
ELSI: A Unified Software Interface for Kohn-Sham

Electronic Structure Solvers

Victor Wen-zhe Yua, Fabiano Corsettib, Alberto Garćıac, William P.
Huhna, Mathias Jacquelind, Weile Jiad,e, Björn Langea, Lin Lind,e, Jianfeng

Luf, Wenhui Mia, Ali Seifitokaldania, Álvaro Vázquez-Mayagoitiag, Chao
Yangd, Haizhao Yangf, Volker Bluma,∗

aDepartment of Mechanical Engineering and Materials Science, Duke University,
Durham, NC 27707

bDepartments of Materials and Physics, and the Thomas Young Centre for Theory and
Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom
cInstitut de Ciència de Materials de Barcelona (ICMAB-CSIC), Bellaterra E-08193,

Spain
dComputational Research Division, Lawrence Berkeley National Laboratory, Berkeley,

CA 94720
eDepartment of Mathematics, University of California, Berkeley, CA 94720

fDepartment of Mathematics, Duke University, Durham, NC 27707
gArgonne Leadership Computing Facility, Argonne National Laboratory, Argonne, IL

60439

Abstract

Solving the electronic structure from a generalized or standard eigenprob-
lem is often the bottleneck in large scale calculations based on Kohn-Sham
density-functional theory. This problem must be addressed by essentially all
current electronic structure codes, based on similar matrix expressions, and
by high-performance computation. We here present a unified software inter-
face, ELSI, to access different strategies that address the Kohn-Sham eigen-
value problem. Currently supported algorithms include the dense generalized
eigensolver library ELPA, the orbital minimization method implemented in
libOMM, and the pole expansion and selected inversion (PEXSI) approach
with lower computational complexity for semilocal density functionals. The
ELSI interface aims to simplify the implementation and optimal use of the

∗Corresponding author.
Email address: volker.blum@duke.edu (Volker Blum)

Preprint submitted to Computer Physics Communications May 31, 2017

different strategies, by offering (a) a unified software framework designed for
the electronic structure solvers in Kohn-Sham density-functional theory; (b)
reasonable default parameters for a chosen solver; (c) automatic conversion
between input and internal working matrix formats, and in the future (d)
recommendation of the optimal solver depending on the specific problem.
Comparative benchmarks are shown for system sizes up to 11,520 atoms
(172,800 basis functions) on distributed memory supercomputing architec-
tures.

Keywords: Density-Functional Theory, Kohn-Sham eigenvalue problem,
Parallel computing

PROGRAM SUMMARY
Program title: ELSI Interface

Licensing provisions: BSD 3-clause

Distribution format: tar.gz

Programming language: Fortran 2003, with interface to C/C++

External routines/libraries: MPI, BLAS, LAPACK, ScaLAPACK, ELPA, libOMM,

PEXSI, ParMETIS, SuperLU DIST

Operating system: Unix-like (Linux, macOS), Windows (not tested)

Nature of problem: Solving the electronic structure from a generalized or standard

eigenvalue problem in calculations based on Kohn-Sham density functional theory

(KS-DFT).

Solution method: To connect the KS-DFT codes and the KS electronic structure

solvers, ELSI provides a unified software interface with reasonable default parame-

ters, hierarchical control over the interface and the solvers, and automatic conver-

sions between input and internal working matrix formats. Supported solvers are:

ELPA (dense generalized eigensolver), libOMM (orbital minimization method),

and PEXSI (pole expansion and selected inversion method).

Restrictions: The ELSI interface requires complete information of the Hamiltonian

matrix.

1. Introduction1

Molecular and materials simulations based on Kohn-Sham (KS) [1] and2

generalized Kohn-Sham (gKS) [2, 3] density-functional theory (DFT) are3

widely used to provide atomic-scale insights, understanding, and predictions4

2

across a wide range of disciplines in the sciences and in engineering. The5

number of DFT-related publications has grown rapidly over recent decades6

[4, 5, 6], exceeding 20,000 in 2016 [6]. In particular, simulations based on7

semilocal and hybrid density functionals serve as the production workhorses8

for a broad range of applications. Advances in both computational methods9

and high-performance computing hardware render it feasible to model large10

systems consisting of thousands of atoms, and linear scaling KS-DFT [7, 8, 9]11

can reach system sizes of millions of atoms [10, 11]. Higher levels of density12

functional approximations, like the Random Phase Approximation (RPA),13

can be formulated to scale linearly with system size as well [12, 13].14

However, approaches for which the computational effort scales lower than15

O(N3), where N is some measure of the system size, are, arguably, not yet16

fully established as mainstream methods of the field. There are several rea-17

sons for this status. Perhaps the simplest reason is that formally O(N3)18

scaling approaches by solving an algebraic eigenvalue problem are generally19

applicable to any class of system, and the computational effort associated20

with them has a low prefactor, i.e., they are advantageous to use for systems21

comprised of up to roughly a few thousands of atoms, which account for the22

bulk of KS-DFT applications. In contrast, the transition to lower-scaling so-23

lution methods for larger systems is not necessarily simple. Such alternatives24

are typically restricted to certain classes of systems or problems. The transi-25

tion is, therefore, not trivial to automate, requiring specific intervention and26

sometimes specialist knowledge by its users. This creates hurdles both from27

a user point of view (complexity of choice) and from a developer point of28

view (replication of often complex infrastructure to implement a particular29

method efficiently). The KS eigenvalue problem is thus in practice a bottle-30

neck of KS-DFT simulations on current HPC architectures and for system31

sizes significantly exceeding several thousands of atoms.32

We here present a software infrastructure, ELSI, that simplifies the ap-33

proach to overcome the Kohn-Sham eigenproblem bottleneck as much as34

possible for electronic structure users and developers. ELSI provides an inte-35

grated and extendable interface to multiple strategies targeting the KS eigen-36

problem (referred to as Kohn-Sham electronic structure solvers throughout37

this paper). It presently (version: 2017.05) supports three solvers: ELPA38

(Eigenvalue soLvers for Petaflop-Applications) [14, 15], libOMM (Orbital39

Minimization Method) [16], and PEXSI (Pole EXpansion and Selected In-40

version) [17, 18, 19]. For the future, ELSI is expressly intended to integrate41

further solvers such as the linear-scaling solver CheSS(CHEbyshev Sparse42

3

Solvers) [20], the iterative solver SIPs (Shift-and-Invert Parallel Spectral43

transformation eigensolver) [21], and others. By design, ELSI is an open44

infrastructure, intended to serve a community, and it can and should be flex-45

ibly adaptable to new solvers and new electronic structure codes’ needs in46

the future. In this paper, we describe the outline and basic principles of47

ELSI, as well as a comparative assessment of the three solution strategies48

that are already supported in ELSI as of its 2017.05 release. The software49

presented here is a structural foundation that is already working in several50

electronic structure codes, and we expect it to become a focal point for new51

developments and solver cross-comparisons in the future.52

2. Kohn-Sham Density-Functional Theory53

In KS-DFT [1], the many-electron problem for the Born-Oppenheimer54

electronic ground state is reduced to a system of single particle equations55

known as the Kohn-Sham equations56

ĥKSψl = εlψl, (1)

where ψl and εl are Kohn-Sham orbitals and their associated eigenenergies,57

and ĥKS denotes the Kohn-Sham Hamiltonian:58

ĥKS = t̂s + v̂es + v̂xc + v̂ext, (2)

which includes the kinetic energy t̂s, the average electrostatic potential of59

the electron density and of the nuclei v̂es (i.e. the Hartree potential), the60

exchange-correlation potential v̂xc, and possible additional potential terms61

v̂ext from external electromagnetic fields.62

In almost all practical approaches, Nbasis basis functions φi(r) are em-63

ployed to approximately expand the Kohn-Sham orbitals:64

ψl(r) =

Nbasis∑
j=1

cjlφj(r). (3)

The choice of basis set is one of the critical decisions in the design of an65

electronic structure code [22]. Using non-orthogonal basis functions (e.g.,66

4

Gaussian functions [22, 23, 24, 25, 26, 27, 28], Slater functions [29, 30], nu-67

meric atom-centered orbitals [31, 32, 33, 34, 35, 36], (linearized) augmented68

plane waves [37, 38, 39, 40, 41], finite elements [42]) in Eq. 3 converts Eq. 169

to a generalized eigenvalue problem70

∑
j

hijcjl = εl
∑
j

sijcjl, (4)

where hij and sij are the elements of the Hamiltonian matrix H and the71

overlap matrix S, which can be computed through numerical integrations:72

hij =

∫
d3r[φ∗

i (r)ĥKSφj(r)],

sij =

∫
d3r[φ∗

i (r)φj(r)].

(5)

Eq. 4 can thus be expressed in the following matrix form:73

Hc = εSc. (6)

Here, the matrix c and diagonal matrix ε contain the eigenvectors and eigen-74

values, respectively, of the eigensystem of the matrices H and S.75

When using orthonormal basis sets (e.g., plane waves [9, 43, 44, 45, 46, 47],76

multi-resolution wavelets [48, 49, 50], adaptive local basis set [51, 52], grid-77

discretization based approaches [53, 54]), the eigenproblem described in Eq.78

6 reduces to a standard form where sij = δij, or even can be circumvented79

completely by solving the KS equations in an integral formulation [22].80

The explicit solution of Eq. 4 or 6 yields the Kohn-Sham orbitals ψi, from81

which the electron density n(r) can be computed following an orbital-based82

method that scales as O(N2):83

n(r) =

Nbasis∑
j=1

flψ
∗
l (r)ψl(r), (7)

where fl denotes the occupation number of each orbital. In an actual com-84

putation, it is sufficient to perform the summation only for the occupied85

5

(fl > 0) orbitals. The ratio of occupied orbitals to the total number of ba-86

sis functions can be below 1% for plane wave basis sets, whereas with some87

localized basis sets, fewer basis functions are required, leading to a larger88

fraction of occupied states typically between 10% and 40%.89

An alternative method that scales as O(N) can be employed for localized90

basis functions:91

n(r) =

Nbasis∑
i,j

φ∗
i (r)nijφj(r), (8)

with nij being the elements of the density matrix that need to be computed92

before the density update:93

nij =

Nbasis∑
l=1

flcilcjl. (9)

Due to the dependence of H on ψl via the density and the potentials,94

Eqs. 4 and 6 are in fact non-linear eigenvalue problems, and therefore must95

be solved in an iterative fashion. The most commonly used method is the96

self-consistent field (SCF) or fixed-point iteration approach. To achieve self-97

consistency, the electron density needs to be updated in every iteration until98

converged to an acceptable level. From a viewpoint of computational com-99

plexity, almost all standard pieces of solving the Kohn-Sham equations can100

be formulated in a linear scaling fashion with respect to the system size. The101

only piece that can not, in all cases and for all semilocal and hybrid func-102

tionals, be easily addressed in an O(N) fashion is the Kohn-Sham eigenvalue103

problem described in Eq. 4.104

3. Kohn-Sham Electronic Structure Solvers Supported by ELSI105

3.1. ELPA: Eigenvalue soLvers for Petaflop-Applications106

The Kohn-Sham eigenvalue problem in Eq. 4 can be explicitly solved107

by traditional (tri)diagonalization [55]. In ELSI, the massively parallel di-108

rect solver ELPA [14, 15] facilitates the solution of symmetric or Hermitian109

eigenproblems on high-performance computers. It was initially designed for110

6

distributed memory architectures, then extended to exploit multi-threading111

parallelism, and is subject to ongoing work for GPU acceleration.112

In ELPA, the generalized eigenproblem in Eq. 6 is first transformed to113

the standard form by Cholesky decomposition of the overlap matrix S:114

S = LL∗, (10)

where L is a lower triangular matrix. Eq. 6 is then transformed by applying115

the Cholesky factor:116

H̃c̃ = εc̃ (11)

with H̃ = L−1H(L∗)−1 and c̃ = L∗c.117

Then, the standard eigenproblem is either directly reduced to the tridi-118

agonal form119

T = QH̃Q∗, (12)

or first reduced to a banded intermediate form, then to the tridiagonal form120

[56]:121

B = Q1H̃Q
∗
1,

T = Q2BQ
∗
2.

(13)

In Eqs. 12 and 13, Q, Q1, Q2 are transformation matrices; T is a tridiagonal122

matrix; B is a banded matrix.123

The key steps of the two-stage tridiagonalization algorithm implemented124

in ELPA are reviewed in Fig. 1. Steps (1) and (2) correspond to Eq. 13,125

i.e. the transformations to the banded and tridiagonal forms. Step (3) cor-126

responds to the solution of the actual eigenvalue problem by a divide-and-127

conquer approach [14, 57], which can be restricted to compute only a fraction128

of the eigenvectors. Finally, the computed eigenvectors are transformed back129

into the representations corresponding to the banded (step (4)) and standard130

forms (step (5)) of the problem. Compared to the one-step tridiagonaliza-131

tion (Eq. 12), the two-step algorithm introduces two additional steps (steps132

(1) and (5) in Fig. 1). Still, the two-step approach has been shown to133

7

enable faster computation and better parallel scalability than the one-step134

approach on present-day computers [15]. Specifically, the matrix-vector op-135

erations (BLAS level-2 routines) in the one-step tridiagonalization can be136

mostly replaced by more efficient matrix-matrix operations (BLAS level-3137

routines) in the two-step version of the algorithm [58]. Since steps 2 and 4138

pertain to forward and back transformations between banded and tridiago-139

nal matrices only, the resulting transformations can be efficiently grouped to140

minimize computational overhead, especially for the back transformation in141

step (4) [14]. The computational workload associated with step (4) is further142

alleviated in KS-DFT calculations if only a small fraction of the eigenvectors143

representing the lowest eigenstates is required, and by architecture-specific144

linear-algebra “kernels” provided with the ELPA library [14, 15].145

Figure 1: Five computational steps of the ELPA eigensolver with two-stage tridiagonal-
ization. (1) Reduction of the full matrix to a banded form. (2) Reduction of the banded
matrix to a tridiagonal form. (3) Solution of the eigenvalues and eigenvectors of the
tridiagonal system. (4) Back-transformation of the eigenvectors to the banded form. (5)
Back-transformation of the eigenvectors to the original full form. This figure is redesigned
based on Fig. 1 in Ref. [15].

