a
m

= 0,
(15)

and

s
sm

(2⇡t) =

(

1

bm
2|sgn(m)|F�1

�

T
N

�

F((sin(2⇡m�)f) � ��1)
��

(t), b
m

6= 0,

0, b
m

= 0.
(16)

3In numerical implementation, we have a bandwidth parameter Ls for shape functions, i.e., only

consider the Fourier series coe�cient vector ~bs 2 CLs with entries bs(m) for �Ls
2

 m  Ls
2

� 1 in

the reconstruction of a shape function vector ~s 2 RLs with entries s(2⇡t) sampled on the grid points
{t = k

Ls
: 0  k  Ls � 1, k 2 Z}. The discrete analog of the L2-norm kskL2

([0,2⇡]) of a function

s(t) is defined as
q

2⇡
Ls

k~sk`2 .
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Algorithm 1. DSA for shape functions and expansion coe�cients with O(mL logL)
operation complexity). The operation complexity comes from the fact that all rou-
tines are dominated by a NUFFT of size at most L and pointwise summation of
vectors of size at most L.

1 Input: A single MIMF f(t) in (7) and the phase function p(t) = N�(t)
sampled over t

`

, ` = 0, . . . , L� 1, frequency parameters N , a bandwidth
parameter L

s

, and a set of scale indices S = {n
1

, . . . , n
m

}.
2 Output: The shape functions s

cn

and s
sn

, the expansion coe�cients a
n

and
b
n

, and the partial summation f
c

(t) and f
s

(t).
3 Compute the expansion coe�cients a

n

and b
n

for n 2 S according to (13)
and (14).4

4 Evaluate the shape functions s
cn

(2⇡t) and s
sn

(2⇡t) for n 2 S according to

(15) and (16) on uniform grids {t = k

Ls
: 0  k  L

s

� 1, k 2 Z}.
5 Evaluate a

n

cos(2⇡n�(t))s
cn

(2⇡N�(t)) and b
n

sin(2⇡n�(t))s
sn

(2⇡N�(t)) for
n 2 S based on interpolating the shape functions from uniform grids to
nonuniform grids {t = �( k

L

) : 0  k  L� 1, k 2 Z}.
6 Compute the partial summation f

c

(t) =
P

n2S a
n

cos(2⇡n�(t))s
cn

(2⇡N�(t))
and f

s

(t) =
P

n2S b
n

sin(2⇡n�(t))s
sn

(2⇡N�(t)).

The above discussion can be summarized in Algorithm 1 for estimating shape
functions and expansion coe�cients from a single MIMF in (7).

2.2. RDSA for multiple MIMFs. Next, in the case of a superposition of
several MIMFs,

f(t) =
K

X

k=1

f
k

(t),(17)

where each

f
k

(t) =

N/2�1

X

n=�N/2

a
n,k

cos(2⇡n�
k

(t))s
cn,k

(2⇡N
k

�
k

(t))(18)

+

N/2�1

X

n=�N/2

b
n,k

sin(2⇡n�
k

(t))s
sn,k

(2⇡N
k

�
k

(t)),

we propose the RDSA to extract each MIMF, estimate its corresponding multireso-
lution expansion coe�cients and the shape function series from the superposition.

Due to the interference between di↵erent MIMFs and directly applying Algorithm
1 with an input signal in (17) and a phase function N

k

�
k

(t) would not lead to accurate
estimation of the multiresolution expansion coe�cients, denoted as ȧ

n,k

and ḃ
n,k

,
and shape function series of f

k

(t), denoted as ṡ
cn,k

and ṡ
sn,k

. This motivates the
application of Algorithm 1 combined with the recursive scheme proposed in [36]. The
intuition of the recursive scheme can be summarized as follows. We can get a rough
estimation of f

k

(t) via Algorithm 1, denoted as

4Note that in Definition 2.1 all shape functions have zero-mean. Hence, in the numerical imple-
mentation of TN (bh)(⇠) in (10), we will manually make TN (bh)(0) = 0 if TN (bh)(0) 6= 0 due to noise
perturbation in the signal f(t).
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ḟ
k

(t) =

N/2�1

X

n=�N/2

ȧ
n,k

cos(2⇡n�
k

(t))ṡ
cn,k

(2⇡N
k

�
k

(t))

+

N/2�1

X

n=�N/2

ḃ
n,k

sin(2⇡n�
k

(t))ṡ
sn,k

(2⇡N
k

�
k

(t)).

Hence, the residual signal r(t) := f(t)� ḟ(t) is again a new superposition of MIMFs.
The recursive scheme applies Algorithm 1 again to r(t) to estimate new multiresolution
expansion coe�cients and shape function series. We hope that the new estimations
can correct the estimation error in the previous step; if this correction idea is applied
repeatedly, we hope that the residual signal will decay and the estimation error will
approach to zero. In more particular, RDSA can be summarized in Algorithm 2. In
the pseudocode in Algorithm 2, the input and output of Algorithm 1 is denoted as

[{s
cn

}
n2S, {s

sn

}
n2S, {a

n

}
n2S, {b

n

}
n2S, f

s

, f
c

] = DSA(f, p,N, L
s

,S).

When the input M
1

of Algorithm 2 is set to be empty, Algorithm 2 returns the
M

0

-banded multiresolution approximation to each MIMF f
k

(t), its corresponding
multiresolution expansion coe�cients, and shape function series.

In fact, we have two for-loops to apply Algorithm 1 repeatedly to correct the
estimation error: (1) one for-loop for the scale index n in Algorithm 1; (2) another
one for the MIMF component index k in Algorithm 2. Note that in the case of a
superposition of several MIMFs, the estimation provided by line 12 in Algorithm 2 is
not accurate: the estimation error of a larger |n| is much larger than that of a smaller
|n| because |a

n,k

| and |b
n,k

| usually decay quickly in |n|. As the iteration goes on, the
multiresolution expansion coe�cients with a small scale index n in the residual signal
will decay since previous estimation steps try to eliminate them in the residual signal;
only after a su�ciently large number of iterations in j can line 12 in Algorithm 2 can
give accurate estimations for multiresolution expansion coe�cients with a large |n|.
Hence, to make Algorithm 2 converge, a large number of iteration number J

1

might
be required.

To reduce the number of iterations J
1

in Algorithm 2, it might be better to put the
k-for-loop inside the n-for-loop as in Algorithm 3, i.e., eliminating the multiresolution
expansion coe�cients with a small |n| in the residual signal first before estimating
those coe�cients with a large |n|. It is still unclear which algorithm is faster since
it relies on the decay rate of multiresolution expansion coe�cients in |n|. Hence, a
block size parameter b is used to make a balance: when J

2

= 1 and b = M
0

+ 1 in
Algorithm 3, Algorithm 3 essentially becomes Algorithm 2; when b = 1 in Algorithm
3, Algorithm 3 only computes the multiresolution expansion coe�cients and shape
functions for two scale indices per iteration in ` in line 5 of Algorithm 3. In the
pseudocode in Algorithm 3, the input and output of Algorithm 2 are denoted as

⇥

S, {fest

k

(t)}
1kK

, {s
cn,k

}
1kK,n2S, {s

sn,k

}
1kK,n2S, {a

n,k

}
1kK,n2S,

{b
n,k

}
1kK,n2S]

= RDSA
1

(f, {p
k

}
1kK

, ✏, J
1

, L
s

,M
0

,M
1

).

