OSCILLATORY DATA ANALYSIS AND
FAST ALGORITHMS FOR INTEGRAL OPERATORS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF MATHEMATICS
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Haizhao Yang
July 2015



(© Copyright by Haizhao Yang 2015
All Rights Reserved
Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-Noncommercial 3.0
United States License.
http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/fq061ny3299

ii



I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Lexing Ying) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Emmanuel Candes)

I certify that I have read this dissertation and that, in my opinion, it is fully adequate

in scope and quality as a dissertation for the degree of Doctor of Philosophy.

(Lenya Ryzhik)

Approved for the University Committee on Graduate Studies

iii



Abstract

This dissertation consists of two independent parts: oscillatory data analysis (Part and fast
algorithms for integral operators in computational harmonic analysis (Part .

The first part concentrates on developing theory and efficient tools in applied and computational
harmonic analysis for oscillatory data analysis. In modern data science, oscillatory data analysis
aims at identifying and extracting principle wave-like components, which might be nonlinear and
non-stationary, underlying a complex physical phenomenon. Estimating instantaneous properties
of one-dimensional components or local properties of multi-dimensional components has been an
important topic in various science and engineering problems in resent three decades. This thesis
introduces several novel synchrosqueezed transforms (SSTs) with rigorous mathematical, statistical
analysis, and efficient implementation to tackle challenging problems in oscillatory data analysis.
Several real applications show that these transforms provide an elegant tool for oscillatory data
analysis. In many applications, the SST-based algorithms are significantly faster than the existing
state-of-art algorithms and obtain better results.

The second part of this thesis proposes several fast algorithms for the numerical implementation
of several integral operators in harmonic analysis including Fourier integral operators (including
pseudo differential operators, the generalized Radon transform, the nonuniform Fourier transform,
etc.) and special function transforms (including the Fourier-Bessel transform, the spherical harmonic
transform, etc.). These are useful mathematical tools in a wide range of science and engineering
problems, e.g., imaging science, weather and climate modeling, electromagnetics, quantum chemistry,
and phenomena modeled by wave equations. Via hierarchical domain decomposition, randomized
low-rank approximations, interpolative low-rank approximations, the fast Fourier transform, and
the butterfly algorithm, I propose several novel fast algorithms for applying or recovering these

operators.
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Part 1

Oscillatory Data Analysis



Chapter 1

Introduction

The first part of this thesis is concerned with oscillatory data analysis arising in a wide range of
science and engineering problems. Let f(z) : R? — R be a function of d variables. We consider a
class of oscillatory functions that are superpositions of several nonlinear and non-stationary wave-like

components contaminated with addictive noise, i.e.,

f@) = ap(a)e?™Neos@) L T(3) + e(x),

Nt

where for each k oy () is a smooth amplitude function, 27 N ¢y () is a phase function with a smooth
instantaneous frequency Ny} (x) (or a smooth local wave vector NiVoy(z) for d > 1), T(z) is a
smooth trend function, and e(x) is a noisy perturbation term. Our goal is to identify aje2mior(@)
ar(x), ¢p(z) and T'(z) from the superposition above. In more complicated applications, the expo-
nential waveform e27*%+(*) is replaced with an unknown waveform s;(27¢y(z)) to be estimated.

We propose and analyze a series of synchrosqueezed transforms (SSTs) to tackle this problem.
The SST is a special time-frequency reassignment method that sharpens a linear time-frequency
representation with a synchrosqueezing procedure based upon the local oscillation of the original
time-frequency representation. This procedure enjoys a simple and efficient reconstruction formula,
which is especially important to high dimensional applications. Synchrosqueezed transforms are local
and non-parametric transforms that adapt to different data characteristics by choosing suitable linear
time-frequency transforms before synchrosqueezing. Finally, synchrosqueezed transforms are visually
informative with good readability - a good concentration of spectral energy and no misleading
interference. They allow human interaction in spectral analysis for better understanding of the
data.

We will apply this new technique to address various real problems, e.g., clinical data [T71] 173,
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seismic data [86, 153 [184], climate data [I78], atomic materials science [126] [I80] and art inves-
tigation in canvas [I79]. In many cases, our algorithms are significantly faster than the existing
state-of-art algorithms and obtain better results. To simplify the introduction, we will motivate the

present work with dimension d = 1 in this chapter.

1.1 Time-Frequency Geometry

We can enjoy the beauty of music by perceiving its time-varying frequencies. But in general it is im-
possible to exactly "hear” the instantaneous frequency at a given time by the Heisenberg uncertainty
principle [75]. The concept of instantaneous frequency is even not well defined in mathematics. In

a simple cosine modulation
f(z) =acos(2r(Nz + 0)) := acos(2n N¢(z)),
it has a frequency equal to ¢'(x) = N. In a more general situation when
f(@) = a(z) cos(2r N ¢(x)), (1.1)

a naive attempt is to define the time-varying instantaneous frequency of f(x) to be the derivative of
the phase function N¢(x). However, this definition is not unique because there are many possible
choices of a(x) and ¢(x) to satisfy . One possible solution is to consider the analytic signal for
reR

1(@) = ala)em Vo) (1.2)

corresponding to when «a(z) is smooth enough, i.e., |&/(z)| < N¢'(z). The analytic signal can
be computed by the Hilbert transform. For this analytic signal, the definitions of the instantaneous
frequency N¢'(x) and the instantaneous amplitude «a(x) are unique. Nevertheless, when a signal f(x)
contains two analytic components with two phase functions Ny ¢;(z) and Noga(x), the instantaneous
frequencies N1¢|(z) and Nagh(z) are well-defined only if [Ny} (z) — Nogh(x)| > S(N1¢i(z) +
Nogh(z)) for some pre-assumed constant § > 0. Otherwise, f(z) can be considered as only one
wave-like component with a slightly oscillatory instantaneous frequency determined by N; ¢} (x) and
Nogh () if they are too close [128] [172]. This leads to the following definition.

Definition 1.1.1. (Instantaneous frequencies in a superposition) Suppose f(x) is a superposition

of K wave-like components in the following form
K .
f(l‘) _ Zak(x)e%meqbk(z)
k=1

with Ny, (2) > | (2)], ar(2) > 0, and Nyp1¢44 () = Nedj () 2 0(Nip10, 4 (2) + Nipg)(2)) for
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some 6 > 0 and all k. Then the instantaneous frequencies of f(x) are Ny¢j (x) for 1 <k < K.

In signal community, analyzing time-frequency geometry of instantaneous frequencies has been
a traditional research line dating back to the Gabor transform (the windowed Fourier transform).
Recent challenges in various science and engineering problems have drawn people’s new attention.
There have been various powerful tools trying to bypass the curse of Heisenberg uncertainty princi-
ple or to reduce its effect. Most of them fall into four categories: linear time-frequency transforms,
quadratic time-frequency transforms, time-frequency reassignment methods, and time-frequency op-
timization with pursuits.

Linear methods, e.g., taking the energy spectrogram of a Gabor transform or a wavelet transform,
are typically efficient but provide poor resolution to visualize time-frequency geometry due to the
Heisenberg uncertainty principle. Ridge extraction methods were proposed by Delprat, Escudie,
Guillenmain, Kronland-Martinet, Tchamitchianm, and Torresani [48, [81] based on the observation
that ridges of the spectrogram reveal instantaneous frequencies if the window size of these transforms
in the time domain is sufficiently small. More recently, the idea of ridge extraction was revisited
by Aoi, Lepage, Lim, Eden and Gardner in [5] using the chirplet transform, by Chui and Mhaskar
in [35] using a special windowed Fourier transform. Since ridges are not well-defined in a noisy
time-frequency plane, many efforts have been made for robust ridge extraction. Statistical analysis
of these methods are still under active research.

Quadratic methods mainly belong to the Cohen’s class of bilinear time-frequency energy distri-
butions [38], among which the Wigner-Ville distribution [167, [I68] and its variants [39, [87] are most
commonly used. For an individual wave-like component, its instantaneous frequency is exactly the
“average” frequency computed relative to the Wigner-Ville distribution. However, this nice property
is not true in a superposition of several components due to the interference between different com-
ponents. Although this interference could be attenuated with a smoothing process, the smoothed
distribution gets blurry and loses its accuracy as a trade-off. In spite of many nice properties in the
theory of quadratic methods, their applications to real problems are limited by the computational
efficiency and the lack of straightforward reconstruction.

Time-frequency reassignment methods [0} [7, [8, 27, 28], [44] [74] are post-processing techniques to
improve the readability of the original linear or quadratic time-frequency transform by modifying
the original spectral energy distribution. After reassignment, the spectral energy will concentrate
around instantaneous frequencies without artificial interference. The reassignment idea was orig-
inally proposed by Kodera, Gendrin, and Villedary in [I12] 113] and was revisited by Auger and
Flandrin in [7] for wider applications, both conceptually and computationally. In parallel with [7],
other techniques in the framework of reassigning time-frequency representations were developed in-
dependently, e.g., the differential reassignment [28] by Chassande-Mottin, Daubechies, Auger, and
Flandrin; the synchrosqueezed transform [44] by Daubechies and Maes. An introductory review

with recent development of reassignment methods is presented in [§] by Auger et al.
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Time-frequency optimization with pursuits [20, BT} [93] 129] is a category of various optimization
models based on sparsity in a redundant time-frequency dictionary, smoothness of object functions,
etc. The matching pursuit introduced in [129] by Mallat and Zhang computes a sparse time-frequency
representation from a redundant dictionary by iteratively selecting the most prominent atom in the
dictionary. This process prevents frequency smearing and leakage in the time-frequency plane. By
embedding the energy of each atom in the time-frequency plane, one can create a localized spectral
energy distribution. More recently, a nonlinear matching pursuit in [93] by Hou and Shi adaptively
learns a good dictionary instead of assuming a fixed redundant dictionary a priori according to the
smoothness of object functions. The basis pursuit proposed in [31] by Chen, Donoho, and Saunders
computes a nearly optimal sparse time-frequency representation via ¢; optimization and creates a
localized time-frequency representation similar to the matching pursuit. The basis pursuit method is
a convex optimization that is computationally more efficient. In the scope of time-frequency detec-
tion with heavy noise, Candes, Charlton, and Helgason proposed a robust and efficient path pursuit
method for detecting a single wave-like component and estimating its instantaneous frequency in

[20] . A multi-component detection technique is still under development.

1.2 Mode Decomposition
For a superposition of several nonlinear and non-stationary wave-like components contaminated with
addictive noise, i.e.,

[@) = 37 ar(@) TN L T(2) + efa), (13)

NE

k=1

the mode decomposition problem aims at extracting the smooth trend function T'(z) and each oscilla-
tory component ay,(z)e2™ N () in addition to analyzing the time-frequency geometry {Npo}.(z)}.
An ideal analysis tool should give a time-frequency representation with good readability (spectral
energy concentrating around instantaneous frequencies without artificial interference) and has an
efficient numerical implementation to transform, separate and reconstruct signals. An important
example is the wave field or seismic event separation problem in seismic data analysis, i.e., a seis-
mic record is decomposed into elementary wave-like components corresponding to individual wave
arrivals [72] [73] [116], 143, 163, [184]. In these problems, an amplitude function ay(z) may have
a localized support enlarging the frequency band of the corresponding component ozk(x)e%w’“(r)
[116] 184]. The mode decomposition problem becomes much more complicated in such cases and
many traditional time-frequency analysis tools come short of expectation.

One famous method is the empirical mode decomposition (EMD) method proposed and refined by
Huang et al. in [97,[98]. The 1D EMD method decomposes a signal via a sifting process and applies
the Hilbert transform to estimate the instantaneous frequency of each separated component. Starting

from the most oscillatory component, the sifting process applies spline interpolation with local
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extrema of the signal to identify a qualified oscillatory component and subtracts it from the signal.
Although many efforts have been made [47, 54, [70, [71], the mathematical analysis of this method is
still under development. In spite of many successful applications of the EMD method, its application
to noisy data is limited by the lack of robustness due to the dependence of local extrema. To improve
the robustness, recent variants of the EMD method were proposed, e.g., [I74] sifts an ensemble of
white noise-added signal for many times; [94] uses a proper smooth function to approximate the
noisy signal by least-square-spline-fit. In the spirit of 1D EMD, the mode decomposition problem
in higher-dimensional cases has also been extensively studied recently: either based on surface
interpolation [123], [124] [T35] [136] or based on the decomposition of 1D data slices [96] [175]. However,
the application of 2D EMD methods is limited due to the lack of ability to distinguish two wave-like
components with similar wave numbers but different wave vectors as illustrated in detail in [I82].

For the purpose of designing an alternative tool for the mode decomposition problem with
more rigorous analysis and mathematical understanding, Daubechies, Lu and Wu revisited the
synchrosqueezed wavelet transform (SSWT) in [44] and proved that the SSWT can accurately
extract wave-like components and estimate their instantaneous frequencies from their superposi-
tion in [43]. This was the beginning of a systematic study of various synchrosqueezed transforms
based on 1D windowed Fourier transforms [156], 1D and 2D wave packet transforms [I78] [182], 1D
vanishing-moment and minimum-supported spline-wavelet transform [34], 2D generalized curvelet
transform [I84], 2D monogenic wavelet transform [37], both mathematically and computationally.
Although the synchrosqueezing operator is not Lipschitz continuous in mathematics, its robust-
ness against non-stationary Gaussian random noise (colored) with bounded Fourier spectrum is
reasonable [32, [155] [183] and can be significantly improved by designing a highly redundant time-
frequency dictionary [I83]. The synchrosqueezing technique was further improved for better accuracy
in [8), 115] [137] considering time-frequency group delay, phase warping, and higher order differential
reassignment, respectively.

Another substantial research branch for mode decomposition problems is based on optimization.
Following the methodology of sifting modes from the most oscillatory one, Hou and Shi proposed
several 1D optimization models using total variations and matching pursuit in [92], using signal
sparsity in a data-driven time-frequency dictionary and matching pursuit in [93]. In the spirit of
recovering all components at one time, Dragomiretskiy and Zosso proposed 1D and 2D variational
mode decomposition methods based on the smoothness of each component after frequency shifting
in [58 £9); Li and Demanet studied a nonlinear least-squares optimization model based on the
smoothness of amplitude and frequency functions in [116].

Other than those methods in the above research lines, many other creative methods for mode
decompositions have been proposed, [35, [36, [77, [78] to name a few.

In spite of considerable successes of modeling signals in the form of , a superposition of

a few wave-like components is too limited to describe general oscillatory patterns. In some cases,
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a decomposition in the form of (1.3)) would lose important physical information as discussed in

[1T70, [T76]. To be more general, it is natural to consider a mode decomposition of the form

K
f(z) = Zak(x)sk(%rNk(bk(m)) + T(z) + e(x), (1.4)
k=1

where {s;(z)}1<k<x are 2m-periodic wave shape functions. Considering the Fourier series of si(z),
the form of (|1.4) essentially becomes the form of ([1.3]) with a superposition of infinite terms, i.e.,

K fe'e)
F@) =YY" sin)ag(a)e® Nk @) L T(z) 4 e(x). (1.5)

k=1n=—o00

One could combine terms with similar time-frequency geometry in the form of to obtain a more
efficient and more meaningful decomposition in the form of . This is referred to as the general
mode decomposition in this thesis. This problem is first studied by Wu in [I70] and is related to the
intrawave modulation discussed in [98].

A straightforward question would be whether the existing methods for mode decompositions can
extract general modes {ag (t)sg (2 Nior(x))}, identify wave shape functions {s;(x)} and estimate
instantaneous frequencies {Ny¢).(z)}. It was conjectured that the EMD methods could decompose
signals into general components of the form of instead of the form of based on some
case study. However, this advantage is frangible and worth more effort to understand the EMD
methods on general mode decompositions. Articles in [34, [I70] show that the synchrosqueezed
wavelet transform together with a functional least-square method can be used to solve the general
mode decomposition problem for a superposition of general modes with wave shape functions sy (x)
sufficiently close to the exponential function €@, i.e., a few terms of the Fourier series of s;,(z) are
sufficient to approximate s (). However, this class of band-limited wave shape functions in [I70] is
too restrictive in some situations, e.g. ECG signals. This motivates the work in [I78] that applies the
synchrosqueezed wave packet transform and a novel diffeomorphism-based spectral analysis method

to solve the general mode decomposition problem for a wide range of wave shape functions.

1.3 Contributions

In the first part of this thesis, we focus on designing and analyzing synchrosqueezed transforms (SST)
to solve a few open problems for mode decompositions. I'm the main contributor of the theory and
numerical tools in this part. These SSTs enjoy simple formulas that allow fast algorithms for forward
and inverse transforms. This is especially important to many real problems in high dimensions.
The smooth trend function of the oscillatory data becomes negligible if the linear time-frequency

transform before synchrosqueezing has enough vanishing moment. This advantage waives the trouble
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of estimating the trend function. SSTs inherit the localness of the linear time-frequency transform
before synchrosqueezing. They are able to detect local events, e.g. sudden changes in data. It is
also flexible to choose different linear transforms according to different data characteristics, e.g.,
ECG signals with spikes [I70] [I78], waveforms even with discontinuity [I78], wave propagation with
defects and sharp boundaries [126] 180, [I84]. Unlike many mode decomposition methods that are
algorithmic, SSTs are visually informative in the sense that they allow flexible human interaction in
spectral analysis. This could inspire new thoughts for better understanding of oscillatory signals.

First, we develop new theory and algorithms for 1D general mode decompositions. This is the first
constructive and effective method that is suitable for a wide range of general modes. We introduce a
1D synchrosqueezed wave packet transform in Section This transform consists of a wave packet
transform of a certain geometric scaling and a reallocation technique for sharpening time-frequency
representations. It is proved that this transform is able to estimate instantaneous information from
a superposition of general modes. It has a better capacity of distinguishing high frequency wave-like
components than the synchrosqueezed wavelet transform. Based on diffeomorphisms through smooth
phase functions, a new spectral analysis method for estimating wave shape functions is proposed in
Chapter [5| These two analysis tools lead to a framework for general mode decompositions if these
modes satisfy certain separation conditions.

Second, we introduce multi-dimensional synchrosqueezed wave packet transforms as the first
method for “truly” multi-dimensional mode decomposition problems with rigorous mathematical
analysis in Section Existing methods cannot separate two modes if they have similar wave num-
bers but different wave vectors. We introduce a class of superpositions of several wave-like compo-
nents satisfying certain separation conditions and prove that the multi-dimensional synchrosqueezed
wave packet transform identifies each component and estimates its local wavevector accurately.

Third, 2D synchrosqueezed curvelet transform is designed in Section [2.3] as an ideal tool for 2D
mode decompositions of wavefronts or banded wave-like components. The synchrosqueezed curvelet
transform is a combination of a generalized curvelet transform with application-dependent geometric
scaling parameters and a synchrosqueezing process for a sharpened phase space representation. In
the case of a superposition of banded wave-like components with well-separated wave-vectors, we
show that the synchrosqueezed curvelet transform is able to separate each component and estimate
its local wave-vector.

Fourth, we study several fundamental robustness properties of synchrosqueezed transforms in
Chapter Although the mathematical analysis of these newly developed transforms is well de-
veloped, there is relatively little study on their robustness against noise. Assuming a generalized
Gaussian random noise, we estimate the probability of a good instantaneous frequency or local wave
vector estimate given by these transforms. The probability analysis shows that their robustness is
determined by the geometric scaling parameters and can be improved by tuning their multiscale

geometry in the frequency domain. This dependence is demonstrated by numerical experiments as
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well. Finally, we provide new insights and numerical implementations for better and more robust
estimates.

Finally, discrete analogues with efficient implementations of these synchrosqueezed transforms
are proposed in Chapter A software package SynLab for fast synchrosqueezed transforms has
been published online. It is available at https://github.com/HaizhaoYang/SynLab. We apply this
package to many real problems in seismic data/image processing, atomic crystal image analysis in
materials science and canvas analysis in art investigation. They obtain better results than existing
state-of-the-art algorithms. These examples will be introduced in Chapter [f] after analyzing major

properties of synchrosqueezed transforms.



Chapter 2

Theory of Synchrosqueezed

Transforms

In this chapter, we present the theory of multi-dimensional continuous synchrosqueezed wave packet
transforms and 2D synchrosqueezed curvelet transforms to analyze wave-like components from their
superposition. This is joint work with Lexing Ying in [I78), [I82] [I84]. Since the smooth trend
function becomes insignificant after a time-frequency transform with sufficient vanishing moments
or it can be estimated and eliminated before synchrosqueezed transform using the methods in [35],
we consider a superposition of wave-like components without a smooth trend in this chapter.

Recall that a signal to be analyzed is a complex signal

K
f@) = ag(z)e™Neowle), (2.1)
k=1

where ay(x) is the instantaneous amplitude, 2w Ny ¢y () is the instantaneous phase and Ny ¢} (z) is
the instantaneous frequency. One wishes to decompose the signal f(x) to obtain each component
ap(x)e2m N #®:(#) and its corresponding instantaneous properties. The synchrosqueezed transform
provides a time-frequency representation that concentrates non-zero energy around each instanta-
neous frequency Ny¢j(z) or local wave vector NpV¢i(z). The time-frequency geometry of each
component is a direct result of this localized representation. Each wave-like component can be
recovered by an inverse transform on the information restricted in each component in the time-
frequency representation. Hence, the theory of synchrosqueezed transforms focuses on the accuracy
of energy concentration on Ny¢j (x) or NV (x).

To motivate the synchrosqueezed transform, we will start with the 1D case.

10
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2.1 1D Synchrosqueezed Wave Packet Transform

2.1.1 Motivation

The synchrosqueezed wavelet transform (SSWT) was introduced in [44] to process auditory signals
for a sharpened time-frequency representation by reallocating wavelet coefficients. This idea is
inspired by the observation that the local oscillation of the phase of the wavelet coefficients is able
to reveal the instantaneous frequency of a wave-like component.

Suppose ¢(x) is an appropriately chosen analytic wavelet (e.g., a Morlet wavelet), then the

continuous wavelet transform of a signal f(x) is
W;(a,b) = / F(@)a'/25((z = B)a) da,

where a'/2¢((z—b)a) for a € (0, +0c0) and b € R is a wavelet that has an essential support [b—2, b+ 2]

in space and [§, 2a] in frequency. We refer to [42] [128] for a detailed introduction to wavelets.

2miNx

For a purely harmonic analytic signal f(z) = ae , its wavelet transform is

We(a,b) = /ae%mm\/ﬁﬂ(x —b)a)dz

- Y[ 2miNEY G 4
- /e 5(y) dy

zm'Nb(g( N)_

(67

Ja

a
For fixed a, notice that Wy(a,b) is a purely harmonic analytic signal with an amplitude %(Z(%)
and frequency N. Hence, the local oscillation of Wy (a,b) recovers the instantaneous frequency of
f(x) in the sense that

8be(a,b) -
2miWy(a,b)
Daubechies, Lu and Wu revisited the idea of the SSWT and proved that % can act as

an instantaneous frequency information function that reveals the instantaneous frequencies ¢} (x)
in a class of superpositions in if these wave-like components satisfy a certain well-separation
condition in the time-frequency plane [43]. The well-separation condition is requiring that the gap
between adjacent instantaneous frequencies Ny ¢y (x) and Niy 1) (z) is sufficiently large such that
Wy, (a,b) and 9,Wy, (a,b) have essential supports well separated from others. Hence, there is only
one dominant component Wy, (a,b) in Wy(a,b) and one dominant partial derivative 0, Wy, (a,b) in

0y Wy(a,b). This leads to the following approximation

vy (a’ b) L 8(,Wf (a, b) -~ abek_ (a, b)

= ~ ~ N.¢,
2wiWs(a,b)  2miW;, (a,b) k0k (),
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when (a,b) is in the essential support of Wy, (a,b). Hence, by summing the spectral energy of
Wy (a,b) according to vy(a,b), we can obtain a sharpened spectral energy in the time-frequency
plane
Tf(v,b):/\Wf(a,b)|25(9%wf(a,b)—v) da
R

with essential supports concentrating around Ny ¢} (b) independent of v for some k. Here Revy(a, b)
means the real part of a complex number vy (a,b).
By the stationary phase approximation and the smoothness of ax(x) and ¢x(z), Wy, (a,b) and
Oy Wy, (a,b) have an essential support in [%M, 2Ny ¢, (z)]. To satisfy the well-separation condi-
tion, it is required that
2Ny (2) S Nit1pq(2),

i.e., instantaneous frequencies should be exponentially increasing in k. This requirement limits the
application of the SSWT to analyze superpositions of wave-like components with close instantaneous
frequencies. This motivates the design of synchrosqueezed wave packet transforms (SSWPT) with

a weaker well-separation condition.

2.1.2 Definition of 1D SSWPT

We briefly introduce the 1D synchrosqueezed wave packet transform (SSWPT) in this section and
will analyze it in the next section. Wave packets here are built on an appropriately chosen mother

wave packet defined below.

Definition 2.1.1. A mother wave packet w(x) € C™(R) is of type (e,m) for some € > 0, and some
non-negative integer m, if W(&) is a real-valued function with an essential support in the ball B1(0)

centered at the origin with a radius 1 satisfying that:

€

9] < T

for |§] > 1.

