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We have developed a treecode-based O(N log N ) algorithm for the generalized Born (GB) implicit
solvation model. Our treecode-based GB (tGB) is based on the GBr6 [J. Phys. Chem. B 111, 3055
(2007)], an analytical GB method with a pairwise descreening approximation for the R6 volume
integral expression. The algorithm is composed of a cutoff scheme for the effective Born radii calcu-
lation, and a treecode implementation of the GB charge–charge pair interactions. Test results demon-
strate that the tGB algorithm can reproduce the vdW surface based Poisson solvation energy with
an average relative error less than 0.6% while providing an almost linear-scaling calculation for a
representative set of 25 proteins with different sizes (from 2815 atoms to 65456 atoms). For a typical
system of 10k atoms, the tGB calculation is three times faster than the direct summation as imple-
mented in the original GBr6 model. Thus, our tGB method provides an efficient way for performing
implicit solvent GB simulations of larger biomolecular systems at longer time scales. © 2011 Amer-
ican Institute of Physics. [doi:10.1063/1.3552945]

I. INTRODUCTION

Electrostatic interaction plays an essential role in many
molecular and cellular processes.1–6 Due to its long-range na-
ture, an accurate but efficient treatment of electrostatics is the
key in fast computer simulations of biological systems.7–11

The Possion–Boltzmann (PB) model12, 13 is one of the
most widely used implicit solvation models that describe elec-
trostatic interactions of biological systems in aqueous solu-
tions under a mean field approximation. PB treats the solvent
as a high dielectric continuum medium and thus eliminates the
degrees of freedom of the explicit solvent molecules;14–18 the
solute is described as an array of charged atoms embedded in
a low dielectric medium. However, because the dielectric in-
terface between the solute and the solvent is irregular in shape
for most biomolecules, the corresponding PB equations have
to be solved numerically10 by finite difference, finite element
or boundary element discretization method. These numerical
methods often involve computationally intensive matrix in-
version or molecular surface determination, thus, limiting the
application of PB to molecular dynamics (MD) simulations
of biomolecules. Only very few PB MD simulations of small
proteins have been reported.

In 1990, Still et al.19 proposed the generalized Born
(GB) model as an alternative to the numerical solution of
the PB equation. In GB, the electrostatic solvation energy
is given by a sum of pairwise interactions between the so-
lute atoms using the so-called effective Born radii of individ-
ual atoms to take into account the polarization effects of the
bulk solvent. Since the work of Still et al., many studies have
been reported on Born radius expressions,20–27 fast numerical
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algorithms,28–34 and various successful applications.35–43 In
particular, Onufriev et al.44 demonstrated that the GB formula
reproduces the PB results with an accuracy of around 1% as
long as the effective Born radii can be accurately computed.
The effective Born radius of an atom characterizes its degree
of burial inside the solute molecule and can be calculated as
a volume integral over the molecular surface bounded region.
Most existing methods for computing the effective Born ra-
dius are based on the Coulomb-field approximation that may
lead to large errors, especially for the surface atoms. To ad-
dress this difficulty, Grycuk23 proposed an alternative method
based on a R6 volume integral expression, which is derived
from a spherical cavity at the conductor limit.

The R6 GB model has been shown to be more accu-
rate in reproducing the PB results.23, 45, 46 Recently, Tjong and
Zhou46 reported an efficient implementation of the R6 GB,
by using the pairwise descreening approximation of Gallic-
chio and Levy.32 Despite its high accuracy, an O(N 2) com-
putational complexity remains due to the pairwise nature of
both the effective Born radii and the pairwise charge–charge
calculations, where N is the number of particles in the so-
lute. Therefore, for biomolecules with more than ten thousand
atoms, the GB method remains computationally demanding.
It is even less competitive than the explicit solvent models,
for which fast algorithms such as the FFT-based particle-mesh
Ewald method have been widely applied to achieve an overall
O(N log N ) complexity where N is the number of grid points
as charges are interpolated into the grid points to use the FFT.

The GB algorithm consists of two major time-consuming
steps: the calculation of effective Born radii and the summa-
tion of interactions over all the atom pairs, both of which
currently scale as order N 2. In this paper, we develop an
overall O(N log N ) algorithm based on the GBr6 model
that improves scalability in both steps. First, we introduce a
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cutoff scheme for the exclusion of distant atom pairs for their
descreening contributions in the effective Born radii calcula-
tion. In practical simulations of large biological systems47, 48

with GB, very large cutoff radius (50 Å), or even without cut-
off, has to be performed for the pairwise descreening inter-
actions due to the longer ranged nature of the Coulomb-field
approximation than the R6 model, which was implemented
in AMBER.39 In using the R6 GB, we find a cutoff radius of
8 Å provides very accurate approximation (around 0.1%
in relative error in free energy) to direct pairwise
summation.

Second, we develop a treecode algorithm for fast sum-
mation of all the pairwise charge–charge interactions. The hi-
erarchical treecode algorithms49–51 are widely used strategies
to speed up the calculation of pairwise particle interactions in
various applications. The basic idea of the treecode is to di-
vide the particles into nested clusters with an octree structure.
Then the aggregate effect of the particles in a cluster can be
computed by their multipole expansions if an outside particle
is sufficiently far from the cluster. The tree code reduces the
computational complexity from O(N 2) to O(N log N ), which
can be further reduced to O(N ) in the fast multipole method
(FMM) (Refs. 52–55) where the far-field effects are accumu-
lated into a single local expansion. The FMM has been suc-
cessfully applied to numerical solution of the linearized PB
equation based on the boundary element discretization.56, 57

However, the application of the treecode algorithm to the GB
models has not been reported possibly because the interaction
kernel in GB is more complex, and thus it is not so straight-
forward to do multipole expansions with respect to the local
coordinates.