3. Convergence analysis. Although the RDSAs in Algorithm 2 and 3 are
mainly based on Fourier analysis, it can be proved that they are equivalent to the
RDBR in [36], which leads to the theory of the convergence of RDSA. Since Algorithm
2 is a special case of Algorithm 3, we will only focus on the convergence analysis of
Algorithm 3. Without loss of generality, we assume b = 1 in the analysis.
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Algorithm 2. (The first RDSA for MMD). The operation complexity of this algo-
rithm is O(max{M

0

,M
1

}J
1

KL logL) since the essential cost is the application of
the DSA in Algorithm 1 for J

1

K times.

1 Input: L points of measurement {f(t
`

)}
`=0,...,L�1

with t
`

2 [0, 1], estimated
instantaneous phases {p

k

}
k=1,...,K

, an accuracy parameter ✏, the maximum
iteration number J

1

, and bandwidth parameters L
s

, M
0

, and M
1

.
2 Output: A scale index set S, fest

k

(t) at the sampling grid points {t
`

}
0`L�1

,
its multiresolution expansion coe�cients {a

n,k

}
n2S and {b

n,k

}
n2S, and its

shape function series {s
cn,k

}
n2S and {s

sn,k

}
n2S for 1  k  K.

3 if M
1

has not been specified then
4 Define the scale index set S = {�M

0

,�M
0

+ 1, . . . ,M
0

}.
5 else
6 Define S = {�M

1

+1,�M
1

+2, . . . ,�M
0

, }[ {M
0

,M
0

+1, . . . ,M
1

� 1, }.
7 Initialize: let a

n,k

= 0, b
n,k

= 0, s
cn,k

= 0, s
sn,k

= 0, fest

k

(t) = 0 for all k and

n 2 S; let c = kfk
L

2 ; let e = 1; let r(0) = f .
8 Compute N

k

as the integer nearest to the average of p0
k

(t) for k = 1, . . . ,K.
9 Sort {N

k

}
1kK

in an ascending order and reorder the phase functions
accordingly.

10 for j = 1, 2, . . . , J
1

, do
11 for k = 1, . . . ,K do
12 [{s̄

cn

}
n2S, {s̄

sn

}
n2S, {ā

n

}
n2S, {b̄

n

}
n2S, f̄

s

, f̄
c

] =

DSA(r(j�1), p
k

, N
k

, L
s

,S).
13 s

cn,k

 s
cn,k

+ s̄
cn

and s
sn,k

 s
sn,k

+ s̄
sn

for n 2 S.
14 Update fest

k

(t) fest

k

(t) + f̄
c

+ f̄
s

.
15 if k < K then
16 Update r(j�1)  r(j�1) � f̄

c

� f̄
s

.

17 else
18 Compute r(j) = r(j�1) � f̄

c

� f̄
s

.

19 If kr(j)k
L

2/c  ✏, then break the for-loop.

20 if kr(j)k
L

2/c � e� ✏ then
21 Break the for loop.

22 else
23 e = kr(j)k

L

2/c.

24 Let a
n,k

= ks
cn,k

k
L

2 and s
cn,k

= s
cn,k

/a
n,k

for all k and n 2 S.
25 Let b

n,k

= ks
sn,k

k
L

2 and s
sn,k

= s
sn,k

/b
n,k

for all k and n 2 S.

3.1. Preliminaries. Before presenting the theory for RDSA, let us revisit RDBR
for MMD in [36]. In RDBR, if f(t) = a

n

s
cn

(2⇡N�(t)), we define the inverse-warping
data by h(v) = f � p�1(v) = a

n

s
cn

(2⇡v), where v = p(t) = N�(t). As a consequence,
we have a set of measurements of h(v) sampled on {h(v

`

)}
`=0,...,L�1

with v
`

= p(t
`

).
Note that h(v) is a periodic function with period 1. Hence, if we define a folding map
⌧ that folds the two-dimensional point set {(v

`

, h(v
`

))}
`=0,...,L�1

together,

⌧ : (v
`

, h(v
`

)) 7! (mod(v
`

, 1), h(v
`

)) ,(19)
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Algorithm 3. The second RDSA for MMD. For the purpose of simplicity, we as-
sume that M

0

+ 1 is a multiple of b. The operation complexity is bounded by
O(max{M

0

,M
1

}J
1

KL logL) since this is a faster algorithm than Algorithm 3.

1 Input: L points of measurement {f(t
`

)}
`=0,...,L�1

with t
`

2 [0, 1], estimated
instantaneous phases {p

k

}
k=1,...,K

, accuracy parameters ✏
1

and ✏
2

, the
maximum iteration numbers J

1

and J
2

, bandwidth parameters M
0

and L
s

,
and a block-size parameter b.

2 Output: M
M0

(f
k

)(t) at the sampling grid points {t
`

}
0`L�1

, its
multiresolution expansion coe�cients {a

n,k

}
n=�M0,...,M0

and
{b

n,k

}
n=�M0,...,M0 , and its shape function series {s

cn,k

}
n=�M0,...,M0 and

{s
sn,k

}
n=�M0,...,M0 for 1  k  K.

3 Initialize: let a
n,k

= 0, b
n,k

= 0, s
cn,k

= 0, s
sn,k

= 0, M
M0

(f
k

) = 0 for all k

and n; let c = kfk
L

2 ; let e = 1; let r(0) = f .
4 for j = 1, 2, . . . , J

2

, do
5 for ` = 1, . . . , (M

0

+ 1)/b do
6 Compute m = (`� 1)b and apply

[S, {fest
k (t)}

1kK , {s̄cn,k}1kK,n2S, {s̄sn,k}1kK,n2S, {an,k}1kK,n2S,

{bn,k}1kK,n2S] = RDSA
1

(r(j�1), {pk}1kK , ✏
2

, J
1

, Ls,m,m+ b).

7 for k = 1, . . . ,K do
8 s

cn,k

 s
cn,k

+ s̄
cn,k

and s
sn,k

 s
sn,k

+ s̄
sn,k

.
9 Update M

M0
(f

k

)(t) M
M0

(f
k

)(t) + f̄est

k

.

10 Compute r(j�1)  r(j�1) � f̄est

k

.

11 r(j) = r(j�1).

12 If kr(j)k
L

2/c  ✏
1

, then break the for loop.