Since ELPA employs the same 2D block-cyclic matrix distribution as does146

the ScaLAPACK library [59] (by way of the basic linear algebra communi-147

cation subroutines (BLACS) [60]), it can easily be substituted into existing148

codes that already support parallel linear algebra by ScaLAPACK.149

3.2. libOMM: Orbital Minimization Method150

Instead of diagonalizing the Nbasis×Nbasis eigenproblem, the orbital min-151

imization method (OMM) relies on efficient iterative algorithms to directly152

minimize an unconstrained energy functional using a set of auxiliary orbitals153

that are not the Kohn-Sham orbitals φi. These auxiliary orbitals are then154

8

used to obtain the density matrix of the system. Specifically, the OMM em-155

ploys NW = Nelectron/2 non-orthogonal Wannier functions χk to represent the156

occupied subspace of a system with Nelectron electrons:157

χk =

Nbasis∑
j=1

Wkjφj. (14)

For non-spinpolarized systems, the index k runs from 1 to NW. Then the158

matrices H and S in the occupied subspace become159

Homm = W ∗HW ,

Somm = W ∗SW ,
(15)

where W is the coefficient matrix of the Wannier functions. The size change160

of the Hamiltonian matrix facilitated by Eq. 15 is illustrated in Fig. 2.161

Figure 2: Schematic representation of sizes of Hamiltonian matrix before and after ap-
plying the Wannier function transformation in the orbital minimization method. Matrix
dimensions are shown above the matrices. NW: Number of Wannier functions. Nbasis:
Number of basis functions.

The OMM energy functional is defined as162

E[W] = 4Tr[Homm]− 2Tr[SommHomm]. (16)

This functional, when minimized with respect to the coefficients of Wannier163

functions W , can be shown to be equal to the sum of the lowest Nelectron/2164

9

eigenvalues of the original KS eigenproblem [61, 62, 63, 64]. Furthermore,165

the Wannier functions are driven towards perfect orthonormality at this min-166

imum. The density matrix is then constructed from the W that minimizes167

E[W]. Although this density matrix is sufficient for the electron density up-168

date following Eq. 8, compared to the density matrix in Eq. 9, it is obvious169

that the occupation numbers are restricted to be integers (1 for occupied; 0170

for unoccupied) in this method. Without knowledge of individual eigenstates,171

the OMM cannot handle systems with fractional occupation numbers result-172

ing, e.g., from a finite electronic temperature, such as is typically required173

for metals.174

Compared to other minimization methods with the orthonormality con-175

straint of eigenstates [47, 65, 66], the advantage of the OMM is that it only176

requires an unconstrained minimization without an explicit orthonormaliza-177

tion step. This makes the OMM a good candidate for linear scaling DFT;178

indeed, the method was originally developed in this context [61, 62, 63, 64].179

However, in order to do so, it is necessary to spatially confine the Wannier180

functions by imposing a certain sparsity to W . This introduces a number of181

technical difficulties which have ultimately required the development of more182

involved algorithms [61, 63, 67]. The properties of the original OMM func-183

tional with unconstrained Wannier functions have nevertheless been found to184

result in an extremely efficient iterative solver with conventional cubic scaling185

but a smaller prefactor than diagonalization. This approach has been taken186

by the new implementation in libOMM [16]. It should be noted that for finite-187

range basis sets in which W is formally sparse, this sparsity can be taken188

into account to reduce the scaling of the matrix-matrix product HW from189

cubic to quadratic, thus effectively eliminating the most expensive matrix op-190

eration in the algorithm. The minimization of the OMM energy functional191

in Eq. 16 is carried out in libOMM by using the conjugate-gradient (CG)192

method with an efficient preconditioning using the kinetic energy matrix, as193

described in Ref. [16].194

3.3. PEXSI: Pole EXpansion and Selected Inversion195

The density matrix in Eq. 9 is associated with the Kohn-Sham orbitals196

and their occupation numbers fl, which are given by the Fermi-Dirac distri-197

bution function [68]:198

fl =
1

1 + e
εl−µ
kBT

. (17)

10

Here kB is the Boltzmann constant, T is the temperature, and µ is the199

chemical potential that is determined by the normalization condition200

Nbasis∑
l=1

fl = Nelectron. (18)

The pole expansion and selected inversion (PEXSI) method [17, 18, 19,201

69, 70] provides an alternative way for solving the Kohn-Sham electronic202

structure without diagonalization. As a Fermi operator expansion (FOE)203

based method, PEXSI expands the density matrix in Eq. 9 using a P -term204

pole expansion:205

n ≈
P∑
l=1

Im
(
ωρl (H − (zl + µ)S)−1

)
. (19)

Here the complex shifts {zl} and weights {ωρl } are determined through a206

semi-analytic formula based on contour integration, and take only a negligi-207

ble amount of time to compute. The number of terms of the pole expansion208

is proportional to log(β∆E), where β = 1/(kBT) is the inverse of the thermal209

energy and ∆E is the spectral radius. The logarithmic scaling makes the pole210

expansion a highly efficient approach to expand the Fermi operator. Typi-211

cally 40 ∼ 80 poles are sufficient for the result obtained from PEXSI to be212

fully comparable (µeV/atom [18, 19]) to that obtained from diagonalization.213

At first it may seem that the entire Green’s function-like object (H−(zl+214

µ)S)−1 needs to be computed. However, if targeting at the electron density215

n(r), in general only the entries corresponding to the non-zero pattern of H216

and S are actually needed. Then a selected inversion algorithm can be used217

to efficiently compute these selected elements of the Green’s function object,218

and therefore the electron density.219

The computational cost of the PEXSI technique scales at most as O(N2).220

The actual complexity depends on the dimensionality of the system: O(N)221

i.e. linear scaling for quasi-1D systems such as nanotubes; O(N1.5) for quasi-222

2D systems such as surfaces and slabs; and O(N2) for general 3D bulk sys-223

tems. This favorable scaling hinges on the sparse character of the Hamilto-224

nian and overlap matrices, but not on any fundamental assumption about225

the localization properties of the single particle density matrix. This method226

11

is not only applicable to the efficient computation of the electron density,227

but also to other physical quantities such as the free energy, atomic forces,228

density of states and local density of states, all obtainable without comput-229

ing any eigenvalues or eigenvectors [18]. These quantities can be given by230

pole expansions with the same complex shifts as those used for computing231

the electron density, with different weights.232

PEXSI allows the usage of a hybrid scheme of density of states estimation233

based on Sylvester’s law of inertia [71], and Newton’s method to obtain the234

chemical potential [19], hereafter referred to as the PEXSI mu iteration. This235

is an efficient and relatively robust approach with respect to the initial guess236

of the chemical potential, with or without the presence of gap states. A237

reasonable initial guess, e.g. obtained from the previous SCF step, can often238

converge the PEXSI mu iteration in one step.239

The PEXSI method has a two-level parallelism structure and is by design240

highly scalable. The recently developed massively parallel PEXSI technique241

can make efficient use of 10, 000 ∼ 100, 000 processors on high performance242

machines.243

4. The ELSI Infrastructure244

4.1. Overview of the ELSI Interface245

KS-DFT is implemented by a broad, diverse ecosystem of different soft-246

ware packages with different specialties and different numerical discretization247

strategies (see, e.g., Ref. [4] for a listing of 46 packages). The Kohn-Sham248

eigenvalue problem is unavoidable in all these packages. Since the most ef-249

ficient way to solve the problem may depend on factors such as system size250

and character (insulating or metallic), sparsity of matrices involved, density-251

functional employed, etc., from a user’s perspective, a library that can dy-252

namically switch between different methods according to the features of the253

problem is preferred. As a first step to achieve this goal (the objective of this254

paper), a flexible interface to different methods should enable user codes to255

actively select the most effective method while imposing only a minimum of256

format conversions, parameter tweaking, etc. on the user code.257

Although each solver library supported in ELSI maintains a limited num-258

ber of well-explained Application Programming Interfaces (APIs), integrat-259

ing all of them into a KS-DFT code is still a complicated, time-consuming,260

and error-prone task. ELSI ships a small set of APIs that are designed for261

rapid integration of a variety of KS electronic structure solvers into KS-DFT262

12

codes, and at the same time provides the user with hierarchical control over263

the interface and the solvers. There are three key steps to use ELSI, denoted264

by the red boxes (a), (b) and (c) in Fig. 3: (a) The ELSI interface needs265

to be initialized at the beginning of an SCF calculation, and potentially266

re-initialized if performing successive SCF cycles, e.g. for different system267

geometries during a molecular dynamics simulation or during a geometry268

optimization calculation. (b) Within the SCF cycle, ELSI serves as a bridge269

between the KS-DFT codes and the KS solver libraries, by taking the Hamil-270

tonian matrix (and the overlap matrix if it exists) as input, translating the271

eigenproblem into a solver-specific format, invoking the solver to compute the272

eigenvalues and eigenvectors, or the density matrix, and finally translating273

the results back to the native format of the KS-DFT codes. (c) When ELSI274

is no longer needed, it should be finalized to deallocate any arrays internally275

allocated by ELSI.276

4.2. Matrix Storage and Distribution in ELSI277

The first emerging practical consideration when developing a unified soft-278

ware interface is the choice of matrix storage and distribution strategy. The279

sparsity of matrices in KS-DFT varies dramatically from small to large sys-280

tems, and from 1D to 3D systems. In general, when using localized basis281

functions, the sparsity of matrices increases as the simulated system be-282

comes larger. Lower dimensional systems often generate more sparse ma-283

trices. Since the effective information is only represented by the non-zero284

matrix elements, storing and operating on all the matrix elements lead to285

unnecessary memory consumption and computational complexity for very286

sparse matrices.287

Implementing dense linear algebra operations, ELPA and libOMM han-288

dle matrices stored densely and distributed in a 2D block-cyclic distribu-289

tion, whereas PEXSI performs sparse linear algebra with matrices stored in290

compressed sparse column (CSC, also known as compressed column storage,291

CCS) format in a 1D block distribution. These two combinations, hereafter292

referred to as BLACS DENSE and PEXSI CSC formats, respectively, are293

chosen as the input/output matrix format of the ELSI interface to bridge294

the needs of the solvers and of different KS-DFT codes. The comparison295

between dense matrix storage and CSC sparse matrix storage is illustrated296

in Fig. 4, using an 8 × 8 matrix as an example. The dense storage keeps297

all the matrix elements including zeros and non-zeros. The CSC format, in298

contrast, drops the zeros and packs the remaining non-zeros into a 1D array,299

13

Figure 3: Flow chart describing the key steps in a self-consistent field calculation based on
Kohn-Sham Density-Functional Theory. Yellow boxes: Key steps commonly implemented
in KS-DFT codes to perform a single SCF cycle or multiple successive SCF cycles with
different atomic structures, e.g. for molecular dynamics or for geometry optimizations.
Red boxes: Required additions to use the ELSI interface, including (a) initialization of
the ELSI interface, (b) computing the eigensolution or the density matrix using the ELSI
solvers, and (c) finalization of the ELSI interface.

together with the row indices of the non-zero values and the starting points300

of the matrix columns. For a larger matrix with a higher sparsity, the CSC301

format will eventually consume less memory compared to the dense format.302

To compare the two supported distributions of matrices across multiple303

processors in parallel computations, Fig. 5 shows how the 2D block-cyclic304

and the 1D block distributions are applied to the same 8 × 8 matrix. We note305

14

that shown in Fig. 5 are two mathematical matrices, the shapes of which do306

not represent the actual arrays in the computer. The 2D block-cyclic distri-307

bution in Fig. 5 (a) divides the global matrix into several blocks, then maps308

the blocks to the processors in a round-robin fashion in both the row and309

the column directions. The 1D block distribution in Fig. 5 (b) groups con-310

tinuous matrix columns together, then linearly maps the groups of columns311

to the processors. In ELSI, when the input matrices are in a different distri-312

bution from the internally used one, a redistribution of the non-zero matrix313

elements is performed internally, i.e. no unnecessary communication of the314

zero elements. This redistribution is managed by the all-to-all communica-315

tion implemented in the Message Passing Interface (MPI) library. Once the316

matrix is correctly distributed, conversion to various formats is then handled317

concurrently on all the MPI tasks, with each task converting a local matrix318

of the size at most N2
basis/NMPI, where NMPI is the number of MPI tasks319

involved.320

Figure 4: An 8 × 8 matrix stored in (a) dense storage format versus in (b) compressed
sparse column (CSC) storage format. In the CSC format, only the values of the non-
zero elements, indicated in blue in (a), are stored in the “val” array. The row indexes of
the non-zero elements are stored in the “row inx” array. The “col ptr” array stores the
starting points of the matrix columns.