The organization of this paper is as follows. In Sec. II,
we present the theory and numerical algorithm for the tGB
model. In Sec. III, test calculations are performed to demon-
strate the accuracy and efficiency of the algorithm. Conclu-
sions are made in Sec. IV.

II. THEORY AND ALGORITHM

A. Generalized Born formalism

In the GB formulation of Still et al.,19 the electrostatic
contribution of the solvation free energy, �Gelec, is computed
by the sum of the over all pairs of the atoms,

�Gelec = −1

2

(
1

εi
− 1

εo

)

×
N∑

i, j=1

qi q j√
r2

i j + Ri R j exp
( − 4r2

i j/Ri R j
) , (1)

where qi and q j are the atomic charges, εi and εo are the
interior and exterior dielectrics, ri j is the interparticle dis-
tance, N is the total number of atoms in the system, and
Ri is the effective Born radius of atom i that describes how
deeply the charge i is buried in the low-dielectric (biomolec-
ular) medium. According to Eq. (1), the solvation free en-
ergy �Gelec can be decomposed into the summation of the
self-energies of individual atoms and the summation of pair

interaction energies. The effective Born radius Ri of the i th
atom can be defined by

Ri = −1

2

(
1

εi
− 1

εo

)
q2

i

�Gi
elec

, (2)

where �Gi
elec is the self-electrostatic solvation energy of

charge i in the same dielectric environment but in the ab-
sence of other charges. Ideally, the self-energy can be com-
puted directly by numerically solving the Poisson equation,
which leads to the so-called “perfect” effective Born radius.44

This approach is, however, impractical for irregular geome-
tries due to its high computational cost.

Traditionally, the effective Born radius is determined by
using the Coulomb-field approximation (CFA),35 which as-
sumes the electric displacement flux remains in the Coulom-
bic form when the dielectric varies from εi to εo in the
solvation process, leading to a volume integral expression of
kernel 1/r4 over the exterior domain of the solute, �ex,

1

Ri
= 1

4π

∫
�ex

d3r
|r − ri |4 . (3)

The accuracy of the CFA has been assessed by comparing to
reference solutions20, 35, 44, 58, 59 such as the exact solutions of
simplified models and the numerical solutions of PB equa-
tions. It was found that the CFA heavily overestimates the
Born radii for off-center charges. For example, the maxi-
mum relative error may reach 50% for atoms near the surface
of a spherical solute. Empirical corrections have been pro-
posed by combining the CFA with other volume integrals,20, 21

which provided better approximations to the “perfect” Born
radii.

An alternative also with a single volume integral is the R6
model proposed by Grycuk,23 which is the volume integral of
kernel 1/r6,

1

R3
i

= 3

4π

∫
�ex

d3r
|r − ri |6 . (4)

Equation (4) is an unbounded integral on the exterior domain
of the molecule, which is often transformed into the exte-
rior integral of the van der Waals (vdW) sphere subtracting
a bounded one,

1

R3
i

= 1

a3
i

− 3

4π

∫
�in\Ai

d3r
|r − ri |6 , (5)

where Ai is the vdW sphere of atom i and ai is its radius.
The basic idea behind the R6 model is that the self-energy of
every atom in a spherical solute can be exactly represented
by a series with the Kirkwood expansion.60 In the conductor
limit of the solvent dielectric, the solution leads to the integral
in Eq. (4). For solutes of arbitrary geometries, the R6 model
can be solved by discretizing the volume integral, which has
also been shown to yield very good approximation45, 46, 61 to
the PB energies.

B. Pairwise descreening approximation

Most of the existing GB methods used in MD simulations
are based on the analytical pairwise descreening summation,
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in which the union of the atomic vdW spheres comprises the
molecular volume of the solute, and its surface is known as the
vdW surface. The basic idea of the pairwise descreening sum-
mation is to split the integral in Eq. (5) into a weighted sum of
integrals defined on each of vdW spheres, where the weights
are the scaling coefficients used to offset of the overlap be-
tween spheres. In the GBr6,46 the integral (5) is approximated
by

1

R3
i

= 1

a3
i

− 3

4π

∑
j

s ji Hji (ai , a j , ri j ), (6)

with

Hji (ai , a j , ri j ) =
∫

A j \Ai

1

|r − ri |6 d3r, (7)

where A j is the vdW sphere of radius a j of the j th atom,
and the sum runs over all the spheres with interparticle dis-
tance ri j larger than ai , and A j \ Ai denotes the domain of
A j excluding the overlapping portion with Ai . The integral
Hji is available in an analytical form as A j \ Ai is a regu-
lar domain. The scaling factors s ji are used to account for
the possible overlap of atomic spheres, because the sum-
mation of all the spherical integrals overcounts the molecu-
lar region, leading to an overestimate of the effective Born
radius.35 The principle to choose the scaling factors is such
that Eq. (6) approximates the integral (5). To address this
issue, a number of strategies32, 36, 62–65 have been developed
to calculate the scaling factors, depending on different ap-
proximations of the overlap regions. We will focus on the
method of Gallicchio and Levy,32 which has been recently
extended to the R6 expression.46 To precisely define the over-
lap regions, we start from the inclusion–exclusion principle in
combinatorics:

V =
∑

i

Vi −
∑
i< j

Vi j +
∑

i< j<k

Vi jk + · · · , (8)

where Vi = 4π
3 a3

i is the spherical volume of atom i , Vi j and
Vi jk are, respectively, the second- and third-order intersection
volumes. The self-volume Ṽi of atom i is defined by

Ṽi = Vi − 1

2

∑
j

Vi j + 1

3

∑
j<k

Vi jk + · · · , (9)

which obviously satisfies V = ∑
i Ṽi . The ratio between the

self-volume Ṽi and the spherical volume Vi of atom i , si

= Ṽi/Vi , is a measure of the overlapping of atom i with all
other atoms. Note in the calculation of s j , the atom i is not
excluded. So by adding back the contribution of atom i to the
self- volume of atom j , the scaling factor s ji can be written as

s ji ≈ s j + 1

2

Vji

Vj
. (10)

Exact calculations of the intersection volumes are expensive,
and an approximate algorithm was developed by Grant and
Pickup,66 in which the volume density of each atom is de-
scribed by a Gaussian density function

ρi (r) = 4π

3

(μ

π

)3/2
e−ci (r−ri )2

, (11)

where ci = μ/a2
i and μ = 2.227 is a dimensionless parame-

ter which was empirically determined,66 and the integration
of the density function on the full 3D space leads to the vol-
ume of the vdW sphere of atom i . The overlap volume of
atoms j1, · · · , jm can then be approximated by the integral of
the product of their density functions,

∫
d3rρ j1 (r) · · · ρ jm (r),

which can be evaluated analytically, resulting in the follow-
ing expression:

Vj1,···, jm ≈
[

4π

3

(μ

π

)3/2
]m (π

C

) 3
2

× exp

⎛
⎝− 1

C

m∑
p=1

m∑
q=p+1

c jp c jq r2
jp, jq

⎞
⎠ , (12)

with C = ∑m
p=1 c jp .

The integral Hji can be computed exactly due to the sim-
ple integration region. Direct evaluation of Hji and s ji has
an O(N 2) complexity. The FFT-accelerated method30, 31 has
been developed for the Born radii calculations to achieve a
linear arithmetic complexity with respect to the number of
grid points. In this grid-based algorithm, the number of grid
points is usually taken as a large number in order to sample
the dielectric jump on the molecular surface, which makes the
algorithm less efficient for many systems of interest. Actually,
the linear-scaling calculation for Hji and s ji can be obtained
by a simple idea. Note from Eq. (7) that in the R6 formula-
tion, Hji decays rapidly as the distance, ri j , between spheres
Ai and A j increases (the same as the dispersion term in the
Lennard-Jones potential). Therefore, a direct cutoff scheme
can be used without loss of much accuracy, leading to a linear-
scaling algorithm. The cell method67 is employed to search
for neighbors of the atoms within the cutoff distance in O(N )
complexity. The cell method partitions the simulation box into
disjoint cells. For a given atom i , all the atoms in the same
and neighboring cells are considered neighbors of atom i . It
should be noted that, when the method is applied in dynamics
simulations, atoms could go in and out of the cut distance and
the neighboring list of each atom should be updated at certain
time steps. The analytical results of Hji and their derivatives
are given below in four possible situations:

1. If the spheres Ai and A j do not overlap and their in-
terparticle distance ai + a j < ri j < Lc, where Lc is the cutoff
distance, then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hji = a3
j(

r2
i j − a2

j

)3

∂ Hji

∂ri j
= −6ri j a3

j(
r2

i j − a2
j

)4

∂2 Hji

∂r2
i j

= 6a3
j

(
7r2

i j + a2
j

)
(
r2

i j − a2
j

)5

. (13)

2. If the two spheres overlap but neither is completely
inside the other one, i.e., |ai − a j | ≤ ri j < ai + a j , then
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hji = 1

16ri j

[
−6

(
1

a2
i

− 1

(ri j + a j )2

)
+ 8ri j

(
1

a3
i

− 1

(ri j + a j )3

)
− 3(r2

i j − a2
j )

(
1

a4
i

− 1

(ri j + a j )4

)]

∂ Hji

∂ri j
= − 3

16a4
i r2

i j

[
−2a2

i + a2
j + r2

i j + a4
i

(
a2

j + 4a jri j + r2
i j

)
(a j + ri j )4

]

∂2 Hji

∂r2
i j

= 3

8a4
i r3

i j

[
−2a2

i + a2
j + a4

i

(
a3

j + 5a2
j ri j + 10a jr2

i j + 2r3
i j

)
(a j + ri j )5

]
. (14)

3. If sphere Ai is completely included in A j , i.e., ri j

< |ai − a j | and a j ≥ ai ,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Hji = 1

a3
i

− a3
j(

a2
j − r2

i j

)3

∂ Hji

∂ri j
= −6ri j a3

j(
r2

i j − a2
j

)4

∂2 Hji

∂r2
i j

= 6a3
j

(
7r2

i j + a2
j

)
(
r2

i j − a2
j

)5

. (15)

4. If sphere A j is completely included in Ai ,

Hji = ∂ Hji

∂ri j
= ∂2 Hji

∂r2
i j

= 0. (16)

Once Hji and their derivatives are computed, the effec-
tive Born radii are obtained from Eq. (6), and their derivatives
with respect to Cartesian coordinates can be given by using
the chain rule,

∂ Ri

∂xl
= R4

i

3

∑
j �=i

s ji
∂ Hji

∂ri j

∂ri j

∂xl
, (17)

∂2 Ri

∂xk∂xl
= 4

Ri

∂ Ri

∂xk

∂ Ri

∂xl
− R4

i

3

∑
j �=i

s ji

×
(

∂2 Hji

∂r2
i j

∂ri j

∂xk

∂ri j

∂xl
+ ∂ Hji

∂ri j

∂2ri j

∂xk∂xl

)
, (18)

where ri = (x1, x2, x3) and k, l = 1, 2, 3. The scaling coeffi-
cient s ji actually depends on the position of atom i , and thus
it will improve the accuracy if we add the terms of its deriva-
tives. However, mostly because Vji is much smaller than Vj ,
we found Eqs. (17) and (18) are good approximations.