13 if kr(j)k
L

2/c � e� ✏
1

then
14 Break the for loop.

15 else
16 e = kr(j)k

L

2/c.

17 Let a
n,k

= ks
cn,k

k
L

2 and s
cn,k

= s
cn,k

/a
n,k

for all k = 1, . . . ,K and
n = �M

0

, . . . ,M
0

.
18 Let b

n,k

= ks
sn,k

k
L

2 and s
sn,k

= s
sn,k

/b
n,k

for all k = 1, . . . ,K and
n = �M

0

, . . . ,M
0

.

then the point set {⌧(v
`

, a
n

s
cn

(2⇡v
`

))}
`=0,...,L�1

⇢ R2 is a two-dimensional point set
located at the curve (v, a

n

s
cn

(2⇡v)) ⇢ R2 given by the shape function a
n

s
cn

(2⇡v) with
v 2 [0, 1). Using the notations in nonparametric regression, let X be an independent
random variable in [0, 1), let Y be the response random variable in R, and consider
(x
`

, y
`

) = ⌧(v
`

, a
n

s
cn

(2⇡v
`

)) as L samples of the random vector (X,Y ); then a simple
regression results in the shape function

a
n

s
cn

= sR := argmin
s:R!R

E
n

|s(2⇡X)� Y |2
o

,(20)

where the superscript R means the ground truth regression function.
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RDBR applies the partition-based regression method (or partitioning estimate) in
Chapter 4 of [15] to solve the above regression problem. Given a small step size h⌧ 1,
the time domain [0, 1] is uniformly partitioned into Nh = 1

h

(assumed to be an integer)
parts {[th

k

, th
k+1

)}
k=0,...,N

h�1

, where th
k

= kh. Let sP denote the estimated regression
function by the partition-based regression method with L samples. Following the
definition in Chapter 4 of [15], we have a piecewise function

sP (2⇡x) :=

P

L�1

`=0

X
[t

h
k ,t

h
k+1)

(x
`

)y
`

P

L�1

`=0

X
[t

h
k ,t

h
k+1)

(x
`

)
=

P

L�1

`=0

X
[t

h
k ,t

h
k+1)

(mod(v
`

, 1))a
n

s
cn

(2⇡v
`

)
P

L�1

`=0

X
[t

h
k ,t

h
k+1)

(mod(v
`

, 1))
(21)

=

P

L�1

`=0

X
[t

h
k ,t

h
k+1)

(mod(N�(t
`

), 1))f(t
`

)
P

L�1

`=0

X
[t

h
k ,t

h
k+1)

(mod(N�(t
`

), 1))

when x 2 [th
k

, th
k+1

), where X
[t

h
k ,t

h
k+1)

(x) is the indicator function supported on [th
k

,

th
k+1

). When L is su�ciently large,

a
n

s
cn

(2⇡x) = sR(2⇡x) ⇡ sP (2⇡x) =

P

L�1

`=0

X
[t

h
k ,t

h
k+1)

(mod(N�(t
`

), 1))f(t
`

)
P

L�1

`=0

X
[t

h
k ,t

h
k+1)

(mod(N�(t
`

), 1))
(22)

when x 2 [th
k

, th
k+1

), and the approximation is robust against noise perturbation
(Chapter 4 of [15]).

More rigorously, the following theorem given in Chapter 4 in [15] estimates the
L
2

risk of the approximation sP ⇡ sR as follows.

Theorem 3.1. For the uniform partition with a step size h in [0, 1) as defined

just above, assume that

Var(Y |X = x)  �2, x 2 R,
�

�sR(x)� sR(z)
�

�  C |x� z| , x, z 2 R,
X has a compact support [0, 1), and there are L independently and identically dis-

tributed samples of (X,Y ). Then the partition-based regression method provides an

estimated regression function sP to approximate the ground truth regression function

sR, where

sR = argmin
s:R!R

E
n

|s(2⇡X)� Y |2
o

,

with an L2

risk bounded by

E
�

�sP � sR
�

�

2  c
0

�2 + ksRk2
L

1

Lh
+ C2h2,(23)

where c
0

is a constant independent of the number of samples L, the regression function

sR, the step size h, and the Lipschitz continuity constant C.

If f(t) is a MIMF, i.e.,

f(t) =

N/2�1

X

n=�N/2

a
n

cos(2⇡n�(t))s
cn

(2⇡N�(t)) +

N/2�1

X

n=�N/2

b
n

sin(2⇡n�(t))s
sn

(2⇡N�(t)),

(24)
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under the same condition as in (22), it was shown in [36] that

a
n

s
cn

(2⇡x) ⇡
2|sgn(n)|

P

L�1

`=0

X
[t

h
k ,t

h
k+1)

(mod(N�(t
`

), 1)) cos(2⇡n�(t
`

))f(t
`

)
P

L�1

`=0

X
[t

h
k ,t

h
k+1)

(mod(N�(t
`

), 1))
(25)

and

b
n

s
sn

(2⇡x) ⇡
2|sgn(n)|

P

L�1

`=0

X
[t

h
k ,t

h
k+1)

(mod(N�(t
`

), 1)) sin(2⇡n�(t
`

))f(t
`

)
P

L�1

`=0

X
[t

h
k ,t

h
k+1)

(mod(N�(t
`

), 1))
(26)

when x 2 [th
k

, th
k+1

), by a similar argument as in (22) and the fact that the oscillation
in amplitude functions cos(2⇡n�(t)) and sin(2⇡n�(t)) removes the influence of other
terms in (24) on the estimation of a

n

s
cn

(2⇡x) and b
n

s
sn

(2⇡x), respectively.
In practice, in the case of a superposition of MIMFs, RDBR uses the same recur-

sive algorithm as in Algorithm 3 (when b = 1) to solve the MMD problem. Unlike
RDSA that uses the DSA in Algorithm 15 to estimate shape functions, RDBR applies
(25) and (26). Even though in each iteration (25) and (26) cannot give exact estima-
tion, [36] proves that the estimation error can be corrected recursively as long as the
MIMFs are well-di↵erentiated. The well-di↵erentiation of MIMFs relies on the well-
di↵erentiation of phase functions. Denote the set of sampling grid points {t

`

}
`=0,...,L�1

in (8) as T . T is divided into several subsets as follows. For i, j = 1, . . . ,K, i 6= j,
m,n = 0, . . . , Nh � 1, let

T ij

h

(m,n) =
�

t 2 T : mod (p
i

(t), 1) 2 [th
m

, th
m

+ h), mod (p
j

(t), 1) 2 [th
n

, th
n

+ h)
 

and
T i

h

(m) =
�

t 2 T : mod (p
i

(t), 1) 2 [th
m

, th
m

+ h)
 

then T = [N
h�1

m=0

T i

h

(m) = [N
h�1

m=0

[N
h�1

n=0

T ij

h

(m,n). Let

Dij

h

(m,n) and Di

h

(m)(27)

denote the number of points in T ij

h

(m,n) and T i

h

(m), respectively.