Since w € C™(R), the above decaying requirement is easy to satisfy. Actually, we can further
assume w(§) is essentially supported in a ball B4(0) with a support parameter d € (0, 1] for signals
with close instantaneous frequencies. However, d is just a constant in later asymptotic analysis.
Hence, we omit its discussion and consider it as 1 in the analysis but implement it in our numerical
tool. We can use this mother wave packet w(x) to define a family of wave packets through scaling,

modulation, and translation, controlled by a geometric parameter s.

Definition 2.1.2. Given the mother wave packet w(x) of type (e,m) and a parameter s € (1/2,1),
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the family of wave packets {wap(x) : |a| > 1,b € R} is defined as
was() = [l (af* (z — b)) AT,
or equivalently, in the Fourier domain as
Wap(€) = la| =227 (|a] *(€ — a)) .

These definitions allow us to construct a family of compactly supported wave packets, which will
be useful in practice. It is clear from the definition that the Fourier transform wq;(€) is essentially
supported in (a —|a|®,a+|a|®). On the other hand, we(x) is centered in space at b with an essential
support of width O(|a|™*). {wes(x) : |a| > 1,b € R} are all appropriately scaled to have the same
L? norm with the mother wave packet w(z).

The instantaneous frequency of the low frequency part of a signal is not well defined as discussed
in [I39]. For this reason, it is enough to consider wave packets with |a|] > 1. High frequency
components can be identified and extracted independently of the low frequency part so that the low
frequency part can be recovered by removing high frequency components.

Notice that if s were equal to 1, these functions would be qualitatively similar to the standard
wavelets. On the other hand, if s were equal to 1/2, we would obtain the wave atoms defined in [49].
But s € (1/2,1) is essential as we shall see in the main theorems later. The lower bound s > 1/2
makes the support of the wave packets sufficiently small for instantaneous frequency estimation,
while the upper bound s < 1 allows better resolution to distinguish close instantaneous frequencies
than wavelets, which is the purpose for proposing the SSWPT. See Figure for an illustration of

the comparison of wavelets and wave packets in the frequency domain.

Definition 2.1.3. The 1D wave packet transform of a function f € L™ (R) is a function

W(a,b) = (f, was) = /]R &)o@ da

forla] > 1,b € R.

Definition 2.1.4. Instantaneous frequency information function:
Let f € L>™ (R). The instantaneous frequency estimation function vy(a,b) for |a| > 1 and b € R
of [ is defined by

O Wy (ah) )
vf(a,b) = { 2mWrlab)’ for [Wg(a,b)| > 0;

00 otherwise.

)

It will be proved that, for a class of wave-like functions f(z) = a(x)e?™*N¢®) ¢ (a,b) precisely
approximates N¢'(b) independently of a as long as |[Wy(a,b)| is large enough. Hence, if we squeeze

the coefficients Wy (a, b) together based upon the same instantaneous frequency information function
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Figure 2.1: Top: Wavelet (wave packet when s = 1) tiling and bump functions in the high frequency
Fourier domain. Each short budding in the positive part indicates the center of one bump function,
while the bump functions in the negative part are plotted. Red dots denote the support of the
Fourier transform of 3¢ _ 2™"Nt where N = 60. The well-separation condition for the SSWT
is not satisfied, because the wavelet transform of these wave-like components are overlapping in
the time-frequency domain. Bottom: Wave packet tiling and bump functions with s = % The
well-separation condition holds.

v¢(a,b), then we would obtain a sharpened time-frequency representation of f(x). This motivates

the definition of the synchrosqueezed energy distribution as follows.

Definition 2.1.5. Given f € L*°, the synchrosqueezed energy distribution Ty(v,b) is defined by

Ty(0,b) = /}R\(1 , W (a,b)[25 (Revy (a,b) — v) da

forv,beR.

For a multi-component signal f(z), the synchrosqueezed energy of each component will concen-
trate around its corresponding instantaneous frequency. Hence, the SSWPT can provide information

about their instantaneous frequencies.

2.1.3 Analysis

In this section, we provide rigorous analysis of the 1D SSWPT generated from mother wave packets

of type (¢,m) to analyze a noiseless superposition of wave-like components.

Definition 2.1.6. A function f(z) = a(z)e*™N¢®) is an intrinsic mode type function (IMT) of
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type (M, N), if a(x) and ¢(z) satisfy the conditions below.

alz) e C™, | ()| <M, 1/M<a(z)<M
¢(x) € C™, 1M <|¢'(x)| < M, [¢"(x)] < M.

Definition 2.1.7. A function f(x) is a well-separated superposition of type (M, N, K, s), if

K
f(l‘) = ka(x)’
k=1

where each fi(x) = oy (x)e? ™ Neox(@) s an IMT of type (M, Ny) such that N, > N and the phase

functions satisfy the separation condition: for any pair (a,b), there exists at most one k such that
la|™*|a — Ny (b)] < 1.

We denote by F (M, N, K, s) the set of all such functions.

Theorem below shows that the SSWPT is able to estimate instantaneous frequencies
{Ni.¢, (2)}£_| of well-separated superposition of IMTs accurately. In what follows, when we write

O (+), <, or 2, the implicit constants may depend on M, m and K.

Theorem 2.1.8. Suppose the mother wave packet is of type (e,m), for any fixed € € (0,1) and any
fized integer m > 0. For a function f(x), we define

Re = {(a7b) : |Wf(a7b)| > |a|—s/2\/g}7

Se ={(a,b) : [Wy(a,b)| = Ve},
and
Zk ={(a,b) : la — Nyp¢j ()| < |al*}
forl1 <k < K. For fixed M, m and K, there exists a constant Ny (M, m, K, s, €) ~ max {e%,e%}
such that for any N > No (M, m, K, s,¢€) and f(x) € F (M, N, K, s) the following statements hold.
(i) {Zk : 1 <k < K} are disjoint and Se C Re C Uy <p< i Zi;

(i) For any (a,b) € Re N Zy,
jos(a,b) — Nedy ) - -
RTACIEEEA

(i1i) For any (a,b) € Se N Zg,
or(a,b) ~ Nedh D) Ve
AC] R
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The proof of Theorem relies on two lemmas as follows to estimate the asymptotic behavior
of W(a,b) and 0,Wy(a,b) as N going to infinity.

Lemma 2.1.9. Suppose Qq = {k : a € [, 2MNy]}. Under the assumption of Theorem we

have

Wy(a,b) = |a| =/ ( Y a()Em NG (@ — Ny (b)) la] =) + O (6)) :

keQq,
—1 -1
when N > Ny (M, m, K, s,€) ~ max {625—1 ,efs} .

Proof. Without loss of generality, we can simply assume Ny = N for all £ and only prove the case
for a > 1. Because w(z) decays rapidly, the wave packet transform Wy (a,b) is well defined. By the

change of variables, we have

K
Wy(a,b) = /R > ap(@)e® N D g2 P(|a]* (z — b))e TNy
k=1

K
723 [ anllal 0 + bpu(a)eEm Vool et g,
k=1

Let us estimate I, = [, o (la] 5z + byw(xz)e2 iV ox(lal™ a+b)—lal'""2) gy Let

h(z) = ag(la| "’z + b)w(x)

and
9(x) = 2n(N¢p(la| "z +b) — [al' ~*z),
then
I = / h(z)e @ de,
R
and

g'(x) = 2xla|~* (N (la|"*x +b) — a).

If a < &=, then |¢/(z)] 2 |a|=*N > N'=*. If a > 2MN, then |¢/(x)| 2> |a|'=* > (N)'~5. So, if

2M
a ¢ [, 2MN], then |¢'(z)| = (N)'~%. For real smooth functions g(z), we define the differential
operator
10,
L == *_7/.
tyg

Because h(z) decays sufficiently fast at infinity, we perform integration by parts r times to get

/heigdxz/h(lfeig)dxzf((L*)Th) edz,
R R R

where L* is the adjoint of L. A few algebraic calculation shows that L* contributes a factor of order
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Igl’l hS W if a ¢ [5;,2M N], and we therefore have

1| = / €9 (L) h) dz < (N)~ 07 < e
R
Since s < 1, if N 2 e<1:1)7', then
0= 3 LS a2 S 0(e) < Ja=*/20(e). (2.2)
kEQu kg,

Now let us estimate I, when a € [%, 2M N]. Recall that

I, = / ag(la| %z + b)w(x)eQﬂ(Nd”“(lalfsﬂb)_|a|175”)dx.
R

By Taylor expansion,
ar(la]"*z +b) = ak(b) + aj,(b%)|a| "z

and .
or(lal ™z +b) = ¢x(b) + ¢l (b)|al *z + §<1>§<’(b**)|a|728562

for some b* and b**. Notice that, if N > ¢/, then

|1 — ak(b)/w(x)e%iwm(lal_sﬁb)*lall_sw)dfﬂ

A

R
aj, (b)]al = Rlxllw(fﬂ)\dfﬂ

A

O(e).
This implies that
I, = (ak(b)/w(x)e%iwm‘(alS“'b)_alléx)dm + O(e))
R
for a € [[X-,2M N] and N > ¢/, Since |¢®® — 1| < ||, if N > e~ /257D then we have

2M >

|Ik _ak(b)/w(x)e%ri(Nd)k(b)+N¢§c(b)\a\fsw—\a\lfs:v)d‘,ﬂ
R

< (O(e) + |a(b) / w(x)e%i(Nqbk(b)+N¢§C(b)\a\*Sr—\a\lﬂm) (esz%M(b**)\ar%m? _ 1) dx)
R
< <O(e)—|—N|a_25/x2w($)|dm>
R
< Ofe).
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Hence, it holds that
e = (kBN O ((a — Nej(b)|a] =) +0(6) (2.3)

if a € [, 2MN] and N 2 max{e /5, e 1/(2s71)} = = 1/(2s-1),

In sum, by (2.2) and (2.3)), we arrive at

Wi(a,b) = o™ Y L+ > LI
keQ, k¢Q,
= |a|7*/? ( > a®)e NG (a — Nej (b)) [al ) + O(e)) ;
keQq,

4 _
if N 2 max{eT==r Gle}.
Similar argument can prove the above conclusion for a < —1 and it is simple to generalize it for
different Ny, to complete the proof. O
The next lemma is to estimate 0,Wy(a,b) when Q, = {k:a € [év—]\’}, 2M Ng]} is not empty, i.e.,
when Wy (a,b) is relevant.

Ny

Lemma 2.1.10. Suppose Q, = {k : a € |53,

Theorem we have

2M Ni]} is not empty. Under the assumption of

abe(a7 b)

= l|a|7%/? < > 2miNgag(b) 8, (0)e>™ N5 (0 — Nigly(b)) |a] =) + aO (e)) ,

keQ,

when N > Ny (M, m, K, s,€) :max{eﬁ,e%} .

Proof. Similar to the proof of Lemma we can assume Ni = N for all k and only need to prove

the case when a > 1. By the definition of the wave packet transform, we have
K
Wy(a,b) = Z27Ti\a|1+s/2/ o ()2 N @y (|a|* (2 — b))e 2@y
k=1 R
K
_ Z ‘a|35/2 / ak(x)e%erqbk(x)wl(‘aP(m _ b))€727m(ac7b)adx.
k=1 R

Denote the first term by 77 and the second term by 75. By a similar discussion in the proof of
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Lemma we have the following asymptotic estimates when NN is sufficiently large.

K
T, = —|a|s/22/ak(|a\_sx+b)w’(m)ezm(Nd”"(‘a|75x+b)_‘a|ksm)d$

= 8 aka S+ b)w' (x)e? N ek (lal ™ e+b)=lal™"2) g0 416|320 (€
_lal3/2 2mi(N o (la] ~*z+b)—|a|' ~*z) /2
keQ,

_ |a‘s/2 Z / ak |a| Sl‘+b) 27i(N(Ja] ~*z4+b)—|a|* )
kEQq

(2Nl " + Dl "~ 2mila ) do + 1ol 7 Y [ w(o
kEQ,
a;c(|a|_sx—|—b) 27Ti(N¢k(lalisx"'b)_lallis)dx+ |CL|S/2O( )

= |a|7/? 2miN gb a|7r 4+ b)ag(|la] "z + b)w )2 i(Néx(lal ™ ztb)—lal' " @) g,
k
kEQq

|CL|1 s/2 Z 27_‘_2/ ak: |a| 8.’L‘—|—b) 27i(Nor (Ja| “5z+b)—|al' "%z da:
keQq
+la|7*20(1) + |a]**O(e)
= ol Y 2miN (G (B)ar () N D (o] (0~ N (1)) + O(e) )

ke,

|a|1+s/2 Z 27'('7,/()ék |a| b))€27ri(N¢>k(w)f(a:7b)a)dx
keQ,

+la|=*20(1) + la]**O(e),

if N 2 max{eﬂii)r , e%} The third equality holds by integration by parts and the last equality
holds by changing variables. Notice that

T, = ‘a|1+s/2 Z 27”/0% w(|al* (z b))e2m’(N¢k(w)7(sz)a)dx
keQ,
+ D 2mifa['” 5/2/ak(|a|7sfﬂ+b)w(x)ez’”'(NW(|“|78z+b)’|“|1751)dx
kgQ,
= ‘a|1+s/2 Z 27TZ/O£k w(|al* (z b))627ri(N¢k(z)f(z—b)a)dz+ |a|175/20(5)7

ke,
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-1
if N 2 e@T==r for any r >= 1. Hence T} + T3 results in

abe(a, b)
= [a]7/2 " 2miN (61, (B)ar(B)e™ N O (Ja] = (a = N (b)) + O(e))

keQ,
+a|=*20(1) + |al**O(e) + |al' =0 (¢)

= a|7*/? <Z 2miN g (b) ¢, (D)™ VO ((a — N, (b)) lal ™) + |a|0(6)> :

kEQq
if N is sufficiently large. So, the Lemma [2.1.10] is proved. O
We are now ready to prove Theorem [2.1.8 with Lemma [2.1.9] and Lemma [2.1.10}

Proof. Let us first consider (i). The well-separation condition implies that {Z; : 1 < k < K} are
disjoint. Let (a,b) be a point in R,, then |W;(a,b)| > |a|~*/2\/¢, which means that €, is not empty
and 3k € Q, such that @W((a — Np¢},(b))|a|~*) # 0. Because the support of w(£) is (—1,1), we know
la — Ni¢j,(0)] < |al®, ie., (a,b) € Zy. Hence, Re C Uy << Usg Zi-

To show (i7), let us recall that vs(a,b) is defined as

o abe(a,b)
vs(a,b) = 27iW;(a,b)’

for Wy(a,b) # 0. If (a,b) € R.() Zg, then by Lemmam

Wia.b) = |a-s/2<zak<b>e2ﬂwk(b>@<<a—Nmub))a|-s)+o<e>)

keQq,

lal =/ (ar (D) VO (0 — Negi (b)) lal ) +0(e))
as the other terms drop out, since {Zy} are disjoint. Similarly, by Lemma [2.1.10

8be(a,b)
= |a|7*/? (meak(b)qs;(b)e%iwk(b)@ ((a — Nigy, (b)) la]~*) + |a\0(e)) :

Let g denote the term ay,(b)e?™ Ve ()@ ((a — Ny}, (b)) |a|~*), then

Ny #y,(b)g + |alO(e)
g+ O(e)

Ny 8. (b) (g + O(e))
g+ 0(e) ’

ve(a,b) =




CHAPTER 2. THEORY OF SYNCHROSQUEEZED TRANSFORMS 21

since a € [, 2M Ny]. Because |Wy(a,b)| > |a|=3/2\/¢ for (a,b) € R, then |g| > /e. Therefore

2M>
lvg(a,b) f/Nk¢;C(b)| < ‘ O(e) < e
| Ni¢% (b)] 9+0(e)
Similarly, if (a,b) € Se N Z, then
D N0 |00 | ¢ v
NAO] < lgro@| = N
since |g| 2 N;/Q\/E for (a,b) € Se N Z,. O

Theorem shows that the instantaneous frequency information function v¢(a,b) can esti-
mate Ny} (z) accurately for a class of superpositions of IMTs if their phases are sufficiently steep.
This guarantees the well concentration of the synchrosqueezed energy distribution T (v,b) around
Ny ¢} (x). The assumption s € (1/2,1) is essential to the proof. The upper bound s < 1 enables the
wave packets to detect oscillations in different directions. The lower bound s > 1/2 ensures that the
support of the wave packets is sufficiently small in space so that the second order properties of the
phase function (such as the curvature of the wave front) do not affect the synchrosqueezing estimate
of the local wavevectors.

In [43], the authors show that, for synchrosqueezed wavelet transform, each intrinsic mode func-
tion or component can be reconstructed from the synchrosqueezed coefficients by making use of a
reconstruction formula that integrates the continuous wavelet coefficient over the scale parameter
with an appropriate weight. They also prove an error bound on the reconstructed intrinsic mode
functions. In the current setting, however, we are not aware of a similar reconstruction formula
for the wave packet. Therefore, our reconstruction step is based on a Calderon-type reconstruction
formula for the wave packets as discussed in the next chapter. A similar approach based on the
Calderon reconstruction formula for the wavelets is in fact used in the numerical examples of [43] as
it is more robust in the noisy case. However, we have not been able to derive a rigorous error bound
for this Calderon-type reconstruction formula for the wave packets at this point.

Since we require N to be sufficiently large in Theorem [2.1.8] a function defined in Definition
[2.1.7]is a superposition of highly oscillatory components. In practical applications, a function might
also contain a low-frequency component. For such a low-frequency component, the local wavevector
is not well-defined as it is impossible to perform a phase-amplitude decomposition as given in Defi-
nition 2.1.6] for a low-frequency signal. Thus Theorem [2.1.8 does not apply to such a superposition.
However, in practice, we observe that the synchrosqueezing step can still separate the support of
different components quite well: typically the support of high frequency components are squeezed
into regions Zj while the support of the low frequency component remains at the low-frequency part
of the Fourier domain. Therefore, by applying the reconstruction formula to the coefficients of the

low-frequency component, one is still able to identify the low-frequency component quite accurately
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even though one cannot estimate its local wavevector.

2.2 Multi-Dimensional Synchrosqueezed Wave Packet Trans-

form

2.2.1 Motivation

An obvious question, which is motivated by applications in geophysics [143] [163], is whether the
synchrosqueezing idea can be extended to multi-dimensional images. For example, in seismic
imaging analysis, different local wavevectors correspond to different seismic events, which typically
link to different geological features. A straightforward attempt would simply combine the multi-
dimensional wavelet transform with the synchrosqueezing approach. The resulting synchrosqueezed
multi-dimensional wavelet transform would be capable of separating components that have differ-
ent wavevectors at each location, just as the 1D transform does for 1D signals. However, in many
situations this is not enough since a typical multi-dimensional image can have components whose
wavevectors have the same magnitude but point in different directions, as shown in Figure left).
Another simple idea is to synchrosqueeze an appropriately designed directional wavelet transforms
(e.g., multi-dimensional Gabor wavelets). However, the dyadic scaling property of these transforms
would still give poor resolution to distinguish wave-like components with close local wave vectors.
This phenomenon has been shown in the 1D case in last section. In fact, images from many applica-
tions related to high-frequency wave propagation have wave-like components with close local wave
vectors.

In order to design synchrosqueezed transforms that can separate multi-dimensional wave-like
components once they have different local wave vectors, we propose the multi-dimensional syn-
chrosqueezed wave packet transform (SSWPT). Similar to the 1D SSWPT, it combines the syn-
chrosqueezing idea with multi-dimensional wave packets of an appropriate geometric scaling s. The
key feature is that these wave packets have finer and, more importantly directional, support in the
multi-dimensional Fourier domain, which allows the anisotropic angular separation in the Fourier do-
main, i.e., distinguishing components oscillating in different directions, as shown in Figure (right).
As we know of, the synchrosqueezed wave packet transform is the first method equipped with this

ability so far.

2.2.2 Definition

We will briefly introduce the multi-dimensional synchrosqueezed wave packet transform proposed
in this section and analyze it in the next section. Similar to the 1D case, we can also introduce an

n-dimensional mother wave packet w(z) € C™(R™) of type (¢, m) such that w(£) has an essential
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Figure 2.2: Comparison of the resolutions of 2D continuous wavelets (left) and 2D continuous wave
packets (right) in the Fourier domain. Consider the superposition of two plane waves e*™"¢ and
e?™4 with the same frequency (|p| = |q|) but different wavevectors (p # q). Left: The two dots in
each plot show the support of the Fourier transforms of these two plane waves and the gray region
stands for the support of a continuous wavelet. Since the isotropic support of each wavelet either
covers or misses both points p and ¢, the wavelet transform is not able to distinguish these two plane
waves. Right: Each gray region represents the support of a wave packet. As long as p and ¢ are well
separated, they are in the support of two different wave packets. Hence these two plane waves can
be distinguished from each other by the wave packet transform.

support in the ball B;(0) centered at the frequency origin with a radius 1, i.e.,

€

9] < T

for |£] > 1 and some non-negative integer m. A family of n-dimensional wave packets is obtained by
isotropic dilation, rotations and translations of the mother wave packet as follows, controlled by a

geometric parameter s.

Definition 2.2.1. Given the mother wave packet w(zx) of type (¢, m) and the parameter s € (1/2,1),
the family of wave packets {way(x) : a,b € R", |a] > 1} are defined as

wab($> _ ‘CL|”S/2’LU (|a|s(m _ b)) e27ri(ac—b)-a,
or equivalently in the Fourier domain
Wap(€) = |af 727G (ja] (€ — a))

In this definition, we require |a| > 1. The reason is that, when |a| < 1, the above consideration
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regarding the shape of the wave packets is no longer valid. However, since we are mostly concerned
with the high frequencies as the signals of interest here are oscillatory, the case |a| < 1 is essentially
irrelevant.

Some properties can be seen immediately from the definition: the Fourier transform wgp(§) is
essentially supported in Bjgs (a), a ball centered at a with a radius |a|®; way(2) is centered in space
at b with an essential support of width O (|a|™®); {wa(z) : a,b € R",|a| > 1} are all appropriately
scaled to have the same L? norm with the mother wave packet w(z). Notice that if s were equal
to 1/2, we would obtain the wave atoms defined in [49]. If s were equal to 1, these functions would
be qualitatively similar to the standard multi-dimensional wavelets. In general, an n-dimensional
SSWPT with a smaller s value is better distinguishing two IMTs with close propagating directions.
This is the motivation to propose n-dimensional SSWPT rather than directly generalizing the 1D
SSWT in [37, 43, 144, 172).

With this family of wave packets, we define the wave packet transform as follows.

Definition 2.2.2. The wave packet transform of a function f(x) is a function

Wila,h) = (fww) = [ f(@)u(adr

for a,beR", |a| > 1.

If the Fourier transform f(f ) vanishes for [£] < 1, it is easy to check that the L? norms of Wy(a, b)

and f(z) are equivalent, up to a uniform constant factor, i.e.,

/ Wi (a,b)|*dadb = / |f(2)|*da. (2.4)
R2n n
Definition 2.2.3. The local wave vector estimation of a function f(x) at (a,b) € R®" is

vi(a,b) = § W5 (@D) for Wy(a,b) #0;

(00, 00), otherwise.

Given the wave vector estimation v¢(a,b), the synchrosqueezing step reallocates the information

in the phase space and provides a sharpened phase space representation of f(z) in the following way.

Definition 2.2.4. Given f(z), the synchrosqueezed energy distribution T¢(v,b) is defined by
Ty (v,b) :/ |W(a,b)*s (Revg(a,b) —v) da
R™\B1(0)

forv, b e R™.

627riN¢(ac)

As we shall see, for f(x) = a(zx) with sufficiently smooth amplitude «(z) and sufficiently

steep phase N¢(x), we can show that for each b, the estimation vy (a, b) indeed approximates NV ¢(b)
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independently of a as long as Wy(a,b) is non-negligible. As a direct consequence, for each b, the
essential support of Ty(v,b) in the v variable concentrates near NV¢(b) (see Figure for an

example). In addition, we have the following property
/Tf(v,b)dvdb:/|Wf(a,b)|25(9‘ievf(a,b) fv)dvdadb:/|Wf(a, b)|>dadb = | f||3

from Fubini’s theorem and the norm equivalence (2.4), for any f(x) with its Fourier transform
vanishing for || < 1.

200 200
100 100
< 0 =~ 0
-100 -100
-200 -200
200
100 1
-100 0.5
-200
Vv 0 b

Figure 2.3: 2D example: Synchrosqueezed wave packet transform applied to a deformed plane wave
f(x) = a(z)e? V@) Left: The essential support of the wave packet transform Wy (a,b) at by = 1.
Right: The essential support of the synchrosqueezed energy distribution Ty(v,b) at the same by
value. Wy(a,b) has been reallocated to form a sharp phase space representation T (v, b).

2.2.3 Analysis

In this section, we show that the synchrosqueezed wave packet transform can distinguish well-

separated local wavevectors from a superposition of multiple components.
Definition 2.2.5. A function f(z) = a(z)e*™N®) is an intrinsic mode type function (IMT) of
type (M, N) if a(x) and ¢(x) satisfy

alz) € C®, |Va(x)| <M, 1/M<alx)<M
¢(x) € C%, 1/M < |Vo(a)| < M, |[VZ(z)| < M.
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Definition 2.2.6. A function f(x) is a well-separated superposition of type (M, N, K,s) if

fl@) =) fulx)

M

where each fi(x) = oy ()2 N (@) js an IMT of type (M, Ny) with Ny > N and the phase functions

satisfy the separation condition: for any (a,b) € R?", there exists at most one fy satisfying that

la| ™ |a — N Vor(b)| < 1.