15

Figure 5: Schematic visualizations of (a) two-dimensional block-cyclic distribution used
in the BLACS DENSE format, and (b) one-dimensional block distribution used in the
PEXSI CSC format, of an 8× 8 matrix on 4 processors. Each unit square represents one
matrix element. The integer inside each unit square denotes the index of processor where
the element is stored and handled. Different processors are indicated by colors. Shown in
the figure are mathematical matrices, not arrays in computers. The actual matrix storage
on each processor is arbitrary, e.g. dense storage used by the BLACS DENSE format,
CSC sparse storage used by the PEXSI CSC format.

4.3. Parallelization Strategy and Interaction of ELSI with an Existing KS-321

DFT Code322

An important distinction in KS-DFT calculations is whether the system323

considered is isolated or is periodically repeated in space. In periodic sys-324

tems, the full problem can be separated into subproblems defined at selected325

k-points in the Brillouin zone, or in a convenient unit cell in reciprocal space.326

The Hamilton and overlap matrices for multiple k-points are block-diagonal,327

such that each block on the diagonal corresponds to an eigenproblem of one328

k-point. These eigenproblems can therefore be solved in a embarrassingly329

parallel fashion side by side. For periodic systems with a small unit cell,330

thousands of k-points or even more can be necessary for an accurate descrip-331

tion of the electronic structure. For a large system, in contrast, the Brillouin332

zone may already be well-represented by the origin of the reciprocal space333

known as the Γ point.334

Depending on the number of k-points Nkpt (here defined to be 1 also335

for isolated, non-periodic cases) and the number of MPI tasks NMPI, two336

different categories of possible KS-DFT calculations arise, as explained in337

16

Fig. 6. Correspondingly, ELSI supports two parallelization strategies that338

can be specified by a parallel mode parameter (see also elsi init subroutine339

in Section 4.4):340

• MULTI PROC mode, to be used if NMPI ≥ Nkpt. For instance, there341

are 4 k-points in example (a) in Fig. 6, handled by 16 MPI tasks. The342

MULTI PROC parallelization divides the 16 MPI tasks into 4 groups.343

Each k-point is handled by 4 MPI tasks in the same group, and the344

eigenproblems of the 4 k-points are solved simultaneously by the 16345

MPI tasks. Since each k-point is solved by multiple MPI tasks (pro-346

cesses), this parallelization mode is called MULTI PROC. This mode347

should be chosen for isolated systems, periodic systems with only one348

k-point, e.g. the Γ point, and periodic systems with Nkpt k-points349

treated by NMPI ≥ Nkpt MPI tasks.350

• SINGLE PROC mode, to be used if NMPI < Nkpt. For instance, there351

are 16 k-points in example (b) in Fig. 6, handled by 4 MPI tasks. The352

SINGLE PROC parallelization divides the 16 k-points into 4 groups.353

Each MPI task handles 4 k-points in the same group, one after another.354

Since each k-point is solved by a single MPI task (process), this paral-355

lelization mode is called SINGLE PROC. This mode should be chosen356

for periodic systems with Nkpt k-points treated by NMPI < Nkpt MPI357

tasks.358

The ELPA eigensolver supported in ELSI is available for both parallel359

modes, returning eigensolutions for each k-point. In this case, the KS-DFT360

codes can then assemble the pieces of the solutions (eigenvalues and eigenvec-361

tors) returned by the solver and construct the electron density. The density362

matrix solvers in the 2017.05 release of ELSI do not yet support periodic363

calculations with more than one k-point. The ability to return combined364

density matrices obtained from ELPA, libOMM, or PEXSI is planned as a365

next step of the ELSI interface.366

Once the matrix storage format and the parallel mode are decided, the367

usage of ELSI in KS-DFT codes becomes straightforward. Algorithm 1 sum-368

marizes in pseudo-code all the possible use cases of the ELSI interface as of369

the 2017.05 release. In Algorithm 1, the main steps are denoted by subrou-370

tine names that will be systematically introduced in the following subsec-371

tions. Furthermore, the initialization of the SCF calculation, updating the372

17

Figure 6: Diagrammatic explanations of the two parallelization strategies supported by
ELSI. Nkpt is the number of k-points. NMPI is the number of MPI tasks.

Hamiltonian and the electron density, checking the SCF convergence, post-373

processing, and potentially further steps are all tasks that are not handled by374

ELSI but that are instead expected to be executed by the specific KS-DFT375

code calling ELSI.376

Before showing detailed descriptions of the ELSI API in the next subsec-377

tions, we here first introduce the concept of elsi handle, a Fortran derived378

data type containing all runtime parameters, e.g. the choices of solver, ma-379

trix storage format, and parallel mode (see elsi init subroutine in Section380

4.4). It is intended to avoid global variables in ELSI and to allow concurrent381

instances of ELSI by passing around the handle as arguments. A handle can382

be initialized with the elsi init subroutine, then should be passed to all other383

ELSI subroutines. The ELSI interface, including the elsi handle, is fully in-384

teroperable with C and C++ programming languages. The elsi handle is385

18

defined in C/C++ as an “opaque” pointer, which can be seamlessly con-386

nected to a derived data type in Fortran by the iso c binding feature in387

Fortran compilers.388

4.4. ELSI Initialization389

In this and the following subsections (Sections 4.5, 4.6, 4.7), we provide390

details of the capabilities of the ELSI interface as current in the 2017.05391

release. Since these capabilities are intimately tied to the actual implemen-392

tation, we here explain them grouped by individual subroutines as also shown393

in Algorithm 1. In all instances, elsi h denotes the ELSI handle.394

In the initialization phase, ELSI can be set up to reflect the physical395

quantities that usually do not change within an SCF calculation (i.e. fixed396

atomic structure), such as the number of basis functions and the number of397

electrons in the system. Implementations of SCF typically initialize these398

quantities before the SCF cycle begins, then keep reusing them within the399

cycle to repeatedly solve KS problems with an updated Hamiltonian matrix400

and a fixed overlap matrix. Similarly, the ELSI interface only needs to be (re-401

)initialized whenever the SCF cycle is itself (re-)initialized. The subroutines402

that are used to initialize ELSI include:403

• elsi init (elsi h, solver, matrix storage format, parallel mode, n basis,404

n state, n electron)405

(line 3 in Algorithm 1) – Initializes an ELSI handle with user’s choices of406

the solver, the matrix format and distribution, the parallelization strat-407

egy, and system information including the number of basis functions,408

the number of eigenstates to compute, and the number of electrons.409

– elsi h (type(elsi handle), output): An ELSI handle (see Section410

4.3 returned by elsi init subroutine. The same handle must be411

passed to other ELSI subroutines and be finalized when no longer412

needed. Multiple handles can be initialized if needed.413

– solver (integer, input): The choice of solver. Accepted options414

are 1 (ELPA), 2 (libOMM), and 3 (PEXSI).415

– matrix storage format (integer, input): Matrix storage and416

distribution of the Hamiltonian matrix, the overlap matrix, and417

the density matrix or the eigenvectors. Accepted options are 1418

(BLACS DENSE) and 2 (PEXSI CSC) (see Section 4.2). The419

19

Algorithm 1 Usage of ELSI interface in KS-DFT codes. Pseudo-code in
line 3-11, line 14-27, and line 31 corresponds to Fig. 3 (a), (b), and (c),
respectively.

1: procedure elsi
2: initialize SCF calculation
3: call elsi init
4: if (parallem mode = MULTI PROC) then
5: call elsi set mpi
6: if (matrix storage format = BLACS DENSE) then
7: call elsi set blacs
8: else if (matrix storage format = PEXSI CSC) then
9: call elsi set csc

10: end if
11: end if
12: while (SCF not converged) do
13: update Hamiltonian
14: call elsi customize
15: if (desired output: eigensolution) then
16: if (matrix storage format = BLACS DENSE) then
17: call elsi ev {real|complex}
18: else if (matrix storage format = PEXSI CSC) then
19: call elsi ev real sparse
20: end if
21: else if (desired output: density matrix) then
22: if (matrix storage format = BLACS DENSE) then
23: call elsi dm real
24: else if (matrix storage format = PEXSI CSC) then
25: call elsi dm real sparse
26: end if
27: end if
28: update electron density
29: check SCF convergence
30: end while
31: call elsi finalize
32: post-process
33: end procedure

20

BLACS DENSE format is compatible with ELPA, libOMM, and420

PEXSI. If the chosen solver is PEXSI, the input matrices in the421

BLACS DENSE format are converted to PEXSI CSC internally,422

and the results in the PEXSI CSC format are back-converted423

to BLACS DENSE. The PEXSI CSC format is compatible with424

ELPA and PEXSI in the current release. Supporting the PEXSI CSC425

format with libOMM is on the list of features to be added in the426

near future.427

– parallel mode (integer, input): The choice of parallelization strat-428

egy. Accepted options are 1 (MULTI PROC) and 2 (SINGLE PROC)429

(see Section 4.1). In the current release of ELSI, the SINGLE PROC430

mode is only compatible with ELPA, while the MULTI PROC431

mode supports all three solvers.432

– n basis (integer, input): Number of basis functions. This is equal433

to the global size of the Hamiltonian matrix, the overlap matrix,434

the density matrix, etc.435

– n state (integer, input): Number of states. For ELPA this is the436

number of eigenstates to be solved. For libOMM this must be437

the number of occupied states, without any fractional occupation438

numbers. PEXSI does not use this information.439

– n electron (integer, input): Number of electrons.440

• elsi set mpi (elsi h, mpi comm)441

(line 5 in Algorithm 1) – Sets the MPI communicator to be used in the442

ELSI instance indicated by the handle.443

– mpi comm (integer, input): An MPI communicator, containing444

an ordered group of MPI tasks, is required to use the functionali-445

ties implemented in the MPI library. The communicator assigned446

to an ELSI calculation can be the default global communicator447

of MPI, or a communicator created by the user (e.g. by calling448

the MPI subroutine MPI Comm Split), as long as it is compatible449

with the distribution of matrices.450

• elsi set blacs (elsi h, blacs ctxt, block size)451

21

(line 7 in Algorithm 1) – Sets the BLACS context and the block452

size of the 2D block-cyclic distribution to be used in the ELSI in-453

stance indicated by the handle. Required before calling elsi ev real,454

elsi ev complex, and elsi dm real (see Section 4.5).455

– blacs ctxt (integer, input): A BLACS context encloses a group456

of processes and arranges them in a particular grid. Processes in457

the same context can safely communicate with each other, without458

worrying if the operations in one context interfere with operations459

in another context [60]. The ELSI interface requires the KS-DFT460

code to set up BLACS context(s), by calling BLACS subroutine461

BLACS Gridinit or BLACS Gridmap.462

– block size (integer, input): The block size parameter of the 2D463

block-cyclic distribution. The matrix operations inside ELSI in-464

terface, ELPA, and libOMM restrict the block sizes in the row465

and column directions to be the same.466

• elsi set csc (elsi h, nnz g, nnz l, n l cols, row idx, col ptr)467

(line 9 in Algorithm 1) – Set the parameters of 1D block distributed468

CSC matrix storage (PEXSI CSC) to be used in the ELSI instance469

indicated by the handle. Required before calling elsi ev real sparse470

and elsi dm real sparse (see Section 4.5).471

– nnz g (integer, input): The global number of non-zero elements472

in the sparsity pattern.473

– nnz l (integer, input): The local number of non-zero elements in474

the sparsity pattern held by an MPI task.475

– n l cols (integer, input): The local number of matrix columns476

held by an MPI task.477

– row idx (integer, 1D array, input): The row index array of the478

CSC matrix storage format, containing the row index of each non-479

zero matrix element. An example is given in Fig. 4.480

– col ptr (integer, 1D array, input): The column pointer array of481

the CSC matrix storage format, containing the starting point of482

each matrix column. An example is given in Fig. 4.483

22

The matrices that arise in KS-DFT can be either real or complex-valued.484

ELSI must account for these two possibilities as well. Since the real and com-485

plex arithmetic cases only differ in the data type of input/output matrices,486

they are not distinguishable at the initialization stage.487

4.5. Tasks during SCF488

During the SCF cycle, the following tasks may be executed by ELSI solver489

subroutines to compute either the eigensolutions or the density matrix from490

the input Hamiltonian matrix (and overlap matrix, if it is not unity).491

• elsi ev real (elsi h, ham, ovlp, eval, evec)492

(line 17 in Algorithm 1) – Computes the eigenvalues and n state eigen-493

vectors. Compatible solver: ELPA.494

– ham (double precision real, 2D array, input & output): The real-495

valued Hamiltonian matrix in the BLACS DENSE format set by496

subroutine elsi set blacs. This array is used for internal storage497

when solving the eigenproblem, and thus is destroyed on exit.498

– ovlp (double precision real, 2D array, input & output): The real-499

valued overlap matrix in the BLACS DENSE format set by sub-500

routine elsi set blacs.501

A singularity check of the overlap matrix S is performed the first502

time elsi ev real is called. This is because the Cholesky factor-503

ization in Eq. 10 requires S to be Hermitian positive-definite.504

While S in KS-DFT is guaranteed to be Hermitian by Eq. 5,505

the positive-definite condition can be numerically violated if the506

chosen basis set is large and (near-)singular, i.e. the lowest eigen-507

values of S are too close to 0 (although still greater than 0). Using508

a near-singular basis set can lead to completely wrong and unpre-509

dictable numerical results, and thus should be avoided in general.510

In ELSI, this is done by computing all the eigenvalues of S and511

comparing them with a user-defined singularity tolerance τ . The512

matrix is considered to be singular if it has one or more eigenval-513

ues smaller than τ . For a singular overlap matrix, the Cholesky514

decomposition is replaced by an eigendecomposition:515

S = (
√
λx)(

√
λx)∗ = XX∗, (20)