Definition 3.2. Suppose phase functions p
k

(t) = N
k

�
k

(t) for t 2 [0, 1] and k =
1, . . . ,K, where �

k

(t) satisfies

�
k

(t) 2 C1, 1/M  |�0
k

| M.

Then the collection of phase functions {p
k

(t)}
1kK

is said to be (M,N,K, h,�, �)-
well-di↵erentiated and denoted as {p

k

(t)}
1kK

⇢ WD(M,N,K, h,�, �) if the fol-

lowing conditions are satisfied:

1. N
k

� N for k = 1, . . . ,K;

2. � := min
m,n,i6=j

Dij

h

(m,n) satisfies � > 0, where Dij

h

(m,n) (and Di

h

(m) below) is

defined in (27);
3. let

�
i,j

:=

0

@

N

h�1

X

m=0

1

Di

h

(m)

0

@

N

h�1

X

n=0

⇣

Dij

h

(m,n)� �
⌘

2

1

A

1

A

1/2

for all i 6= j; then � := max{�
i,j

: i 6= j} satisfies M2(K � 1)� < 1.

5The DSA is called in line 12 in Algorithm 2, which is called in line 6 in Algorithm 3.
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Definition 3.3. Suppose

f
k

(t) =

Nk/2�1

X

n=�Nk/2

a
n,k

cos(2⇡n�
k

(t))s
cn,k

(2⇡N
k

�
k

(t))

+

Nk/2�1

X

n=�Nk/2

b
n,k

sin(2⇡n�
k

(t))s
sn,k

(2⇡N
k

�
k

(t))

is a MIMF of type (M
0

,M,N
k

, ✏) for t 2 [0, 1], k = 1, . . . ,K, and

{p
k

(t) = N
k

�
k

(t)}
1kK

⇢WD(M,N,K, h,�, �);

then f(t) =
P

K

k=1

f
k

(t) is said to be a well-di↵erentiated superposition of MIMFs of

type (M
0

,M,N,K, h,�, �, ✏). Denote the set of all these functions f(t) as WS(M
0

,M,
N,K, h,�, �, ✏).

We recall again that in the case of b = 1, RDBR replaces DSA in line 12 of
Algorithm 2, which is used in line 6 in Algorithm 3, with (25) and (26) to estimate
shape functions. Under the well-di↵erentiation condition introduced just above, [36]

proves that the estimation error of (25) and (26) (denoted as s
E,(j)

cn,k

and s
E,(j)

sn,k

6,
respectively) in each iteration of the for-loop for J

2

in Algorithm 3 can be corrected
recursively: the estimation errors of shape functions in the jth step become the target
shape function to be estimated in the (j+1)th step; to show the convergence of RDBR,

it is su�cient to show that sE,(j)

cn,k

and s
E,(j)

sn,k

decay as j !1. Theorem 3.4 below (see
the proof of Theorem 3.3 in [36]) shows that the estimation error decays to O(✏) as
the iteration number goes to infinity.

Recall that, when we write O(·), ., or &, the implicit constants may depend on
M

0

, M , K, C, and no other parameters.

Theorem 3.4 (convergence of RDBR for MMD). Suppose all shape functions are

in the space of Lipschitz continuous functions with a constant C and ✏ is an accuracy

parameter. Assume that J
1

= 1, (25), and (26) are used to estimate shape functions

instead of DSA in Algorithm 3. For fixed ✏, M
0

, M , K, and C, there exists h
0

(✏, C)
such that for all h < h

0

(✏, C), there exist L
0

(✏,M
0

,M,K,C, h) and N
0

(✏,M,K,
C, h) such that, when L > L

0

, N > N
0

, and f(t) 2 WS(M
0

,M,N,K, h,�, �, ✏),
we have

�

�

�

s
E,(j)

cn,k

�

�

�

L

2
 O(c

0

✏+ (�(2M
0

+ 1)(K � 1))j)

6The estimation error of a shape function at step j, s
E,(j)
cn,k is defined as the di↵erence of the ground

truth regression function of the regression problem at step j and the target shape function at step

j, a
(j�1)

n,k s
(j�1)

cn,k , i.e., s
E,(j)
cn,k = argmin s : R ! R E{|s(2⇡X(j�1)

cn,k )�Y
(j�1)

cn,k |2}�a
(j�1)

n,k s
(j�1)

cn,k , where

(X
(j�1)

cn,k , Y
(j�1)

cn,k ) has samples (mod(Nk�k(t`), 1), 2|sgn(n)| cos(2⇡n�k(t`))r(j�1)(t`)) for t` from (8),

where r(j�1) is the MIMF at step j as used in line 6 in Algorithm 3. Similarly, we define the

estimation error s
E,(j)
sn,k as s

E,(j)
sn,k = argmin s : R ! R E{|s(2⇡X(j�1)

sn,k ) � Y
(j�1)

sn,k |2} � b
(j�1)

n,k s
(j�1)

sn,k ,

where (X
(j�1)

sn,k , Y
(j�1)

sn,k ) has samples (mod(Nk�k(t`), 1), 2|sgn(n)| sin(2⇡n�k(t`))r(j�1)(t`)).
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and

�

�

�

s
E,(j)

sn,k

�

�

�

L

2
 O

�

c
0

✏+ (�(2M
0

+ 1)(K � 1))j
�

for all j � 0 and 1  k  K, where c
0

= 1

1��(2M0+1)(K�1)

is a constant number and

s
E,(j)

cn,k

and s
E,(j)

sn,k

are defined just before this theorem.

As shown in [36], in each regression step, the variation of noise perturbation,
which comes from the interference of other components, is bounded by a constant
depending only on M

0

, M , and K. For the fixed ✏ and C, there exists h
0

(✏, C) such
that C2h2 < ✏2 if 0 < h < h

0

. For the fixed ✏, M
0

, M , K, C, and h, there exists
L
0

(✏,M
0

,M,K,C, h) such that, if L > L
0

, then the L2 error of the partition-based
regression is bounded by ✏2 according to Theorem 3.1. Under these conditions, one
can prove Theorem 3.4 using classical inequalities like the triangle inequality, Hölder’s
inequality, and Taylor expansion, following the steps in [36, Theorem 3.3] and the ideas
in [34, Theorem 3.5].

3.2. Theory of RDSA. With the theory of RDBR introduced in the previous
section, we are ready to prove the convergence of RDSA in this section. The main
idea is to prove that RDSA is a special kind of RDBR by the downsampling theorem
(aliasing theorem).

Definition 3.5. Suppose L, N , and

L

N

are integers. A downsampling operator,

denoted as D
N,L

, with a factor N is a map from x 2 CL

to y = D
N,L

(x) 2 C L
N

such

that

y[n] = x[nN ]

for n = 0, . . . , L

N

� 1.