We denote by F (M, N, K, s) the set of all such functions.

The following theorem illustrates the main results of n-dimensional SSWPT for a superposition

of IMTs without noise or perturbation. In what follows, when we write O (+), <, or 2, the implicit
constants may depend on M, m and K.
Theorem 2.2.7. Suppose the n-dimensional mother wave packet is of type (e,m), for any fized

e € (0,1) and any fized integer m > 0. For a function f(x), we define
Re = {(a,b) : [Wy(a,b)| = |a|]7"*/2V/e},

Se ={(a,b) : [Wy(a,b)| > \ﬁ}v

and
Zi ={(a,b) : |a — N;Vor(b)| < lal*}

for1 <k < K. For fixed M, m, and K there exists a constant Ny (M, m, K, s,€) ~ max {62;7—21 , €15 }
such that for any N > Ny and f(x) € F (M, N, K, s) the following statements hold.

(i) {Z : 1 <k < K} are disjoint and Se C Re C U <p< i Zi;

(i) For any (a,b) € Re N Z,
vy (@, b) = NV i (b)| < Ve

[NV (D)

(iii) For any (a,b) € ScN Zy,

[07(a,8) = NkVOrO)|  —ns2
Neveu®) SN Ve

Lemma 2.2.8. Suppose Q, = {k : |a| € [{&,2M Ny]}. Under the assumption of Theorem we

have

> ar®)em NG (Ja] 7 (a — NpVr(h)) + O (6)) 7

Wy(a,b) = o /2 (
keQ,
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when N > Ny (M, m, K, s,€) ~ max {6%761%13},

Proof. Let us first estimate Wy (a,b) assuming that f(z) contains a single intrinsic mode function
of type (M, N)
f(d?) _ Ol(:Z?)(-Z27riN¢(m).

Using the definition of the wave packet transform, we have the following expression for Wy (a,b).

Wf(a,b) = /a(x)e2”N¢(””)|a|”5/2w(|a\s(x _ b))e—Qm'(w—b)»adx

‘75

[ atv+ lalsg)m N (e 2ol e o] )
— |a|—ns/2/a(b+|a|—sy)w(y)eQWi(N¢(b+\a\*Sy)_\a\*sy.a)dy_

We claim that when NV is sufficiently large

—ns/20 s 2MN
a €), a )
S (O ol £ 28
la| 772 (a(b)e*™NO)@ (Ja|~*(a = NV$(b))) +O(e)) , |al € [537, 2M N].
First, let us consider the case |a| & [5)7,2M N]. Consider the integral
/h(y)eig(y)dy

for smooth real functions h(y) and g(y), along with the differential operator

_1{Vg,V)

A

If |Vg| does not vanish, we have

(Vg,iVge')

Lig: — ig

ilVgl?

Assuming that h(y) decays sufficiently fast at infinity, we perform integration by parts r times to
get

[ heray= [ nwrendy = [(zoynenay,

where L* is the adjoint of L. In the current setting, Wy (a,b) = |a| "%/ [ h(y)e®™)dy with

h(y) = alb+[a]y)w(y), g(y) = 2m(No(b+ |a["*y) — la| "y - a),
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where h(y) clearly decays rapidly at infinity since w(y) is in the Schwartz class. In order to under-

stand the impact of L and L*, we need to bound the norm of
Vg(y) = 21 (NVo(b+ |a|~*y) —a) |a|~*

from below when |a| ¢ [, 2M N]. If |a| < 2=, then

Vgl 2 (INV9| = la])|a|™* 2 [NV¢|la]~*/2 2 N'7*.
If |a| > 2M N, then
Vgl 2 (la| = INVg])al™* 2 |al - |a|=*/2 Z (Jal)' 7 2 N1

Hence [Vg| > N'=% if |a| ¢ [£;,2M N]. Since [Vg| # 0 and each L* contributes a factor of order
1/|Vy|

[ ey s N0

When
N > ¢/ (=s)r) (2.6)

we obtain

[y mma <«

Using the fact Wy (a,b) = |a|~"*/2 [ h(y)e9Wdy, we have |Wy(a,b)| S |a| ="/ 2.
Second, let us address the case |a| € [+, 2M N]. We want to approximate W(a, b) with
la| " 2a(b)e*™ N @ (Ja]~* (a — NV(D))) .

Since w(y) is in the Schwartz class, we can assume that |w(y)| < Eﬁ for some sufficient large u with

C, for |y| > 1. Therefore, the integration over |y| > ¢~ /%

O(e). We can then estimate

yields a contribution of at most order

[Wy(a,b)| = |a| /2 ( / a(b -+ [a|~*y)w(y) T NOC Tl v gy 0<e>> '
ly|Set/v
A Taylor expansion of a(z) and ¢(z) shows that
a(b+la|~y) = a(b) + Va(b™) - [a| "y

and

¢(b+ la|~*y) = 6(b) + V(D) - (la| ") + %(Ial_sy)tv%(b*)(Ial_sy),



CHAPTER 2. THEORY OF SYNCHROSQUEEZED TRANSFORMS 29

where in each case b* is a point between b and b+ |a|"*y. We want to drop the last term from the

above formulas without introducing a relative error larger than O(e). We begin with the estimate
[ Vel )l <
ly|Se=t/m

which holds if e /*|Va |a|~*y| < €, which is true when |a| =% < e+ ("+D/, Since |a| € [, 2M N],
the above holds if
N > ¢ (ttD/u)/s, (2.7)

We also need

/ |a(b)w(y)e2wi(N¢(b)+NV¢(b)'\a\*Sy—la\*sy'a)‘ . |e27riN/2(|a|*‘“’y)tV2¢(la\*‘“’y) —1]dy Se.
ly|Se—1/w

Since |e® — 1| < |z|, the above inequality is equivalent to

/| oy, AT NSO D e 2o 1) V2ol "yl 5 e
ylse

which is true if e /“N(|a|*y)*V2¢(|la|*y) < ¢, which in turn holds if Nla|=2%|y>? < 'tn/v.
N

537 2M N, the above inequality is valid when

Because |y| < e v and |a| € [

N > e (Hmt2)/u)/(2s-1), (2.8)

In summary, for N larger than the maximum of the right hand sides of (2.6), (2.7) and (2.8)), if
|a| € [, 2M N] then we have

Wf(a,b) — |a|—7w/2 </| o a(b)w(y)e27ri(N¢(b)+NV¢>(b)~\a\*sy—\a\’syu)dy+ 0(6)>
y|Se

_ |a|7ns/2 / (a(b)ez”iN‘z’(b)) w(y)e27ri(NV¢(b)fa)»|a\_sydy +O(e)
ly|Set/v

_ |a|—ns/2 (/ (a<b)62m'N¢(b)) w(y)ezm(zvv¢(b)—a).|a|Sydy+0(6)>

= Ja] =72 (a(0)e* Vo) (ja] *(a = NV6(b))) + O(c) ),

where the third line uses the fact that the integration of w(y) outside the set {y : |y| < e '/*} is
again of order O(e).

Now let us return to the general case, where f(x) is a superposition of K well-separated intrinsic
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mode components:

K K
o) = 3 ) = 3 el
k=1 k=1
By linearity of the wave packet transform and (2.5)), we find:
W (a,b) = |a|="*20(e),

if |a| ¢ [557, 2MNJ;

K

Wf(a, b) _ |a|fns/2 <Z ak(b)62ﬂ'iN¢k(b)ﬂ} (|a|75(a — Nv¢k(b))) + O(E)) s
k=1

if la| € [£,2M N]. O

The next lemma estimates V;W¢(a,b) when €, is not empty, i.e., the case where Wy(a,b) is

non-negligible.

Lemma 2.2.9. Suppose Q, = {k : |a|] € [év—]\’j[,QMNk]} is not empty. Under the assumption of

Theorem |2.2.71, we have

Vs Wy(a,b) = 2mila| "/ ( Z NV (b)ay(b)e*™ N O @ (Ja] = (a — NpVr(b))) + |a|O (€)> ;
kEQ,

when N > Ny (M, m, K, s,€) ~ max {e%,el%ls},

Proof. The proof is similar to the one of Lemma Assume that f(z) contains a single intrinsic
mode function, i.e.,
f(z) = a(z)ePm N,

VyWiy(a,b) =/ (@)™ N a2 (Vw(|al* (@ — b)) (—lal*) + 2mipw(|al*(x — b)) e >T P ¢ da
R

‘—s

:/ b+ [a] ~y) 2T N0 | 712 (Tw(y) (—al*) + 2mipw(y)) e 2T dy
R’!‘L

_ Oz(b + |a|fsy)627riN¢(b+|a|_"y) |a‘7ns/2vw(y)(7|a|5)672ﬂ'i|a|_sy~ady

)
3

+/ a(b + |a|3y)e2 N ebHal ") | | =29 miqap (y)e =2 al v agy,

Forming a Taylor expansion and following the same argument as in the proof of Lemma [2.2.8| gives
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the following approximation for |a| € [%, 2M N

ViWi(a,b) = (~2milal=/*(a = NVo(B))a(b)e*™ N is(|a](a — NV4 (b)) + O(c))
+ 2mila) "2 (a(b)e2“N¢(b)@ (la| = (a — NV(b))) + O(e))

=2ri|a| /2 (NV¢(b)a(b)e2’”N¢(b)@(|a|’S(Q — NV6(b)) + |a|O(e)> .

For f(z) = Zszl fr(z) = Ele o (2)e2mNok(@) taking sum over K terms gives
VW (a,b) = 2milal 2 ( > (V96w ()™ Oi((a|~(a ~ NV (0) + |a|0<e>>
keQ,
for |a|€[%,2MN]. O
We are now ready to prove the theorem.

Proof. For (i), the well-separation condition implies that {Z) : 1 < k < K} are disjoint.
Let (a,b) be a point in R, = {(a,b) : |[W¢(a,b)| > |a|~"*/2\/€}. From the above lemma, we have

Wy(a,b) = |a| /2 ( > ag(b)e?™ Ve O G (Ja| 7 (a — Ny V(b)) + O(e)) .
ke,

Therefore, there exists k between 1 and K such that @ (Ja|™*(a — NxVg(b))) is non-zero. From
the definition of w(), we see that this implies (a,b) € Zj. Hence R, C Uszl Zy. It’s obvious that
S. C R..

To show (i7), let us recall that vs(a,b) is defined as

o Vbe (a, b)

vr(a;b) = 2miWy(a, b)

for W (a,b) # 0. If (a,b) € R N Zy, then
Wy(a,b) = la]=/2 (ap(0)e> ™05 (ja] ~*(a — Ny V(1)) + O(e))
and
VoW (a,b) = 2milal "2 (NpVer (b)) ™ D (|a|~*(a = NeVer(v))) +alO(e))

as the other terms drop out since {Zy} are disjoint. Hence

NV or(b) (g (b)e> ™0 (Ja]~*(a — NV (b)) + O(€))
(ar (b)e2 N0 (Ja|=* (a — NpVr (b)) + O(c))

Uf(a’ b) =
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Let us denote the term ay(b)e? ™ Ne®: ) (|a|=%(a — N, V(b)) by g. Then

o) MV 0+ 0(0)
A g+0(e)

Since |[Wy(a,b)| > |a|~%/2\/¢ for (a,b) € R, |g| 2 /€, and therefore

lvg(a,b) — NkVor(b)] ‘ o) |- Ve
[NV (b)| Tlg+ 0™
Similarly, if (a,b) € Se N Z, then
v (a,b) — NkVer ()| ‘ O(e) Ve
Nva®l < g o@| ~ N
since |g| ZN;S/Q\E for (a,b) € Sc N Zy. O

2.3 2D Synchrosqueezed Curvelet Transform

2.3.1 Motivation

In some applications such as wave field separation problems [143], [163] and ground roll removal
problems [I7, [72] [I85] in geophysics, it is required to separates overlapping wavefronts or banded
wave-like components. In this case, the boundary of these components gives rise to many nonzero
coeflicients of wave packet transform, which results in unexpected interferential synchrosqueezed
energy distribution (see Figure top-right). This would dramatically reduce the accuracy of local
wave-vector estimation, because the locations of nonzero energy provide estimation of local wave-
vectors. As shown in Figure (top-right), there exist misleading local wave-vector estimates at
the location where the signal is negligible. Even if at the location where the signal is relevant, the
relative error is still unacceptable.

To solve this problem, an empirical idea is that, good basis elements in the synchrosqueezed
transform should look like the components, i.e., they should appear in a needle-like shape. An
optimal solution is curvelets. The curvelet transform is anisotropic (as shown in Figure right),
and is designed for optimally representing curved edges [23] [148] and banded wavefronts [I9]. This
motivates the design of the synchrosqueezed curvelet transform (SSCT) as a better tool to estimate
local wave-vectors of wavefronts or banded wave-like components in this paper. The estimate of
local wave-vectors provided by SSCT is much better than that by SSWPT as shown in Figure
(bottom).
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Figure 2.4: Top-left: A banded deformed plane wave, f(z) = e  @/™? ¢>TNo(@) where N = 135
and ¢(z) = x1+ (1 —29) +0.1sin(27wz1) +0.1sin(27(1 —z2)). Top-right: Number of nonzero discrete
synchrosqueezed energy of SSWPT at each grid point of space domain. Bottom-left: Relative error
between the mean local wave-vector estimate (defined in [I82]) and the exact local wave-vector using
SSWPT. Bottom-right: Relative error between the mean local wave-vector estimate and the exact
local wave-vector using SSCT.

2.3.2 Definition

Below is a brief introduction to the generalized curvelet transform with a radial scaling parameter
t < 1 and an angular scaling parameter s € (%,t). Similar to the discussion in [I82], it is crucial
to assume % < s <t <1, so as to obtain accurate estimates of local wave-vectors for reasonable
large wavenumbers. It is proved in the next section, s < ¢ guarantees precise estimates in the case

of banded wave-like components. Here are some notations for the generalized curvelet transform.
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Figure 2.5: Comparison of localized supports of continuous wavelets (left), wave packets (middle)
and curvelets (right) in the Fourier domain. Two dots in each plot show the support of the Fourier
transforms of the superposition of two plane waves e2™P% and e2™4'® with the same wave-number
(Ip| = |q|) but different wave-vectors (p # q).

A= at 0 7
0 a°

where a is the distance from the center of one curvelet to the origin of Fourier domain.

1. The scaling matrix

2. The rotation angle 6 and rotation matrix
cosf) —sinf
Ry = ) .
sinf  cosf
3. The unit vector ug = (cosf,sin )T of rotation angle # and T denotes a transpose.

4. 0, represents the argument of given vector a.

5. w(z) of x € R? denotes the mother curvelet, which belongs to the class of mother wave packets
of some type (¢, m) in Section and obeys the admissibility condition: 30 < ¢; < ca < ©
such that

2m o]
a < / / a” )| @ (A;lel (€ —a-up)) |2adadf < co
o Ji
for any |£| > 1.

With the notations above, it is ready to define a family of curvelets through scaling, modulation,

and translation as follows, controlled by the geometric parameter s and t.

Definition 2.3.1. Given geometric scaling parameters % < s <t<1 and a mother curvelet of type

(€,m), the family of curvelets {wagp(x),a € [1,00),0 € [0,27),b € R?} is constructed as

t+s
Wagp(x) = a2

e27ria(w7b)-ug,w (AaRg_l(l' . b)) ,
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or equivalently, in the frequency domain
. 1 omibe _tEs
Wagy (§) = @ (A" Ryt (€ —a-ug)) e > ea™ 3

It is clear from the definition that the Fourier transform wgg,(€) has an ellipse-like essential
support {& : |[A7'R, " (€ —a-up)| < 1} centered at a-uy with a major radius a’ and a minor radius

a®.

Meanwhile, wqgp(z) is centered in space at b with an essential support of length O (a™*) and
width O (a~!). By this appropriate construction, each curvelet is scaled to have the same L? norm
with the mother curvelet w(z). The generalized curvelet transform can also be considered as a
generalization of the wave packet transform in Section with two different scaling parameters s
and t. This family of functions is quantitatively similar to wavelets when s = ¢ = 1, wave atoms [49]
when s =t = £, and curvelets [19] 24, 25] when s = 3 and ¢ = 1. In real applications, it is beneficial
to adaptively tune s and ¢ for better estimates of local wave vectors in complex data structures.

Similar to the curvelet transform, the generalized curvelet transform is defined as follows.

Definition 2.3.2. The generalized curvelet transform of a function f(x) is a function
Wi@0.0) = () = [ f@)wan@lds
R

fora € [1,00), 0 € [0,27), b € R

If the Fourier transform f(¢) vanishes for |€] < 1, one can check the following L? norms equiva-

lence up to a uniform constant factor following the proof of Theorem 1 in [25], i.e.,

cl/|f(:17)|2dx§/\Wf(a,H,b)FadadebgcQ/|f(x)|2dx.

Definition 2.3.3. The local wave vector information function of a function f(x) at (a,0,b) for
€[1,00), 6 € [0,27), b € R? is

vs(a,0,b) = { ZTWr@00) for Wy(a,0,b) # 0;

(00, 00), otherwise.

Since vs(a,d,b) estimates the local wave vectors accurately, as we shall see, reallocating the
coefficients with the same vy together would generate a sharpened phase space representation of

f(z). This motivates the design of the synchrosqueezed energy distribution as follows.

Definition 2.3.4. Given f(x), the synchrosqueezed energy distribution Ty (v,b) is

Ty (v,b) :/|Wf(a,9,b)|25(9%evf(a,9,b)—1)) adadf
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for v € R?, b € R2.

For f(x) with Fourier transform vanishing for |{| < 1, the following norm equivalence holds

/Tf(v,b)dvdb = / |W(a,0,b)*adadddb = || f|3

as a consequence of the L? norm equivalence between Wy (a,6,b) and f(z).

2.3.3 Analysis

To model a wave-like component with a band-shape support, we are going to analyze components
of the form
f(.’E) — e—(¢(w)—c)2/0'2a(l,)eQTriN¢(m)’

where a(x) is a smooth amplitude function, ¢(z) a smooth phase function, and o is a band parameter
that controls the width of the signal.

To understand how large the bandwidth should be so as to obtain accurate local wave vec-
tor estimates by the SSCT, we assume 0 = © (N~") and show that the SSCT gives good esti-
mates when n < ¢t and N is sufficiently large. In the space domain, a generalized curvelet at the
scale @ = O (N) has a width O (N7%). ¢ > N~7 with n < ¢ indicates that the bandwidth o of
e~ (9(2)=c)*/ ”za(x)eQ’TiN ¢() can be almost as narrow as the width of a generalized curvelet that

sharing the same wave number O (N), when N is sufficiently large.

Definition 2.3.5. For anyc € R, N > 0 and M > 0, f(z) = e~ (?@)=0)"/0" o (2)e27iNo(@) g
banded intrinsic mode function of type (M, N,n), if a(z) and ¢(x) satisfy

alzx) € C™, [Va(z)| < M, 1/M < a(z) < M,
$(a) € C*, 1/M < |[Vo(x)] < M, [V?é(z)| < M,

and o> N7,

Definition 2.3.6. A function f(x) is a well-separated superposition of type (M, N,n,s,t, K) if

K
fl) =Y fu(@),
k=1

where each fi(x) = e_(m(m)_c’c)z/”zozk(x)ezﬂNm(m) is a banded intrinsic mode function (IMT) of
type (M, Ni,n) with Ny, > N and they satisfy the separation condition: Ya € [1,00) and V8 € [0, 27),

there is at most one banded intrinsic mode function fi satisfying that

A R, (a-ug — Ny Vi (b)) | < 1.
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We denote by F (M, N,n,s,t, K) the set of all such functions.

The first theorem in this section demonstrates the accuracy of the local wave vector estimation

of the banded IMTs when the given data does not contain noise.

Theorem 2.3.7. Suppose the 2D mother curvelet is of type (e,m), for any fized € € (0,1) and any
fized integer m > 0. For a function f(x), we define

Re = {(a,0.0) : [Wy(a,0,0)| = o=+ e},

Se ={(a,0,b) : [Wg(a,0,b)| > Ve},

and
Z = {(a,0,b) : |A; Ry (a- ug — Ny V(b)) | < 1}

for 1 <k < K. For fixed M, m, s, t, n, and €, there exists
—1 —2 —2
No (M,m,s,t,n,€) ~ max{eﬁ,em,em}
such that for any N > Ny (M, m,s,t,n,€) and f(x) € F(M,N,n,s,t,K) the following statements
hold.
(i) {Z : 1 <k < K} are disjoint and Se C Re C U <p< i Zi-
(i1) For any (a,0,b) € RN Zy,

|vf(a7 07 b) - Nkv¢k(b)|

< .
INeV ok ()] S Ve
(iii) For any (a,0,b) € Se N Z,
|v7(a,0,b) = N Vor(b)| _ \—=4
N, 2 .
RAZX0] SN T Ve

For simplicity, the notations O(-), < and 2 are used when the implicit constants may only depend
on M, m and K. The proof of Theorem relies on two lemmas below to estimate Wy(a,8,b)
and V,W¢(a,0,b).

Lemma 2.3.8. Suppose

Nk . M t—s
Quop = {k’ a € (2]\472MN}€> y 0V¢>k(b) - 9’ < aresin <<]Vk) > } '

Under the assumption of Theorem the following estimation of Wy(a,,b) holds when N >
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=1 =2 —2
No (M, m, s,t,n,€) ~ max {elft , €11 €251 }:

Wy(a,0,b) = =% ( S ) (A7 Ry (a-up — NeVor(0) + O <e>> .

k€Qaob

Proof. We only need to discuss the case when K = 1. The result for general K is an easy extension
by the linearity of generalized curvelet transform. Suppose f(z) contains a single banded intrinsic

mode function of type (M, N,n)
f(z) = e*(¢(z)fc)2/aza(x)e%iNqs(z).

We claim that when N is large enough, the approximation of Wy(a,8,b) holds. By the definition of

generalized curvelet transform, it holds that

Wf(a, 0,b) = f(l‘)a%—tw(AaRe_l(x _ b))e—Zm'a(:c—b)-uedx
R2

- o , fb+ RgAgly)w(y)efzmlalftyldy.
R

Step 1: We start with the proof of (2) first.
Let h(y) = w(y)e™ @CHRoATN=0" o (b + Ry AT ly) and g(y) = 2m(N(b+ Re Ay y) —al~tyy),
then we have

s+t

We(a,0,b) =a™ 2

/ h(y)e W dy,
R2

with real smooth functions h(y) and g(y). Consider the differential operator

_1(Vg, V)

S [Vl

If |Vg| does not vanish, we have

Leig _ <v97iv.qeig> _ eig.

ilVg|?
By the definition of w(y), we know h(y) is decaying rapidly at infinity. Then we can apply integration

he9dy = h(Le'9)dy = — . .
[ retn= [ naendy == [ - (g )enay

Hence, we need to estimate ’V . (%)

by parts to get

. Because

.(th)1<Vh-Vg .(Vg ))
i\Vgl?’ i\ |Vg[? |Vgl|?
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and |h(y)| < 1, we only need to estimate ‘v‘gé‘vzg and ‘3y18y \Vg\z fori,5 =1,2.

Let z = (21,22)7 = Ry 'Vo(b+ RgA;ly), vi = NA;'R; V(b + ReA;ly) and vs = (a'~%,0)7T,
then Vg(y) = 2m(vy —v2) = 2n((N2z1 —a)a™t, Na™%z).

Case 1: a ¢ (37, 2MN).

When a > 2M N, then

al—t a al—t
V(w)| 2 0!~ MNa~ = (o mNat > O 2 N
When a < 2M’ then
Na~t Na~t
> 1=t > > let
VeWIZ — a7 2537 %
So
Vg(y)| 2 N** (2.9)
for a ¢ (£,2MN).
If a > 2M N, then ‘33282‘ < Na~2% < N2 implying that
&g 1 N1- 23/N2 2t _ 1
Ayiy; |Vgl* |~ NI
Since |z| > 4, then either |z| > fM or |za| > f holds. If a < £, then
0%g 1 < Na=2
dy;0y; |Vg|?| ~ (Nzi —a)?a=2 4+ N2a=2523
- 1
(- %)QNa*Q(t*S) + Nz2
1 1
< e
~ maX{N172(t75)’ N}‘
_ 1
= NI2(-s)"
In sum,
0%g 1 1
‘81}1({9% ‘Vg|2 ~ Nl—Q(t—S) (210)
for a ¢ (2M,2MN).

Notice that the dominant term of Vh is

—2(¢(b+ RgA  y) —¢) A1

o2 a

w(y)a (b-l—RgA y)e~ (¢(b+Ro A y)—c)?/o”
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1,2
and the other terms are of order 1. Because e~

oz LI—‘ < e~ 73 then
‘Vh-Vg‘sl (Aalz)~Vg‘+‘ 1 ’ﬁN” (Aalz)~Vg’ 1
IVg|? ol |Vgf? Vgl

Vo | TN

Recall that Vg = 2r(NA; 'z — (a*7%,0)7), then

A712) - Vg Nz —a)a= "tz + Na 2522
a ~ 2
[Vgl?