23

where the matrix x and the diagonal matrix λ contain the eigen-516

vectors and eigenvalues of S, and the matrixX is simply
√
λx. By517

using eigendecomposition, the generalized eigenproblem is again518

transformed to the standard form in Eq. 11, with H̃ = X−1H(X∗)−1
519

and c̃ = X∗c. In case that only the first Nnonsing eigenvalues of520

S are greater than the threshold τ , X correspondingly contains521

only the first Nnonsing eigenvectors by dropping the Nbasis−Nnonsing522

eigenvectors associated with small eigenvalues. The eigenproblem523

transformation is still valid, however yields a smaller transformed524

H̃ (Nnonsing×Nnonsing). The solution of the transformed standard525

eigenproblem must be back-transformed accordingly.526

On exit, ovlp is overwritten by either L in Eq. 10 or X in527

Eq. 20, depending on which transformation is used. If in the528

MULTI PROC mode, i.e. no MPI task handles more than one k-529

point, L orX can be stored in ovlp and efficiently reused through-530

out the SCF cycle. The Cholesky factorization or the eigendecom-531

position then only needs to be performed once. However, in the532

SINGLE PROC mode, since each MPI task handles a group of k-533

points in serial, memory constraints make it more difficult to reuse534

the matrices L or X. In this case, the decision to either store L535

or X, or to redo the decomposition in every SCF iteration, is up536

to the KS-DFT code that calls ELSI.537

– eval (double precision real, 1D array, output): The eigenvalues in538

ascending order.539

– evec (double precision real, 2D array, output): The real-valued540

eigenvectors in a matrix form in the BLACS DENSE format set541

by subroutine elsi set blacs.542

• elsi ev complex (elsi h, ham, ovlp, eval, evec)543

(line 17 in Algorithm 1) – Same as elsi ev real, except that the Hamil-544

tonian matrix, overlap matrix and eigenvectors are complex-valued.545

• elsi ev real sparse (elsi h, ham, ovlp, eval, evec)546

(line 19 in Algorithm 1) – Computes the eigenvalues and n state eigen-547

vectors. Compatible solver: ELPA.548

– ham (double precision real, 1D array, input): The non-zero ele-549

ments of the real-valued Hamiltonian matrix in the PEXSI CSC550

24

format set by subroutine elsi set csc. Inside ELSI, the input Hamil-551

tonian matrix is converted to the BLACS DENSE format in every552

SCF iteration.553

– ovlp (double precision real, 1D array, input): The non-zero ele-554

ments of the real-valued overlap matrix in the PEXSI CSC format555

set by subroutine elsi set csc. Inside ELSI, the input overlap ma-556

trix is converted to the BLACS DENSE format in the first SCF557

iteration. The singularity check of the overlap matrix is performed558

as in the elsi ev real case. Since the sparsity of the eigenproblem559

transformation matrix L or X is not guaranteed, the matrix L or560

X is stored internally in the BLACS DENSE format for further561

reuse throughout the SCF cycle.562

– eval (double precision real, 1D array, output): The eigenvalues in563

ascending order.564

– evec (double precision real, 2D array, output): The real-valued565

eigenvectors in a matrix form in the BLACS DENSE format. Note566

that the computed eigenvectors are returned in a dense format, for567

the reason that they are not in the same sparsity pattern of H568

and S, or even not sparse at all.569

• elsi dm real (elsi h, ham, ovlp, den mat, energy)570

(line 23 in Algorithm 1) – Computes the density matrix. Compatible571

solvers: ELPA, libOMM, PEXSI.572

– ham (double precision real, 2D array, input & output): The real-573

valued Hamiltonian matrix in the BLACS DENSE format set by574

subroutine elsi set blacs. This array is used for internal storage575

when computing the density matrix, and thus is destroyed on exit.576

If the chosen solver is PEXSI, the input Hamiltonian matrix is577

converted to the PEXSI CSC format in every SCF iteration.578

– ovlp (double precision real, 2D array, input & output): The real-579

valued overlap matrix in the BLACS DENSE format set by sub-580

routine elsi set blacs. If the chosen solver is PEXSI, the input581

overlap matrix is converted to the PEXSI CSC format in the first582

SCF iteration and reused throughout the SCF cycle. If the chosen583

solver is ELPA or libOMM, the singularity check of the overlap584

25

matrix is performed as in the elsi ev real case. The singularity585

check is not yet implemented for PEXSI.586

– den mat (double precision real, 2D array, output): The density587

matrix in the BLACS DENSE format set by subroutine elsi set blacs.588

The chemical potential and occupation numbers must be known589

when ELPA is chosen to compute the density matrix following590

Eq. 9. In ELSI, the chemical potential is found using a bisection591

algorithm that starts from an energy interval that includes the592

actual solution of the chemical potential. This is often guaran-593

teed by using the lowest and highest eigenvalues of the system as594

the lower and upper bounds of the interval, and expanding the595

interval towards both ends if necessary. In each bisection step596

the number of electrons on both bounds and at the middle point597

of the interval is computed by Eq. 18 (the summation becomes598 ∑Nkpt

i=1

∑Nspin

j=1

∑Nbasis

k=1 if including k-points and spin channels), to599

determine which subinterval the solution lies in. Then the interval600

can be repeatedly bisected until the computed number of electrons601

on either bound or at the middle point is sufficiently close to the602

actual number. During this process, the computation of occupa-603

tion numbers fl requires a specific broadening scheme, which can604

be the Fermi broadening in Eq. 17, or the Gaussian broadening605

[72]606

fl = 0.5 · [1− erf

(
εl − µ
kBT

)
], (21)

where erf is the Gauss error function:607

erf =
2√
π

∫ x

0

e−t
2

dt. (22)

Although the error function is implemented as an intrinsic function608

in most programming languages, the error of each single evalua-609

tion can accumulate as a consequence of the summation in Eq.610

18. This accumulation leads to an error on the order of 10−10
611

in term of the number of electrons, which is small but not neg-612

ligible if the desired accuracy is on the same order. During the613

26

convergence of the SCF cycle, this small error can become more614

noticeable, since fluctuations of the norm of the density matrix615

(i.e. the system charge) will have a relatively large electrostatic616

effect, and can thus disturb the solution of the nonlinear fixed-617

point iteration scheme (e.g. Pulay mixing [73]) that is used to618

converge an SCF cycle. Therefore, it is useful and sometimes nec-619

essary to avoid charge fluctuations whenever possible, by ensuring620

an exact charge norm after the fact. In ELSI, when the accuracy621

of electron count can no longer be improved by bisection, then the622

remaining discrepancy (surplus of electrons in case of the upper623

bisection bound) is successively removed starting from the highest624

occupied KS states and proceeding to lower-lying states until the625

norm in Eq. 18 is numerically exactly fulfilled.626

– energy (double precision real, output): The energy corresponding627

to the occupied eigenstates.628

• elsi dm real sparse (elsi h, ham, ovlp, den mat, energy)629

(line 25 in Algorithm 1) – Computes the density matrix. Compatible630

solver: PEXSI.631

– ham (double precision real, 1D array, input & output): The632

non-zero elements of the real-valued Hamiltonian matrix in the633

PEXSI CSC format set by subroutine elsi set csc. This array is634

used for internal storage when computing the density matrix, and635

thus is destroyed on exit.636

– ovlp (double precision real, 1D array, input & output): The non-637

zero elements of the real-valued overlap matrix in the PEXSI CSC638

format set by subroutine elsi set csc.639

– den mat (double precision real, 1D array, output): The non-zero640

elements of the density matrix in the PEXSI CSC format set by641

subroutine elsi set csc.642

– energy (double precision real, output): The energy corresponding643

to the occupied eigenstates.644

• elsi collect pexsi (elsi h, mu, e den mat, f den mat)645

– Collects additional results computed by PEXSI. Compatible solver:646

PEXSI.647

27

– mu (double precision real, output): The chemical potential com-648

puted by PEXSI.649

– e den mat (double precision real, 1D array, output): The non-650

zero elements of the energy density matrix in the PEXSI CSC651

format set by subroutine elsi set csc.652

– f den mat (double precision real, 1D array, output): The non-653

zero elements of the free energy density matrix in the PEXSI CSC654

format set by subroutine elsi set csc.655

4.6. ELSI Customization Options656

Although ELSI sets reasonable default runtime parameters for each solver657

whenever possible, no set of parameters can adequately cover all use cases.658

The elsi customize subroutines allow a user to determine runtime parame-659

ters explicitly, thus providing maximum flexibility to control the particulars660

of ELSI. Designed with the feature of optional arguments in Fortran, the661

elsi customize subroutines have a general calling syntax:662

call elsi customize(elsi h, keyword=choice),663

where elsi h is the ELSI handle to be customized, “keyword” is the parameter664

to be customized, and “choice” is the value to overwrite the default value665

of “keyword”. Calling elsi customize (line 14 in Algorithm 1) only modifies666

the parameter associated with elsi h, instead of changing the behavior of all667

handles.668

• elsi customize (elsi h, keyword=choice)669

The following customizable keywords are particularly important:670

– overlap is unit (logical, input): ELSI by default assumes that671

the KS eigenproblem is a generalized problem (Eq. 6). Setting672

the keyword overlap is unit to true allows the usage of ELSI for673

a standard eigenproblem, e.g. when using orthonormal basis sets,674

or the generalized eigenproblem has been transformed to the stan-675

dard form by the calling code itself. If overlap is unit is true, the676

singularity check for the overlap matrix described in Section 4.5677

will be completely ignored.678

– zero threshold (double precision real, input): Threshold to de-679

fine “zero” in ELSI matrix format conversions. When converting680

a dense matrix into a sparse format, any double precision number681

smaller than this threshold is overwritten by 0.682

28

– no singularity check (logical, input): The singularity check of683

the overlap matrix can be skipped here.684

– singularity tolerance (double precision real, input): The toler-685

ance of basis singularity τ in the singularity check.686

• elsi customize mu (elsi h, keyword=choice)687

Customizes the chemical potential and occupation number computa-688

tion in ELSI. Customizable keywords include:689

– broadening scheme (integer, input): The broadening scheme to690

be used in the determination of occupation numbers and chemical691

potential. Accepted options are 1 (Gaussian broadening), 2 (Fermi692

broadening), 3 (0th order Methfessel-Paxton broadening), and 4693

(1st order Methfessel-Paxton broadening).694

– broadening width (double precision real, input): The broaden-695

ing width parameter (kBT in Eq. 17 and 21).696

– occ accuracy (double precision real, input): Desired accuracy in697

terms of the sum of occupation numbers, i.e. the number of elec-698

trons, in the determination of occupation numbers and chemical699

potential.700

– mu max steps (integer, input): Maximum steps of the bisec-701

tion algorithm (described as a part of subroutine elsi dm real) to702

compute the occupation numbers and chemical potential.703

• elsi customize elpa (elsi h, keyword=choice)704

Customizes the ELPA solver. Customizable keywords include:705

– elpa solver (integer, input). The choice of ELPA solvers. Ac-706

cepted options are 1 (ELPA 1-stage solver) and 2 (ELPA 2-stage707

solver).708

• elsi customize omm (elsi h, keyword=choice)709

Customizes the libOMM solver. Customizable keywords include:710

– omm flavor (integer, input): The choice of method to perform711

OMM minimization. Accepted options are 0 (the basic flavor that712

29

follows Eq. 16 exactly) and 2 (the Cholesky flavor that transforms713

the generalized eigenproblem to the standard form using Cholesky714

factorization before minimization).715

– n elpa steps (integer, input): ELPA can be employed in the first716

n elpa steps SCF iterations, as these take the longest time to con-717

verge with iterative methods. Starting from the (n elpa steps + 1)th718

SCF step, the libOMM solver will be used with the eigenvectors719

computed by ELPA in the (n elpa steps)th SCF step as the initial720

guess for the coefficients of Wannier functions.721

– omm tolerance (double precision real, input): The stop cri-722

terion of the OMM energy functional minimization in Eq. 16.723

This minimization is considered to be converged when the rela-724

tive energy difference between subsequent line searches given by725

2(E[W 1]−E[W 0])/(E[W 1] +E[W 0]) is smaller than or equal to726

this dimensionless value.727

The convergence rate of the OMM energy functional minimization de-728

pends heavily on the minimization method and the initial guess of the729

coefficients of the Wannier functions. The effects of omm flavor and730

n elpa steps on the performance of OMM are investigated and reported731

in Section 5.5.732

• elsi customize pexsi (elsi h, keyword=choice)733

Customizes the PEXSI solver. Customizable keywords include:734

– n poles (integer, input): The number of poles in the Fermi oper-735

ator expansion, i.e. P in Eq. 19. The pole expansion is an exact736

algorithm if the number of poles is infinitely large. In practice,737

40 ∼ 80 poles are usually sufficient for the result obtained from738

PEXSI to be fully comparable to that obtained from diagonaliza-739

tion. Performing a convergence test with increasing number of740

poles is a practical approach to estimate the optimal number of741

poles for a KS-DFT code.742

– n electron accuracy (double precision real, input): The desired743

accuracy in term of the number of electrons out of the density744

matrix approximated by Eq. 19.745

30

– temperature (double precision real, input): The physical mean-746

ing of the temperature here is the energy β = KBT in Eq. 17, i.e.747

the broadening width.748

– delta e (double precision real, input): The upper bound for the749

spectral radius ∆E of S−1H. This parameter and the β parameter750

affect the number of terms of the pole expansion.751

– max iteration (integer, input): The maximum number of PEXSI752

mu iterations to determine the chemical potential.753

– mu 0, mu min, mu max (double precision real, input): The754

initial guess, lower bound, and upper bound for the chemical po-755

tential. A good initial guess significantly accelerates the conver-756

gence of the PEXSI mu iteration. An estimate of the chemical757

potential is available in PEXSI via the inertia counting procedure758

based on Sylvester’s law of inertia. Starting from the second SCF759

iteration, if the change in chemical potential from the previous760

SCF step to the current step is small, ELSI will automatically761

skip the inertia counting and use the chemical potential from the762

previous step as the initial guess for the current step.763

– mu safeguard (double precision real, input): A fail-safe approach764

designed for the PEXSI mu iteration. If the error in the chemical765

potential computed by PEXSI is larger than this safeguard, the766

code will exit the mu iteration and re-invoke the inertia counting767

to estimate the chemical potential.768

4.7. ELSI Finalization769

• elsi finalize (elsi h)770

(line 31 in Algorithm 1) – Terminates the ELSI instance associated771

with the handle. This deallocates any arrays internally allocated by772

ELSI.773

– elsi h (type(elsi handle), input & output): On exit, all the pa-774

rameters of this handle are reset to “UNSET” or their default775

values. To become valid again, the handle must be re-initialized776

by elsi init.777

31

4.8. ELSI Software in Practice778

The 2017.05 release of the ELSI software package, available on the “ELSI779

Interchange” website (http://elsi-interchange.org), contains the ELSI inter-780

face described in Section 4, as well as redistributed source code of the three781