In summary, the calculation of the effective Born radii
and their derivatives is composed of three steps: (i) set the
cutoff radius Lc, and find the neighbors of each atom i by the
cell method; (ii) compute s ji and Hji of each atom i with all
the j atoms in the neighbor list of atom i ; (iii) sum up pairwise
descreening contributions from all the atoms in the neighbor
list.

C. Treecode implementation for the pair-energies

To achieve an overall O(N log N ) calculation, we im-
plement the treecode algorithm to compute the solvation
free energy [Eq. (1)]. In the present treecode algorithm, the
particles are grouped into a hierarchical structure of nested
boxes.51, 68–70 The root box, the smallest box that can en-
compass all the particles, is first uniformly divided into eight
boxes as its children. Each child box is then recursively sub-
divided into eight boxes until the particle number in a box is
less than a specified value N0. By traversing the hierarchical
tree, the total interactions with atom j can be represented by
a sum of particle–cluster interactions for the far-field approx-
imation and direct particle–particle interactions in the near
field. A multipole acceptance criterion (MAC) is used to de-
termine whether a particle–cluster interaction is allowed by

comparing the box size, h A =
√

�x2
1 + �x2

2 + �x2
3/2 where

�x1,�x2, and �x3 are the sizes of the three box dimensions,
and the particle–cluster distance, r j A,

h A

r j A
≤ θ, (19)

for a predefined error-control parameter θ .
Let us consider the particle–cluster interaction of j and

cluster A, where the reaction potential energy is expressed as

q j	 j A =
∑
i∈A

qi	 j (ri ) =
∑
i∈A

βqi q j√
r2

i j + Ri R j e
−r2

i j /4Ri R j

,

(20)

where 	 j (·) is the reaction potential function due to charge j ,
and the coefficient β = −1/2(1/εi − 1/εo). To obtain a sim-
ple multipole expansion, we need to note that the influence
of the exponentials is not significant, as was analyzed in the
spherical model (see Fig. 5 in Grycuk23). So the exponential
term can be re-expressed in terms of the average over all the
particles in the cluster, which is a first-order approximation
O(h A):

q j	 j A ≈
∑
i∈A

βqi q j√
r2

i j + R(ri )R̃ j A

, with R̃ j A = R j e
−r2

j A/4RA R j ,

(21)

where r j A is the distance between r j and the center of the
cluster, rA, RA is the average Born radius of A, and R(r) is
the Born radius function which will be approximated by using
{Ri , i = 1, · · · , N } and their derivatives at atomic locations.
For the approximation with R̃ j A in Eq. (21), we have used the
slow varying property of the exponential. Then the multipole
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FIG. 1. The CPU times as a function of the number of atoms for calculating
the Born radii of the 25 proteins with different cutoff radii Lc = 6, 8, 10 Å,
and without cutoff. The proteins are distinguished by the number of atoms.

expansion for 	 j A is given by

q j	 j A ≈
p∑

||α||=0

1

α!
∂α	 j (rA)

∑
i∈A

qi (ri − rA)α

= β

p∑
||α||=0

Tα Mα
A, (22)

where α = (α1, α2, α3) is the multi-index notation, Tα

= 1
βα!∂

α	 j (rA) and Mα
A = ∑

i∈A qi (ri − rA)α , respectively,
represent the αth Taylor expansion coefficient (divided by β)
and the moment of the cluster A. Because the moment of each
cluster is only required to be computed once when generating
the octree, the operations of evaluating the particle–cluster in-
teractions are independent of the particle number inside the
cluster. Thus, the complexity for computing the energy of
each atom is O(log N ) which is the number of the clusters
interacting with the particle.

To compute Tα , we need to use the Taylor expansion of
function R(r),

R(r) ≈
p∑

||α||=0

∂α RA

α!
(r − rA)α. (23)

We compute the multipole expansion until p = 2, and thus
∂α RA for ||α|| ≤ 2 are required, which are given by taking
the average within the cluster,

∂α RA = 1

NA

∑
i∈A

∂α Ri , (24)

where analytical expressions of ∂α Ri are provided in
Eqs. (17) and (18). The accuracy of the average operations
depends on the particle distribution inside the cluster, which
is again an error of O(h A) theoretically. But the atomic
distribution in biomolecules is usually uniform, so the aver-

aging approximation is close to the second order of accuracy,
which is the same level as the multipole expansion. For those
atoms near the surface, the atomic distribution in a cluster is
not uniform, but their effective Born radii are small, and thus
the average operation is still accurate. It should be also noted
that although the approximation of the effective Born radii
is O(h A), the multipole expansion (22) may be still accurate
as the effective Born radii are more slowly varying than the
distance ri j in the denominator of the potential function. By
using the Taylor expansion of R(r), the multipole expansion
coefficients can be expressed as

T0 = 1(
r2

j A + R̃ j A RA

)1/2 , (25)

Tek = −1

2
[2(rA − r j ) · ek + R̃ j A∂ek RA](T0)3, (26)

T2ek = 3

2

(Tek )2

T0
− 2 + R̃ j A∂2ek RA

4
(T0)3, (27)

Tek+el = 3Tek Tel

T0
− R̃ j A∂ek+el RA

2
(T0)3, k �= l, (28)

where ek is the unit vector of the xk axis. Here the derivatives
of the effective Born radii that are required by the multipole
expansion of the reaction potential are calculated analytically,
leading to more accurate results than those in our previous
work70 where the derivatives were reconstructed from the dif-
ference of the effective Born radii at nonuniform locations.