T (Nz —a)2a=2 + N2q=2522°

Na72szz
If 2122 7é 07 then Wzs%
(4,12)Vg

[Vgl?

_ 1 (Nzy—a)a= %'z 1
=  and ‘

1 ~ Co

(Ne1—a)%a—2 Na—a] ~ N which implies that
i

N % If 2129 = 0, then it is easy to check that ‘ (ATVZ) VIl ~

1
o ~ 4. Hence,

< N7

~

‘Vh . Vg‘
|Vgl?

1 1
N1t < Nii (2.11)

Alz) -V 1 1
(4,°2) - Vg| < L
|Vg|2 N1-t N1-n

for a ¢ (£7,2MN).

By and , we have
(Vg <lv. hVg
L Grgpea] = |7 (o)

, 1
g — 1 1) S
/]Rz he dy’ iwgre) | (el +WIVelle) S
for a ¢ (54;,2MN). So,

s+t

Wi(a,0,b) =a” = Ofe),

when N 2 e and a ¢ (7. 2MN).
Case 2: a € (3;,2MN) and |0y ) — 0| > 6o.

Observing that Vg(y) = 2rA; 'Ry '(NVé(b + RgA;'y) — a - ug), we can expect |Vg| is large

when Oy 4 is far away from 0. Notice that w(y) is in the Schwartz class, then 3C,, > 0 such that
lw(y)] < 5—“ for |y| > 1 and any u large enough. So

Wi(a,0,b) = a~ ER

([ g0 R gty 0(0)).
y|Se—1/u

Define D = {y : |y| < e %} and Dy = {y : |y| < e Y/ +1}. Suppose Xp(y) is a positive and
smooth function compactly supported in D, such that Xp(y) =1ify € D, || Xp||p~ < 1, then

Wyta.0.0) =~ # (00 + [ Xpwhneray).

Dy

40



CHAPTER 2. THEORY OF SYNCHROSQUEEZED TRANSFORMS 41

If [Vg(y)| is not vanishing in D, then apply the integral by parts to get

‘ , Xph
Xphe9dy = XDh(Le’g)dy:—/ v. (XphVe

- edy.
Dy Dy Dy i|Vgl? )

We are going to estimate [Vg(y)| when a € (537,2M N) and |@y4p) — 0| > 0. By Taylor expansion,

Vo(b+ ReAty) = Vo(b) + V2o(b*)Re ALy,

where b* is between b and b+ Rg A, 'y. Notice that

Sin(eo)
2M

V200" )R Ay 'yl < a™*|V2o(0%) ||yl £ Ma (e /" +1) <

when |y| < e /% +1 and (an%z))l/s(e_l/“ +1)Y/¢ < a. The latter one holds when N > (e=/% +

1)Y=t for a € (A;,2MN). So, when these conditions are satisfied, we have

Vo(b+ RoA ' y) = V(b) + v,
with |v| < %. Recall the fact [0y ) — 0] > 0o, then it holds that

[A7 'Ry H(NV(b+ Re Al y) — a-ug)

> |NAJ'R;'Vo(b) - (a'7,0)7| = NJA; Ry ol
N
> \/(r cosa —a)2a=2t + r2a=25 sin® o — M sin fpa™°
s N . s
> ra °sinfy — BYYi sin fpa
> N oGnbga
= sin 6pa
> Nl—t

where a = gy — 0 and r = [NV (b)| > . Hence, we have
#(b) M
Vg(y)| 2 N'™* (2.12)

when a € (£, 2MN), |Ovew) — 0] > 0o, N = (7% +1)/Zs=Y) and y € D,.
2M #(b)

Next, we move on to estimate ’v(fé’;lvg‘ and 651_237% IVZIZ ‘ for 4,7 = 1,2, under the conditions
that a € (£7,2MN), [0gsp) — 0] > 00, N 2 (e71/* +1)/2s= and y € D, First,
Na72s N172s 1

a7 E < N2—2t  N1-2(t—s)" (2.13)

’ 0% 1
0y;9y; |Vgl?
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X . A~V
Second, as for ‘W (A, 2)Vyg

NZE for the similar reason in the last

, we only need to estimate

case. As we have shown,

(A;'2)- Vg  (Nzi—a)a 'z 4+ Na %23
Vg2 = (Nz —a)2a=2t + N2g—2522°

If z; =0, then M’ ~ % If z; # 0 and

a® a’ : 1
N 2 %, then |2a| 2 57+, since |z| > 17. Hence,

~ qt?

Z2
21

’ (A tz)- Vg‘ < [Nz - a)a= 2| + |[Na=2523|

|vg‘2 ~ N2a—23Z§
< INzi—al-|a| 1
~ o N2g2(t—s) ;2 N
1 1
< - 4
S Nalm N
< L
~ N
If 21 #0and | 2| Z—j, then
’ (A712) - Vg‘ |(N21 —a)a=2t2z1| + [Na=2523|
Vgl [Vg|?
< (Nzi|+a)a 21|+ Na=2¢
~ N2-2t
< L
~ N
In sum,
(Ag'z)-Vg| . 1
which implies that
V(XDh) . Vg < 1 914
A7 21
By (2.13) and (2.14]), we have
Xthg i Xthg 1
/D v ( i|Vgl|2 )egdy S ’ ’ ( IWE ) (||XDwHL1 + ||V(XDU})||L1) S NI-t
N

for a € (&;,2MN), [0y4p) — 0| > 0p and N > (e71/* 4+ 1)1/ (2578 So,

s+t

Wi(a,0,b) =a™ = Ofe),
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when a € (7, 2MN), [0y ) — 0] > 0 and

N > max{(e_Tl + l)ﬁ,el;—lt}.

From the discussion in the two cases above, we see that

s+t

Wi(a,0,0) = a="= O(e),

if a ¢ (557,2MN) or |0g4s) — 0] > 6o, when

N > max{(e7 + 1), eTr}, (2.15)

where u is any fixed positive integer. Hence, the proof of (2) when K =1 is done.
Step2: Henceforth, we move on to prove (1), i.e., to discuss the approximation of Wy (a,8,b),

when a € (7, 2MN) and |0y 4) — 6] < 0p. Recall that

s+t

Wi(a,0,b) = a2 ( fb+ RgAgly)w(y)672”a1_tyldy + O(e)).
yeD

Our goal is to get the following estimate

s+t

Wi(a,0,b) =a™ =2

( f(b)w(y)e%“NW“'@@A;lwal‘tyﬂdyw(e))v (2.16)
yeD

for N large enough.

First, we are going to show

+ )2 . - —t
Wf(a,797 b) _ a_,; (/ e_(tb(b;2 ) a(b + ReAgly)w(y)e%m(N(ﬁ(b—i-ReAa1y)_a1 yl)dy n O(e))
yeD
(2.17)

for sufficiently large N. Taylor expansion is applied again to obtain the following three expansions.
1
B(b+ RoA,'y) = ¢(b) + Vo(b) - (ReA;'y) + 5(R(,A;1y)Tv2¢(b*)(ReAgly),
where b* is between b and b+ Ry A7 'y.

e (B(+Re AL y)—c)?/o?

= (@O +VH(0) (ReA )+ 5 (Re A )T V2 H(b") (Re A, y)—0)? /0

_m=o? -2 —2(A—c¢)
2 _l’_ 2 . -
2

= e o e -

(Vo) - (Rodz"y) + 5 (RoA7 ) T20(0°) (R 0)),
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where A € [¢(b), $(b) + V(D) - (Ro A, y) + 5 (ReA; ) V(b)) (Ro AL y)].
a(b+ RoA'y) = a(b) + Va(b™) - (ReA7y),

where b** is between b and b+ Ry A, 'y.
The above Taylor expansions help us to estimate the effect of phase function ¢(x) in the Gaussian

term. We claim two estimates as follows.

_0=9? =2(A—¢)
e

h= oo w(b)-(ReAa1y>a<b+ReAalww(y)\dys0<e>
yeD o
and
=02 2(A—c)1 _ N _ _
I Z/ e '7(02 C)g(RaAaly)TV%(b )(ReAaly)a(bJrReAaly)w(y)'dy < O(e).
yeD

4

N> e, (2.18)
As for I, notice that |0y ) —0| < 6o, then |9R;1v¢(b)| < 0. Let 0 = GR;1V¢(b) andy = (y1,12)"

then for a € (7, 2MN)

)

1 _
Lo ST (Red ) dy

g yeD
M - -

< — y—icos@—i—%sinH’dy
o Jyepla a®

< %d/ ax cos*ytcosé_i_sin’ysiné dy
o Jyep v€lo2m) a a’

3
< Md L’
~ o

where d ~ ¢~ % is the radius of D and

L\/cos29+Sin29S\/1+Sin290§max{1 M},SNit
ab

a?t a2s a?t a?s at ’
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So
Md*L _ Md*N—*
LS S < O(e),
g g
if
143
N> i, (2.19)
A direct result of the estimate of I; and I is (2.17) for
143 144
N 2 max{e ¥ e Z=u}. (2.20)

Second, we need to show

s+t

Wi(a,0,b) =a™ 2

</ 6—7(“25'3)2 a(b)w(y)ezm(w(bJrReA;1y)—a1*ty1)dy + 0(6)) , (2.21)
yeD

which relies on the analysis of the effect of ¢(z) on a(z) as follows. Since a € (4, 2MN), then

INCIOET -1
Ig — e o2 |VOé . (RGA(L y)w(y)| dy
yeD

< / |Ro A,y dy
yeD
< a e
< O(e)
holds when
1+%
N>67 s

143

Then we derive (2.21)) by the estimate of I and (2.17) for N 2 e~
Finally, we should estimate the nonlinear effect of ¢(x) on the oscillatory pattern and show (2.16])
for sufficiently large N. If

144

N Z € 2s—1

)

then

I = / [e2miNo® TN TO0 (R =t
yeD

. ‘e2m%(RgA,jly)TV%(ReA;ly) —1|dy

< / |N(Ro A7 ) TV20(Ro A7 )| dy
yeD

s [ NaElay
yeD

< Na 2%

S O(e)
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holds by the fact that |e'® — 1| < |z| and a € (Y, 2M N). Then by (2:2I) and I, we have

s+t

Wy(a,8,b) a2<f(b) / w(y)e%“m(b)'waf‘?w“”y”dyw(e))
yeD

= o F (f (b) /R w(y)e2m WA By Vo000 ) gy, | o(e))

_ (f(b)@(Aglel(a ug — NV@(b))) + O(E)>’

for a € (%,ZMN) and [0y e — 0| < 0o, if

143 144 143 144
N Z max{e #n e Z-n, e 5 € 1} (2.22)
where u is any fixed positive integer.
By (2.15) and (2.22)), the requirement for N is

-1 P R o i
N 2 No =max{(ew +1)%-7 eT-¢ ¢ “n € %s-n,e 5 e 25-1}

where u is any fixed positive integer. Hence, this completes the proof of (1) when K = 1.

In sum, we have proved this lemma when K = 1. The conclusion is also true for general K by
the linearity of generalized curvelet transform. O

Lemma 2.3.9. Suppose

Nk . M t—s
Qagp = {k‘ ta € (W,QMNk> 169600 — 6] < arcsin <<Nk> )}

is not empty. Under the assumption of Theorem there exists a constant No (M, m, s, t,n,€) ~
_ _2 —
max {El—j’em7€2531} such that if N > No (M, m,s,t,n,¢€), then we have

VyWy(a,0,b) = a7 <2m' > NeVer(d) fu(b)@ (A7 Ry (0 ug — Nk V(b)) + aO (e)) :

kE€Qaob

Proof. The proof is similar to the one of Lemma We only need to discuss the case K =1 and

the case K > 1 holds by the linearity of generalized curvelet transform. Suppose

_(#(=)—e)?
2

flx)=e 7 ala)efm N,
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we have

vbe (a7 07 b)

flx)a® <(—R9Aa)Vw(AaR91(x — b)) + 2miaugw(A Ry (x — b))) e~ Zmia(z=b)uo gy
R2

= fb+ R@Agly)af%t ((RgAa)Vw(y) + 27Tiaegw(y)> e~2mia "y gy
R2

s+t

et (f(b)/ ((—RgAa)Vw(y) +2ma69w(y))e_2m((alt,o)T—NAalRe1v¢(b))-ydy+a0(6)>
R2

R <2m’NV</>(b)f(b)@ (Aglel(a Sug — Nqu(b))) + aO(e))

for a € (3;,2MN) and |fg4p) — 0] < 0o, if N satisfies the condition in Lemmam Therefore, if

f has K components, we know

VoW(a,0,b) = a3 ( S 2NV (b) fr () (A7 Ry (a - ug — NiVor(h)) + a0(6)>,

k€Qq0p
for N larger than the same constant Ny in Lemma [2.3.8 O
With the above two lemmas proved, it is enough to prove Theorem [2.3.7]

Proof. We shall start from (i). {Zy : 1 < k < K} are disjoint as soon as f(z) is a superposition of
well-separated components. Let (a,6,b) € R.. By Lemma we have

Wi(a,0,b) =a~ % ( > f)@ (A7 Ry (a - ug — NeVer (b)) + O(e)) .

kEQq0p

Therefore, 3k such that @ (A; 'Ry " (a - ug — NyVey(b))) # 0. By the definition of Zj, we see that
(a,0,b) € Zy. Hence, R, C U,If:le. It’s obvious that S, C R..
To show (i%), notice that (a,6,b) € R. U Z, then

Wi(a,0,b) =a~ 2 <fk(b)@ (A, Ry (a-ug — NeVr(b))) + 0(6)),
and
VyWi(a,0,b) = a5 <27riNkV¢k(b)fk(b)@ (A7 Ry (a-ug — Ny V(b)) + a0(6)>.

Let g = f,(b)@ (A7 Ry ' (a - ug — Ny V(b))), then

NeVer(b)(g + O(e))
g+ 0(e) '

v¢(a,0,b) =
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Since |Wy(a,§,b)| > a=“% \/c for (a,0,b) € R, then |g| > /e. So

lvf(a,0,b) — NpyVor(b)] <‘ O(e)
[NkV o (b)] ~lg+0(e)

S Ve

Similarly, if (a,6,b) € S. N Z, then

Ve
~ N]is+t)/2’

AN AU RCD
[Nk V(D) ~1g+0(e)

since |g| = N2\ /e for (a,0,b) € S. N Z. O

The assumption % < s <t<1landn <t are essential to the proof. However, we have not

arrived to a clear opinion on the optimal values of these parameters. The difference ¢t — s allows us
to construct directional needle-like curvelets in order to approximate banded wave-like components

or wavefronts and capture the oscillatory behavior better. When ¢ and n approach to 1, and s

gets close to %, we can expect that the synchrosqueezed curvelet transform can separate banded
components of width approximately O(N~1), if N is large enough. On the other hand, the lower
bound s > 1/2 ensures that the support of each curvelet is sufficiently small in space so that the
second order properties of the phase function (such as the curvature of wavefronts) do not affect
the estimate of local wave-vectors. The upper bound ¢ < 1 guarantees sufficient resolution to detect

different components with large wavenumbers.



Chapter 3

Robustness of Synchrosqueezed

Transforms

3.1 Introduction

3.1.1 Motivation

In this chapter, we will focus on the robustness analysis of synchrosqueezed transform (joint work

with Lexing Ying in [I83]) on signals with a noisy perturbation term e(x):
K .
f(z) = Zak(x)eszW’“(m) + e(x). (3.1)
k=1

It follows from the definition that oy, (x)e? V% (*) is a highly oscillatory component with a frequency
content also rapidly changing with x. An immediate challenge from this rapid change is that an
instantaneous frequency or the magnitude of a local wave vector may quickly increase to the sampling
rate, e.g., power-law chirps in gravitational waves [29]. Another challenge comes from a large number
of different Ny, in various scales caused by the phenomenon of wave shape functions [I70, 178, [180]
or equivalently intrawaves [91 I76]. When noise meets these multiscale oscillatory components,
an efficient and accurate tool with multiscale robustness to identify and analyze these wave-like
components is of great value.

A variety of synchrosqueezed transforms have been proposed to study signal , e.g., the
synchrosqueezed wavelet transform (SSWT) in [37, [43], the synchrosqueezed short time Fourier
transform (SSSTFT) in [I56], the synchrosqueezed wave packet transform (SSWPT) in [I78] [182]
and the synchrosqueezed curvelet transform (SSCT) in [I84]. Rigorous analysis has proved that

these transforms can accurately decompose a class of superpositions of wave-like components and

49
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estimate their instantaneous (local) properties if the given signal is noiseless.

Although the literature on synchrosqueezed transforms for noiseless data is well developed and
they have been successfully applied to various real problems with noisy data, rigorous robustness
analysis of these transforms is still limited. In a recent paper [I55] that addresses the robustness
analysis, it is assumed that contains only Gaussian white noise with a variance much smaller
than €2, where € < 1 is the error tolerance of the estimation accuracy in [43]. This requirement is too
restricted in real applications. To deal with heavier noise, a recent paper [32] proves the robustness
against a generalized stationary Gaussian noise and analyzes statistical properties of when it
has a trend with heteroscedasticity. However, this proof is valid only for the 1D SSWT in [43] in
analyzing wave-like components with instantaneous frequencies of constant order.

In the analysis of 1D SSWT [32] [43], [155] [156], the authors are assuming a class of well-separated
superpositions of intrinsic mode type functions. If we rephrase the definition of the 1D SSWT in
[32, [43] 155] using a statement convenient for multiscale analysis, then this class of well-separated

superpositions can be defined through the following definitions.

Definition 3.1.1. (An intrinsic mode type function for the 1D SSWT). A continuous function
f:R = C, f e L*(R) is said to be intrinsic-mode-type (IMT) with accuracy ¢ > 0 if f(z) =
ax)e?™Ne@) with a(x) and ¢(x) having the following properties:

a € CHR)NL*®R), ¢eC?R)

inf ¢/(z) > 0, supg!(x) < o0, supl¢ (x)| < ox,
z€eR z€R z€R

o/ ()] < e[ N/ ()|, [¢" ()] < el (2)], VzeR.

To guarantee accurate estimates of nonlinear wave-like components provided by the SSWT, the
approach in [43] needs to assume N to be sufficiently small. To make things concrete, consider the
requirement of Equation (3.5) in [43], which reads e < N~3/2 in the language of this paper. For
example, if ¢ = 0.01, then N has to be less than 21.5. Since larger e allows stronger nonlinearity
in Definition Equation (3.5) says that high frequency wave-like components have to be nearly
linear, which is impractical for a superposition of multiscale nonlinear wave-like components. Indeed,
multiscale components are common in nature, which motivates the work in [I78], [I82] [I84] and this
thesis.

Using our new language convenient for multiscale analysis for synchrosqueezed transforms, we
shall provide rigorous probability analysis for their multiscale robustness with different geometric
scaling. It will be shown that a trade-off between the multiscale robustness and the estimation

accuracy has to be balanced.



CHAPTER 3. ROBUSTNESS OF SYNCHROSQUEEZED TRANSFORMS 51

3.1.2 Significance

Analyzing signals in is also called a mode decomposition problem. A famous empirical mode
decomposition (EMD) method has initialized a very active research line in advanced and adaptive
data analysis. This method was first proposed by Huang et al. in [97] and refined in [98]. It has
good numerical performance in decomposing a class of superpositions of oscillatory components and
has been widely used in various applications, even though the mathematics behind this method
is still unknown. However, the good properties of the EMD method are fragile. It is well known
that EMD methods are not robust against noise. Therefore, synchrosqueezed transforms with well-
developed mathematical background and reasonable robustness are important alternatives. This is
illustrated in a recent review [I53] by comparing several advanced tools for spectral estimations, e.g.,
the EMD method, the short-time Fourier transform, the SSWT, some basics pursuit method and
some matching pursuit method. We expect synchrosqueezed transforms can provide new insights
for oscillatory component analysis to help us understand the nature, since in some cases the EMD
method would give misleading results [178], [182].

Statistical literature on oscillatory estimation is well developed, but a multiscale oscillatory
estimation with a possible trend is perhaps more recent. Some existing models, e.g., the seasonal
auto-regressive integrated moving average [16] and the trend and seasonal components algorithm
[46], focus on forecasting. They might not be suitable for time-varying historical components as
discussed in [32]. Some methods are based on a global assumption with precise known properties of
the signal and perform a generalized likelihood ratio test. Global assumptions could be too restrictive
in analyzing local information hidden in a general time-varying component. The resulting statistics
might be sensitive to the length of the given signal. Some models are fully non-parametric and local
in nature. They can even detect an oscillatory component from totally unknown and fully noisy
data via the chirplet transform and path pursuit [20]. However, they are focusing on detecting and
analyzing only one oscillatory component and cannot be applied to more complex data. Hence, the
non-parametric robust analysis tool for multiscale components discussed in this thesis is new and

adaptive to a general problem.

The rest of this chapter is organized as follows. Sections to present the main theorems
for the 1D synchrosqueezed wave packet transform, the 2D synchrosqueezed wave packet transform
and the 2D synchrosqueezed curvelet transform, respectively. In each of these sections, the robust-
ness of synchrosqueezed transforms to bounded perturbation and generalized stationary Gaussian
noise is analyzed. These theorems can be generalized to show the robustness of higher dimensional

synchrosqueezed transforms.
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3.2 1D Synchrosqueezed Wave Packet Transform (SSWPT)

Theorem shows that the instantaneous frequency information function vs(a,b) can estimate
Ny ¢, (z) accurately for a class of noiseless superpositions of IMTs if their phases are sufficiently
steep. This guarantees the well concentration of the synchrosqueezed energy distribution Ty (v, b)
around Ny (z). If the superposition is perturbed slightly by a contaminant, Theorem below
shows that these conclusions are still valid with a reasonable error determined by the magnitude of
the perturbation.

In what follows, when we write O (+), <, or 2, the implicit constants may depend on M, m and
K.

Theorem 3.2.1. Suppose the mother wave packet is of type (e,m), for any fized ¢ € (0,1) and

any fized integer m > 0. Suppose g(x) = f(x) + e(x), where e(x) € L™ is a small error term that
1_

satisfies ||e]| L < /€1 for some €1 > 0. For any p € (07 %], let 6 = /e + €} P Define

Rs = {(a,b) : |Wy(a,b)| > |a| >33},

Sé = {(avb) : |Wg(a7b)| > 6}’

and
Zy ={(a,b) : la — N}, (b)| < la*}
forl1 <k < K. For fixed M, m and K, there exists a constant Ny (M, m, K, s, €) ~ max {eﬁ—ll,el%ls}
such that for any N > No (M, m, K, s,€) and f(x) € F (M, N, K, s) the following statements hold.
(i) {Zk : 1 <k < K} are disjoint and S5 C Rs C Uy <p< i Zi;

(i) For any (a,b) € Rs N Zy,
|vg(a,b) = Ni¢y,(0)]
| Nidf (b))

SVe+ el

(iii) For any (a,b) € Ss N Zy,
[0g(a,5) — Nedh )] _ v+ e
NGOl N

We introduce the parameter p to clarify the relation among the perturbation level, the threshold
and the accuracy for better understanding the influence of perturbation or noise. For the same
purpose, a parameter ¢ will be introduced in the coming theorems. Theorem [3.2.1] shows that the
instantaneous frequency estimates provided by the SSWPT are still reasonable when the given signal

is contaminated by a bounded perturbation. Actually, if the threshold ¢ is larger, e.g., 6 > /<, the
NG

N

that the instantaneous frequency can be better estimated by selecting the wave packet coefficient

relative estimate errors in (i7) and (4i7) are bounded by /€ and respectively. This also implies

with the largest magnitude. However, when the perturbation is overwhelming, e.g., the wave packet
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coefficients of a component are below the threshold in (i4), it is difficult to estimate instantaneous

frequencies.