solver libraries ELPA (version 2016.11.001.pre, http://elpa.mpcdf.mpg.de),782

libOMM (version 0.0.1, http://esl.cecam.org/LibOMM), and PEXSI (ver-783

sion 0.10.2, http://pexsi.org). They are redistributed with ELSI for an op-784

tional integrated installation managed by a unified make-based build system785

with specific keywords set by the users in “make.sys” files. While we focus786

more on the development of a unified interface to connect the KS solvers787

and the KS-DFT codes, the ELPA, libOMM, and PEXSI solvers themselves788

are being actively developed by their own communities. The three solvers789

linked into ELSI can be either the built-in versions shipped with ELSI,790

or independently built versions, e.g. pre-installed and optimized versions791

available on a given supercomputer. There are two external dependencies792

that must be downloaded and installed separately: the ParMETIS library793

(http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview) and the Su-794

perLU DIST library (http://crd-legacy.lbl.gov/∼xiaoye/SuperLU).795

ELSI can be integrated directly into relevant pieces of KS-DFT codes796

written in Fortran, C, or C++. So far, ELSI has been tested in the DGDFT797

[52], FHI-aims [33], NWChem [26] (via Global Arrays Toolkit [74]), and798

SIESTA [36] software packages. Detailed instructions on how to obtain,799

install, and use the ELSI software are documented in the ELSI User’s Guide800

[75].801

5. Benchmarks and Discussions802

In the final part of this work, we present a comparative study of the three803

KS electronic structure solvers ELPA, libOMM, and PEXSI, as currently804

supported by ELSI. This study employs a consistent set of systems and805

settings, and illustrates the optimal choice of solver strategies in different806

scenarios and system size ranges. The Hamiltonian and overlap matrices are807

constructed from actual DFT-PBE [76] calculations using the all-electron,808

full-potential electronic structure code FHI-aims (Fortran) with a “tier 1”809

numeric atom-centered orbital (NAO) basis set [33, 77], and the pseudopo-810

tential code DGDFT (C++) with an adaptive local basis (ALB) [51, 52].811

Both packages have been demonstrated to perform large-scale DFT calcula-812

tions with at least thousands of atoms [15, 52, 78]. Details of the KS-DFT813

32

code specific settings are given in Appendix A and Appendix B, respectively.814

As the benchmark systems, we selected 2D graphene supercell models with815

sizes ranging from 1,800 to 11,520 atoms. All calculations reported here816

are Γ-point-only (the ELSI interface is thus in MULTI PROC mode) and817

real arithmetic. Among the benchmark problems, the graphene 30× 30× 1,818

45 × 45 × 1, and 60 × 60 × 1 supercell models have a small band gap of819

about 0.002 meV, since the Dirac cone of graphene, whose coordinates in820

the reciprocal space are (1/3, 1/3, 0), is included in the folded images of the821

Γ point. The other graphene models have a band gap of 0.34 ∼ 0.51 eV.822

The dimensions of the models, the number of employed basis functions, and823

the sparsity factor of the corresponding matrices are reported in Table 1.824

The maximum differences in the converged total energies are 6.3 µeV/atom825

between the results obtained with ELPA and libOMM, and 0.8 µeV/atom826

between ELPA and PEXSI. We note that separate benchmarks of ELPA,827

libOMM, and PEXSI applied to insulating/semiconducting, 1D/3D systems828

have been reported in earlier publications [14, 15, 16, 17, 18].829

We here report, to our knowledge, the first directly comparable bench-830

mark of all three approaches for the same system and using exactly the same831

hardware and software environment. All computations were performed on832

the Cray XC30 supercomputer Edison at National Energy Research Scien-833

tific Computing Center (NERSC). Each node of Edison is equipped with834

two 12-core Intel Ivy Bridge processors. The nodes were fully exploited by835

launching 24 MPI tasks on each node. No multi-threading parallelization836

was employed.837

5.1. Performance of the ELPA, libOMM, PEXSI Solvers838

We first compare the performance of the key computational steps of the839

ELSI solvers that are repeated in every SCF iteration. These repeated steps840

are: transforming the eigenproblem (Eq. 11), solving the standard eigen-841

problem (Fig. 1), and back-transforming the eigenvectors in ELPA; the min-842

imization (CG line search) of OMM energy functional (Eqs. 15 and 16),843

and the construction of density matrix from the final Wannier functions in844

libOMM; the numerical factorization and the selected inversion of the object845

H − (zl + µ)S (Eq. 19), and the construction of density matrix from the846

poles in PEXSI. There are other computationally expensive steps that only847

occur in the first SCF iteration and have less significant effects on the total848

time of an SCF cycle. The performance of those steps is discussed separately849

33

Table 1: Supercell size, number of atoms Natom, number of basis functions Nbasis, and
sparsity factor Nzero/N

2
basis of the graphene systems used in this work. Nzero is the number

of zero elements in the Hamiltonian matrices. FHI-aims models contain 2 carbon atoms
in each unit cell, and results are shown in Figs. 7, 8, 9, 10, 11, 12, and A.14. DGDFT
models contain 10 graphene layers (20 carbon atoms) in each unit cell, and results are
shown in Fig. 13.

Code Model Supercell Natom Nbasis Nzero/N
2
basis

FHI-aims Graphene 30× 30× 1 1800 25200 97.50%
FHI-aims Graphene 35× 35× 1 2450 34300 98.16%
FHI-aims Graphene 40× 40× 1 3200 44800 98.58%
FHI-aims Graphene 45× 45× 1 4050 56700 98.88%
FHI-aims Graphene 50× 50× 1 5000 70000 99.09%
FHI-aims Graphene 55× 55× 1 6050 84700 99.25%
FHI-aims Graphene 60× 60× 1 7200 100800 99.41%
DGDFT Graphene 18× 18× 1 6480 97200 99.98%
DGDFT Graphene 24× 24× 1 11520 172800 99.99%

in Sections 5.2 and 5.3. For reference, the performance of the remaining com-850

putational steps (in addition to the KS eigenproblem) of standard DFT-PBE851

calculations using FHI-aims code is shown in Appendix A.852

Fig. 7 shows the wall clock time of the above-mentioned repeated steps853

of the solvers. It is worth noting that, when using the same computational854

resources, the time used by ELPA is theoretically constant during an SCF855

cycle, as the performance of a dense direct eigensolver only depends on the856

size of the matrix to solve. In contrast, the time used by libOMM and PEXSI857

depends on the number of CG line searches and the number of PEXSI mu858

iterations, respectively. Since both the number of CG line searches and the859

number of PEXSI mu iterations can be quickly reduced to 1 as the SCF cycle860

proceeds, shown in Fig. 7 are the timings corresponding to 1 CG line search861

in libOMM using the basic flavor (see Section 5.5 for the effect of flavor862

on the performance of libOMM), and 1 PEXSI mu iteration in PEXSI. In863

future versions of PEXSI, a newly designed algorithm will be used to update864

the chemical potential as the SCF cycle converges, and the number of mu865

iterations will always be 1 in each SCF iteration.866

In Fig. 7 (a), the scaling of solvers with respect to the basis size is867

shown for DFT-PBE calculations of graphene models consisting of 1,800868

atoms (25,200 basis functions) to 7,200 atoms (100,800 basis functions) using869

34

Figure 7: Scaling of the “repeated” steps in ELPA, libOMM, and PEXSI solvers with
respect to (a) the number of basis functions and (b) the number of MPI tasks. The
number of MPI tasks in (a) is 1,920. The number of basis functions in (b) is 70,000.
The “repeated” steps are: transforming the eigenproblem (Eq. 11), solving the standard
eigenproblem (Fig. 1), and back-transforming the eigenvectors in ELPA; the minimization
of OMM energy functional (Eqs. 15 and 16), and the construction of density matrix from
the final Wannier functions in libOMM (the CG line search converges in one step); the
numerical factorization and the selected inversion of the object H − (zl + µ)S (Eq. 19),
and the construction of density matrix from the poles in PEXSI (the PEXSI iteration
converges in one step). Ideal scaling is indicated by the dashed lines. PEXSI cannot solve
the problem of 70,000 basis functions (5,000 carbon atoms) with 480 or 960 MPI tasks,
due to the limited amount of memory assigned to each pole.

1,920 MPI tasks. Both ELPA and libOMM exhibit scalings close to O(N3), as870

expected. In this particular set-up, libOMM is consistently faster than ELPA871

by a factor of 2. PEXSI, with a lower computational complexity (theoretically872

O(N1.5) for 2D systems), begins to outperform ELPA and libOMM at around873

3,000 atoms and 7,000 atoms, respectively. The benefit of using PEXSI874

should become more significant as we further increase the system size.875

The strong scaling shown in Fig. 7 (b) demonstrates the scalability of876

the solvers when they are applied to the graphene 5,000-atom model (70,000877

basis functions) using 480 to 9,600 MPI tasks. All three solvers exhibit878

good scalability to 9,600 MPI tasks. In particular, the PEXSI solver scales879

almost ideally up to thousands of MPI tasks. This is attributed to the 2-level880

parallelism employed in PEXSI (Section 3.3). The perfect strong scaling of881

PEXSI can be further extended to at least tens of thousands of MPI tasks882

(this is demonstrated in Section 5.6). However, PEXSI fails to solve the883

problem with 480 or 960 MPI tasks, owing to the limited memory assigned884

35

to each pole.885

5.2. Matrix Redistribution886

When using the elsi dm real subroutine (Section 4.5) to compute the den-887

sity matrix with the BLACS DENSE format and the PEXSI solver, the input888

Hamiltonian and overlap matrices are not in the correct format for PEXSI.889

The elsi dm real subroutine internally converts the input Hamiltonian ma-890

trix to the PEXSI CSC format, and converts the density matrix computed891

by PEXSI back to the original format. The overlap matrix is converted as892

well, albeit only in the first iteration of an SCF cycle. The performance893

of the Hamiltonian matrix conversion from BLACS DENSE to PEXSI CSC894

and the density matrix conversion from PEXSI CSC to BLACS DENSE are895

shown and compared to the PEXSI computation time in Fig. 8. For matrix896

sizes ranging from 25,200 (1,800 atoms) to 100,800 (7,200 atoms), Fig. 8 (a)897

shows that the wall clock time for both conversions with 1,920 MPI tasks is898

always below 10% of the PEXSI computation time (red lines in Fig. 8). Fig.899

8 (b) shows that the data redistribution time is consistently below 10% of900

the computation time, when using 1,920 to 9,600 MPI tasks for a problem901

of dimension 70,000. The BLACS DENSE to PEXSI CSC conversion stops902

scaling at 9,600 MPI tasks. Further optimization of the conversion using903

MPI point-to-point communications is planned as a future work direction.904

5.3. SCF Initialization905

Computational steps that are only required in the first one or few SCF906

iterations have some impact on the overall performance of an SCF cycle. Here907

we discuss three such steps: (1) Cholesky factorization of the overlap matrix908

in Eq. 10, which is used to transform the generalized eigenvalue problem909

to the standard form. This is a mandatory step for ELPA and an optional910

step for libOMM. The Cholesky factorization of a dense matrix in ELSI is911

performed using subroutines provided in ELPA. (2) Symbolic factorization912

that provides PEXSI necessary information of the sparsity pattern of the913

Hamiltonian and overlap matrices before numerical factorization and selected914

inversion are carried out. The symbolic factorization of a sparse matrix915

is performed using subroutines provided in the SuperLU DIST library [79,916

80]. (3) Inertia counting that quickly estimates the chemical potential of the917

system according to Sylvester’s Inertia Law theorem [71]. This reasonable918

initial guess of the chemical potential is essential to the fast convergence of919

PEXSI.920

36

Figure 8: Scaling of matrix redistribution with respect to (a) the number of basis functions
and (b) the number of MPI tasks. The number of MPI tasks in (a) is 1,920. The number
of basis functions in (b) is 70,000. BLACS to PEXSI: redistribution of the Hamiltonian
matrix from 2D block-cyclic dense storage (BLACS DENSE) to 1D block CSC sparse stor-
age (PEXSI CSC). PEXSI to BLACS: redistribution of the density matrix from 1D block
CSC sparse storage (PEXSI CSC) to 2D block-cyclic dense storage (BLACS DENSE).
The overlap matrix is redistributed only once per SCF cycle, hence its absence here.