The extension of the treecode implementation to the
force calculation on individual atoms is straightforward. The
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FIG. 2. The CPU times as the number of atoms for the cutoff Born radii
calculation with Lc = 8 Å (red stars), and the effective Born radii + the pair-
energies calculation with the P1 (blue Deltas) and P2 (green squares) treecode
algorithms and the direct summation (black circles). The embedded frame is
an enlarged picture of the dashed portion. A total of 25 proteins are calculated
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TABLE I. List of 25 proteins, their properties (atom number N and charge Q), and PB and GB (without cutoff and with cutoff of radius 8 Å) electrostatic
solvation energies (kcal/mol).

PDB N Q �G P B �GG B �GG B (Lc, 8 Å) PDB N Q �G P B �GG B �GG B (Lc, 8Å)

1NP4 2815 −1 −3651.218 −3663.180 −3667.844 3HL1 8515 −32 −17167.37 −17075.55 −17091.37
1FT7 4288 −17 −7327.665 −7366.804 −7375.693 3K4K 8911 −18 −11351.29 −11333.71 −11350.71
2HXK 4822 −15 −9136.084 −9106.049 −9114.244 2Q4H 9685 −12 −11289.57 −11238.23 −11256.71
3K7X 5501 −18 −8509.207 −8495.940 −8506.645 1TXG 10466 −20 −15188.16 −15306.10 −15325.28
2WZX 5579 −1 −6408.980 −6453.201 −6463.427 3K3W 11719 −12 −14979.11 −14767.00 −14791.93
1Q5U 6082 −4 −8188.450 −8140.053 −8151.062 3LHV 13188 −36 −20349.90 −20451.27 −20476.68
2II6 6409 −9 −8045.526 −8071.206 −8082.554 2WJN 18256 −1 −16409.28 −16544.59 −16578.68
3LHU 6638 −18 −9189.670 −9256.034 −9268.265 3AEU 25598 −25 −29737.34 −29839.26 −29890.13
3MEM 6793 −13 −9136.576 −9124.018 −9135.584 3KCV 38842 3 −35654.68 −35969.98 −36039.66
1V9K 7116 18 −11580.32 −11602.76 −11615.40 3HHQ 46129 21 −61990.30 −61866.17 −61956.42
3HLV 8122 −12 −10587.69 −10543.96 −10558.67 2VAT 64119 −56 −77379.36 −75517.52 −75651.76
1HL6 8291 −21 −15020.45 −15008.23 −15023.24 1VPX 65456 −175 −174231.8 −172933.3 −173063.6
3N8H 8428 10 −10147.95 −10252.84 −10267.04

forces are defined by the negative gradient of the electro-
static solvation energy, Fi = −∇ri (�Gelec), for i = 1, · · · , N .
The necessary multipole expansion coefficients for individual
force components are obtained by taking the derivatives of
Eqs. (25)–(28), which are cumbersome and not presented.

III. NUMERICAL RESULTS

Numerical tests of our tGB method are performed on
a set of 25 proteins (the PDB access codes: 1NP4, 1FT7,
2HXK,3K7X, 2WZX, 1Q5U, 2II6, 3LHU, 3MEM, 1V9K,
3HLV, 1HL6, 3N8H, 3HL1, 3K4K, 2Q4H, 1TXG, 3K3W,
3LHV, 2WJN, 3AEU, 3KCV, 3HHQ, 2VAT, 1VPX for small
to large sizes) collected from the RCSB Protein Data Bank.
These protein structures are randomly chosen with the crite-
rion that their atom numbers cover a wide range in order to
assess the scalability of the treecode algorithm. These pro-
teins contain 2815 to 65456 atoms and have the total charges
ranging from −175 to +21e, as summarized in Table I. We
use the PDB2PQR program71 to add missing hydrogen atoms
and assign AMBER atomic charges. The van der Waals radii
of the atoms are assigned to the Bondi’s parameters:72 C, 1.7
Å; H, 1.2 Å; O, 1.5 Å; N, 1.55 Å and S, 1.8 Å.

The PB benchmark results were carried out with the
APBS package73 that includes a multigrid solver74 to accel-
erate the computation of linear systems. To be consistent with
the GB calculations, the vdW surface is specified to define
the solute boundary by using the “srad 0” option in the APBS
input file, where the Bondi’s parameters are also used for the
atomic radii. The spacing size of grids is 0.5 Å and the dimen-
sions are 193 × 193 × 193 for the 13 proteins from 1NP4 to
3N8H, 289 × 289 × 289 for the 10 proteins from 3HL1 to
3HHQ. The last two proteins 2VAT and 1VPX are calculated
with 481 × 481 × 481 grids.