Proof. We only need to discuss the case when a > 0. We estimate several inequalities first. By the

definition of the wave packet transform of e(x), we have

We(a,b) = aiS/Q/ e(a"y+1b) w(y)e*%ml_sydy.
R
Hence,
[We(a,b)| S lleflLea™"? < \Jera™/2. (3.2)

Applying the same strategy, we have
0y We(a,b)| < Ve (alfs/2 + a5/2) : (3.3)
If (a,b) € Rs, then [Wy(a,b)| > a=*/25. Together with Equation (3.2), it holds that
Wy(a,0)| = [Wr(a,b)] = [We(a,b)| = a*/2 (6 — v/er) = a™*/?Ve. (3.4)

Hence, Ss C Rs C R., where R, is defined in Theorem and is a subset of UlgkgK Zy. So, (1)
is true by Theorem |2.1.8
Now, let us prove (i7). Since Rs C R, (a,b) € Rs N Zj, implies (a,b) € R. N Zy. Hence, by
Theorem [2.1.8] it holds that 05(a,b) — Nudl ()
,0) — Ny
SO IR

(3.5)
when N is larger than a constant Ny (M m, K, s,¢€) ~ max{eﬁ,e%}. Notice that (a,b) € Zj
implies a ~ Nj. Hence, by Equation (3.2)) to ,

|vg(a, b) = Nk, (0)]
| Nk, (0)]

Wy (a,b) Wy (a,b)
< |vf(a,b) — Ni¢).(b)] |27fmff(ab Q;in(a,b)l
- | N, (b)] [N, (b)]
5 \EJF 8be(a,b)We( ) abW (a b)Wf a, b ‘ :
Wi(a,b)Wy(a,b) [Nk ¢y, (b)]
< W (aab) + 8bWe(aab)
~ Wy(a,b) 4(a,b)
\/* \/*( 1— s/2+as/2)
<
~ f+ Npda~ s/2
S \/E-F%

= \/g+611)7
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when N > Ny. Hence, (i) is proved. The proof of (ii7) is similar. If (a,b) € S5 N Zj, then
|[vg(a,b) — Nk}, ()]

| Ny, (b)]
Wy (a,b) Wy (a,b)
|v7(a,b) = Np (0)] | |amawy ey ~ 2wy (a) |
| Ny}, (b)] | N}, ()]
Ve n Ver " Ve (a2 4 a??)
N;/Q as/25 Nk6
Ve i Ve
NI:/Q as/2§
Vet e
s/2
N/

IN

A

A

when N > Nj. O

Next, we will analyze the robustness properties of the SSWPT in the presence of random per-
turbation. [76] 114, 134 [154] [161] are referred to for basic facts about generalized random fields
and complex Gaussian processes that are used throughout this chapter. To warm up, we start with
additive Gaussian white noise in Theorem [3.2.2] and extend it to a general zero mean stationary
Gaussian noise in Theorem Let n be the dimension of given data. n = 1 in this section and
n = 2 in later sections. If we fix a probability space (R", 1) and assume that L?(R", ;1) is separable,
a stationary Gaussian process e on R" is an L?(R", uu)-valued distribution [154], i.e., a continuous
linear functional in D’(R™, L?(R™, ;1)) such that

e: Cg°(R™) — L*(R™, ),
which can be continuously extended to
e: L'NC"(R") — L*(R™, p),

for some r € N or » = oo depending on e. We assume that r is small enough such that the family of
wave packets we constructed and their derivatives belong to C"(R™). Suppose e has a mean functional
T:L'NC"(R") — L' NCT(R") and a covariance functional R : L* N C™(R"™) — L' N C"(R"), then
we have

1. For any finite collection {fx} C L' N C"(R™), {e(fr)} are jointly Gaussian variables and their

joint distribution is translation invariant for all translates of f;

2. Ele(f)]=Tf and E {6(f1>6(f2)} = (f1,Rf2), where (,-) is the L? inner product.

Gaussian white noise is a special case of stationary Gaussian processes with 7 = 0 and R being

the identical functional. For the convenience of notations, for any wave packet wgqp(x), e(wqp) and
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e(Opwap) are denoted as We(a,b) and 9,W,(a,b), respectively. We assume that e has an explicit

power spectral function denoted by €(¢). || - || will represent the L? norm.

Theorem 3.2.2. Suppose the mother wave packet is of type (e,m), for any fixed € € (0,1) and any
fized integer m > & +4. Suppose g(x) = f(x)+e, where e is zero mean Gaussian white noise with

a variance e}Jrq for some g > 0 and some ¢; > 0. For any p € (0, %] , let 6 = /e+ e%_p. Define
Rs = {(a,b) : [Wy(a,b)| = a*/?6},

S(S = {(avb) : |Wg(a7b)| > 6}7

and
Z ={(a,b) : |a — Ny¢j,(b)| < a®}

for 1 <k < K. For fitred M and K, there exists a constant No (M, m, K, s, €) ~ max{e#—ll,el%ls}
such that for any N > No (M, m, K, s,€) and f(x) € F (M, N, K, s) the following statements hold.

(i) {Zy: 1<k <K} are disjoint.

(ii) If (a,b) € Rs, then (a,b) € U <j<x Zr with a probability at least

1—e 0N 4o ;1 .
szn( —s)

(i) If (a,b) € Ss, then (a,b) € U, <p<x Zk with a probability at least

1 e lwl™ 4 o <€> '
m(l—s
N9

() If (a,b) € Rs N Zy, for some k, then

|vg(a,b) — Nidy,(0)]
| Vi), (0)]

SVeted

is true with a probability at least

(1 B E—O(N,f*‘”’se;q)) (1 _ e—O(N;ZS’ZEIQ)> +0 <W> .

(v) If (a,b) € Ss N Zy, then
[vga,) = Nugh0)] _ v+
A
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is true with a probability at least

(1- o) (1-eo@aM) 10 (W) '

Proof. Step 1: we prove this theorem when the mother wave packet is of type (0,m) first, i.e.,
compactly supported in the frequency domain.

Since wqp and Gywgp are in L* N C™ L W, (a,b) and 9,W,(a,b) are Gaussian variables. Hence,
Wy(a,b) = Wy(a,b)+We(a,b) and 9yWy(a,b) = O,Wy(a,b)+0,We(a, b) can be understood as Gaus-
sian variables. Furthermore, We(a,b) and (W, (a,b), W, (a,b)) are circularly symmetric Gaussian
variables by checking that their pseudo-covariance matrices are zero. By the properties of Gaussian
white noise, we have E [W.(a,b)] = 0,

E [We(a, bW, (a, b)} - E}W/Rasw (a*(z — b)) w (a*(z — b))da = e T9|Jw]]?,
and

E [We(a,b)We(a,b)] = ;™ (wap, Wap) = €, (Wap, Wap) = €} /R Wap (€)Wap(—E)dE = 0.

——

The last equality holds because supp (wab(ﬁ)) N supp (wg(?f)) = (). Similarly, we know
E[9,W.(a,b)] = E [(abwe(a, b))ﬂ = E[8,W.(a,b)W.(a,b)] = 0,

E [0yWe(a, )0, We(a,0)| = e} Dy, Oyrwan) = e}V (2micis, 2micions)

and
E [We(a, BB W, (a, b)} = P (wp, Dywan) = €T (Wap, 2miETp).

Hence, W,(a,b) and (W(a,b), 0W,(a,b)) have zero pseudo-covariance matrices and they are circu-

larly symmetric. Therefore, the distribution of W, (a,b) is determined by its variance as follows

— (14 —
e—er 0z 2 w]| 72

mey Hwl]|?

If we define
v << @ (Wa, 2mi€T0s) >

2miWab, Wap) (27§ Wab, 27i§Wab)

then ; 79V is the covariance matrix of (W, (a, b), 3, W,(a, b)) and its distribution is described by the
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joint probability density

6_61—(1+(1)Z*V—12

WQe?(Hq) det V'’

57

where z = (21, 22)T7 T and * denote the transpose operator and conjugate transpose operator. V is

an invertible and self-adjoint matrix, since W, (a,b) and 9,W,(a, b) are linearly independent. Hence,

there exist a diagonal matrix D and a unitary matrix U such that V—! = U*DU.

Part (¢) is true by previous theorems. Define the following events
Gr = {IWela,b)] < a2y},
Gy = {|[We(a,b)| < e},
Gy = {|oWe(a,b)] < ver (/2 4 a*/?) |

[ legle,b) — Nugh®)] }
Hi { A A S

and

_ [ lvg(a,b) = N (0)| _ Ve+ e
Jy, = S ;
| Nk, (b)) N/

for 1 < k < K. To conclude Part (i¢) to (v), we need to estimate the probability P (G1), P (G2),

P(G1NGs), P(GaNGs), P(Hy) and P (J). By the calculations above, we have

P(Gy) / efe;<”">|m\2|\w|r2d
1 = 21
ml<a—szye me

—s/2
e lwl? Jo

_s/2 —q/2
a b/2€1q/‘

Jw] 7! ,
= / 2re~" dr
0

—a e 9 |wl| "2
1= emata ull

and similarly

Lo _
e—er TV 22 |w]| 72

P(Gz)Z/ G =1
i<y mer w2

We are ready to summarize and conclude (i7) and (4i¢). If (a,b) € Rs, then

—erlwl| 72

We(a,b) + W(a,b)| > a=*/? (e}/“’ + \/E) .

(3.6)
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If (a,b) ¢ UlSkSK Z},, then by Lemma [2.1.10

Wy (a,b)| < a2 (3.7)

Equation (3.6) and (3.7) lead to [We(a,b)| > a=%/2,/e1. Hence,

Plan¢ U z gp(|we(a,b)|za*8/2\/a) —1-P(G).
1<k<K
This means that if (a,b) € Rs, then (a,b) € U;<p<x Z with a probability at least P (G1) =
1—e ™ =1- e_O(N':SG;q), since a ~ Ny if (a,b) € Z;. So, (ii) is true. A similar

argument applied to (a,b) € S5 shows that (a,b) € U, <<y Zi with a probability at least P (G2) =

—a"%e; lw

1— e~ 'lIwl™* Hence, (iii) is proved.
Note that any rotated polydisk of radius 7 in (21, 22) € C? contains a smaller polydisk of radius

271/2p that is aligned with the z; and 2z planes. If we define a transform 2’ = Uz and introduce
notatigons551 = a2\ fe1, 0y = \Je1, 03 = (a'™/2+a*/?) Je1, dy = miﬂ{%v%h and dy =
min{j%, 735}, then

_61—(1+Q)Z*V—1

P(G1 N Gg) = / -
{|z1|<81,|22]1<03} 7T2€?(1+q) det V

6*67<1+Q)(D11\zﬂ2+D22\z§\2) o
= dzydzy
{lz11<61,]22]<63}

26207 et v

e—ei””(Dmm +Da2|24?)
/ dzjdzb
{12 12+ |2 <243}

7r2e§(1+Q) det V

e TP (DulAP4Daln)
/ dz1dzy
{lz11<dy,|z5]<d1}

7T2€§(1+q) detV

4 dy 13117 dy 7D22T§
1+q 1ta
= ST / rie drl/ roe 1 dry
e PdetV Jo 0

_ Dy;df _ Dypd?
T T
_ 1—¢ €1+q 1—¢ €1+q ’

-1 _
_51( +a) ey -1,

e R ~ D2l
P(GgﬁGg,):/ - dndm>|l—e 9! 1—e <'' |.
{|z1]<d2,|z2|<d3} 7T2€§(1+q) detV

dz1dzo

Y

Y

and similarly
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Suppose that Z is a real random variable with a probability density function h(§) = o) then

@l

Dy’ Dy = det(V)

P 8 (3] R A AN (3| A
e </( o - ([0 i df))

472 || ||*Var [a*Z + a

~ %,
and
D11+ Dy = det (V1) (||@]) + (27i€Wap, 2miWap))
1+ 472K [(aSE + aﬂ
= a25
—_ 1—5\2
~ E[(:+a )}
~ a2(1—s).

This implies D11 ~ a2~%) and Dyy ~ a~2. Therefore,

_ Dy1d? _ Dyyd?
P(G1 n G3) > (1 —e IFa > (1 _e eita > _ (1 o 670(a2*356;‘1)> (1 B efO(a’S’Qefq)> ,

and

Dy,d3 Dggd3
P(G2NGs) > (1 e atd ) <1 _e ot ) _ (1 B efo((ﬁ—?se;q)) (1 _ efo(a‘zef")) ]
By Theorem if (a,b) € Rs N Zj, for some k, then
P(Hy) > P(HyG1NGs) P(GiNGs) = P(G1NG3) > (1 . e*o(az‘“ef")) (1 - e*o(a‘”efq)) :
Note that a >~ Ny when a € Zj, then
P(Hy) > (1 - e—O(Nf’“efq)) (1 - @—O(N;ZS’Zefq)> ,
Similarly, if (a,b) € Ss N Zj for some k, then
P(Ji) > P (Je|GaNGs) P(GaNGy) = P (G2 N G3) > (1 - e-O(Ni’“ffq>) (1 - e—O(Nézef">) .

These arguments prove (iv) and (v).
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Step 2: we go on to prove this theorem when the mother wave packet is of type (e,m) with

m > 12
analysis and it keeps the error caused by the non-compact support of w reasonably small.

The sketch of the proof is similar to the first step, but We(a,b) and (We(a,b),0We(a,b)) are
Gaussian variables not circularly symmetric. Suppose they have covariance matrices C7 and Cs,
pseudo-covariance matrices P; and P, respectively. We can still check that they have zero mean,
C1 = e, T|w|? and Cy = 6,79V, where V is defined in the first step. By the definition of the mother

wave packet of type (e,m), we have

|E [We(a,b)We(a, b)]]
< et / T (€T (—€) | dé
< o [0 (e—at) B (€ -0 e
R
< ( [ goe-aat-e-a e [ |@(£—a1‘s)@(—§—a1‘s)]d§>
£>0 £<0
1+4+q
€ € ~ (e 1-s N A s
< =g ([ e [ (@(-e—at)ac)
2¢ltde =N
= s e a

Similarly, we know

E[@We(a,0)’]] 5 aj(llsq /|£2 &) de,

1+
E [0, W, (a, )W, (a, ]| < 2T © [ leatede.

1 m(1—s)
E {&,We(a, b)OyWe(a, b)] = e%+q<5bwab, OpWap) = e%+q<27ri§@, 271 Wap)

and
E [We(a,)0We(ab)] = €™ (wap, Oytwas) = €} (ap, 2.

1+
€1

Hence, the magnitude of every entry in P; and Ps is bounded by O (%) Since the covariance

matrix of (We(a,b), W (a,b)) is
¢, P
v (0 )
LG

according to Equation (27) in [134], the distribution of W, (a,b) is described by the following distri-

bution ) .
e % (21,20)Vy " (21,27)

my/det V1 ’
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which is
C1|z1|2—9ie(P1*z%)
B v

T/ 012 — P1P1*

e

Notice that
Cy

P1P1*) ( €2 >
140 ) =140 (),
ol 0

2 * 22
ol oﬂiTQ(Pl D10 ().
and ct ¢
or =140 ()
Hence,

e 2 GLAVT (22T pme Y 2w o ez
= 1—|— s e— .
my/det Vi 71'6%+q||w||2 G}Jrqam(lfs)

By the same argument, the covariance matrix of (W,(a,b), 0sW,(a,b), W (a,b), oW (a,b)) is

Cy P
Vy = 2 2
Py O3

)T, where T" and * denote the transpose operator and conjugate transpose operator,

Let z = (21, 22
respectively. Then the distribution of (We(a,b),9We.(a,b)) is described by the joint probability

density

e—3(21.,25.21,22) V5 '(z1,22,27,23) T
m24/det V4

Notice that Cy = ¢;7PV and V has eigenvalues of order a2 and a

(3.8)

2(s=1) Hence, C5 has eigenvalues

of order e%+pa2 and eﬁpaQ(s’l). Recall that the magnitude of every entry in P, is bounded by
1+
O (Cfml(ilq_e)) This means that V5 is nearly dominated by diagonal blocks Cs and C5. Basic spectral

theory for linear transforms shows that

Vy = G +P,
i ©)=) "

where P, is a matrix with 2-norm bounded by

1+q
0 ( € € ) O(e}”az(s’l))*Q -0 (61—(1+q)6a(m74)(371)) .

am(1—s)
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elta

=0 > 5 ensures the above spectral analysis. Since every entry of P, is bounded by O (aml(il_e)»

—4

3

3

) 6111(1+q)€
det Vo = (det C2)” + O porm sy vl

where the residual comes from the entry bound and the eigenvalues of Cy. Hence (3.8)) is actually

—(144q) *y,—1 1% % x T
e~ €1 2*V zefg(zl,z2,z1,zQ)P£(z1,22,z1,22)

7T2€?(1+q) \/(det V)2 + O (m)

By the same argument in the first step, we can show that there exist a diagonal matrix D =
diag{a*'~*), a2} and a unitary matrix U such that V=1 = U*DU. Part (i) is still true by previous
theorems. To conclude Part (i) to (v), we still need to estimate the probability of those events
defined in the first step, i.e., P (G1), P (G2), P(G1NG3), P(G2NG3), P(Hy) and P (J;). By the

calculations above, we have

—3(z1. 20V (z2]) "

€
P(G) = /
( 1) |z1|<a=s/2\/ex F\/m

e=ei TPz ) 2 elz1]?
Ttq 1 + O 1_,'_(171 dZ]_
|z1]<a=3/2 /e S [Jw]|? € am(1=9)

—s/2
2 @ Vel € _—(+a) 2y, —2
s +O| — |43 € rwl ™ g
14+q 2 " 1+q_m(1—s) e "
e lwl|* Jo €& a

le

0= ey w7 2 defulf2 fo e el
o —r € U}” ! 3 72
= /0 2re™" dr + O (am(ls))/o ree” " dr
_ _ _a—se—q”wH—Q €

= 1l—e 1 +0 (7am(175) ,

and similarly

P(Gy)=1—e'lI7 40 (;) _
aqm(1—s)
Hence, we can conclude (ii) and (ii¢) follows the same proof in the first step. Next, we look at
the last two part of this theorem.
Recall that we have defined a transform 2z’ Uz and introduced notations §; = a5/ 2\/5 ,

0y = /€1, 03 = (al’s/2 +a5/2) Ve, di = min{%, %}, and dy = min{%,%} in the first step.



CHAPTER 3. ROBUSTNESS OF SYNCHROSQUEEZED TRANSFORMS 63

Using the same notations and a similar argument, we have

P(G1NGs)

e— 3 (31.25.21,22) V5 z1,22,27,23) T
= d21d22
{lz11<61,]22]<d3}

m2y/det Va

76;<1+4)z* V-

1267%(ZI,Z;721722)P€(2’1,22,ZT7Z;)T
{lz1]<61,]22|<ds} 7T2€§(1+q)\/(detV) +O(m)
Since det 1
et €

\/(det V)2 + 0 ()

we can drop out the term O (m) in (3.9), which would generate an absolute error no more
than O (m) in the estimate of P(G7 U G3). Let
(ZT7 257 21, ZQ)PE(Zla 22, Zika Z;)Ta

9(z) = )

then

P(G1NGs)
76;(1+Q)Z*V_1zeg(z)
/{z1<51,22<53} WQE?(I-HI) detV

_E;(1+q) (Dll|Zi|2+D22|Zé|2)eg(U*Z,)

Q

le dZQ

dzjdzb

Il
—

2(1
{I21] <01, 22| <03} 262079 det V
_61_(1+q)(D11‘Z£‘2+D22\Zé‘2)eg(U*zl)

!/ /
dz1dz

\Y
\

2(1
{12} 241252 <2d2} 7262079 det V
75;(1+Q)(D11‘Z£‘2+D22\zé‘2)eg(U*z/)

2 dzydz}
B /{zg<d1,|zg<d1} w2629 qet v L
! R R e R
- W/ / / / rirge 1 e 1 e9THILTRRNd0, dfydr dry
m2€] detV Jo Jo Jo Jo

2 2
Dyi7ry Doors

1 d1 d1 27T 27 _ e _ 22 B
T 2D gy / / / / rirge e (eg“l»"mv‘@ —1) df1dOdrdry
mée] e o Jo Jo Jo

_ D114} _ Dgpd}
+ <1 —e ) (1 —e ' ) , (3.11)

where §(r1,01,72,02) = g(U*2"). Recall that the 2-norm of P, is bounded by O (el_(Hq)ea(m"l)(s’l)) )
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Hence,
9(r1,01,72,02)| <O ( (e (m74)(S71)) (|21]* +22/*) = O (el_(Hq)ea(m*‘l)(S*l)) (ri+r3).

Therefore, the first term in (3.11)) is bounded by

O(ea(m_4)(3_1)) dy pdy —Dﬂj _D%_z:q% , ,
3(1+q)detv / / rirge 1 e v (r{4r3) dridrs

11
A/ e 1+qd1 A/ e 1+qd1 2 T‘% _7_% —7‘3
1T + e e "2dridrs

a(m 4)(1 s) D22
€ 2
< 0O 2 2 —1‘1 “T2drd
- (DQQ(J,(M4)(1S)> ~/O A rir2 (7’1 + TQ) € € r1a7T2
€
= 0 (Gemaaas) - (3.12)

The analysis in (3.10) and (3.12)) implies that

D11d3 -~ Dyod? ]

elta 1+q
P<G1UG3)Z<1_6 1 )(1_6 1 >+O(a(m4)(13)2).

and similarly
P(G G ) / ei%(ZI’Zg’Zl’22)V2_1(21122,ZT’Z§)T dzid
201G 21022
{|z1|<82,|22| <83} m24/det V4
>

7D11d% 7D2242
(1‘6 *H><l‘e 8 )*0(4;15)2)

The rest of the proof is exactly the same as the one in the first step and consequently we know this

theorem is also true for a mother wave packets of type (e, m) with m satisfying m > %_s + 4. O

Thus far, we considered the robustness to small perturbation and Gaussian white noise. Next,

we will show that Theorem [3.2.2] can be extended to a broader class of colored noise.

Theorem 3.2.3. Suppose the mother wave packet is of type (e,m), for any fized € € (0,1) and any
fized integer m > =< + 4. Suppose g(x) = f(x) + e, where e is a zero mean stationary Gaussian
process. Let €(&) denote the spectrum of e, maxe [€(€)| < €' and M, = max¢| <1 €(a*¢ + a). For
any p € (0,3] and ¢ > 0, let 6, = (2 P/t + /¢,

Rs, = {(a,b) : |[W,(a,b)| > a=*/%8,},

S5, = {(a,b) : [Wy(a,b)| > da},
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and
Zr, = {(a,b) : |a — Ny¢j,(b)| < a”}

for 1 <k < K. For fitred M and K, there exists a constant No (M, m, K, s, €) ~ max{e%,e%}
such that for any N > No (M, m, K, s,€) and f(x) € F (M, N, K, s) the following statements hold.

(i) {Zy: 1<k <K} are disjoint.

(ii) If (a,b) € Rs,, then (a,b) € Uy <p<x Zi with a probability at least

. _O(NfSMJQ/(1+Q)) €
1 € * + o (Nm(ls) ’

k

(iii) If (a,b) € Ss,, then (a,b) € U,<j<x Zk with a probability at least

1— 670(]\/[(1—q/(1+q)) +0 ; .
N]zn(l—s)

(iv) If (a,b) € R5, N Zy, for some k, then

[oy(a.b) — Ny (b)] _ :
| < Ve 4+ Mp/(H)
Ny ()

is true with a probability at least

B _o(NS*SSMJQ/(1+Q)))( _ —O(NT“"*QM;(I/(IJFQ))) . —
(1 e k 1—e k +0 ngm—4)(1—s)—2 '

(v) If (a,b) € S5, N Zy, then

|vg(a,b) — Nip(0)| - \r—s/2 p/(1+4)
o SN (Ve )

18 true with a probability at least

(1 _ e_o(leko(:q/(lJrq))) (1 _ e—O(NIZQM;q/(1+q))) +0 ( € > .

N}gm74)(175)72

Proof. The proof of this theorem is nearly identical to Theorem[3.2.2]but for the covariance functional
of the noise term which is now a general functional R : L' nC™~! — LI nC™~1,
Step 1: In a similar structure, we prove the case when the mother wave packet is of type (0, m).
We can still check that Wy (a,b) = Wy(a,b) + We(a,b) and 0,W,(a,b) = 0,W;(a,b) + 0 We(a,b)



CHAPTER 3. ROBUSTNESS OF SYNCHROSQUEEZED TRANSFORMS 66

are Gaussian variables. Furthermore, W, (a, b) and (W, (a,b), 9sW,(a, b)) are still circularly symmet-
ric Gaussian variables. Since the Gaussian process e is zero mean, we have E[W,(a,b)] = 0 and
E [0pWe(a,b)] = 0. Note that R can be “diagonalized” to a functional D by the Fourier transform
denoted as F in the sense that

(f1.Rf2) = (f1, F*DF fo) = (f1,6f2)
for any f; and fo in L' N C™~!. Hence,
E [We(a, b)m} = (Wap, Rwap) = (Wap, €Wap) = (D, €(a’¢ + a) )
and
E [We(a, b)We(a,b)] = (wap, Rivap) = (Wap, 6(—&)Wab(—€)) = | Wap(&)Wap(—E)E(—E)dE = 0.

R

2

If we introduce o* = (w,e(a*¢ + a)w) for simplicity and a random variable = with a probability

density function o~2|w|?€(a*¢ + a), then by a similar argument, we know

E [(abwe(a, b))ﬂ = E[8,W,(a,b)W.(a,b)] = 0,

E [0, W (0, )8 We(0,8)| = (i, ROywas) = 410°E (0= + %]

and
E {We(a, b)Op,We(a, b)} = (Wap, ROpwWap) = 2mic’E [a*E + a] .

Hence, W,(a,b) and (W(a,b), 0W,(a,b)) have zero pseudo-covariance matrices and they are circu-

larly symmetric. Therefore, the distribution of W, (a,b) is determined by its variance as follows

-2 2
e 9 |21|

To?

If we define
V= 1 2miE [a°E + a
-\ —2miE [a*E4a] 472E[(a*E+a)])’

then o2V is the covariance matrix of (W,(a,b), 9W.(a,b)) and its distribution is described by the
joint probability density

—0722* VTl

e

m2otdetV '

where z = (21,25)". V is an invertible and self-adjoint matrix, since We(a,b) and 8,We(a,b) are

linearly independent. Hence, there exist a diagonal matrix D and a unitary matrix U such that
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V-1 =U*DU.