Fig. 9 (a) shows the wall clock time of the three initialization steps as921

a function of the system size. The Cholesky factorization of a dense matrix922

using ELPA subroutines scales cubically with the system size, whereas the923

symbolic factorization and inertia counting scale linearly. The scaling dif-924

ference among these preprocessing steps helps explain why PEXSI is more925

favorable for large systems. In the strong scaling plot shown in Fig. 9 (b),926

the dense Cholesky factorization is shown to scale up to 9,600 MPI tasks. Be-927

cause the symbolic factorization implemented in SuperLU DIST is not stable928

when executed on multiple processors, we used a sequential version of the929

symbolic factorization in the experiment, which obviously does not scale. We930

are in the process of developing a more robust and scalable implementation931

of the symbolic factorization procedure as part of the development of a new932

parallel sparse Cholesky (and LDLT) factorization library called symPACK933

[81].934

5.4. ELPA935

To analyze the performance of the ELPA eigensolver for the graphene936

problem solved here, the solution of a generalized eigenproblem (red lines937

in Fig. 7) is divided into three steps: the transformation of the generalized938

eigenproblem to the standard form (Eq. 11), the solution of the standard939

37

Figure 9: Scaling of symbolic factorization using SuperLU DIST, inertia counting using
PEXSI, and Cholesky factorization using ELPA, with respect to (a) the number of basis
functions and (b) the number of MPI tasks. The number of MPI tasks in (a) is 1,920. The
number of basis functions in (b) is 70,000. Symbolic factorization is performed in serial.
Ideal scaling is indicated by the dashed lines.

eigenproblem (Fig. 1), and the back-transformation of the eigenvectors. Fig.940

10 (a) and (b) show the scaling of the three steps with respect to the number941

of basis functions and the number of MPI tasks, respectively. All these942

steps scale cubically with respect to the system size. Solving the standard943

eigenproblem is more expensive than the transformation steps. While the944

three steps show similar strong scaling up to 9,600 MPI tasks, the solution945

of a standard eigenproblem dominates the total computation time. In Fig.946

10 (c) and (d), the solution time of a standard eigenproblem using ELPA947

2-stage solver is further decomposed into five steps illustrated in Fig. 1.948

These plots show that the current bottlenecks in terms of both computation949

time and parallel efficiency are the first step, i.e. the transformation of a full950

matrix to a banded form, and the fifth step, i.e. the back-transformation of951

the eigenvectors from a banded form to a full form. The fourth step, back-952

transformation of the eigenvectors to the banded form, is not the most time953

consuming step of the computation. In fact, the computational complexity954

of the third, fourth, and fifth steps is roughly proportional to the number of955

eigenvectors to compute, as only these eigenvectors need to be calculated in956

the third step and transformed in the fourth and fifth steps.957

38

Figure 10: Scaling of the key computational steps of the ELPA eigensolver with respect
to (a,c) the number of basis functions and (b,d) the number of MPI tasks. The number of
MPI tasks in (a) is 1,920. The number of basis functions in (b) is 70,000. Ideal scaling is
indicated by the dashed lines. The upper panel (a,b) focuses on the transformation from
a generalized eigenproblem to its standard form, the solution of a standard problem, and
the back-transformation of the eigenvectors to the original generalized problem. The lower
panel (c,d) further decomposes the solution of a standard eigenproblem using the ELPA
2-stage solver into 5 substeps, as illustrated in Fig. 1.

5.5. libOMM958

The performance of the iterative OMM method depends significantly on959

the convergence rate of the CG minimization. The prototype OMM im-960

plementation in libOMM generates random numbers as the initial guess for961

the coefficients of Wannier functions used in the first SCF iteration, con-962

sequently leading to a large and unpredictable number of iterations in the963

CG line search scheme. Then, the convergence of line search is dramatically964

accelerated as the SCF cycle proceeds, as the Wannier functions coefficients965

calculated in the current iteration are reused as the initial guess in the next966

39

iteration. Inspired by the connection between the Wannier functions and the967

basis functions in Eq. 14, a better idea is to use the eigenfunctions corre-968

sponding to the occupied space computed by ELPA as the initial guess for969

OMM. In ELSI, this is achieved automatically, controlled by the n elpa steps970

parameter (see Section 4.6). Table 2 reflects how n elpa steps affects the CG971

convergence of OMM in the (n elpa steps + 1)th SCF iteration, by showing972

the number of CG line searches in the basic and Cholesky flavors of OMM973

as a function of the number of ELPA steps. In general, more ELPA steps974

lead to faster CG convergence. In this particular test case with 5,000 carbon975

atoms and 70,000 basis functions, 6 ELPA steps are sufficient to reduce the976

number of CG line searches in libOMM to 1 for both tested flavors.977

Table 2: Number of conjugate gradient (CG) line search steps required by libOMM to min-
imize the OMM energy functional. The benchmark system here is the graphene 50×50×1
supercell model containing 5,000 atoms and 70,000 basis functions. In the table, “Basic”
refers to the method that directly operates on the generalized eigenproblem; “Cholesky”
refers to the method that applies Cholesky factorization to transform the generalized prob-
lem to the standard form. “x” in the second column means that the minimization cannot
converge within the maximum allowed number of CG iterations (5000).

ELPA steps 0 1 2 3 4 5 6 7
CG (Basic) x 185 255 153 72 7 1 1
CG (Cholesky) 254 27 36 24 13 5 1 1

Compared in the second and third rows of Table 2 is another factor that978

has an impact on the number of CG line searches in libOMM, i.e., the method979

used to minimize the OMM functional. The basic algorithm directly follows980

the recipe in Eq. 16, but Eq. 16 can also be minimized by first transform-981

ing the generalized eigenproblem to a standard problem based on Cholesky982

factorization. As shown in Table 2, minimizing the OMM functional in the983

context of a standard eigenproblem (Cholesky, the third row in the table)984

contributes to a decrease in the number of line searches. This acceleration of985

the CG line search, however, comes at the price of the additional complexity986

required by the eigenproblem transformation. Fig. 11 shows the compari-987

son of the computational time of one CG line search in libOMM with the988

basic flavor versus the Cholesky flavor. The two flavors scale similarly, with989

respect to both the number of basis functions (Fig. 11 (a), from 25,200 to990

100,800 basis functions) and the number of MPI tasks (Fig. 11 (b), from991

480 to 9,600 MPI tasks). The Cholesky flavor is consistently slower than the992

40

basic flavor by a factor of 2 ∼ 4, due to the eigenproblem transformation993

and the corresponding back-transformation of Wannier function coefficients.994

Also reflected in Fig. 11 is the shortest time to compute the density matrix995

using OMM, which is the basic flavor that converges in one CG line search.996

Indicated by Table 2 and Fig. 11, the most promising approach that could be997

used in practical calculations is the combination of a few ELPA steps followed998

by the basic flavor of OMM, whose convergence is guaranteed within one CG999

iteration. To further improve the performance of this solver, future work will1000

include the inclusion in the ELSI interface of a preconditioned libOMM flavor,1001

which has already proven to efficiently speed up the line search convergence1002

[16, 82]; a spectral slicing method to separately evaluate the eigenstates near1003

the Fermi level and thus to enable the proper handling of fractional occu-1004

pation numbers; the sparse linear algebra via routines implemented in the1005

PSPBLAS (Parallel SParse BLAS) library [83]; and ultimately the extension1006

of OMM to a linear scaling solver as originally proposed [61, 62, 63, 64].1007

Figure 11: Scaling of the computation of the density matrix using orbital minimization
method, with respect to (a) the number of basis functions and (b) the number of MPI
tasks. The number of MPI tasks in (a) is 1,920. The number of basis functions in (b)
is 70,000. Shown here is the ideal case of OMM, where the CG line search of the OMM
energy functional minimum requires only one step to converge. In practical SCF calcula-
tions, the number of line searches in OMM can only be reduced to one after several SCF
steps. “Basic” refers to the method that directly handles the generalized eigenproblem.
“Cholesky” refers to the method that applies Cholesky factorization to transform the gen-
eralized problem to the standard form before minimization. Ideal scaling is indicated by
the dashed line.

41

5.6. PEXSI1008

As noted in Section 3.3, PEXSI exploits two levels of parallelization: the1009

first level is the parallel evaluation of each pole in the pole expansion (Eq.1010

19), and the second level is the parallel numerical factorization and selected1011

inversion at each pole. MPI tasks are divided into several groups with one1012

pole assigned to each group. Fig. 12 (a) shows that both steps scale as1013

O(N1.5) for the graphene model, which is in agreement with the theoretical1014

prediction for quasi-2D systems. The selected inversion step is slightly more1015

expensive than the numerical factorization step. As shown in the strong1016

scaling plot in Fig. 12 (b), both the numerical factorization and the selected1017

inversion scale almost ideally to at least 9,600 MPI tasks. The number of1018

MPI tasks shown in Fig. 12 (b) should be divided by the number of poles,1019

80, to reflect the scaling of numerical factorization and selected inversion at1020

each pole. Since PEXSI has been shown to scale to several thousands of1021

MPI tasks [70], the performance reported in Fig. 12 (b), which measures1022

scalability up to 120 tasks per pole, is still far from the scalability limit. To1023

further demonstrate the strong scaling of the PEXSI solver, Fig. 13 shows the1024

wall clock time used by PEXSI for a graphene model consisting of 6,480 atoms1025

(97,200 basis functions) using 2,592 to 31,104 MPI tasks (Fig. 13 (a)) and1026

a graphene model consisting of 11,520 atoms (172,800 basis functions) using1027

2,304 to 110,592 MPI tasks (Fig. 13 (b)). These tests are performed using1028

the ELSI interface as implemented in the DGDFT software package. The1029

ELPA eigensolver is also included as a reference. For both models, PEXSI1030

exhibits nearly ideal strong scaling and eventually outperforms ELPA as the1031

number of MPI tasks becomes sufficiently large. The ELPA solver ceases to1032

scale beyond 18,432 MPI tasks for the 172,800-atom system.1033

6. Conclusions1034

Materials simulations based on Kohn-Sham density-functional theory re-1035

quire solving an eigenvalue problem repeatedly in an iterative procedure de-1036

signed to obtain the ground state electron density of a poly-atomic system.1037

Although this is a well studied subject in numerical linear algebra, it consti-1038

tutes the bottleneck in large-scale calculations. A number of new approaches1039

have emerged in the last few years. These approaches have different features1040

and performance characteristics. Proper use of these approaches requires a1041

good understanding of the pros and cons of each approach, and the input1042

and output of specific algorithms. ELSI is designed to provide a common1043

42

Figure 12: Scaling of the two key computational steps of the PEXSI DFT driver, namely
the numerical factorization and the selected inversion, with respect to (a) the number of
basis functions and (b) the number of MPI tasks. The number of MPI tasks in (a) is
1,920. The number of basis functions in (b) is 70,000. Ideal scaling is indicated by the
dashed lines. The 80 poles employed for the pole expansion in Eq. 19 are independently
evaluated in parallel. The numerical factorization and selected inversion of each pole are
carried out using 1920/80 = 24 MPI tasks in (a), and # MPI tasks/80 in (b).