Definition 3.6. Suppose L, N , and

L

N

are integers. An aliasing operator, de-

noted as A
N,L

, with a factor N is a map from x 2 CL

to y = A
N,L

(x) 2 C L
N

such

that

y[n] =
N�1

X

j=0

x



n+ j
L

N

�

for n = 0, . . . , L

N

� 1.

Theorem 3.7 (downsampling theorem). Suppose L, N , and

L

N

are integers.

For all x 2 CL

, it holds that

F(D
N,L

(x)) =
1

N
A

N,L

(F(x)),

where F denotes the discrete Fourier transform.

The reader is referred to [27] for the proof of Theorem 3.7. An immediate result
of Theorem 3.7 is the following convergence theorem for RDSA.

Theorem 3.8 (convergence of RDSA for MMD). Suppose all shape functions are

in the space of Lipschitz continuous functions with a constant C and ✏ is an accuracy

parameter. Assume that J
1

= 1 and Algorithm 1 is used to estimate shape functions

in Algorithm 3. For fixed ✏, M
0

, M , K, and C, there exists h
0

(✏, C) such that for all

h < h
0

(✏, C), there exist L
0

(✏,M
0

,M,K,C, h) and N̄
0

(✏,M
0

,M,K,C, h) such that,

when L > L
0

, N > N̄
0

,

N

L

< h
0

, and f(t) 2WS(M
0

,M,N,K, N

L

,�, �, ✏), we have
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�

�

�

s
E,(j)

cn,k

�

�

�

L

2
 O

�

c
0

✏+ (�(2M
0

+ 1)(K � 1))j
�

and

�

�

�

s
E,(j)

sn,k

�

�

�

L

2
 O

�

c
0

✏+ (�(2M
0

+ 1)(K � 1))j
�

for all j � 0 and 1  k  K, where c
0

= 1

1��(2M0+1)(K�1)

is a constant number and

s
E,(j)

cn,k

and s
E,(j)

sn,k

are defined just before this theorem.

Proof. In the first part of the proof, we show that (11) and (12) are equivalent
to partition-based regression with a step size N

L

up to an approximation error due to
the NUFFT. Since the approximation error of the NUFFT can be controlled within
arbitrary accuracy [13], we assume that this approximation error is O(✏).

For a MIMF f(t) as defined in (7), let us define a uniform grid
⇢

 
`

= �(0) +
(�(1)� �(0))`

L
: 0  `  L� 1, ` 2 Z

�

.

Define a vector
�!
cf 2 RL associated with the function f(t) such that the `th entry

is
�!
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`
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`

)). Define a vector ~s
cn

2 RL associated with the
function a

n

s
cn

(2⇡t) such that the `th entry is ~s
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[`] = a
n

s
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`

), where t
`

is from
the uniform grid

⇢

t
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=
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L
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�

.

By Theorem 3.7, we know

F�1(D
N,L

(F(
�!
cf))) =

1

N
A

N,L

(
�!
cf).

By the definition of D
N,L

and T
N

and the fact that the right F in (11) is carried out
via the NUFFT, we see that (11) is equivalent to

~s
cn

= O(✏) +
2|sgn(n)|

N
A

N,L

(
�!
cf),

i.e.,

~s
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[k] = O(✏) +
2|sgn(n)|

N
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�!
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.

If we write the above equation in the terminology of partition-based regression, then
the above equation (and hence (11)) is equivalent to

anscn(2⇡x)

(28)

= O(✏) +

2

|sgn(n)| PL�1

`=0

X⇥
t
N/L
k ,t

N/L
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�
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k ,t
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�
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mod(N( `� 0),�(1)��(0))
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⌘
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when x 2 [tN/L

k

, t
N/L

k+1

), where t
N/L

k

= kN

L

, for k = 0, . . . , L

N

� 1. In this special case
of partition-based regression, the samples are

⇢

mod(N( 
`

�  
0

),�(1)� �(0))
�(1)� �(0) , cos(2⇡n 

`

)
�

f � ��1( 
`

)
�

�

`=0,...,L�1

,

where mod(N( `� 0),�(1)��(0))
�(1)��(0) = t

N/L

mod(`,L/N)

2 [0, 1] is always on the partition grid

points (with a step size N

L

) of the partition-based regression. In fact, these samples
are uniformly distributed on the partition grid points and each grid point has N
samples.

Similarly, we see that (12) is equivalent to

bnssn(2⇡x)
(29)

= O(✏) +

2

|sgn(n)| PL�1
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when x 2 [tN/L

k

, t
N/L

k+1

). (29) is again a special case of partition-based regression with
samples

⇢

mod(N( 
`

�  
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),�(1)� �(0))
�(1)� �(0) , sin(2⇡n 

`

)
�

f � ��1( 
`

)
�

�

`=0,...,L�1

.

The step size of the sampling domain [0, 1] is N

L

.
Recall that RDBR uses formulas (25) and (26) to estimate shape functions, and

these formulas come from partition-based regression with sampling points

{mod(N�(t
`

), 1), cos(2⇡n�(t
`

))f(t
`

)}
0`L�1

and
{mod(N�(t

`

), 1), sin(2⇡n�(t
`

))f(t
`

)}
0`L�1

,

respectively. The step size of the sampling domain [0, 1] is a fixed parameter h.
By Theorem 3.4, we see that, if RDBR was used to estimate shape functions

(i.e., formulas (25) and (26) were used), then for fixed ✏, M
0

, M , K, and C, there
exists h

0

(✏, C) such that for all h < h
0

(✏, C), there exist L
0

(✏,M
0

,M,K,C, h) and
N

0

(✏,M
0

,M,K,
C, h) such that, when L > L

0

(✏,M
0

,M,K,C, h), N > N
0

(✏,M
0

,M,K,C, h), and
f(t) 2WS(M

0

,M,N,K, h,�, �, ✏), we have
�

�

�

s
E,(j)

cn,k
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�
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2
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�

c
0

✏+ (�(2M
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+ 1)(K � 1))j
�

and
�

�

�

s
E,(j)

sn,k

�

�

�

L

2
 O

�

c
0

✏+ (�(2M
0

+ 1)(K � 1))j
�

for all j � 0 and 1  k  K, where c
0

= 1

1��(2M0+1)(K�1)

is a constant number and

s
E,(j)

cn,k

and s
E,(j)

sn,k

are defined just before this theorem.
Hence, in the second part of the proof of Theorem 3.8 for RDSA, we only need

to clarify the conditions under which the estimations by (25) and (26) are almost the
same as those by (28) and (29), respectively, up to a small di↵erence O(✏).
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Under the conditions of Theorem 3.4, as mentioned right after Theorem 3.4 in this
paper, in each step of regression in (25) and (26), the estimated regression function
only di↵ers from the ground truth regression function up to an L2 error bounded by
✏2. More particularly, Theorem 3.1 gives the error bound as follows:

O

✓

�2 + ksRk2
L

1

L · h + C2h2

◆

,

where �2 is the variation of noise perturbation (coming from the interference between
di↵erent components) and �2 is bounded by a constant depending only onM

0

, M , and
K; sR denotes the ground truth regression function for the regression problem, and it
has an L1-norm depending on M

0

, M , and K as well; C is the Lipschitz continuity
constant; L is the number of samples; and h is the step size of the partition-based
regression. Hence, there exists h

0

(✏, C) such that for all h < h
0

(✏, C), there exists
L
0

(✏,M
0

,M,K,C, h) such that, when L > L
0

(✏,M
0

,M,K,C, h) we have

O

✓

�2 + ksRk2
L

1

L · h + C2h2

◆

. O(✏2).