Part (i) is true by previous theorems. Define the following events
Gy = {|We.(a,b)| < a=3/2 M}/ C+20}

G = {[We(a,b)| < M,/ @20},

Gy = {|8We(a,b)| < MY/ @+20 (a1—8/2 T as/2)},

_ |U!J(a7b) - Nk¢;¢(b)| /(14 )}
Hy = < Mp/(+a
‘ { NeaL) S Vet M !

and

_ [vg(a,b) — Ny, (b)] —s/2 /(1+q)
Jk_{ § ‘Nk(ﬁ%(b” SJNk (\ﬁ—i_Mé) +q) )

for 1 < k < K. Now we estimate the probability P (G4), P (Gs2), P(G1 NG3), P(Gs NG3), P (Hy)

and P (Jy). By the calculations above, we have

-2 2
e "lnl g MM () =2 —Ofa—s -9/ 1+
P(G,) = C dn=1-e @ M 5 0T, ),
or|<a—s/2MY/ @20 o2

and similarly

P(Gy) > 1— e OMZTT)

We are ready to summarize and conclude (i) and (ii7). If (a,b) € Ry, , then
(W (a,b) + Wp(a,b)| > a=>/2 (M(S%*”)/ (+a) o \@) . (3.13)

If (a,0) ¢ Uy<p< Zk, then by Lemma [2.1.10
Wy (a,b)| < a=*/%. (3.14)

1
Equation (3.13)) and (3.14) lead to |[W,(a,b)| > a—s/2 g2 7P/ (), Hence,

Plang U z) <P (Weab)za2u3700) 21 pay).
1<k<K

This means that if (a,b) € Rs,, then (a,b) € U;<p<x Z With a probability at least P (G1) >
1 — e Oa™" M) g e_O(N’;SMJQ/(HQ)), since a ~ N if (a,b) € Z. So, (ii) is true. A
similar argument applied to (a,b) € S;, shows that (a,b) € ;<< Zr with a probability at least

P(Gy)=1- gm0 (ML) Hence, (iii) is proved.
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If we introduce notations §; = a‘s/QM;/(%zq), = M;/@Hq), 03 = (al_s/2 + aS/Q) M;/@”q),
di = min{\%, %}, and dy = rnin{%7 %}, then it follows from the same proof in Theorem
that

_oT2ry 1,
e
F (Gl a G3) - / 7d21d22
{1211 <61,| 22| <85} T2otdetV

_Dyd} Dggd?
1—e 02 1—e" 702 ,

v

and similarly

—2 _xy,—1
—0 2"V Tz
(&

D143 Doy d3
P(G2 OG?,) :/ szleQ > (1 — e o2 ) <1 e ) )
{|21]<62,|22| <55} ToO*detV

Note that

D' Dyt = det (V) = 472 Var [E]
and

1 +47°E [(aSE + a)z]

Du+Da = 472a?sVar [E]

We assume Doy < Dy1. Since [E[Z]| <1 and E [Z2] < 1, then

det (V1) 1 1 9
~ = ~ a2
D1y det V' (D11 + Dgg) 1+ 472K [(CLSE + CL)2}

22 —

and
1 +47°E [(aSE + a)z]

Dy > >
" 472625 Var =] ~a

2—2s

This implies

Dy d? Dygd?
P(GlﬂGg) > (1—6 o2 )(1—6 o2 )

(1 _ e_o(a273sMa*q/(1+q))) (1 _ e_o(a*S*ZI\/[(:Q/(IJrq)))

vV

)

and

Dqqd2 Dood2
P(GNGy) > (1_61:22)(1_6 )

(1 _ e_o(a272sM;q/(1+q))) (1 _ e_o(a*2M;tZ/(1+q))) )

vV
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By Theorem [3.2.1] if (a,b) € Rs, N Z, for some k, then
P(Hg) > P(Hy|GiNG3) P(Gi1NGs) =P (G1NG3).
Note that a ~ N when a € Z, then
Pt > (1 - 000D (1 gm0 )
Similarly, if (a,b) € Ss, N Z for some k, then

P(Jy) > (1 — efo(N,f’QsMJq/(IH))) (1 _ efO(Nk*?M;q/(Hq))) .

These arguments prove (iv) and (v).

Step 2: We discuss the case for a mother wave packet of type (e, m) for m > % + 4.

Similar to what we have already seen in the second step of the proof of Theorem Wy(a,b) =
Wi(a,b) + We(a,b) and 9,Wy(a,b) = OyWy(a,b) + OyWe(a,b) are Gaussian. (We(a,b), yWe(a,b))
and We(a,b) are nearly circularly symmetric Gaussian variables. Using the same strategy in Step 2
in the proof of Theorem and the notations in Step 1 in this theorem, we can still check that:

1. The distribution of W,(a,b) is well approximated by

6—072|21|2

b
mo?

where 02 = (W0, e(a*€ + a)w).
2. The distribution of (We(a,b),0,We(a,b)) is well approximated by

—2_xy,—1
—0 2"V Tz
e

m2gtdetV ’
where
V= 1 2miE [a®E + ]
—2miE[a*E +a] 4n°E[(a*E+a)])’
2(571).

and V has eigenvalues D5y ~ a? and D' <a

Suppose G1, G2, G3 are the events defined in the first step, then the well approximation here means
that:
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1.
e Zlal? c
P = ey (7)
(Gh) /{Zl<as/2M;/(2+2q)} 102 z1+0 e gy
- 1 e—a*sM;/(Hq)_i_O(ﬁ)g,Q
b 1) Lo ()
am(lfs)
similarly
e} M;q/(1+q) €
P(Gy) >1—e )+O(W)'
2.
670722*‘/712 .
P(GiNG = ¢ T i O(7>
( 1 3) A|21|<51,|22|<53} m204detV #1422 + a(m—4)(1—s)—2

v

_Dnd(‘{ 7D22d% €
<1 —e o2 ) (1 —e oz > + 0 (7a(m—4)(1—s)—2)

. - ,O(az—s.sMa—q/(Hq)))( _ ,O(a—s—zMa—q/(Hq))) ( € )
(1 e 1—e + O PoEEEY R

and similarly

—o 22"V,
P(GaNnGs) = / S ndn+O (;>
{

|z1|<82,|22]|<d03} 7T204 det V' a(m—4)(1—s)—2

_Dndg _D22d§ €
(1 —e o > <1 —e o ) +0 <7a(m—4)(1—s)—2)

Z (1 _ 670(a2—2sM{l—q/(1+Q))> (1 _ e,o(a—QMa—q/(lﬂz))) L0 (

%

€
a(m—4)(1—s)—2 ) :

Following the proof in the first step, it is straightforward to see this theorem is true for a mother

wave packet of type (e,m) with m > 138 + 4. O

Theorem and illustrate that when the sampling rate of a given signal is high enough
such that the wave-like components are relatively smooth in terms of the noise, the SSWPT can
estimate the instantaneous frequencies of these components accurately with a high probability. In
particular, Theorem [3.2.3] says that if the noise spectrum is not overwhelming the wave packet
coefficients of IMTs, the SSWPT can provide accurate estimates with a high probability. Part (i7)
and (477) in the last two theorems demonstrate that the influence of noise can be significantly reduced
with a proper threshold after the wave packet transform and we could obtain useful information with
a high probability. Part (iv) and (v) show that the synchrosqueezing process is able to concentrate

the wave packet representation to the instantaneous frequencies with a reasonable probability after
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properly thresholding. Hence, the essential support of the synchrosqueezed energy distribution helps
to estimate the instantaneous frequencies statistically.

In the above discussion, we have not optimized the dependence of N on e. There are two extra
steps to minimize the lower bound for N. Comparing Definition and Definition [2.1.6] it is
clear that we have allowed fully nonlinearity to IMTs in the previous theorems. The requirement
¢7=1 can be reduced to a constant order if we restrict to a slightly smaller class of IMTs with
weaker nonlinearity. For example, if N < e 1/% or Nj, < e 1/(25=1) then we impose extra condition
o (z)| < eNg o) ()] or |¢}(z)] < eNZ¥ 71 @) ()], respectively. A careful inspection of the proof of
Lemma [2.1.9] and in the Taylor expansion approximation shows that these lemmas are still
true. Hence, the synchrosqueezed transforms remain accurate.

Another step is to look at el%ls, which comes from the decaying estimate of wave packet coef-
ficients W (a,b) when their scales a do not match the oscillation N, of IMTs. If we further take
advantage of the decay speed of the mother wave packet, we will see |W(a,b)| would decay much

faster when this mismatch occurs. For example, a mother wave packet in C™ satisfies that
(&) < Crn (L[N

Since the mother wave packet is decaying rapidly at infinity, we can simply assume that the smooth
amplitude function of the IMT has a compact support large enough and only need to bound |Wy(a, b)|
for b at the support center. Since ¢ € C*°, by the diffeomorphism equivalence in Lemma 2.2 in [49]
by Demanet and Ying, which is also valid for the wave packet transform by careful inspection, it
is sufficient to assume ¢(z) = z. It follows from the discussion in Lemma 2.3 in [49] that we only

require the following bound for previous theorems:

(W(a,b)| < a*/?Cpy (14 |a— N))"™?* <.

N
2M>

€ cannot be too small for numerical purposes and the number of periods of the input data is large

Thus, we see |W¢(a,b)| decays rapidly when a ¢ [ 2MN ] for a reasonable large N. In practice,
enough so that a nonlinear wave-like component is well defined. Hence, the above requirement is
not a main issue.

We close this section with a few extra remarks. First, s € (1/2,1) is essential in those theorems
if we do not impose extra condition on the nonlinearity of IMTs. Second, as pointed out in [I7§],
another advantage of allowing s € (1/2,1) is that a smaller s leads to a better scale resolution to
distinguish two IMTs with close instantaneous frequencies or a sequence of IMTs with instantaneous
frequencies spreading out in the time-frequency domain. We refer to [I78] for a detailed discussion.
Finally, the theorems above provide a new insight that a smaller s yields a synchrosqueezed transform
with better robustness. This new insight is especially important when designing synchrosqueezed

transforms compactly supported or decaying fast in the time domain. Theorem [3.2.2] and [3:2:3] show
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that the parameter m in the mother wave packet has to be large enough, satisfying m > é + 4.
In a special case, if a compactly supported synchrosqueezed wavelet transform (corresponding to

s = 1) is preferable in some application, its mother wavelet is better to be C'*°.

3.3 2D Synchrosqueezed Wave Packet Transform (SSWPT)

We will focus on the robustness of the 2D SSWPT illustrated in the next two theorems. Appendix
is referred to for the proofs of these theorems.

Theorem 3.3.1. Suppose the 2D mother wave packet is of type (e,m), for any fized ¢ € (0,1) and

any fized integer m > 0. Suppose g(x) = f(x) + e(x), where e(x) € L™ is a small error term that
1

satisfies ||| L~ < €1 for some e; > 0. Forp € (0,3], let 6 = /e + €} P. Define

Rs = {(a,b) : [Wy(a,b)| > |a| "6},

Ss = {(avb) : |Wf(a’b)| 2 5}’

and
Zi ={(a,b) : |a — NyVor(b)| < lal*}

for 1 < k < K. For fixed M, m, s, € and K, there exists a constant No (M, m,K, s €) =~

max{em,elfs} such that for any N > No and f(x) € F (M, N, K,s) the following statements

(i) {Zk : 1 <k < K} are disjoint and S5 C Rs C U <p< e Zis

(i1) For any (a,b) € Rs N Zy,
[vg(a,b) — NV (b)|

S Vet el
RAZRC] Vet

(i1i) For any (a,b) € Ss N Zy,

lvg(a,b) — N,V (b)]
INtVor(b)]

SN (Ve ).

Theorem shows that the 2D SSWPT is robust to a bounded perturbation. Actually, if the
threshold § is larger, e.g., § > /<, the relative estimate errors in (ii) and (iii) are bounded by /e
and Nig, respectively. Hence, the local wave vector estimates are better if the wave packet coefficient
with the largest magnitude is selected. However, when the perturbation is overwhelming, e.g., the
wave packet coefficients of a 2D IMT are below the threshold in (i7), it is difficult to estimate its
local wave vector. Next, Theorem will illustrate the robustness properties of the 2D SSWPT

to a zero mean stationary Gaussian noise.
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Theorem 3.3.2. Suppose the 2D mother wave packet is of type (e,m), for any fized e € (0,1)

and any fized integer m > max{%%f:), 138 —|—4}. Suppose g(x) = f(x) + e, where e is a zero

mean stationary Gaussian process with a spectrum denoted by €(€) and maxg [€(€)] < e 1. Define
1_
M, = max¢|<1 €(|a|*¢ + a). For any p € (0,3] and ¢ > 0, let §, = MR/t Ve,

Rs, = {(a,0) : [Wy(a,b)| = [a|~*da},

Ss. = {(a,0) : [Wy(a,b)| = da},

a

and
Zy ={(a,b) : la — NVpdi(b)| < |al*}

for 1 < k < K. For fixed M, m, s, € and K, there exists a constant No (M, m,K,s ¢€) =~

max{e%,e:s} such that for any N > No and f(x) € F (M, N, K,s) the following statements

(i) {Zx:1 <k <K} are disjoint.

(ii) If (a,b) € Rs,, then (a,b) € U << Zi with a probability at least

1— e—o(N;ZSM;q/mq)) L0 € .
Nm(l—s)
k

(i) If (a,b) € Ss,, then (a,b) € U, <j<x Zk with a probability at least

1— e—O(M(:Q/(lJr‘”) +0 ;
Nm(lfs) !

() If (a,b) € Rs, N Zy, for some k, then

lvg(a,b) — Ni.Vor(b)|
|N. Vi (D)

< e+ Mg/(1+q)

is true with a probability at least

(1 _ e*O(N§74SM;(I/(1+Q))) (1 _ 6,0(]\]}:45MG—(1/(1+4))> (1 _ e*O(N;;2725Ma_q/(l+q>))

+0 (W) +0 (N;n_2_€<m+2>s) .

(v) If (a,b) € Ss, N Zy for some k, then

lvg(a, b) — NV (b)|
|NeVor(b)]

SN (ﬁJng/(uq))
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is true with a probability at least

(1 _ e_O(Ng*%Mafq/(lJrq))) (1 _ e_o(N’;2ﬁM(:Q/(1+q))> (1 _ e—O(N,;ZJVI(;q/(lJrq)))

+O (N’irn4)6(ls)2) + O <N;n26(m+2)s) .
—2 —1

We would like to remark that the requirement of Ny (M, K, s,€) ~ max {em,eli} can be
relieved if we impose a weak assumption on the nonlinearity of IMTs, as discussed in the end of

Section [3.2] For example,
[Vag(x)| < eNg|[Vor(x)| and [V2¢y(z)] < eNg*~HV oy ().

Hence, the theorems introduced in this section are multiscale indeed.

Theorem and show that the local wave vector estimates by the 2D SSWPT are ro-
bust against bounded perturbation and additive Gaussian random noise, if a threshold is properly
chosen after the wave packet transform. First, the robustness becomes stronger as s gets smaller.
Second, similar to the 1D case, as we increase the sampling rate of the signal to make IMTSs rela-
tively smoother compared to Gaussian random noise, the SSWPT can estimate local wave vectors

accurately with a high probability.

3.4 2D Synchrosqueezed Curvelet Transform (SSCT)

In some applications such as the wave field separation problem [143] [163] and the ground roll removal
problem [I7, [72] [I85] in geophysics, the IMTs to be analyzed and decomposed would have bounded
supports in space, sometimes even banded supports. This motivates the design of the SSCT as a
better tool to estimate local wave vectors of banded IMTs with close propagating directions in [I84].
As we shall see in the following theorems, the geometric scaling of the SSCT is crucial to obtaining
an accurate estimate of local wave vectors.

To model a wave-like component with a band-shape support, we are going to analyze components

of the form
f(x) = e*(di(ac)*c)?/g2a(x)€2m‘N¢(m)’

where «(x) is a smooth amplitude function, ¢(z) a smooth phase function, and o is a band parameter
that controls the width of the signal.

To understand how large the bandwidth should be in order to obtain accurate local wave vec-
tor estimates by the SSCT, we assume 0 = © (N~") and show that the SSCT gives good esti-
mates when 1 < ¢t and N is sufficiently large. In the space domain, a generalized curvelet at the
scale a = O (N) has a width O (N~"). ¢ > N~ with n < t indicates that the bandwidth o of
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e~ (9(2)=c)*/ ”za(a:)eg’”N ¢() can be almost as narrow as the width of a generalized curvelet that

sharing the same wave number O (N), when N is sufficiently large.

Definition 3.4.1. For anyc € R, N >0 and M > 0, a function f(z) = e_(¢(m)_c)2/”2a(x)eQmNMm)
is a banded intrinsic mode function of type (M, N,n), if a(x) and ¢(x) satisfy

alz) € C™, [Va(z)] < M, 1/M < az) < M,
¢(x) € C%, 1/M < |Vo(z)| < M, |V?¢(z)| <M,

and o> N1,

Definition 3.4.2. A function f(x) is a well-separated superposition of type (M, N,n,s,t, K) if
K
@) =3 fulo),
k=1

where each fi(x) = e’(d’k(x)*c’“)g/"iak(x)ez’”Nd’k(z) is a banded intrinsic mode function (IMT) of
type (M, Ny, n) with Ny > N and they satisfy the separation condition: Ya € [1,00) and V8 € [0, 27),

there is at most one banded intrinsic mode function fi satisfying that
A R, (a-ug — N V(b)) | < 1.

We denote by F (M, N,n,s,t, K) the set of all such functions.

We are ready to discuss the robustness of the 2D SSCT illustrated in the next two theorems. We
refer to their proofs in Appendix B.

Theorem 3.4.3. Suppose the 2D mother wave packet is of type (e,m), for any fired € € (0,1) and
any fized integer m > 0. Suppose g(x) = f(z) + e(x), where e(x) € L is a small error term that
satisfies ||e| < < €1 for some €1 > 0. For any p € (0,3], let 6 = \/e+ ¢} ". Define

Rs = {(a,ab) Wy (a,0,b) | > a—%“(s},

Ss = {(a,0,b) : [W(a,0,0)| > 6},

and
Zy, = {(a,@,b) : |A;1Re_1 (a-up — NpVor(b)) ]| < 1}

for1 <k < K. For fixed M, m, s, t, n, € and K, there exists
-1 =2 =2
No (M, m,s,t,n,¢ K) zmax{el—f«,et*ﬂ,e%—l}

such that for any N > Ng and f(z) € F (M, N,n,s,t, K) the following statements hold.
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(i) {Z : 1 <k < K} are disjoint and S5 C Rs C Uj<p< e Zk-

(ii) For any (a,0,b) € Rs N Zy,

|vg(a,8,b) — NV (b)|

SVete.
RAZRO AL
(i11) For any (a,0,b) € Ss N Z,
[v4(a,6,0) = NV (0)| . —=t
N2 P,
RAZ0] SN * (Vetd)

Theorem [3.4.3|justifies the robustness of the 2D SSCT to a bounded perturbation. Next theorem
below will illustrate its robustness against additive zero mean stationary Gaussian noise.
Theorem 3.4.4. Suppose the 2D mother wave packet is of type (e,m), for any fized ¢ € (0,1)
and any fixed integer m > max{2(11jts),%_t +4}. Suppose g(x) = f(x) + e, where e is a zero
mean stationary Gaussian process with a spectrum denoted by €(€) and maxg [€(€)] < e !. Define

1
M, = max¢|<1 € (RoAL +a-ug). For any p € (0, %} and g > 0, let 6, = éQ p)/(1+9) + v/,

Ry, = {(a,0,6) : Wy (a,0,b) = 0™ F5, },

Séa = {(a79,b) : |Wf(a707b)| > 5(1},

and
Zi = {(a,0,b) : |A; "Ry (a-ug — Nk V(b)) | < 1}

for1 <k < K. For fixed M, m, s, t, n, € and K, there exists
-1 =2 -2
No (M,m,s,t,n,e K) :max{elﬂ,et—n,e%fl}

such that for any N > Ny and f(x) € F (M, N,n,s,t, K) the following statements hold.
(i) {Z: 1<k <K} are disjoint.
(ii) If (a,0,b) € Rs,, then (a,0,b) € U, <j< g Zk with a probability at least
1 _ e_o(]vk—(s-%—t)M(:q/(l‘HI)) + O € .
N]z"(lft)

(i) If (a,0,b) € Ss,, then (a,0,b) € UlgkgK Zy, with a probability at least

1— efMQ—Q/(H—q) +0 ( m((?l_t)> )
Nk
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() If (a,0,b) € Rs, N Zy, for some k, then

lvg(a,8,b) — NV (b)|
|N& Vi ()]

< e+ Mg/(lJrq)

1s true with a probability at least

(1 B e—o(N,f*S*BtM;q/mq))) <1 3 eO(Nk<33+t)M;“/<l+q>)> (1 _ e_o(N,;Q*S*fM;q/uH)))

+0 <N,Em‘4>€“‘”‘2> +0 (W) .

(v) If (a,0,b) € S5, N Zy, for some k, then

|vg(a,0,b) — Nk V()| o —(s+t)/2 1
<N €+ Mp/0+D)
[NeV o (b)] * (ve )

is true with a probability at least

(1 . e,o(Ng*QtMa*lZ/(PrQ))) (1 _ e,o(Nk*?SM(:CI/UJr(I))) (1 . e,o(NIC*?M(:Q/(lJrQ)))

+0 (W) +0 (W) .

Similar to the discussion in previous sections, the requirement for Ny = max {e%,e%,e%}
can be further optimized if we impose extra conditions on the nonlinearity of IMTs and consider the
polynomial decaying of the mother curvelet in the frequency domain.

Up to now, we have proved that the SSCT is able to accurately and robustly estimate the local
wave vectors of banded IMTs, if their essential supports can be modeled by a Gaussian function with
an essential support larger than the width of a curvelet sharing the same order of oscillation. Before
closing this section, we would like to emphasize a new understanding of the results obtained in those
theorems in this section: if the amplitude function of an IMT has a vanishing boundary, then the
vanishing rate can be almost as fast as the oscillation. If an IMT has a sharp boundary, the estimates
provided by synchrosqueezed transforms are reliable at the locations almost O(1) wave lengths away
from the boundary (see Figure right). As a corollary in 1D cases, a similar conclusion is true as
illustrated in Figure [3.1] left.
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2 2 1,//
15 width = O(N-1) 15 width = O(N-n)
0.8 0.8
1 1
05 05 06 06
0 IF = O(N) 0| IF = O(N) width = O(N-n) width = O(N-")
-05 ~05 0.4 0.4
-1 -1
0.2 Local wave number 0.2 Local wave number
-15 -15 —O(N) —O(N)
™ 02 04 06 08 "0 02 04 06 08 % oz 04 o0s o8 1 % oz 04 o8 08 1

Figure 3.1: The reliable estimation area of an IMT with boundaries. Left and middle right: syn-
chrosqueezed transforms can provide accurate estimates at the locations O(N~") away from a
boundary. Middle left and right: if the width of an IMT is less than O(N~7), the accuracy of
synchrosqueezed transforms is still an open problem.



Chapter 4

Discrete Synchrosqueezed

Transforms

4.1 Fast Discrete SSWPT and Mode Decomposition

4.1.1 Implementation

In this section, we describe in detail the discrete synchrosqueezed wave packet transform proposed
mainly following the work in [I82] [I78] with Lexing Ying. Let us first recall the continuous setting.
For a given superposition f(z) of several well-separated components in R? the synchrosqueezed

wave packet transform consists of the following steps:
(i) Apply the wave packet transform to obtain Wy (a,b) and the gradient V,Wy(a,b);

(ii) Compute the approximate instantancous frequency or local wavevector vy(a,b) and perform

synchrosqueezing to get Ty (v, b);

(iii) Use a clustering algorithm to identify the support of the new representation Ty (v, b) of different

intrinsic mode type functions;
(iv) Reconstruct each intrinsic mode type function using the dual frame.

In order to realize these steps in the discrete setting, we first introduce a discrete implementation of
the wave packet transform in the first part of Section The full discrete algorithm will then be
discussed in the second part of Section A few numerical examples will be provided in to

demonstrate the efficiency of these algorithms.

79
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Multi-dimensional discrete wave packet transform

For simplicity, we consider functions that are periodic over the unit square [0,1)? in a d-dimensional
space. Let
X={(n/L:n€zZ’ 0<n;<L,forl<j<d}

be the spatial grid of size L in each dimension at which these functions are sampled. The corre-

sponding Fourier grid is
E={¢ez’: —L/2<¢& < LJ2, for 1 <j<d}.

For a function f(x) € £4(X), the discrete forward Fourier transform is defined by

7€) = 2 3 e @),

zeX

while the discrete inverse Fourier transform of g(¢) € £4(Z) is

1 ,
g(z) = T2 Z 2T (€).
¢ex

In both transforms, the factor ﬁ ensures that these discrete transforms are isometries between
£4(X) and £4(2).