Figure 13: Comparison of the strong scaling of the ELPA and PEXSI solvers. The number
of basis functions is 97,200 in (a) and 172,800 in (b). The matrices are from DGDFT code.
There are 48 poles employed in the PEXSI pole expansion. Ideal scaling is indicated by
the dashed lines.

interface that allows users to easily choose an appropriate solver. Although1044

the choice of the best solver often depends on a number of factors such as1045

the problem size and the available computational resource, the benchmark1046

results presented in this paper provide some general guidance on how to make1047

43

these choices. In particular, we have shown different regimes in which one1048

approach outperforms others and the crossover points between these regimes.1049

Finally, we demonstrated how different solvers can be organized in a com-1050

mon framework to enable easy integration with a vast number of electronic1051

structure software packages. We anticipate that the number of new ap-1052

proaches to solving eigenvalue problems related to KS-DFT will continue1053

to increase. We hope that ELSI will become a focal point for the commu-1054

nity to integrate, comparatively assess and, ultimately, adopt this diverse1055

ecosystem in a simple, effective fashion.1056

7. Acknowledgments1057

This work was supported by the National Science Foundation under grant1058

number 1450280. We thank the National Energy Research Scientific Comput-1059

ing Center (NERSC) for the computational resources. This work also used1060

resources of the Argonne Leadership Computing Facility, which is a DOE Of-1061

fice of Science User Facility supported under contract DE-AC02-06CH11357.1062

Regarding the establishment and improvement of the ELSI API, we especially1063

appreciate the fruitful discussions with and the feedback from many fellow1064

researchers in the electronic structure community, including developers of the1065

BigDFT, CP2K, DGDFT, FHI-aims, SIESTA code projects and of CECAM’s1066

Electronic Structure Library (http://esl.cecam.org). AG thanks EU H20201067

grant 676598 (‘MaX: Materials at the eXascale’ CoE), Spain’s MINECO1068

(FIS2012-37549-C05-05, FIS2015-64886-C5-4-P and the ‘Severo Ochoa’ pro-1069

gram grant SEV-2015-0496), and GenCat (2014 SGR 301). The work of1070

JL was partially supported by the National Science Foundation under grant1071

number DMS-1127914 to the Statistical and Applied Mathematical Sciences1072

Institute. VB particularly acknowledges the experiences shared by many of1073

the co-authors of the FHI-aims code over many years, for instance, regarding1074

parallelization strategies or the handling of ill-conditioned overlap matrices,1075

from which we learned during the development of the ELSI interface - espe-1076

cially Dr. Ville Havu (Aalto University) and Dr. Rainer Johanni (Munich;1077

now deceased).1078

Appendix A. Technical Settings in FHI-aims Calculations1079

The benchmark calculations reported in Figs. 7, 8, 9 10, 11, and 12 in Sec-1080

tion 5 are KS-DFT calculations performed with the FHI-aims code [33, 77],1081

44

PBE exchange-correlation functional [76], “tier1” numeric atom-centered or-1082

bital (NAO) basis set (see Table 1 in Ref. [33], “light” numerical settings,1083

and a 1×1×1 k-grid (Γ point). In order to place the timings reported in Fig.1084

7 into perspective with respect to the other parts of a KS-DFT calculation,1085

Fig. A.14 shows timings for all other important computational steps in the1086

corresponding FHI-aims calculations, obtained on the same hardware and in1087

the same runs as the results shown in Fig. 7. The main additional steps1088

are executed on a real-space grid and include the Hartree potential evalua-1089

tion, the numerical integrations of the Hamiltonian matrix elements, and the1090

update of the electron density and its gradients, all implemented in a near1091

O(N) fashion and efficiently parallelized in FHI-aims. Refs. [33, 77] provide1092

a more detailed account of the algorithms involved.1093

Figure A.14: Scaling of the key computational steps of the DFT-PBE calculations in
FHI-aims, with respect to (a) the number of basis functions and (b) the number of MPI
tasks. The number of MPI tasks in (a) is 1,920. The number of basis functions in (b) is
70,000. Ideal scaling is indicated by the dashed lines. The key steps are the evaluation of
the Hartree potential, the numerical integrations of the Hamiltonian matrix elements, the
update of the electron density and its gradient, and solving the Kohn-Sham eigenproblem
using the ELPA eigensolver library. Shown here are timings corresponding to one SCF
iteration, not accumulated timings in a complete SCF cycle.

Appendix B. Technical Settings in DGDFT Calculations1094

The benchmark calculations reported in Figs. 13 in Section 5 are KS-1095

DFT calculations performed with DGDFT [51, 52] using the PBE exchange-1096

correlation functional [76]. The global system is partitioned into 36 × 361097

and 48 × 48 elements for the system containing 6,480 and 11,520 atoms,1098

45

respectively. The number of adaptive local basis functions (ALB) per atom1099

is 15, which is sufficient for the error of the total energy per atom and the1100

maximum error of the force to be below 10−3 Hartree and 10−3 Hartree/Bohr,1101

respectively. The DG penalty parameter is chosen to be 5.0, and the kinetic1102

energy cutoff to generate the ALBs is set to 40 Hartree. The number of poles1103

used by PEXSI is 48.1104

[1] W. Kohn, L. J. Sham, Self-consistent equations including exchange and1105

correlation effects, Physical Review 140 (4A) (1965) 1133–1138.1106

[2] A. D. Becke, A new mixing of Hartree-Fock and local density-functional1107

theories, The Journal of Chemical Physics 98 (2) (1993) 1372–1377.1108

[3] A. Seidl, A. Görling, P. Vogl, J. A. Majewski, M. Levy, Generalized1109

Kohn-Sham schemes and the band-gap problem, Physical Review B 531110

(1996) 3764–3774.1111

[4] L. M. Ghiringhelli, C. Carbogno, S. Levchenko, F. Mohamed, G. Huhs,1112

M. Lueders, M. Oliveira, M. Scheffler, Towards a common format1113

for computational materials science data, Psi-k Scientific Highlight1114

July (131).1115

[5] R. Haunschild, A. Barth, W. Marx, Evolution of DFT studies in view1116

of a scientometric perspective, Journal of Cheminformatics 8 (1) (2016)1117

52.1118

[6] P. Mavropoulos, P. Dederichs, Statistical data about density functional1119

calculations, Psi-k Scientific Highlight April (135).1120

[7] S. Goedecker, Linear scaling electronic structure methods, Reviews of1121

Modern Physics 71 (1999) 1085–1123.1122

[8] D. R. Bowler, T. Miyazaki, O(N) methods in electronic structure calcu-1123

lations, Reports on Progress in Physics 75 (3) (2012) 036503.1124

[9] C.-K. Skylaris, P. D. Haynes, A. A. Mostofi, M. C. Payne, Introduc-1125

ing ONETEP: Linear-scaling density functional simulations on parallel1126

computers, The Journal of Chemical Physics 122 (8) (2005) 084119.1127

[10] D. R. Bowler, T. Miyazaki, Calculations for millions of atoms with den-1128

sity functional theory: Linear scaling shows its potential, Journal of1129

Physics: Condensed Matter 22 (7) (2010) 074207.1130

46

[11] J. VandeVondele, U. Borstnik, J. Hutter, Linear scaling self-consistent1131

field calculations with millions of atoms in the condensed phase, Journal1132

of Chemical Theory and Computation 8 (10) (2012) 3565–3573.1133

[12] H. F. Schurkus, C. Ochsenfeld, Communication: An effective linear-1134

scaling atomic-orbital reformulation of the random-phase approxima-1135

tion using a contracted double-laplace transformation, The Journal of1136

Chemical Physics 144 (3) (2016) 031101.1137

[13] A. Luenser, H. F. Schurkus, C. Ochsenfeld, Vanishing-overhead linear-1138

scaling random phase approximation by Cholesky decomposition and an1139

attenuated coulomb-metric, Journal of Chemical Theory and Computa-1140

tion 13 (4) (2017) 1647–1655.1141

[14] T. Auckenthaler, V. Blum, H.-J. Bungartz, T. Huckle, R. Johanni,1142

L. Kramer, B. Lang, H. Lederer, P.-R. Willems, Parallel solution of1143

partial symmetric eigenvalue problems from electronic structure calcu-1144

lations, Parallel Computing 37 (12) (2011) 783–794.1145

[15] A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler,1146

A. Heinecke, H.-J. Bungartz, H. Lederer, The ELPA library: Scalable1147

parallel eigenvalue solutions for electronic structure theory and compu-1148

tational science, Journal of Physics: Condensed Matter 26 (21) (2014)1149

213201.1150

[16] F. Corsetti, The orbital minimization method for electronic structure1151

calculations with finite-range atomic basis sets, Computer Physics Com-1152

munications 185 (3) (2014) 873–883.1153

[17] L. Lin, J. Lu, L. Ying, R. Car, W. E, Fast algorithm for extracting1154

the diagonal of the inverse matrix with application to the electronic1155

structure analysis of metallic systems, Communications in Mathematical1156

Sciences 7 (3) (2009) 755–777.1157

[18] L. Lin, M. Chen, C. Yang, L. He, Accelerating atomic orbital-based1158

electronic structure calculation via pole expansion and selected inver-1159

sion, Journal of Physics: Condensed Matter 25 (29) (2013) 295501.1160

[19] L. Lin, A. Garćıa, G. Huhs, C. Yang, SIESTA-PEXSI: Massively parallel1161

method for efficient and accurate ab initio materials simulation without1162

47

matrix diagonalization, Journal of Physics: Condensed Matter 26 (2014)1163

305503.1164

[20] S. Mohr, D. Caliste, M. Wagner, L. Genovese, Efficient computation of1165

sparse matrix functions for large scale electronic structure calculations:1166

The CheSS library, arXiv:1704.00512.1167

[21] M. Keceli, H. Zhang, P. Zapol, D. A. Dixon, A. F. Wagner, Shift-and-1168

invert parallel spectral transformation eigensolver: Massively parallel1169

performance for density-functional based tight-binding, Journal of Com-1170

putational Chemistry 37 (4) (2016) 448–459.1171

[22] S. R. Jensen, S. Saha, J. A. Flores-Livas, W. Huhn, V. Blum,1172

S. Goedecker, L. Frediani, The elephant in the room of density func-1173

tional theory calculations, The Journal of Physical Chemistry Letters1174

8 (7) (2017) 1449–1457.1175

[23] A. Szabo, N. S. Ostlund, Modern quantum chemistry: Introduction to1176

advanced electronic structure theory, Dover Publications, 1989.1177

[24] J. Hutter, M. Iannuzzi, F. Schiffmann, J. VandeVondele, CP2K: Atom-1178

istic simulations of condensed matter systems, Wiley Interdisciplinary1179

Reviews: Computational Molecular Science 4 (1) (2014) 15–25.1180

[25] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, J. R. C.1181

M A Robb, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji,1182

X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts,1183

B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Son-1184

nenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings,1185

B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski,1186

J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota,1187

R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao,1188

H. Nakai, T. Vreven, K. Throssell, J. A. M. Jr, J. E. Peralta, F. Ogliaro,1189

M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov,1190

T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C.1191

Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene,1192

C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma,1193

O. Farkas, J. B. Foresman, , D. J. Fox, Gaussian09 Revision A.02, Gaus-1194

sian Inc. Wallingford.1195

48

[26] M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma,1196

H. J. J. van Dam, D. Wang, J. Nieplocha, E. Apra, T. L. Windus,1197

W. A. de Jong, NWChem: A comprehensive and scalable open-source1198

solution for large scale molecular simulations, Computer Physics Com-1199

munications 181 (9) (2010) 1477–1489.1200

[27] Y. Shao, Z. Gan, E. Epifanovsky, A. T. B. Gilbert, M. Wormit, J. Kuss-1201

mann, A. W. Lange, A. Behn, J. Deng, X. Feng, D. Ghosh, M. Goldey,1202

P. R. Horn, L. D. Jacobson, I. Kaliman, R. Z. Khaliullin, T. Kua, A. Lan-1203

dau, J. Liu, E. I. Proynov, Y. M. Rhee, R. M. Richard, M. A. Rohrdanz,1204

R. P. Steele, E. J. Sundstrom, H. L. W. III, P. M. Zimmerman, D. Zuev,1205

B. Albrecht, E. Alguire, B. Austin, G. J. O. Beran, Y. A. Bernard,1206

E. Berquist, K. Brandhorst, K. B. Bravaya, S. T. Brown, D. Casanova,1207

C.-M. Chang, Y. Chen, S. H. Chien, K. D. Closser, D. L. Crittenden,1208

M. Diedenhofen, R. A. D. Jr, H. Do, A. D. Dutoi, R. G. Edgar, S. Fatehi,1209

L. Fusti-Molnar, A. Ghysels, A. Golubeva-Zadorozhnaya, J. Gomes,1210

M. W. D. Hanson-Heine, P. H. P. Harbach, A. W. Hauser, E. G. Hohen-1211

stein, Z. C. Holden, T.-C. Jagau, H. Ji, B. Kaduk, K. Khistyaev, J. Kim,1212

J. Kim, R. A. King, P. Klunzinger, D. Kosenkov, T. Kowalczyk, C. M.1213

Krauter, K. U. Lao, A. D. Laurent, K. V. Lawler, S. V. Levchenko, C. Y.1214

Lin, F. Liu, E. Livshits, R. C. Lochan, A. Luenser, P. Manohar, S. F.1215

Manzer, S.-P. Mao, N. Mardirossian, A. V. Marenich, S. A. Maurer,1216

N. J. Mayhall, E. Neuscamman, C. M. Oana, R. Olivares-Amaya, D. P.1217

OaNeill, J. A. Parkhill, T. M. Perrine, R. Peverati, A. Prociuk, D. R.1218

Rehn, E. Rosta, N. J. Russ, S. M. Sharada, S. Sharma, D. W. Small,1219

A. Sodt, T. Stein, D. Staeck, Y.-C. Su, A. J. W. Thom, T. Tsuchimochi,1220

V. Vanovschi, L. Vogt, O. Vydrov, T. Wang, M. A. Watson, J. Wenzel,1221

A. White, C. F. Williams, J. Yang, S. Yeganeh, S. R. Yost, Z.-Q. You,1222

I. Y. Zhang, X. Zhang, Y. Zhao, B. R. Brooks, G. K. L. Chan, D. M.1223

Chipman, C. J. Cramer, W. A. G. III, M. S. Gordon, W. J. Hehre,1224

A. Klamt, H. F. S. III, M. W. Schmidt, C. D. Sherrill, D. G. Truhlar,1225

A. Warshel, X. Xu, A. Aspuru-Guzik, R. Baer, A. T. Bell, N. A. Besley,1226

J.-D. Chai, A. Dreuw, B. D. Dunietz, T. R. Furlani, S. R. Gwaltney,1227

C.-P. Hsu, Y. Jung, J. Kong, D. S. Lambrecht, W. Liang, C. Ochsen-1228

feld, V. A. Rassolov, L. V. Slipchenko, J. E. Subotnik, T. V. Voorhis,1229

J. M. Herbert, A. I. Krylov, P. M. W. Gill, M. Head-Gordon, Advances1230

in molecular quantum chemistry contained in the Q-Chem 4 program1231

package, Molecular Physics 113 (2) (2015) 184–215.1232

49

[28] F. Furche, R. Ahlrichs, C. Hattig, W. Klopper, M. Sierka, F. Weigend,1233

Turbomole, Wiley Interdisciplinary Reviews: Computational Molecular1234

Science 4 (2) (2014) 91–100.1235

[29] J. C. Slater, Atomic shielding constants, Physical Review 36 (1930) 57–1236

64.1237

[30] G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. F. Guerra, S. J. A.1238