Similarly by Theorem 3.1, we see that the estimated regression function by (28)
and (29) has an L2 error bounded by

O
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Hence, following the proof of Theorem 3.3 in [36], we can prove that for fixed ✏,
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The reason for requiring
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instead of
f(t) 2WS(M

0

,M,N,K, h,�, �, ✏)

is that the partition-based regression in (28) and (29) has a step size N

L

instead
of h.

4. Numerical examples. In this section, some numerical examples of synthetic
and real data are provided to demonstrate the proposed properties of RDSA. In all
synthetic examples, we assume the instantaneous phases and amplitudes are known
and only focus on verifying the RDSA in section 2 and its convergence theory in section
3. In most examples, we apply the one-dimensional highly redundant synchrosqueezed
wave packet transform (SSWPT) [35, 37] to estimate instantaneous phases and am-
plitudes as inputs of RDSA. The implementation of SSWPT is publicly available in
SynLab.7 Some more packages for estimating instantaneous frequencies can be found
in [14]. The code for the RDSA is available online as well in a MATLAB package
named DeCom.8

Let us summarize the main parameters in the above packages and in Algorithm
3. In SynLab, main parameters are

• s: a geometric scaling parameter;
• rad: the support size of the mother wave packet in the Fourier domain;
• red: a redundancy parameter, the number of frames in the wave packet trans-
form;

• ✏
sst

: a threshold for the wave packet coe�cients.
In Algorithm 3, main parameters are

• J
1

: the maximum number of iterations allowed in Algorithm 2;
• J

2

: the maximum number of iterations allowed in Algorithm 3;
• M

0

and L
s

: bandwidth parameters;
• ✏

1

= ✏
2

= ✏: the accuracy parameter.
For the purpose of convenience, the synthetic data is defined on [0, 1] and sampled on
a uniform grid. All these parameters in di↵erent examples are summarized in Table 1.

4.1. Convergence of RDSA. In this section, we provide numerical examples
to verify the convergence theory of RDSA in section 3. For a fixed accuracy parameter
✏, Theorem 3.8 shows that as long as instantaneous frequencies are su�ciently high
and the number of samples is large enough, RDSA is able to estimate shape functions
from a class of superpositions of MIMFs. The residual error in the iterative scheme
linearly converges to a quantity of order ✏. Since it is di�cult to specify the relation

Table 1
Parameters in SynLab and Algorithm 3. The notation “–” means the corresponding parameter

is not used or will be specified later in the example.

Figure s rad red ✏sst J
1

J
2

M
0

✏ Ls L

4 – – – – 10 200 20 1e-13 2000 –
5, 6, 7 0.5 1.5 8 1e-3 10 200 – 1e-6 5000 216

8, 9, 10 0.5 1 8 1e-3 10 200 – 1e-6 5000 4000
11, 12, 13 – – – – 10 200 10 1e-6 2000 216

14 (left 2), 15 0.75 1 8 1e-3 10 200 10 1e-6 2000 216

14 (right 2), 16 0.6 1 16 1e-2 10 200 10 1e-6 2000 216

17, 18, 19 – – – – 10 200 10 1e-6 2000 216

20, 21, 22 0.5 1.5 8 1e-3 10 200 40 1e-6 1000 216

7Available at https://github.com/HaizhaoYang/SynLab.
8Available at https://github.com/HaizhaoYang/DeCom.
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of the rate of convergence and other parameters explicitly in the analysis, we provide
numerical examples to study this rate quantitatively.

In all examples in this section, we consider a simple case when the signal has
two components with piecewise linear and continuous shapes. This makes it easier to
verify the convergence analysis. For example, we consider a signal of the form

f(t) = f
1

(t) + f
2

(t),(30)

where
f
1

(t) = s
1

(2⇡N�
1

(t)) = s
1

(2⇡N(t+ 0.006 sin(2⇡t)))

and
f
2

(t) = s
2

(2⇡N�
2

(t)) = s
2

(2⇡N(t+ 0.006 cos(2⇡t))) ;

s
1

(2⇡t) and s
2

(2⇡t) are shape functions defined on [0, 1] as shown in Figure 4 (left).
Here f

1

and f
2

can be considered as two intrinsic mode functions as well as two
MIMFs by definition.

First, we fix the number of samples L = 219, vary the parameter N in (30), and
estimate the convergence rate numerically. By Theorem 3.8 (adapted to the example
in this section), the residual norm ✏

1

in Algorithm 3 converges to O(✏) as follows:

✏
(j)

1

= O(✏) + �jO(1).

Hence, if we define a sequence {µ
j

} by

µ
j

= log
⇣

�

�

�

✏
(j�1)

1

� ✏(j)
1

�

�

�

⌘

and a sequence {⌘
j

} by
⌘
j

= µ
j

� µ
j+1

,

then ⌘
j

approximately quantifies the convergence in the jth iteration and should be
nearly a constant close to� log(�). Figure 4(c) visualizes the sequences {⌘

j

} generated
from di↵erent signals with various N ’s. It shows that when N is su�ciently large,
{⌘

j

} are approximately a constant for all j and hence the convergence is linear; when
N is small, RDSA converges sublinearly since ⌘

j

> 0 for all j and {⌘
j

} decays as
j becomes large. After a few iterations, the residual error has been small enough.
Hence, we do not show the results when the iteration number is larger than 7.

Second, we fix N = 100, vary the number of samples L = 2m with m =
9, 10, . . . , 18, and show the accuracy of RDSA after it converges. To obtain results
with an accuracy as high as possible, we let J

2

= 200 and ✏ = 1e � 13. Figure 4(d)
shows that the final residual norm ✏

1

after RDSA converged essentially decays in L.