As the main purpose of this paper is to develop an
efficient algorithm to calculate the effective Born radii
and the electrostatic solvation energy for the GB method,
we fixed dielectric constants εi = 1, εo = 78.5, and the
temperature at 300 K in all the calculations. The obtained ef-
fective Born radius is corrected by adding a constant value to

each of inverse radius, R−1
corr = R−1 + 0.028 Å−1, which was

shown to greatly improve the accuracy.45 For the dielectric-
dependent scaling parameters used in pair charge–charge in-
teractions with various dielectrics, the reader could refer to
Refs. 24, 46, and 75–77. In the treecode algorithm, we set the
MAC parameter θ = 0.4 and the maximum number of parti-
cles in a leaf box, N0 = 20, unless specified otherwise. All
the calculations are performed on a Linux machine with 2.67
GHz CPUs and 48 G memory, and installed with the GNU

FORTRAN 95 compiler.

A. The effective Born radii calculation

The cutoff scheme in GB simulation can be used to con-
trol the truncation of the charge–charge interactions and the
descreening contributions in the effective Born radii calcula-
tion. The charge–charge interactions decay slowly with the
distance, so a simple cutoff approach will be insufficient. For
more efficient charge–charge interactions, we have developed
a treecode algorithm that will be discussed further below.
Here we focus on assessing the accuracy of a cutoff scheme
for computing the descreening contributions in the R6 form.

TABLE II. Statistics for relative errors (standard deviation, average un-
signed error, average signed error, and maximum error) between Poisson
and GB energies,a (�G P B − �GG B )/�G P B , and between the cutoff and
non-cutoff GB energies,b of the set of 25 proteins. The GB energies are
computed with three cutoff radii and without cutoff.

Lc = 6 Å Lc = 8 Å Lc = 10 Å
(%) (%) (%) no cutoff

Standard deviationa (%) 0.7963 0.7837 0.7812 0.7801
Signed errora (%) −0.3747 −0.1186 −0.0391 0.0189
Unsigned errora (%) 0.6924 0.5952 0.5919 0.5907
Maximum errora (%) 1.9149 2.2326 2.3312 2.4061
Standard deviationb (%) 0.0877 0.0318 0.0140 –
Signed errrorb (%) −0.3936 −0.1375 −0.0580 –
Unsigned errorb (%) 0.3936 0.1375 0.0580 –
Maximum errorb (%) 0.5906 0.2060 0.0872 –

aErrors between Poisson and GB energies.
bErrors between cutoff and non-cutoff GB energies.
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TABLE III. Electrostatic GB solvation energies (kcal/mol) with the P1
and P2 treecodes for 25 proteins. The effective Born radii are calculated
with cutoff radius 8 Å. The results are approximations to those in Table I.
The parameters for the treecodes are θ = 0.4 and N0 = 20.

PDB P1 P2 PDB P1 P2

1NP4 −3659.552 − 3666.846 3HL1 − 17065.39 −17088.75
1FT7 − 7363.102 − 7375.358 3K4K − 11352.21 −11354.68
2HXK − 9142.064 − 9120.951 2Q4H − 11284.30 −11260.12
3K7X − 8509.107 − 8514.632 1TXG − 15333.17 −15323.01
2WZX − 6449.590 − 6469.903 3K3W − 14834.73 −14789.34
1Q5U − 8118.744 − 8141.391 3LHV − 20481.17 −20481.22
2II6 − 8095.792 − 8078.902 2WJN − 16583.05 −16586.86
3LHU − 9279.414 − 9271.568 3AEU − 29935.92 −29865.99
3MEM − 9138.576 − 9135.540 3KCV − 36121.63 −36024.44
1V9K − 11632.82 − 11615.93 3HHQ − 61961.89 −61938.01
3HLV − 10566.47 − 10560.50 2VAT − 75721.71 −75668.36
1HL6 − 15012.09 − 15023.19 1VPX − 173114.6 −173079.6
3N8H − 10271.22 − 10262.71

The cutoff scheme has been previously used in AMBER,39, 78

CHARMM79 and GROMACS.80 To achieve a better bal-
ance between the stable simulation and the computational
efficiency, various smoothing schemes have also been imple-
mented in many MD simulation packages. However, the de-
screening contribution in the R6 form should converge within
a short distance due to its higher order decay. We study the
effect of the cutoff parameter on the accuracy of the effec-
tive Born radii and the electrostatic energy calculations by
comparing the cutoff results with those of PB and GBr6. The
GB electrostatic solvation energies are computed with GBr6
that has been extensively tested and shown to be very accu-
rate in reproducing the PB energies. In Table I, the PB, GB,
and GB with cutoff solvation energies of the 25 proteins are
listed. Table II summarizes the statistics of the relative solva-
tion energy errors in the entire protein dataset, including the
standard deviation, average and maximum errors, with differ-
ent cutoff values. Very good agreement between the GB and
Poisson energies can be seen. For example, when the cutoff
radius Lc = 8 Å, the signed and unsigned average errors are
only −0.119% and 0.595% (Table II). The maximum error is
2.233% for the protein 2VAT.

The convergence of the solvation energies in comparison
with the original GBr6 model without cutoff is evident with
the increase of Lc. As shown in Table II, the maximum rela-
tive errors for Lc = 6, 8, and 10 Å are 0.591%, 0.206%, and

TABLE IV. Statistics for relative errors between treecode and direct-
sum GB energies, (�GG B,direct − �GG B,tree)/�GG B,direct, and between
treecode GB and Poisson energies, (�G P B − �GG B,tree)/�G P B , of the set
of 25 proteins. The effective Born radii in the GB energies are computed with
the cutoff radius Lc = 8 Å.