van Gisbergen, J. G. Snijders, T. Ziegler, Chemistry with ADF, Journal1239

of Computational Chemistry 22 (9) (2001) 931–967.1240

[31] http://www.quantumwise.com (Accessed: 2017-04-27).1241

[32] B. Delley, An all-electron numerical method for solving the local density1242

functional for polyatomic molecules, The Journal of Chemical Physics1243

92 (1) (1990) 508.1244

[33] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter,1245

M. Scheffler, Ab initio molecular simulations with numeric atom-1246

centered orbitals, Computer Physics Communications 180 (2009) 2175–1247

2196.1248

[34] K. Koepernik, H. Eschrig, Full-potential nonorthogonal local-orbital1249

minimum-basis band-structure scheme, Physical Review B 59 (3) (1999)1250

1743.1251

[35] T. Ozaki, Variationally optimized atomic orbitals for large-scale elec-1252

tronic structures, Physical Review B 67 (15) (2003) 155108.1253

[36] J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon,1254

D. Sanchez-Portal, The SIESTA method for ab initio order-N materials1255

simulation, Journal of Physics: Condensed Matter 14 (11) (2002) 2745–1256

2779.1257

[37] D. J. Singh, Planewaves, pseudopotentials and the LAPW method,1258

Springer US, 1994.1259

[38] http://elk.sourceforge.net (Accessed: 2017-04-27).1260

[39] A. Gulans, S. Kontur, C. Meisenbichler, D. Nabok, P. Pavone, S. Rig-1261

amonti, S. Sagmeister, U. Werner, C. Drax, Exciting: A full-potential1262

50

all-electron package implementing density-functional theory and many-1263

body perturbation theory, Journal of Physics: Condensed Matter 26 (36)1264

(2014) 363202.1265

[40] S. Blügel, G. Bihlmayer, D. Wortmann, C. Friedrich, M. Heide,1266

M. Lezaic, F. Freimuth, M. Betzinger, The Jülich FLEUR project1267

(1987).1268

[41] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz,1269

WIEN2k: An augmented plane wave + local orbitals program for cal-1270

culating crystal properties.1271

[42] J. E. Pask, B. M. Klein, P. A. Sterne, C. Y. Fong, Finite-element meth-1272

ods in electronic-structure theory, Computer Physics Communications1273

135 (1) (2001) 1–34.1274

[43] R. M. Martin, Electronic structure: Basic theory and practical methods,1275

Cambridge University Press, 2004.1276

[44] X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin,1277

P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Côté, T. Deutsch,1278

L. Genovese, P. Ghosez, M. Giantomassi, S. Goedecker, D. R. Hamann,1279

P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,1280

M. J. T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese,1281

D. Sangalli, R. Shaltaf, M. Torrent, M. J. Verstraete, G. Zerah, J. W.1282

Zwanziger, ABINIT: First-principles approach to material and nanosys-1283

tem properties, Computer Physics Communications 180 (12) (2009)1284

2582–2615.1285

[45] S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert,1286

K. Refson, M. C. Payne, First principles methods using CASTEP,1287

Zeitschrift für Kristallographie - Crystalline Materials 220 (2005) 567–1288

570.1289

[46] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavaz-1290

zoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. D. Corso,1291

S. de Gironcoli, S. Fabris, G. F. R. Gebauer, U. Gerstmann, C. Gougous-1292

sis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri,1293

R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia,1294

S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari,1295

51

R. M. Wentzcovitch, QUANTUM ESPRESSO: A modular and open-1296

source software project for quantum simulations of materials, Journal of1297

Physics: Condensed Matter 21 (39) (2009) 395502.1298

[47] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-1299

energy calculations using a plane-wave basis set, Physical Review B 541300

(1996) 11169–11186.1301

[48] S. Mohr, L. E. Ratcliff, L. Genovese, D. Caliste, P. Boulanger,1302

S. Goedecker, T. Deutscha, Accurate and efficient linear scaling DFT1303

calculations with universal applicability, Physical Chemistry Chemical1304

Physics 17 (47) (2015) 31360–31370.1305

[49] R. J. Harrison, G. Beylkin, F. A. Bischoff, J. A. Calvin, G. I. Fann,1306

J. Fosso-Tande, D. Galindo, J. R. Hammond, R. Hartman-Baker, J. C.1307

Hill, J. Jia, J. S. Kottmann, M.-J. Y. Ou, J. Pei, L. E. Ratcliff, M. G.1308

Reuter, A. C. Richie-Halford, N. A. Romero, H. Sekino, W. A. Shelton,1309

B. E. Sundahl, W. S. Thornton, E. F. Valeev, A. Vázquez-Mayagoitia,1310

N. Vence, T. Yanai, Y. Yokoi, MADNESS: A multiresolution, adaptive1311

numerical environment for scientific simulation, SIAM Journal on Sci-1312

entific Computing 38 (5) (2016) S123–S142.1313

[50] http://mrchemdoc.readthedocs.org (Accessed: 2017-05-21).1314

[51] L. Lin, J. Lu, L. Ying, W. E, Adaptive local basis set for Kohn-Sham1315

density functional theory in a discontinuous Galerkin framework I: Total1316

energy calculation, Journal of Computational Physics 231 (4) (2012)1317

2140–2154.1318

[52] W. Hu, L. Lin, C. Yang, DGDFT: A massively parallel method for large1319

scale density functional theory calculations, The Journal of Chemical1320

Physics 143 (2015) 124110.1321

[53] J. Bernholc, M. Hodak, W. Lu, Recent developments and applications of1322

the real-space multigrid method, Journal of Physics: Condensed Matter1323

20 (29) (2008) 294205.1324

[54] L. Kronik, A. Makmal, M. L. Tiago, M. M. G. Alemany, M. Jain,1325

X. Huang, Y. Saad, J. R. Chelikowsky, PARSEC: The pseudopoten-1326

tial algorithm for real-space electronic structure calculations: Recent1327

52

advances and novel applications to nano-structures, Physica Status So-1328

lidi (b) 243 (5) (2006) 1063–1079.1329

[55] G. H. Golub, C. F. V. Loan, Matrix Computations, Johns Hopkins Stud-1330

ies in the Mathematical Sciences, Johns Hopkins University Press, 2013.1331

[56] C. H. Bischof, B. Lang, X. Sun, Algorithm 807: The SBR toolbox - soft-1332

ware for successive band reduction, ACM Transactions on Mathematical1333

Software 26 (4) (2000) 602–616.1334

[57] J. J. M. Cuppen, A divide and conquer method for the symmetric tridi-1335

agonal eigenproblem, Numerische Mathematik 36 (2) (1980) 177–195.1336

[58] C. Bischof, X. Sun, B. Lang, Parallel tridiagonalization through two-step1337

band reduction, in: Proceedings of IEEE Scalable High Performance1338

Computing Conference, 1994, pp. 23–27.1339

[59] L. S. Blackford, J. Choi, A. Cleary, E. DAzevedo, J. Demmel, I. Dhillon,1340

J. Dongarra, S. Hammarling, G. Henry, A. Petitet, et al., ScaLAPACK1341

users’ guide, SIAM, 1997.1342

[60] E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. Ostrouchov,1343

B. Tourancheau, R. van de Geijn, Basic linear algebra communication1344

subprograms, in: Distributed Memory Computing Conference, 1991.1345

Proceedings., The Sixth, IEEE, 1991, pp. 287–290.1346

[61] F. Mauri, G. Galli, R. Car, Orbital formulation for electronic-structure1347

calculations with linear system-size scaling, Physical Review B 47 (15)1348

(1993) 9973.1349

[62] P. Ordejón, D. A. Drabold, M. P. Grumbach, R. M. Martin, Uncon-1350

strained minimization approach for electronic computations that scales1351

linearly with system size, Physical Review B 48 (1993) 14646–14649.1352

[63] F. Mauri, G. Galli, Electronic-structure calculations and molecular-1353

dynamics simulations with linear system-size scaling, Physical Review1354

B 50 (1994) 4316–4326.1355

[64] P. Ordejón, D. A. Drabold, R. M. Martin, M. P. Grumbach, Linear1356

system-size scaling methods for electronic-structure calculations, Phys-1357

ical Review B 51 (3) (1995) 1456.1358

53

[65] M. P. Teter, M. C. Payne, D. C. Allan, Solution of schrödinger’s equation1359

for large systems, Physical Review B 40 (1989) 12255.1360

[66] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopou-1361

los, Iterative minimization techniques for ab initio total-energy calcula-1362

tions: molecular dynamics and conjugate gradients, Reviews of Modern1363

Physics 64 (1992) 1045–1097.1364

[67] J. Kim, F. Mauri, G. Galli, Total-energy global optimizations using1365

nonorthogonal localized orbitals, Physical Review B 52 (1995) 1640–1366

1648.1367

[68] N. D. Mermin, E. Canel, Long wavelength oscillations of a quantum1368

plasma in a uniform magnetic field, Annals of Physics 26 (2) (1964)1369

247–273.1370

[69] L. Lin, C. Yang, J. Meza, J. Lu, L. Ying, W. E, SelInv - An algorithm1371

for selected inversion of a sparse symmetric matrix, ACM Transactions1372

on Mathematical Software 37 (2011) 40.1373

[70] M. Jacquelin, L. Lin, C. Yang, PSelInv - A distributed memory parallel1374

algorithm for selected inversion: The symmetric case, ACM Transac-1375

tions on Mathematical Software 43 (3) (2016) 21.1376

[71] J. J. Sylvester, A demonstration of the theorem that every homogeneous1377

quadratic polynomial is reducible by real orthogonal substitutions to the1378

form of a sum of positive and negative squares, Philosophical Magazine1379

4 (1852) 138–142.1380

[72] C.-L. Fu, K.-M. Ho, First-principles calculation of the equilibrium1381

ground-state properties of transition metals: Applications to Nb and1382

Mo, Physical Review B 28 (1983) 5480–5486.1383

[73] P. Pulay, Convergence acceleration of iterative sequences. The case of1384

SCF iteration, Chemical Physics Letters 73 (2) (1980) 393–398.1385

[74] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, E. Aprà,1386

Advances, applications and performance of the Global Arrays shared1387

memory programming toolkit, The International Journal of High Per-1388

formance Computing Applications 20 (2) (2006) 203–231.1389

54

[75] The ELSI team, ELSI Users’ Guide, http://elsi-interchange.org, 2017.1390

[76] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approxima-1391

tion made simple, Physical Review Letters 77 (1996) 3865–3868.1392

[77] V. Havu, V. Blum, P. Havu, M. Scheffler, Efficient integration for all-1393

electron electronic structure calculation using numeric basis functions,1394

Journal of Computational Physics 228 (22) (2009) 8367–8379.1395

[78] L. Nemec, V. Blum, P. Rinke, M. Scheffler, Thermodynamic equilibrium1396

conditions of graphene films on SiC, Physical Review Letters 111 (6)1397

(2013) 065502.1398

[79] X. S. Li, J. W. Demmel, SuperLU DIST: A scalable distributed-memory1399

sparse direct solver for unsymmetric linear systems, ACM Transactions1400

on Mathematical Software 29 (2) (2003) 110–140.1401

[80] L. Grigori, J. W. Demmel, X. S. Li, Parallel symbolic factorization for1402

sparse LU with static pivoting, SIAM Journal on Scientific Computing1403

29 (3) (2007) 1289–1314.1404

[81] M. Jacquelin, Y. Zheng, E. Ng, K. Yelick, An asynchronous task-based1405

fan-both sparse Cholesky solver, arXiv:1608.00044.1406

[82] J. Lu, H. Yang, Preconditioning orbital minimization method for1407

planewave discretization, Multiscale Modeling and Simulation 15 (1)1408

(2017) 254–273.1409

[83] H. Yang, J. Lu, PSPBLAS: A new framework for distributed memory1410

sparse BLAS, in preparation (2017).1411

55

	Introduction
	Kohn-Sham Density-Functional Theory
	Kohn-Sham Electronic Structure Solvers Supported by ELSI
	ELPA: Eigenvalue soLvers for Petaflop-Applications
	libOMM: Orbital Minimization Method
	PEXSI: Pole EXpansion and Selected Inversion

	The ELSI Infrastructure
	Overview of the ELSI Interface
	Matrix Storage and Distribution in ELSI
	Parallelization Strategy and Interaction of ELSI with an Existing KS-DFT Code
	ELSI Initialization
	Tasks during SCF
	ELSI Customization Options
	ELSI Finalization
	ELSI Software in Practice

	Benchmarks and Discussions
	Performance of the ELPA, libOMM, PEXSI Solvers
	Matrix Redistribution
	SCF Initialization
	ELPA
	libOMM
	PEXSI

	Conclusions
	Acknowledgments
	Technical Settings in FHI-aims Calculations
	Technical Settings in DGDFT Calculations