Fig. 4. (a) Shape function s
1

in (30). (b) Shape function s
2

in (30). (c) Estimated convergence
rates � in di↵erent iteration steps when di↵erent values are assigned to N in (30). (d) The relation
of the final residual norm ✏(j) (after the RDSA has been terminated) and the number of samples L.
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Table 2
The speedup of RDSA against RDBR, i.e., tRDBR/tRDSA, for estimating shape functions in

one iteration of the recursive scheme. The above table shows the speedup for various numbers of
samples L and essential frequencies N .

N\L 210 211 212 213 214 215 216 217 218 219

50 59 154 287 713 217 900 946 1246 1396 1278
70 525 682 723 1364 771 916 1136 1293 1645 1650
90 482 436 593 645 1184 611 945 1451 1501 2086

110 382 505 685 700 1056 1026 966 1253 1416 1298

4.2. The speedup of RDSA against RDBR. In this section, we compare
the computational e�ciency of RDSA proposed in this paper and RDBR in [36]. In
this comparison, we still adopt the simple example in (30) and only compare the
computational time of one iteration in RDSA and RDBR, i.e., the time (denoted
as t

RDBR

) for performing Algorithm 2 in [36] with J = 1 and the time (denoted
as t

RDSA

) for performing Algorithm 1 in this paper for computing only one shape
function. The speedup of RDSA against RDBR, i.e., t

RDBR

/t
RDSA

, is shown in
Table 2 for various L’s and N ’s. Since the main computational cost for RDSA is the
NUFFT, which has a computational complexity O(L logL) for a problem of size L,
the RDSA is highly e�cient. The speedup of RDSA against RDBR is much more
prominent as L increases. Hence, RDSA is a more practical algorithm for MMD than
RDBR when the problem size is large.

4.3. Analysis of MIMFs in real data. In this section, we apply RDSA to
analyze MIMFs in real applications. We adopt the same numerical examples in [36]
to compare the performance of RDSA and RDBR. To save space, only the results
of RDSA will be provided. The reader is referred to [36] for the results of RDBR
as comparison. The first example is an ECG record from a normal subject, and the
second example is a motion-contaminated ECG record. More details about the ECG
data can be found in https://www.physionet.org/physiobank/database/. We compute
the band-limited multiresolution approximations of the first example and visualize
them in Figures 5, 6, and 7; the band-limited multiresolution approximations of the
second example are plotted in Figures 8, 9, and 10. Note that when the bandwidth of
the multiresolution approximation increases, the approximation error decreases, and
finer variation of the time series can be captured. Figures 7 and 10 show the first five
shape functions of these two examples, respectively; all shape functions vary a lot at
di↵erent level of resolution. The actual time-varying shapes of an ECG signal we see
in the raw data are not exactly any single shape function in the shape function series;
they are actually the results of all shape functions in the shape function series. The
results by RDSA validate the MIMF model again. Compared to RDBR, the residual
f(t) �M

40

(f)(t) by RDSA in Figures 6 and 9 is smaller, which implies that RDSA
is better to handle fine details of the signal than RDBR.

4.4. MMD for synthetic data. In this section, two synthetic examples of
MMD are provided to demonstrate the e↵ectiveness of RDSA. We consider a simple
case when the signal has two MIMFs with ECG shape functions. In particular, we let
the shape function series of each MIMF contain the same ECG shape function. This
makes it easier to verify Algorithm 3.

First synthetic example. In the first example, we consider a signal of the form

f(t) = f
1

(t) + f
2

(t),(31)

https://www.physionet.org/physiobank/database/
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Fig. 5. Multiresolution approximations of an ECG record from a normal subject.

Fig. 6. The residual of the multiresolution approximations of an ECG record from a normal
subject in Figure 5.

Fig. 7. Estimated shape functions a
0

sc0(t), a1sc1(t), a�1

sc�1

(t), b
1

ss1(t), and b�1

ss�1

(t) for
the ECG signal in Figure 5.
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Fig. 8. Multiresolution approximations of a motion-contaminated ECG record.

Fig. 9. The residual of the multiresolution approximations of a motion-contaminated ECG
record in Figure 8.
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Fig. 10. Estimated shape functions a
0

sc0(t), a
1

sc1(t), a�1

sc�1

(t), b
1

ss1(t), and b�1

ss�1

(t)
for the ECG signal in Figure 8.

Fig. 11. Shape function s
1

(2⇡t) in (32) and s
2

(2⇡t) in (33).

where

f
1

(t) = ↵
1

(�
1

(t))s
1

(300⇡�
1

(t)),(32)

f
2

(t) = ↵
2

(�
2

(t))s
2

(440⇡�
2

(t)),(33)

↵
1

(t) = 1 + 0.2 cos(2⇡t) + 0.1 sin(2⇡t),

↵
2

(t) = 1 + 0.1 cos(2⇡t) + 0.2 sin(2⇡t),

�
1

(t) = x+ 0.006 sin(2⇡t),

and
�
2

(t) = x+ 0.006 cos(2⇡t).

s
1

(2⇡t) and s
2

(2⇡t) are generalized shape functions defined on [0, 1] as shown in
Figure 11.

First, we apply Algorithm 3 with the known instantaneous phases just above to
estimate the multiresolution expansion coe�cients, the shape functions series, and
two components in (32) and (33). The product of the multiresolution expansion
coe�cient and its corresponding shape function is shown in Figure 12. To quantify the
estimation error for the multiresolution expansion coe�cient and its shape function,
we compute the L2-norms of the estimation error and list them in the caption of
Figure 12. The accuracy is a high as 1e-3. Identified components are shown in Figure
13. The estimation errors are very small; the estimated results and the ground truth
are almost indistinguishable.

Second, we apply the SSWPT to estimate instantaneous frequencies of the signal
in (31) and then apply Algorithm 3 with the estimated instantaneous frequencies to
estimate two components in (32) and (33). The estimated instantaneous frequencies
and components are shown in Figures 14 (left two) and 15. The estimation errors are
very small; the estimated results and the ground truth are almost indistinguishable.

Finally, we repeat the experiment as in the last paragraph with a noisy ver-
sion of the signal in (31) with Gaussian random noise N (0, 0.25) to demonstrate the
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Fig. 12. Top: estimated shape functions a
0,1sc0,1(2⇡t), a

1,1sc1,1(2⇡t), a�1,1sc�1,1(2⇡t),
b
1,1ss1,1(2⇡t), and b�1,1ss�1,1(2⇡t) of f

1

(t) in (32). Bottom: estimated shape functions
a
0,2sc0,2(2⇡t), a

1,2sc1,2(2⇡t), a�1,2sc�1,2(2⇡t), b
1,2ss1,2(2⇡t), and b�1,2ss�1,2(2⇡t) of f

2

(t) in
(33). The L2-norm of the estimation errors in these 10 figures is 3.4e-3, 9.1e-3, 2.8e-3, 9.1e-3,
5.6e-4, 6.2e-3, 5.6e-3, 4.1e-3, 5.3e-3, and 9.0e-4, respectively.