P1, GB P2, GB P1, PB P2, PB

Standard deviation (%) 0.1785 0.0574 0.7854 0.7845
Signed error (%) −0.1712 −0.1397 −0.1521 −0.1208
Unsigned error (%) 0.2133 0.1397 0.5956 0.5969
Maximum error (%) 0.4586 0.2588 2.1422 2.2112

0.087%, respectively. Overall, the cutoff scheme provides a
reasonable approximation to the noncutoff calculation, even
when a small cutoff radius, 6 Å, is used. These results are not
very surprising as the convergence rate of the external inte-
gral of 1/r6 kernel is 1/L3

c that decay more rapidly with the
increase of the cutoff radius. Figure 1 shows the CPU tim-
ings for computing the effective Born radii of the 25 proteins
with different cutoff distances. Overall, the cutoff approach
is much more efficient than the noncutoff one, showing an al-
most linear increase with the increase of the number of atoms.
In comparison to the noncutoff approach, the use of a 8 Å cut-
off speeds up the calculation by a factor of 3.8 for a protein of
around 5k atoms, and a factor of 7.7 for a protein of around
10k atoms.
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FIG. 3. Error performance in solvation energy and CPU times of the P2
treecode results for the five proteins (3K7X, 3LHU, 3HLV, 3K3W, 2WJN)
for varying N0.
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TABLE V. Error performance (average and maximum errors) for the force calculation with the P2 treecode for 25 proteins. The MAC parameters θ = 0.4 and
θ = 0.3.

Absolute error Relative error Absolute error Relative error
(kcal/mol/Å) (%) (kcal/mol/Å) (%)

PDB θ = 0.4 θ = 0.3 θ = 0.4 θ = 0.3 PDB θ = 0.4 θ = 0.3 θ = 0.4 θ = 0.3

1NP4 3.627e-3 8.496e-4 3.441 0.806 3HL1 1.820 e-3 5.638e-4 2.082 0.645
1FT7 4.739e-3 1.254e-3 4.037 1.068 3K4K 1.862 e-3 6.071e-4 3.443 1.122
2HXK 2.403e-3 7.635e-4 2.260 0.718 2Q4H 1.838 e-3 6.060e-4 3.427 1.129
3K7X 3.553e-3 1.082e-3 4.767 1.452 1TXG 2.353 e-3 7.546e-4 3.581 1.148
2WZX 3.178e-3 1.046e-3 4.170 1.373 3K3W 1.709 e-3 5.444e-4 3.170 1.009
1Q5U 2.670e-3 8.676e-4 3.351 1.088 3LHV 1.539 e-3 5.051e-4 3.267 1.072
2II6 2.306e-3 7.249e-4 3.362 1.056 2WJN 1.336 e-3 4.358e-4 3.697 1.206
3LHU 2.941e-3 9.529e-4 4.555 1.476 3AEU 1.768 e-3 5.399e-4 5.141 1.569
3MEM 2.331e-3 7.633e-4 3.578 1.171 3KCV 1.276 e-3 4.187e-4 4.407 1.445
1V9K 2.330e-3 7.430e-4 2.850 0.909 3HHQ 1.081 e-3 3.697e-4 3.574 1.222
3HLV 2.411e-3 8.348e-4 3.604 1.248 2VAT 8.272 e-4 3.473e-4 2.402 1.734
1HL6 1.908e-3 6.232e-4 2.505 0.818 1VPX 1.336 e-3 2.789e-4 3.697 0.809
3N8H 2.581e-3 8.058e-4 4.231 1.321

B. Performance of the treecode algorithm

To assess the performance of the treecode algorithm, we
carry out calculations for all the 25 proteins with the cut-
off scheme (Lc = 8 Å) for the effective Born radii calcula-
tion. The solvation energies of the 25 proteins with the P1
(the first order multipole expansion) and P2 (the second order
expansion) treecode algorithms are listed in Table III, while
the statistics for the relative errors by comparing with the
direct summation GB and the Poisson energies are given in
Table IV. The average unsigned error of the P1 tree code for
the 25 proteins is 0.2133%, and that of the P2 is 0.1397%,
demonstrating that the treecode algorithm provides a good
approximation to the pairwise interactions. It is also shown
that the treecode-based GB energies approximate the Poisson
energies with an average relative error less than 0.6%.

The CPU times for computing the effective Born radii,
the P1 and P2 treecode energies, along with the direct summa-
tion, are shown in Fig. 2. The CPU times for both the effective
Born radii calculation and the treecode algorithm increase al-
most linearly with the particle number. The CPU times for
both the P1 and P2 treecodes are already less than that of
the direct summation for the smallest protein (1NP4, 2815
atoms), suggesting the prefactor for the treecode algorithm
is reasonably small. Accounting the CPU times for the Born
radii calculation with the cutoff scheme (Lc = 8 Å), when the
particle numbers are 10k, 20k, and 40k, the total speed-ups of
P1 are 3.10, 5.96, and 10.74, and those of P2 are 2.79, 5.26,
and 9.41, respectively.

The parameter N0 is defined as the maximum number
of particles in the leaf box. To study how the parameter N0

influences the performance of the treecode algorithm, we
perform the calculation with the P2 multipole expansion on
five example proteins. The relative energy errors in com-
parison with those computed with the direct summation re-
main small (0.1%) for N0 ∈ [15, 25], as shown in Fig. 3. But
the errors increase dramatically if N0 is too small, which
is reasonable because the averaging operation in Eq. (24) is
statistically less accurate if the particle number in a box is too

small. Furthermore, the CPU time curves remain roughly flat
for N0 ∈ [15, 25], indicating both the computational accuracy
and cost are insensitive to N0 when N0 ∈ [15, 25]. But dra-
matic changes in the CPU time such as proteins 3K3W and
2WJN are observed if N0 takes a value outside this interval.