A filterbank-based time-frequency transform is a natural choice to design the discrete wave packet
transform due to the localization requirement of wave packets in the frequency domain. It also enjoys
fast implementation. In order to design a discrete wave packet transform using the filterbank-based
method, we need to specify how to decimate the momentum space and the position space. Let us
focus on the 1D case and first consider the momentum space. In the continuous setting, the Fourier

transform Wy, (€) of the wave packets for a fixed a value have the profile
la| =2 @(|al (€ — a)), (4.1)

modulo complex modulation. In 1D transform, we sample the Fourier domain [—L/2, L/2] with a
set of points a (as shown in Figure [£.1] marked in blue) and associate with each a € A a window
function g,(§) ( see Figure in black) that behaves qualitatively as w(|a|™%(£ — a)) essentially

centered at a. More precisely, g,(€) is required to satisfy the following conditions:

e g,(£) is non-negative and centered at a with an essentially compact support of width L, =

O(lal®); ga(€) decays sufficiently fast outside this essential support;

e gu.(|al*T + a) is a sufficiently smooth function of 7, so that the discrete wave packets decay

rapidly in the spatial domain;
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o C1 < [ga(|a|*T + a)|?dr < Cs for constants Cy, Cy > 0 which are independent of a;

e In addition, for any & € [-L/2,L/2), > o4 l9a(&)|* = 1.

2_

-100 -50 0 50 a 100

Figure 4.1: The 1D sample set A in blue. Each stick represents a point a in A. Each a is associated
with a 1D window function g,(§) in black of size O(a®) in the frequency domain.

In higher dimensional cases, the set A and functions {g,(£),a € A} can be generated by tensor
product using the results in 1D.

One possible way to specify the set A and the functions {g,(£),a € A} is to follow the construc-
tions of the wave atom frame in [49] or the Gaussian wave packets of [I42]. In both constructions, the
parabolic scaling s = 1/2 is used in order to represent the oscillatory patterns efficiently. However,
in the current setting, the proposed wave packet transform requires s € (1/2,1) and hence one needs
to increase the support of ¢,(£) accordingly. We refer to [49] [142] for more detailed discussions.
The above conditions for ¢,(£),a € A also impose a constraint on the sampling density of the set
A. In the frequency plane, the set A becomes denser near the origin and sparser for large £. A
straightforward calculation shows that the total number of samples in A is of order O(L(}=%)4).

The decimation of the position space is much easier; we simply discretize it with a uniform grid

of size Lp in each dimension as follows:
B:{n/LB:nEZd, 0<n; <Lpg, for1<j<d}

As we shall see, the only requirement is that Lg > max,c4 L, so that the discrete wave packets can
form a frame.

For each fixed @ € A and b € B, the discrete wave packet, still denoted by wg(x) without causing
much confusion, is defined through its Fourier transform as

1

Tal€) = e ™ au(e) (42)
B
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for £ € E. In fact, to match the quantity in (4.1]), one should define

Wap(€) = Li/ze*“""fga(g) (4.3)

as it was defined in [182]. However, would lead to weak spectral energy of in the high frequency
domain. A high frequency wave-like component becomes hardly visible after synchrosqueezed trans-
form. Hence, in practice, we adopt the definition in instead of (4.3). Since gq(§) is centered
at a and has a support of width L, = O(]a|®), this function fits into the scaling of wave packets.

Applying the discrete inverse Fourier transform provides its spatial description

1 .
D et (g).

wan(T) = (a7
(L Lp) 7

For a function f(x) defined on z € X, the discrete wave packet transform is a map from ¢5(X) to
l2(A x B), defined by

Wi(a,b) = (wap, f) = (Wa, f) = / wab(€)f(€)dé = Lj/g DO ). (44)
B £cE

The following result shows that {wg, (a,b) € A x B} forms a tight frame.

Proposition 4.1.1. For any function f(z) in €2(X), we have

> Wrab)l? = |15

acA,beB

Proof. From the definition of the wave packet transform, we have

> Wanf= 3 S e o)

a€AbeB acAbeB |¢cE LB
R 2
D IPAGHGI
a€AEEE
=Y 1f @)
gex

For a function h(a,b) in ¢3(A x B), the transpose of the wave packet transform is given by

Wi(z) = Z h(a, b)wap(z). (4.5)

acAbeB
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The next result shows that this transpose operator allows us to reconstruct f(z),z € X from its

wave packet transform Wy(a,b), (a,b) € A x B.

Proposition 4.1.2. For any function f(z) with x € X,

fl@)y= > Welabwa().

acA,beB

Proof. Let us consider the Fourier transform of the right hand side. It is equal to

1 . . ,
> Zﬁemb'"ga(n)f(n) ~W6’2’”b'£ga(£)

acAbeB \nez LB

=2 (> Ll% (Z 62”ib'("f)ga(n)f(n)> 9a(€)

a€A \n€E beB
= (9a(8)*F(&) = f(©),
a€A

where the second step uses the fact that in the n sum only the term with n = £ yields a non-zero

contribution. O

Let us now turn to the discrete approximation of VW (a,b). From the continuous definition,

we have

vbe(a7 b) = vb<@a f> = <727”§@(£)7 fA(g»

Therefore, we define the discrete gradient V,W;(a,b) in a similar way

VW (a.) = 30— 2micet™ g, (O 1(6) (46)

£€EE B

The above definitions give rise to fast algorithms for computing the forward wave packet trans-
form, its transpose, and the discrete gradient operator. All three algorithms heavily rely on the fast

Fourier transform (FFT). For the forward transform

we have the following algorithm

Algorithm 4.1.3. Forward transform from f(z) to Wy(a,b)

1: Compute f(€) with € € 2 from f(x) with x € X using a forward FFT of size L.
2: for each a € A do
3:  Form ga(f)f(g) on the support of g.(€)
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4: Wrap the result modulo L onto the domain [—Lg/2, Lp/2)?

5. Apply an inverse FFT of size Ly to the wrapped result to get Wy (a,b) for all b € B
6: end for

The transpose operator (4.5) can be written equivalently in the Fourier domain as
- 1 —2mib- 1 —2mib-
Wi®)= D hla.b) e gu(6) = (Z —hla,b)e™ bf) 9a(8);
acAbeB B acA \beB *~B
which suggests the following algorithm for the transpose operator:

Algorithm 4.1.4. Transpose operator from h(a,b) to W} (z)

~

: for each a € A do

Apply a forward FFT of size Lg to h(a,b)

Unwrap the result modulo L onto the support of g, (&)

Multiply the unwrapped data with g,(§) and add the product to get f(f)
end for

. Compute f(z) with x € X from f(€) with € € E using an inverse FFT of size L.

SRR S I

To implement the discrete gradient operator in (4.6]), we have the following algorithm.

Algorithm 4.1.5. Discrete gradient operator from f(z) to Vi Wy(a, b)
. Compute f(&) with € € Z from f(z) with © € X using a forward FFT of size L.

~

2: for each a € A do

3:  Form 2mi€g, ({)f({) on the support of ga.(§)

4: Wrap the result modulo Lg onto the domain [—Lg/2, Lp/2)?

5. Apply an inverse FFT of size Lp to each component of the wrapped result to get VyWy(a,b)
for allbe B

6: end for

As we mentioned earlier, the conditions on {g,(£), a € A} imply that there are O(L4*~*)) samples
in set A. A straightforward calculation shows that the computational cost of all three algorithms is
O(L%log L + Ld(l_s)LdB log Lp) with Lp > max,eca Lo, = O(L®). If we choose Lp to be of the same
order as L*®, the complexity of these algorithms is O(L%log L), which is the cost of an FFT on a

Cartesian grid with L grid points in each dimension.

Description of the full algorithm

With the discrete transforms and their fast algorithms available, we now go through the steps of the
synchrosqueezed wave packet transform.

For a given function f(z) defined on z € X, we apply Algorithm to compute Wy(a,b)
and Algorithm to compute V,Wy(a,b). The approximate local wavevector vs(a,b) is then
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estimated by
o Vbe (a’v b)

p) = b 0)
vs(a,b) 2miWy(a,b)

for a € A,b € B with W¢(a,b) # 0. In view of Theorem a threshold |Wy(a,b)| > |a|~%%/2\/e
(la| > 1) is necessary. Since we adopt instead of in the numerical implementation, we
only need a uniform threshold independent of the scale a. Following Theorem 2:2.7] we define a
discrete set R, with

R.={(a,b):a € A, b€ B,|Ws(a,b)| > e}

and vy(a,b) provides an approximate estimate for the local wavevector only for (a,b) € R..
To specify the synchrosqueezed energy distribution T (v, b), we first place in the Fourier domain

a d-dimensional Cartesian grid of step-size A:
V ={nA:ncz.

At each v = nA € V, we associate a cell D, centered at v

d
1 1
D, = H {(nj — §)A’ (n; + 2)A> .
Jj=1
Then the discrete synchrosqueezed energy distribution is defined as

Tf(v,b) = Z |Wf(a’b)|2'

(a,b)€Rc:Revy(a,b)eD,

It is straightforward to check that

Yo Tiwb)= Y Wb <|IfI3

veV,beB (a,b)ER.

where the last inequality comes from Proposition and the fact that R, is a subset of A x B.

Suppose that f(x) is a superposition of K well-separated intrinsic mode functions:

2N bk (2)

M=

fl@) =) fula) =

k=1 k=1

ag(x)

From the previous discussion, we know that, for each b € B, vs(a,b) points approximately to one of
N Vi (b), depending on a. Therefore, after synchrosqueezing, Tt (v, b) is essentially supported in the
phase space near the K “discrete” surfaces {(NyV ¢ (b),b),b € B}. The next step is to decompose
the essential support of T (v,b) into K clusters, one for each intrinsic mode type function, through

a suitable clustering method. The resulting clusters are defined to be Uy,...,Uk. In many cases,
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the number of components K is not known a priori and needs to be discovered from the function
Ty (v,b).

We estimate the instantaneous frequencies or local wave vectors NV (b) efficiently by identi-
fying the energy peaks in Ug. To obtain finer estimates, we can compute the weighted average of

vg(a, b) over each cluster Uy, as follows

Z(a,b):iﬁevf (a,b)eUy |Wf (a’ b)|2m€1]f (av b)

N, =
kY (b) > wpyeu, Lr(v,b)

(4.7)

In the final step, we recover each intrinsic mode function by computing.

fe(z) = Z Wi (a, b)wap(x).

(a,b):Revy(a,b)eU

This step can be carried out efficiently by restricting Wy (a,b) to the set {(a,b) : Revs(a,b) € Uy}
and applying Algorithm to the restriction for each k.

4.1.2 Numerical Examples

This section presents several numerical examples to illustrate the proposed synchrosqueezed wave
packet transforms. Throughout all examples, the threshold value € is 104 and the size L of the
Cartesian grid X of the discrete algorithm is 512. In the implementation of the discrete wave packet
transforms, the scaling parameter s is equal to 2/3, which is a good balance as discussed previously.

We will only show 2D examples because the results in other dimensions are similar.
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Figure 4.2: Relative error R(b) of local wavevector estimation.
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Local wavevector estimation

We first test the accuracy of the local wavevector information function vy(a,b). Let f(z) be a

deformed plane wave
£() = alz)e? N,

Theorem shows that, for each fixed point b in space, the estimate v¢(a,b) approximates the
local wavevector at b for any @ that satisfies the condition (a,b) € R.. Though vs(a,b) for any such
a provides an estimate of the local wavevector at b, it is more useful to combine them together to
obtain a unique local wavevector estimate for each fixed b. More precisely, we compute the weighted
average as in to estimate local wave vectors. Denoting the weighted average as v}"(b), we can
define the (discrete) relative error R(b) between v} (b) and the exact local frequency NV¢(b) as

[ (b) — NV (b)|

B = = 5sm)

We perform the above test on a deformed plane wave f(z) with a(z) = 1, ¢(x) = ¢(x1,22) =
21 + @9 + Bsin(2wxy) + Bsin(27as) with § = 0.1, and N = 135. The relative error R(b) shown in
Figure is of order 1072, which agrees with Theorem on that the relative approximation
error is O(/€).

Intrinsic mode decomposition

Here f(z) is a sum of two deformed plane waves

f(.]?) — e27riN¢1(ac) + 62'/1'1'N<;52(z)7

61 () = ¢1(x1, T2) = T1 + 22 + Bsin(2wxy) + Bsin(2mxs),
Ga(x) = da(x1,m2) = —x1 + 9 — Bsin(2ray) + Bsin(2mas)

with N = 135 and 8 = 0.1. The algorithm described in Section is applied to f(z) to extract
these two components. Figure [1.3] summarizes the results of this test. The first row shows the
superposition f(x) (left) and the synchrosqueezed energy distribution Ty (v,b) with b; fixed at 1
(right). For a fixed by value T¢(v,b) concentrates near two curves. More generally, in phase space
Ty (v,b) concentrates near two 2D surfaces. The second row shows the two sets Uy and Us after the

clustering steps. Finally, the third row plots the two reconstructed components.
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Figure 4.3: A mode decomposition without noise. Top-left: A superposition of two deformed plane
waves with the bottom-left corner showing a zoomed-in view of the highlighted rectangle. Top-
right: Synchrosqueezed energy distribution T (v,b) at by = 1. Second row: The support of T¢(v,b)
is clustered into two subsets. Third row: The two reconstructed components.
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4.2 Fast Discrete SSCT and Mode Decomposition

4.2.1 Implementation

In this section, we describe the 2D discrete synchrosqueezed curvelet transform and the mode decom-
position in detail. The description mainly follows the work in [I84] with Lexing Ying. Let us first
recall the continuous setting. Suppose f(z) is a superposition of several well-separated components,

the mode decomposition by the SSCT consists of the following steps:
(i) Apply the generalized curvelet transform to obtain Wy(a, §,b) and the gradient VW (a, 6, b);

(ii) Compute the local wave vector estimate vs(a, §,b) and concentrate the energy around it to get
Tf (117 b);

(iii) Separate the essential supports of the concentrated phase space energy distribution Tf(v,b)

into several components by clustering techniques;

(iv) Restrict Wy (a,0,b) to each resulting component and reconstruct corresponding intrinsic mode

functions using the dual frame.
We first introduce a discrete implementation of the generalized curvelet transform for Step (i) and
Step (iv). The full discrete algorithm will then be summarized later.
2D Discrete generalized curvelet transforms

For simplicity, we consider periodic functions over the unit square [0,1)? in 2D. If it is not the case,
the functions will be periodized by multiplying a smooth decaying function near the boundary of
[0,1)2. We follow basic discrete setting in Section Recall that

X ={(n1/L,ny/L):0<mnqy,ng, < L,ny,ny € Z}

is the L x L spatial grid at which these functions are sampled. The corresponding L x L Fourier
grid is
E= {(51752) : _L/2 < 51752 < L/2a€1>€2 € Z}
For a function f(z) € £*(X), the discrete forward Fourier transform is defined by
O =7 3 e ).
L
reX
For a function g(§) € ¢%(Z), the discrete inverse Fourier transform is

i) = 7 3 o)

{eE
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Figure 4.4: Left: Sampled point set A in Fourier domain for an image of size 512 x 512. Each point
represents the center of the support of a window function. The window function centered at the
origin is supported on a disk and is not indicated in this picture. The size of finest scale is set to
be small (e.g. 16) in order to save memory. Right: An example of a fan-shaped window function

ga,&(é)'

In order to design a discrete curvelet transform, we need to specify how to decimate the Fourier
domain in (a,#) and the position space in b. Let us first consider the Fourier domain (a, ). In the

continuous setting, the Fourier transform wgg, (&) for fixed (a, ) have the profile

s+t
a 2

DA Ry (& — a - up)), (4.8)
modulo complex modulation. In the discrete setting, we sample the Fourier domain [~L/2, L/2)?
with a set of points A (Figure [4.4]left) and associate with each (a,6) € A a window function g, ¢(§)
(Figure right) that behaves qualitatively as @W(A; 'R, (€ — a - ug)). More precisely, gq o(€) is

required to satisfy the following conditions:

® g.0(£) is non-negative and centered at a-up with a compact fan-shaped support of length O(a')
and width O(a®), which is approximately a directional elliptical support {¢ : |A;1R;1(§ —a-
U9)| < 1}.

o g, 0(RoA,T + a-up) is a sufficiently smooth function of 7, thus making the discrete curvelets
to decay rapidly in the spatial domain;

o C1 < [|ga,0(RoAaT +a-ug)|?dr < Cs for positive constants Cy and Cs, independent of (a, 0);

e In addition, for any & € [-L/2, L/2)?, > () |9a.0(6)|*> = 1.

We follow the discretization and construction of frames in [23] to specify the set A and window

functions, and refer to [19] for detail implementation. The difference here is that, we do not restrict
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angular scaling parameter to s = % and radial scaling parameter to ¢ = 1. This allows us to
adaptively adjust the size of tiles according to data structure. In the construction of the tiling in
this article, the scaling parameters s and ¢ remain constant as the scale changes.

The decimation of the position space b is much easier; we simply discretize it with an Lg x Lg

uniform grid as follows:
B = {(nl/LB,ng/LB) 0< niy,ne < LB,Tll,TLQ S Z}

The only requirement is that Lp is large enough so that a sampling grid of size Lg x L can cover
the supports of all window functions.
For each fixed (a,0) € A and b € B, the discrete curvelet, still denoted by wqgp(z) without

causing much confusion, is defined through its Fourier transform as

Lef%rib-&ga’e(g) (49)

Wagp(§) = s

for £ € 2. In fact, to match the quantity in (4.8)), one should define

_ L orib

Wapb(§) = fe Amib Ega,e(f) (4.10)
a

with L, = a5 However, (4.10) would lead to weak spectral energy of in the high frequency domain.

A high frequency wave-like component becomes hardly visible after synchrosqueezed transform.

Hence, in practice, we adopt the definition in (4.9)) instead of (4.10). Applying the discrete inverse

Fourier transform provides its spatial description

1 (w—b).-
Waon (@) = 7= D €T Ega0(6).

£eB

For a function f(z) defined on z € X, the discrete curvelet transform is a map from ¢3(X) to
l5(A x B), defined by

Wi(a,6.8) = (wams £) = (@i ) = 7= ¥ g0,a(€)F(©) (4.11)

£eEE

We can introduce an inner product on the space ¢2(A x B) as follows: for any two functions g(a, 0, b)
and h(a,6,b),
(g.hy=" > g(a,0,b)h(a,0,b).
(a,0)EAbEB
The following result shows that {wges : (a,8,b) € A x B} forms a tight frame when equipped with

this inner product.
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Proposition 4.2.1. For any function f(z) for x € X, we have

> Wela,0,0) =||£13-

(a,0)€AbEB

Proof. From the definition of the curvelet transform, we have

X Wieonf= Y Y e 0 f

(a,0)€AbEB (a,0)CAbEB |£€2

= > Y Jss®Ft)

(a,0)€A EEE

=Y I ©P.

€=

’ 2

For a function h(a,,b) in ¢2(A x B), the transpose of the curvelet transform is given by

Wi(z):= Y h(a,0,b)wae(). (4.12)
(a,0)€A,beB

The next result shows that this transpose operator allows us to reconstruct f(z),z € X from its
curvelet transform Wy (a,0,b), (a,0,b) € A x B.

Proposition 4.2.2. For any function f(x) with z € X,
f@y= > W(a,0,b)wap(x).
(a,0)EA,bEB
Proof. Let us consider the Fourier transform of the right hand side. It is equal to
i 2mwib-m T i —27mib-§
> > —e g, 0 F(n) | - —e 9a,0(§)

L L
(a,0)€AbeB \n€EE B B

= > ZLl% (Z e%ib'(n_f)ga,a(??)f(ﬂ)) Ga,0(§)

(a,0)€A \n€EE beB

= 37 (9a0()2(0) = fl),

(a,0)€A

where the second step uses the fact that in the 7 sum only the term with n = ¢ yields a nonzero

contribution. O

Let us now turn to the discrete approximation of V,Wy(a,8,b). From its continuous definition,
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we have

~

VoW (a,0,b) = Vi(@agn, ) = (—2mi@aan(€), F(€))-

Therefore, we define the discrete gradient VW (a,6,b) in a similar way

VoWi(a,0,) = 3 i%iéemb'gga,e(f)f(i)- (4.13)

£eE

The above definitions give rise to fast algorithms for computing the forward generalized curvelet
transform, its transpose, and the discrete gradient operator. All three algorithms heavily rely on
the fast Fourier transform (FFT). The detailed implementation of these fast algorithms is similar
to Algorithm |4.1.3 4.1.4] and [4.1.5] The computational cost of all three algorithms is O(L?log L +

L?~s7tL% log L) with Lp large enough so that a grid of size L x Lp can cover the supports of all

window functions. If we choose Lg to be of the same order as L?, the complexity of these algorithms
is O(L*T*=*log L).

Description of the full algorithm

We now go through the steps of the discrete synchrosqueezed curvelet transform.
For a given function f(z) defined on x € X, we apply fast algorithms to compute W(a, 6,b) and
VWi (a,0,b). Then the local wave vector estimate vs(a,8,b) is computed by

ViWy(a,8,b)

vy(a;6,b) = 27iW(a, 0, b)

for (a,0) € A,b € B with Wy(a,8,b) # 0.

In view of Theorem m a threshold [Wy(a,6,b)| > |a|=(*1)/2,/¢ (a > 1) is necessary. Since
we adopt instead of in the numerical implementation, we only need a uniform threshold
independent of the scale a. Following Theorem we define a discrete set R, with

R.={(a,b) :a € A,b € B,|Ws(a,b)| > e}

and vs(a,b) provides an approximate estimate for the local wavevector only for (a,b) € R..
The energy resulting in fRevs(a,0,b) should be stacked up to obtain T't(%Revs(a,0,b),b). To
realize this step, a two dimensional Cartesian grid of step size A is generated to discretize the

Fourier domain of T¢(v, b) in variable v as follows:

V= {(nlA,ngA) ‘ni,Ng € Z}
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At each v = (n1A, neA) € V, we associate a cell D,, centered at v

Dy = |(n1 — %)A, (1 + ;)A> x {(m _ %)A, (ns + ;)A) .

Then T¢(v,b) is estimated by

Tf(v,b) = Z |Wf(a’9’b)|2'
(a,0,b):Revy(a,0,b)eD,

It is straightforward to check that

Yo Trwb) = Y Wia b < |/l

veV,beB (a,b)ER.

where the last inequality comes from Proposition [£:2.1] and the fact that R, is a subset of A x B.

Suppose that f(z) is a superposition of K well-separated banded intrinsic mode type functions:

K
fr (x) = Z e—(¢>k(:c)—czc)2/aﬁ o (x)eZWiNk¢k(z).
k=1 k=1

M=

fz) =
In the discrete implementation, we choose a threshold parameter § > 0 and define the set S to be
{(v,b) ;v € V,be B,T§(v,b) > d}.

After synchrosqueezing, T¢(v, b) is essentially supported in the phase space near K “discrete” surfaces
{(NVor(b),b),b € B}. Hence, under the separation condition given by Theorem S will have
K well-separated clusters Uy, ..., Uy, and they would be identified by a suitable clustering method.

Once we discover Un,...,Uk, we can define Wy, (a,0,b) by restricting Wy(a,,b) to the set
{(a,8,b) : Revy(a,d,b) € Up}. Then, we can recover each intrinsic mode type function efficiently

using the fast algorithm discussed to compute

fk (l‘) = Z Wfk (a, 9, b)wagb(l‘).

(a,0)€AbEB

A weighted average of v¢(a, 6, b) similar to (4.7)) gives good estimates of local wave vectors NV (b).

4.2.2 Numerical Examples

In this section, we start with error analysis of local wave vector estimation using synchrosqueezed
curvelet transform, and compare it with synchrosqueezed wave packet transform. Afterward, some

mode decomposition examples of synthetic data will be presented to illustrate the efficiency of
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proposed synchrosqueezed curvelet transform. For all the synthetic examples in this section, the size
L of the Cartesian grid X of the discrete algorithm is 512, the threshold value € = 10~ for W;(a, 6, b).
The scaling parameters of synchrosqueezed curvelet transform are t = 1 — % and s = % + %, as an
appropriate balance as discussed previously. In the meantime, we chose t = s = % + % to construct

discrete synchrosqueezed wave packet transform for a reasonable comparison.

Local wave vector estimation

In Theorem we have seen that the estimate vs(a,8,b) approximates the local wave vector at
b, if (a,b) € R.. In such region, though vs(a,d,b) provides an accurate estimate of the local wave
vector at each b, it is more rational to average them up to obtain a unique local wave vector estimate
for each fixed b. By the definition of synchrosqueezed energy distribution, Ty (SRevs(a, 8,b),b) truly
reflects a natural weight of vs(a,6,b) in variables a and 6. More precisely, we compute similar
weighted average as in @ to estimate local wave vectors. Denoting the weighted average as v}”(b)7
we can define the (discrete) relative error R(b) between v} (b) and the exact local frequency NV¢(b)

* [ (b) — NV(b)|

INVo(b)]

R(b) =

We test the accuracy for a noise free deformed plane wave f(z) = a(z)e?™*N?(®) with a(x) = 1,
¢(x) = (21, 22) = 21 + (1 — ) + 0.1sin(27z;) + 0.1sin(27(1 — 22)), and N = 135 (see Figure [4.5]
left). The relative error R(b) of SSCT shown in Figure (middle) is of order 1072, which agrees
with Theorem on that the relative approximation error is of order O(y/€). The synchrosqueezed
wave packet transform and the synchrosqueezed curvelet transform share the same accuracy in this
case shown by Figure middle and right.
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Figure 4.5: Left: A deformed plane wave propagating in the full space with zoomed-in data indicated
by a rectangle. Middle: Relative error R(b) of local wave vector estimation using SSCT. Right:
Relative error R(b) of local wave vector estimation given by SSWPT.