Fig. 13. Recovered components by the RDSA with ground true instantaneous frequencies as
compared to the ground true signals in (32) and (33).

Fig. 14. Estimated instantaneous frequencies of the example in (32) and (33). Left two figures:
estimation when the signal is clean. Right two figures: estimation when the signal is noisy.

robustness of the proposed method. The estimated instantaneous frequencies and
components are shown in Figures 14 (right two) and 16. The estimation errors are
small, and the proposed method works well for reasonably noisy signals.

Second synthetic example. In the second example, we investigate the per-
formance of the RDSA in the case of intrawave phenomenon together with multiple
crossover frequencies. This is a very challenging case of interest in the community of
empirical mode decomposition. We consider a signal of the form
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Fig. 15. Recovered components by the RDSA with estimated instantaneous frequencies from
SSWPT as compared to the ground true signals in (32) and (33) when the signal f in (31) is clean.

Fig. 16. Recovered components by the RDSA with estimated instantaneous frequencies from
SSWPT as compared to the ground true signals in (32) and (33) when the signal f in (31) is noisy.

f(t) = f
1

(t) + f
2

(t),(34)

where

f
1

(t) = ↵
1

(�
1

(t))s
1

(300⇡�
1

(t)),(35)

f
2

(t) = ↵
2

(�
2

(t))s
2

(300⇡�
2

(t)),(36)

↵
1

(t) = 1 + 0.2 cos(2⇡t) + 0.1 sin(2⇡t),

↵
2

(t) = 1 + 0.1 cos(2⇡t) + 0.2 sin(2⇡t),

�
1

(t) = x+ 0.01 sin(20⇡t),

and
�
2

(t) = x+ 0.01 cos(20⇡t).

s
1

(2⇡t) and s
2

(2⇡t) are generalized shape functions defined on [0, 1] as shown in
Figure 11.

We apply Algorithm 3 with the known instantaneous phases just above (see the
corresponding instantaneous frequencies in Figure 17) to estimate the multiresolution
expansion coe�cients, the shape functions series, and two components in (35) and
(36). The product of the multiresolution expansion coe�cient and its corresponding
shape function is shown in Figure 18. To quantify the estimation error for the mul-
tiresolution expansion coe�cient and its shape function, we compute the L2-norms of
the estimation error and list them in the caption of Figure 18. The accuracy is a high
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Fig. 17. The instantaneous frequencies of the example in (35) and (36) with intrawave and
crossover phenomenon.

Fig. 18. Top: estimated shape functions a
0,1sc0,1(2⇡t), a

1,1sc1,1(2⇡t), a�1,1sc�1,1(2⇡t),
b
1,1ss1,1(2⇡t), and b�1,1ss�1,1(2⇡t) of f

1

(t) in (35). Bottom: estimated shape functions
a
0,2sc0,2(2⇡t), a

1,2sc1,2(2⇡t), a�1,2sc�1,2(2⇡t), b
1,2ss1,2(2⇡t), and b�1,2ss�1,2(2⇡t) of f

2

(t) in
(36). The L2-norm of the estimation errors in these 10 figures is 2.0e-3, 2.8e-3, 4.6e-4, 2.9e-3,
2.9e-4, 5.6e-3, 2.4e-3, 1.1e-3, 2.3e-3, and 2.4e-4, respectively.

Fig. 19. Recovered components by the RDSA with ground true instantaneous frequencies as
compared to the ground true signals in (35) and (36).

as 1e-3. Identified components are shown in Figure 19. The estimation errors are
very small; the estimated results and the ground truth are almost indistinguishable.
After the completion of this manucript, we developed a new framework for estimating
instantaneous information in the case of intrawave and crossover frequencies in [33].
The reader is referred to [33] for the performance of RDSA applied with estimated
instantaneous information.

4.5. MMD for real data. This is an example of PPG9 that contains a hemo-
dynamical MIMF and a respiration MIMF. The instantaneous frequencies and phases

9From http://www.capnobase.org.

http://www.capnobase.org
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Fig. 20. Estimated fundamental instantaneous frequencies of the real PPG signal in the first
panel of Figure 21 by the synchrosqueezed transform.

Fig. 21. First panel: the raw PPG signal f(t). Second panel: the respiratory MIMF f
1

(t).
Third panel: the cardiac MIMF f

2

(t). Fourth panel: the summation of the respiratory and cardiac
MIMF’s f

1

(t)+f
2

(t) (red) compared to the raw PPG signal f(t) (blue). The fifth panel: the residual
signal f(t)� f

1

(t)� f
2

(t).

are not known, and they are estimated via the synchrosqueezed transform in [35].
Figure 20 shows the estimated instantaneous frequencies of the respiratory and car-
diac cycles. Inputting their corresponding instantaneous phases into RDSA, the PPG
signal is separated into a respiratory MIMF and a cardiac MIMF as shown in Figure
21; their leading multiresolution shape functions are shown in Figure 22.

The last two panels of Figure 21 shows that the PPG signal has been completely
separated into two MIMFs; the residual signal only contains noise, a smooth trend, and
some sharp changes that are not correlated to the oscillation in MIMFs. The second
panel shows that the MIMF model can characterize time-varying shape functions,
while the third panel shows that the MIMF model can capture the time-varying
amplitude functions.
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Fig. 22. Top: estimated shape functions a
0,1sc0,1(2⇡t), a

1,1sc1,1(2⇡t), a�1,1sc�1,1(2⇡t),
b
1,1ss1,1(2⇡t), and b�1,1ss�1,1(2⇡t) for the respiratory MIMF. Bottom: estimated shape functions
a
0,2sc0,2(2⇡t), a1,2sc1,2(2⇡t), a�1,2sc�1,2(2⇡t), b1,2ss1,2(2⇡t), and b�1,2ss�1,2(2⇡t) for the cardiac

MIMF.

5. Conclusion. This paper proposed the RDSA for the MMD. The convergence
of RDSA has been theoretically and numerically proved. The computational e�ciency
is significantly better than the RDBR in [36]. RDSA analyzes oscillatory time series
by providing their multiresolution expansion coe�cients and shape function series;
these features would be more meaningful than those by traditional Fourier analysis
and wavelet analysis. As we have seen in numerical examples, these features visu-
alize important variation of signals, which are important for abnormality detection
in oscillatory time series. The computational e�ciency of RDSA makes the MMD
a practical model for large-scale time series analysis and online data analysis, e.g.,
real-time monitoring systems for heart condition.

The fast algorithms proposed in this paper can be naturally extended to higher
dimensional spaces for the applications like atomic crystal images in physics [24, 39],
art investigation [10, 38], geology [20, 28, 40], imaging [3], etc. In higher dimensional
spaces, the computational e�ciency is a crucial issue. Hence, the extension of RDSA
to higher dimensional spaces would be very important.

Acknowledgment. H. Y. thanks Ingrid Daubechies for discussion.
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