C. Accuracy of the force calculation

We also implement the code for the force calculation on
individual atoms. To test it, the effective Born radii are com-
puted with a cutoff radius of Lc = 8 Å. We use the P2 expan-
sion, N0 = 20, and two MAC parameters θ = 0.4 and 0.3.
Compared with the energy calculation, the force calculation
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FIG. 5. The average relative errors of the force calculations with the change
of atomic radii for 3LHU.

decreases one order of the accuracy in the multipole expan-
sion because we need to take the first order derivatives of
Eq. (22), and thus the relative order will be increased in com-
parison to the energy calculation. To compensate it, the MAC
parameter θ should be reduced. We found θ = 0.3 provides a
reasonable approximation.

In order to test the performance of the treecode algorithm,
the average absolute and relative errors are calculated, where
the absolute error is formulated by

E =
√

E2
x + E2

y + E2
z , (29)

with Ex , Ey, and Ez being the x, y, and z components of the
root mean square of errors of the forces, and the reference
forces are computed from direct summation of pairwise inter-
actions. The relative error is defined by the ratio of the mean
absolute error and the mean force by the direct summation.

The resulting error and time performance are shown in
Table V. It is obvious that the force calculation is less accu-
rate than the solvation energy calculation, mainly because of
the loss of one order of accuracy for the force in the multipole
expansion. Moreover, the averaging operations may have a
more significant influence on the accuracy of force than that
of energy. The average relative errors are about 3.54% when
the MAC parameter takes θ = 0.4. The errors are decreased
if θ is reduced to 0.3, with the average relative errors less than
1.15% and the maximum error less than 1.73%. The maxi-
mum absolute error for θ = 0.3 is 0.001254 kcal/mol.Å. The
speed-up for the force calculation is still attractive, as shown
in Fig. 4. For instance, when θ = 0.4, the overall speedups in-
cluding the effective Born radii calculation for 10k, 20k, and
40k particles are 3.25, 6.27, and 10.96, respectively, while, for
θ = 0.3, the corresponding factors are 2.38, 4.28, and 6.94,
respectively.

Finally, it is important to assess the error performance
of the treecode for different sets of atomic radii because we
suspect that the accuracy of the averaging operation used in

Eq. (24) would be affected by the relative Born radius sizes
among atoms in a cluster. Since the local environments are
similar for neighboring atoms, the initial atomic radii become
a major source of differences in the calculated effective Born
radii. To test it, the vdW radii are varied from the Bondi’s pa-
rameters by ±0.3 Å for the four elements H, C, O, and N. The
force calculations are performed using θ = 0.3, N0 = 20, and
the P2 treecode on protein 3LHU. Figure 5 shows the aver-
age relative root mean square errors of the force with varying
atomic radii. The biggest change of the four curves is O whose
errors vary from 1.41% to 1.53%. This demonstrates that the
errors of the treecode are not sensitive to the vdW radii. Sim-
ilar results are obtained for the solvation energy calculations,
which are not shown.

IV. CONCLUSIONS

In this study, we have developed a treecode-based GB
(tGB) method for the electrostatic solvation energy and force
calculations with an O(N log N ) complexity, where N is the
number of particles in the solute. The method is composed
of a cutoff scheme for the effective Born radii calculation
and a hierarchical treecode algorithm for the pairwise charge–
charge interaction calculations. Given these two accelera-
tions, the overall computational cost is reduced from O(N 2)
to O(N log N ), which will facilitate GB MD simulations of
larger biomolecules at longer time scales.

Test examples for a set of 25 proteins demonstrate that
the cutoff scheme for the effective Born radii calculation is
reasonably accurate, with average unsigned relative errors of
the solvation energies less than 0.6% in comparison to the
Poisson energies, for a relatively small cutoff radius Lc = 8 Å
(Table II). The treecode algorithm with both the P1 and P2
multipole expansions maintains a comparable level of accu-
racy (0.6%) for the electrostatic solvation energy calculation
(Table IV). The calculations also demonstrate that the accu-
racy of the tGB method does not decrease with the increase
of the overall charges or the number of atoms in the sys-
tem, and thus will work for a wide range of biomolecules.
The extension to the force calculation shows that the treecode
algorithm is less accurate than the corresponding energy
calculation, it still provides reasonably accurate force results
with the maximum absolute error of 0.00125 kcal/mol/Å with
the P2 tree code and θ = 0.3. In MD simulations, the force
computed as the gradient of a discontinuous potential would
result in the energy drift and instability of the simulation, so
high numerical accuracy is often required. In our tGB algo-
rithm, two approximations could lead to the discontinuity in
the potentials: one is the cutoff scheme, and the other is the
treecode algorithm with finite multipole expansion terms. For
the cutoff scheme, as we have shown the 1/r6 kernel allows
the descreening contribution to be truncated at a much shorter
distance due to its faster decay with distance. In addition, a
smoothing function can be combined with the cutoff scheme,
which will lead to stable simulations with smaller cutoff val-
ues. For the treecode algorithm, higher order multipole ex-
pansion may be required to obtain stable trajectory, which is
under investigation by the authors to reach a balance between
the computational accuracy and efficiency.
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