We compare the efficiency of SSCT and SSWPT in a noiseless case of a banded deformed plane

wave f(z) = e_(‘z’(w)_c)z/”2a(x)62”N¢(w) with the same parameters in last example and two more
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4
135°

only computed in the relevant region |Wy(a,6,b)| > y/e. So, the relative error will be set to be zero
at the position b such that |Wy(a,6,b)| < /€ for all (a,6). The numerical result matches well with

parameters ¢ = 0.7 and ¢ = As we discussed at the beginning of this subsection, v¢(a,6,0b) is

our theoretical prediction, showing that SSCT estimates local wave vectors of this banded wave-like
component within a relative error of order O(+/€). However, SSWPT fails the truth as we discussed

in the section of introduction.
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Figure 4.6: Left: A banded deformed plane wave. The zoomed-in data comes from the small
rectangle. Middle: Relative error R(b) of local wave vector estimation using SSCT. Right: Relative
error R(b) of local wave vector estimation given by SSWPT.

4.2.3 Intrinsic Mode Decomposition for Synthetic Data

In many applications, it is required to extract each component from a superposition. To show that
our algorithm may provide a solution, we present some numerical examples of mode decompositions
for highly oscillatory synthetic seismic data in noiseless and noisy cases (see Figure E?I top). Figure
shows the results of the application of our algorithm described in Section On the left is
a noiseless example and the example on the right has additive noise. Each mode of given data is
accurately recovered in the noiseless case. In the noisy case, different modes with different propaga-
tion characters are completely separated. Each recovered mode practically reflects the curvature of
corresponding mode in the original data, though there is some energy loss due to the threshold to
remove noise.

In some other applications, one component might be disrupted (e.g. randomly shifted in this
example), and it is required to remove such component and recover others. Here we randomly shift
the first mode in the previous example in the vertical direction and apply our algorithm to recover the
second mode. The numerical results summarized in Figure [£.8 show the capability of our algorithm
to solve such a problem with or without noise. In this problem, the disrupted component can be
considered as noise with high energy, i.e., this is a problem with very small signal-to-noise ratio. It

is even more problematic that random shifting may create some texture similar to the mode to be
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Figure 4.7: Example 2. Left: A mode decomposition without noise. Right: A mode decomposition
with noise. Top: A superposition of two components. Second row: The first recovered relevant
mode. Third row: The second recovered relevant mode.

recovered in some region. Fortunately, the synchrosqueezed representation is so concentrated that
the resolution is still good enough to separate the mode from such similar texture by appropriately
thresholding T (a, 6, b).

The left example in Figure [£.8] shows the result of noiseless data. The recovered mode looks
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almost the same as the one recovered in noiseless example in Figure [£.7] bottom left, except some
energy loss due to thresholding. It is of interest to add some background noise to see how well our
algorithm is performing. Figure right shows the result of the noisy case. The result (see Figure
bottom right) is almost identical with the recovered mode in Figure bottom left.

\ \
\ - 0.2

Figure 4.8: Example 3. Left: Mode identification without noise. Right: Mode identification with
noise Top: A superposition of two components, one of which is disrupted by random shifting and
need to be removed. Second row: The recovered relevant mode.

4.3 Numerical Robustness Analysis

In this section, we provide numerical examples to demonstrate the conclusions of those theorems
in the robustness analysis in Chapter [3] and explain several ideas to obtain reliable instantaneous
frequency or local wave vector information from extremely noisy data.

In all examples, we assume the given data g(x) = f(z) + e(x) is defined in [0, 1], where f(z) is
the target signal, e(z) is Gaussian white noise with a distribution ¢2A(0,1), and n is the number

of dimensions. We would only focus on testing the robust performance of the SSWPT, since the
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SSCT has similar properties. Detailed implementations of these transforms have been discussed in
[T78), 180, [182, 184], Section [4.1] and Section As we have seen in the theorems in Chapter [3] a
proper thresholding adaptive to the noise level after the wave packet/generalized curvelet transform
is important to obtain an accurate instantaneous frequency/local wave vector estimate. We refer to
[55 [56] for estimating noise level and [155] for designing thresholds for the SSWT. The generalization
of these techniques for the SSWPT and the SSCT is straightforward.

Our main purpose in this section is to show the robustness properties of synchrosqueezed trans-
forms with various scaling parameters. We compare the performance of the SSWPT with s =
1/2+ k/8, where k = 1, 2 and 3, in both noiseless cases and highly noisy cases. For the purpose of
showing how the synchrosqueezing process is affected by heavy noise, we are using a small uniform
threshold § = 1072 (rather than a threshold adaptive to noise level) and setting o2 such that the
noise is overwhelming the original signal in all of our synthetic toy models. The accuracy tolerance

in the theorems e = 104,

4.3.1 Robustness Tests for 1D SST

Figure 4.9: Left: A 1D synthetic benchmark signal. It is normalized using L°° norm. Right: A
noisy signal generated with Gaussian white noise 0.75A(0, 1).

We start from testing the 1D SSWPT. In some real applications, IMTs are only supported in a
bounded domain or they have sharp changes in instantaneous frequencies. Hence, we would like to
test a benchmark signal in which there is a component with a bounded support and an oscillatory
instantaneous frequency, and a component with an exponential instantaneous frequency (see Figure
. Of a special interest to test the performance of synchrosqueezed transforms for impulsive

waves, a wavelet component is added in this signal at £ = 0.2. The synthetic benchmark signaﬂ is

IPrepared by Professor Mirko van der Baan and available at [153} [162].
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generated using the example functions:

fi(x) = 0.6cos(7007x);
fo(x) = 0.8cos(3007mx);
fa(x) = 0.7cos(13007z + 5sin(207x));
fle) = sin (807r1005””/4> ;
[n(100)
f5(z) = 3¢ 502" cos(50x).

The sampling rate of this signal is 8192 Hz and the instantaneous frequency range is 150 — 1600
Hz. The Gaussian white noise in this example is 0.75M(0,1). To make a fair comparison, we have
tuned the size of the essential support of mother wave packets to obtain a good result for each kind
of synchrosqueezed transforms.

Although we have not identified the optimal value of the scaling parameter s, it is clear from
Theorem [3:2.2] and [3:2.3] that the synchrosqueezed transform with a smaller s is more robust. As
shown in the second and the third rows in Figure [4.10] in the noisy cases, the synchrosqueezed
energy distribution with s = 0.625 (in the first column) is better than the one with s = 0.75 (in the
second column), which is better than the one with s = 0.875 (in the last column). This agrees with
the conclusion in Theorem [3:2.2] and [3:2.3] that a smaller s results in a higher probability to obtain
a better instantaneous frequency estimate.

Another key point of Theorem [3.2.2] and is that a wave packet coefficient with a larger
magnitude gives a better instantaneous frequency estimate with a higher probability. A highly
redundant wave packet transform with a denser translation grid in space and scaling grid in frequency
would have wave packets better fitting local oscillation of IMTs. In another word, there would be
more coefficients with larger magnitudes. The resulting synchrosqueezed energy distribution has
higher non-zero energy concentrating around instantaneous frequencies. This is also validated in
Figure [£.10] The synchrosqueezed energy distributions in the third row are obtained by a SSWPT
with a 16 times denser grid in frequency than the grid used in the second row. Hence, instantaneous
frequencies are much more visible if a SSWPT with a higher redundancy is applied.

It is also interesting to observe that the synchrosqueezed transform with a smaller s is better
to capture the component boundaries, e.g. at z = 0.39, 0.59 and 0.77 and is more robust to an
impulsive perturbation (see Figure and at x = 0.2 and an example of « stable noise in
Figure and . Boundaries and impulse perturbation would produce frequency aliasing. The
SSWPT with a smaller s has wave packets with a smaller support in frequency and a larger support
in space. Hence, it is more robust to frequency aliasing in the sense that the influence of impulsive
perturbation is smoothed out and the synchrosqueezed energy of the target components might not

get dispersed when it meets the frequency aliasing, as shown in Figure [4.12
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However, if s is small, the instantaneous frequency estimate might be smoothed out and it is

difficult to observe detailed information of instantaneous frequencies. As shown in the first row

of Figure when the input signal is noiseless, the synchrosqueezed transforms with s = 0.75

and 0.875 have better accuracy than the one with s = 0.625. In short, it is important to have

tunable scaling parameters to design problem dependent synchrosqueezed transforms, which has

been implemented in the SynLab toolbox.
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Figure 4.10: Synchrosqueezed energy distributions with s = 0.625 (left column), s = 0.75 (middle
column) and s = 0.875 (right column). In the first row, we apply the SSWPT to clean data. In the
second row, the SSWPT with a smaller redundancy is applied to the noisy data with 0.75M(0,1)
noise in Figure In the last row, a highly redundant SSWPT is applied to the same noisy data.
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Figure 4.11: Left: A 1D synthetic benchmark signal. Right: A signal contaminated by an « stable
random noise [I] with parameters o = 1, dispersion= 0.9, 6 = 1, N = 8192. The noise is rescaled to

have a 15 L*-norm by dividing a constant factor.
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Figure 4.12: Synchrosqueezed energy distributions with s = 0.625 (left), s = 0.75 (middle) and
s = 0.875 (right) using highly redundant SSWPTs. The synchrosqueezed energy with a smaller s is
smoother and the influence of impulsive noise is weaker.

4.3.2 Robustness Tests for 2D SST

We now explore the performance of the 2D SSWPT using a single IMT in Figure The function

f(a:) — 2mi(60(21+0.05 sin(2m21))+60(x2+0.05 sin(27x2))) (4.14)

is uniformly sampled in [0,1]? with a sampling rate 512 Hz and is disturbed by additive Gaussian
white noise 5N (0,1). The 2D SSWPTs with s = 0.625, 0.75 and 0.875 are applied to this noisy
example and their results are shown in Figure Since the synchrosqueezed energy distribution
T¢(x1, 22, k1, ko) of an image is a function in R%, we fix 2o = 0, stack the results in ko, and visualize
Jo Tr(21,0, ky, ko)dks.

The results in Figure again validate the theoretical conclusion in Theorem that a
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Figure 4.13: Left: A 2D noiseless IMT. Right: A noisy IMT generated with Gaussian white noise
5N (0,1).

smaller scaling parameter s and a higher redundancy yield to a better robustness. A new idea here
to achieve a better robustness is to design adaptive synchrosqueezed transforms tracing the possible
frequency band of IMTs. A band-limited synchrosqueezed transform is designed in [I80] for an
efficient tool to analyze atomic crystal images. Numerical experiments will show that this method
is strongly robust to noise. This inspires the idea of adaptive synchrosqueezed transforms above.
We will do a simple experiment to justify this idea. In this experiment, we apply the band-limited
SSWPT to the same 2D noisy image and present the results in the last row of Figure[f.14 Comparing
to the results in the second row of Figure the band-limited SSWPT clearly outperforms the
original SSWPT.

4.3.3 Component Test

We will present the last example to validate the results of those theorems in the robustness analysis.
Suppose we look at a region in the time-frequency or phase space domain and we know there might
be only one IMT in this region. This assumption is reasonable because, after the synchrosqueezed
transform, one might be interested in the synchrosqueezed energy in a particular region: is this
corresponding to a component or just heavy noise? A straightforward solution is that, at each time
or space grid point, we only reassign those coeflicients with the largest magnitude. By Theorem
if there is an IMT, we can obtain a sketch of its instantaneous frequency or local wave vector
with a high probability. If there is only noise, we would obtain random reassigned energy with a
high probability. Using this idea, we apply the band-limited SSWPT with s = 0.625 and 10 times
redundancy to a noisy version of the image in Figure [£.13|left. From left to right, Figure £.15] shows
the results of a noisy image with 5M(0,1) noise, a noisy image with 10NM(0, 1) noise,

and an image with only noise, respectively. A reliable sketch of the local wave vector is still visible
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Figure 4.14: Stacked synchrosqueezed energy distribution fR Tt (1,0, k1, k2)dks of the noisy 2D
signal in Figure From left to right, s = 0.625, 0.75 and 0.875. From top to bottom: standard
redundancy, 10 times redundancy and 10 times redundancy with a SSWPT restricted to a frequency
band from 20 to 120 Hz.

even if the input image is highly noisy.

4.3.4 Real Examples

In the last part of this section, we introduce a newly developed atomic crystal image analysis
method based on synchrosqueezed transforms [I80] to demonstrate the robustness of synchrosqueezed
transforms in real applications. We will further study this application later in Chapter[6] In materials
science, the information hidden in an atomic crystal image, e.g., grain boundaries, isolated defects,

deformation field of each grain, is important for better understanding the properties of materials. As
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Figure 4.15: Top row: The synchrosqueezed energy distribution of the highly redundant band-limited
SSWPT with a frequency band 20 to 120 Hz. Bottom row: reassigned wave packet coefficients with
the largest magnitude at a space location. Left column: 5A/(0,1) noise. Middle column: 10A/(0,1)
noise. Right column: noise only.

seen in Figure m (a), an atomic crystal image can be considered as an assemble of several general
IMTs [180], where a general IMT is a superposition of a few IMTs with similar local wave vectors,
e.g., with local wave vectors {(ny0s, ¢(b), mrOs,d(b))} for some ¢(b) and a few pairs (ng, my). The
method in [I80] automatically determines a frequency band of the input image and applies a band-
limited SSWPT to estimate the synchrosqueezed energy of each IMT. The location of the essential
synchrosqueezed energy reveals grain boundaries, isolated defects and deformation fields (denoted by
VF(xy,79) € R?2%2). Integrating VF(xy,x2) around a defect region can estimate the Burgers vector
corresponding to the defect region. The distortion volume of VF(x1,x2), i.e., det (VF(x1,22)) — 1
can reflect the strain stress on the grains (e.g. see Figure [1.16] (c)).

We apply the method in [I80] to a phase field crystal image (Figure (a)) and show the
detected grain boundaries and isolated defects in Figure (b), and the distortion volume in
Figure m (¢). To demonstrate the robustness, we generate additive Gaussian white noise with a
distribution 0.5A(0,1) and 1.4AN(0,1), respectively and present the noisy results in the second and
the third rows of Figure In the results of extremely noisy cases, even if no crystal structure
visible by human eyes, the SSWPT method is still able to reveal grain boundaries and isolated
defects with a reasonable accuracy. The distortion volume in Figure (f) and (i) still roughly
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reflects the strain stress encoded by color.
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Figure 4.16: Atomic crystal image analysis using 2D synchrosqueezed transforms. First row: Results
of noiseless data. Second row: Results of noisy data with Gaussian white noise 0.5M(0,1). Third
row: Results of noisy data with Gaussian white noise 1.4N(0,1). First column: input images.
Second column: detected grain boundaries and isolated defects. Third column: distortion volume.
Zoomed-in images show that our method can still identify isolated defects even if noise is heavy.
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Chapter 5

Diffeomorphism Based Spectral
Analysis

5.1 Introduction

In Section [2.1} we have introduced the 1D synchrosqueezed transform to analyze the instantaneous

properties of a complex signal of the form

o ()2 Nk Ok (@) (5.1)

&&
—
&
I
=
N\gle
=
S
N~—
I
x>
M~
i

where oy () is the instantaneous amplitude, 2w Ny ¢y (z) is the instantaneous phase and Ny ¢} (z) is
the instantaneous frequency. One wishes to decompose the signal f(x) to obtain each component
fr(z) and its corresponding instantaneous properties. This is referred to as the mode decomposition
problem.

In spite of considerable successes of analyzing signals by decomposing them in the form of ,
a superposition of a few wave-like components belongs to a very limited class of oscillatory patterns.
Most of all, a decomposition in the form of would lose important physical information in some
cases as detailed in [I70}[I76]. To be more concrete, we take the daily atmospheric CO5 concentration
data in [I76] as an example (provided by National Oceanic and Atmospheric Administration at
Mauna Loa (MLO)). The method based on wavelet transforms is capable of decomposing data in
the form of , providing one annual cycle, one semiannual cycle and a growing trend (see Figure
. However, each component alone cannot reflect the true nonlinear evolution pattern: the COs
concentration slowly increased in a longer period and quickly decreased in a shorter period. This
special pattern is a result of seasonal photosynthetic drawdown and respiratory release of CO5 by

terrestrial ecosystems [I76]. Fortunately, such a nonlinear evolution pattern can be recovered by

107
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Figure 5.1: The top signal is the observed COs concentration of recent 31 years (1981-2011) at MLO.
Below the original signal are the components provided by the wavelet transform. Only relevant
components are separated and presented.

summing up the annual cycle and the semiannual cycle as shown in Figure This motivates the

study of a more general decomposition of the form

K
f(z) = Z Zak z)s, (2 Nior(x)), (5.2)
k=1

where {s;(2)}1<r<k are 2m-periodic general shape functions. By applying the Fourier expansion of
general shape functions, the form of (5.2) is informally similar to the form of (5.1)) with a superpo-

sition of infinite terms, i.e.,

K oo
Zak Sk 277Nk¢k Z Z 27rinNk¢k(au)' (53)

k=1n=—o0

One could combine terms with similar oscillatory patterns in the form of to obtain a more
efficient and more meaningful decomposition in the form of . This is the general mode decom-
position problem discussed in this chapter.

Although there have been well-established methods for mode decompositions, there is relative
little literature for solving general mode decomposition problems due to the complex time-frequency
geometry of . In the analysis of existing methods [43] 00 17()] they require a certain well-
separation condition of &, (n)ay (x)e? ™ Ve®(®) (¢ g, see Definition . However, the superposi-
tion of two nearby Fourier expansion terms 5, (n)ay (x)e? V() and 5, (n+1)ak(m)ezm(”“)NW’“(“

are not well separated when n is large. For two different instantancous frequencies Ny (x) and
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Figure 5.2: Wave shapes of relevant components provided by wavelet transform. Left: Annual
wave shape. Middle: Semiannual wave shape. Right: Summation of the annual wave shape and
semiannual wave shape.

N; ng} (z), their multiples may have crossover frequencies with high probability. Although [89] shows
that two different components 53 (n)ag (z)e2 ™ Ne?x (@) and §;(m)a;(x)e?™™Ni%i(®) can be separated
if their instantaneous frequencies nNy ¢} (r) and mN; ¢ (z) intersects at only a few points, in general,
there is no existing method for the general mode decomposition with many instantaneous frequencies
intersecting at many points.

This chapter introduces the diffeomorphism based spectral analysis method (DSA) in [I78] as
the first attempt to tackle the general mode decomposition problem with complex time-frequency
geometry. The DSA method consists of diffeomorphisms and a short-time Fourier transform (in
practice, the Fourier transform is applied if f(z) is defined only in a bounded interval). Note
that the wave-like components 53 (n)ay(z)e?>™"Ne¢x(*) with small n are relatively well separated
in the sense that they would only intersect at a few points. Hence, we assume that the basic
instantaneous frequencies Ny} (x) and instantaneous amplitudes |$;(1)|ax(z) can be estimated by
existing methods. With this information available, it is shown that the DSA method is capable of

decomposing a wide class of general superpositions accurately.

5.2 Diffeomorphism Based Spectral Analysis (DSA)

5.2.1 Implementation of the DSA

As discussed above, we assume that the basic instantaneous frequencies Nj¢) (z) and instantaneous
amplitudes |8y (1)|ag(z) are known in this section. In practice, they are estimated by existing
mode decomposition methods, e.g. the synchrosqueezed wave packet transform (SSWPT). Detailed

description of searching for this basic information can be found in [I78]. In what follows, the DSA
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is introduced to identify all the nonzero Fourier expansion terms in

K oo

K
f(z) = Zak(ac)sk(QkaqSk(m)) = Z Z Sp(n)ay (z)e?minNedr(@) (5.4)
k=1

k=1n=—o0

assuming { Ny ¢} (z)}5_ | and {|5(1)|ag(z)} | are known.

Without loss of generality, let us assume we are analyzing a signal f(z) for z € [0,T,] with
Ty > 0 sufficiently large and f(z) is periodic over this interval. For non-periodic signals, introducing
mirror extended signals can reduce the boundary effect. Notice that the smooth function ¢x(x) has
the interpretations of a warping in each general mode via a diffeomorphism ¢ : R — R. With the
instantaneous frequencies { Ny, ¢} (z)}_, available, we can therefore define the instantaneous phase

profile by
1 t
pr(z) = —/ Ny¢)(z)dz,
mrg Jo

where my, = 1 (m?x Nigl.(x) + mtin ngbfc(x)). Because pg(z) is a smooth monotonous function, we

can define the inverse-warping profile in [0, 1] by

fop(x)
|5k (1)]ovk 0 p ()

hi(z) =

_ i 5k(n) e2mi(nmit+nNy gy (0))
|5%(1)]

n=—oo

o~ - , -
+Z Z sj(n Q5 O Pp (x)eQ‘n'anj¢7j0Pk1(r).

)
2 2 TSl acop, (@)

If the diffeomorphisms ¢ : R — R are significantly different, which will be defined later in
Definition and the phases 2n Nyoi(x) are sufficiently steep in [0,7p], which will be clarified
later, the Fourier transform of each inverse-warping profile h/\k(é) will have sheer peaks at & = nmy
and will be relative small elsewhere. This motivates the design of the DSA method as follows.

Step 1: Input: A signal f(z), its instantaneous phase profiles {pj(z)}X_; and instantaneous
amplitudes {|5}(1)|a(z)}E,.

Step 2: Initialize: Set up the initial residual r(z) = f(x) and the tolerance e. Let fr(xz) =0

be the initial guess of the kth general mode and denote Sj = () as the initial guess of the spectrum

information of the kth general shape function si for k=1, ..., K.
Step 3: For k=1, ..., K, compute the inverse-warping profiles in [0, 1] by
ropy ()
he(z) =

|5k ()]o 0 i ()

Step 4: Apply the Fourier transform on hx(x) in [0, 1] to obtain ﬁ;(g) for k=1,..., K and
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solve the following optimization problem,

(7,5) = arg max|f (&)|.
(&h)

Then 7 ~ nm; for some n such that 5;(n) # 0.

111

(5.5)

Step 5: Let g(z) = 2™, Warp the harmonic g(z) with the jth instantaneous phase profile

p;(z) and multiply the warped harmonic by the jth instantaneous amplitude |5;(1)|c;(z) to obtain

|55 (1)]ay (x)e?mermsps ()

_ ‘é\j(l)|6727rian¢j(O)aj(x)e%riand)j(x).

Q

|55 (D]a;(x)g o pj(x)

Step 6: Solve the L? minimization problem for a complex factor 3 € C such that
B = arg I{ClinllT(x) — Bl55(1)]ej(x)g © pj(x)ll>-
€

Then

Bl&; (D)]aj(@)g 0 pj(2) ~ 5 (n)ay (x)e " Ni®s ),

which implies
5|
155(1)]

B8] ~

Step 7: Update: Compute the new residual
r(z) = r(x) = I5;(1)|a;(x)g o p;(x).
Update the jth recovered general mode
fi(x) = fi(2) + Bls;(Dla;(2)g o p;(2),
and the jth spectrum information set

Sj =53 U{(, 18D}

Step 8: If ||r(x)||Lz > ¢, repeat step 3-7. Otherwise, stop iterating and export the general mode

estimates fr and the spectrum information Sy for k=1, ..., K.

Note that in general there is no guarantee to obtain a constant 8 such that we have exact equality

in Step 6, since many components are overlapping in the Fourier domain. However, as long as the

phase functions are significantly different, the interference of other components is small. Moreover,

as long as Step 4 is accurate, the approximation of §;(n)a;(x)e?m N (@)

can be retrieved in later
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iteration process, since the error
5j(n)ay(z)e*mmNi% () — g155(1)|ay ()g o p; (x)

is a new wave-like component with the same phase function nN;¢;(z) and smaller spectral energy

to be recovered.

5.2.2 Analysis of the DSA

As discussed above, the key step of the DSA is the estimation in . Theorem in this section
proves that can provide precise spectral analysis, if phase functions are significantly different
and steep enough. We consider the following short-time Fourier transform with real-valued, non-
negative and smooth window function w;(z) compactly supported in (—1,1) such that |wi| has a

sheer peak around the origin and rapidly decays elsewhere.

Definition 5.2.1. Given the window function wiy(x) and a parameter T > 1, the short-time Fourier

transform of a function f(x) with a parameter T is a function
Fr(Plah) = [ fahor(s - be >meda
R
for a,b € R, where wr(z) = w1 (x/T) and Fr denote the short-time Fourier transform operator with
the parameter T.
Next, we introduce the model of wave-like components in the general mode decomposition.

Definition 5.2.2. General shape functions:
The general shape function class Sy consists of 2mw-periodic functions s(x) in the Wiener Al-
gebra with a unit L*([—m, «])-norm and a L>-norm bounded by M satisfying the following spectral

conditions:
1. The Fourier series of s(x) is uniformly convergent;
2.5 18(n)| < M and $(0) = 0;

3. Let A be the set of integers {|n| : §(n) # 0}. The greatest common divisor ged(s) of all the

elements in A is 1.

In fact, if ged(s) > 1, then the general mode s(2r N¢(x)) can be considered as a more oscillatory
mode 3(2m ged(s)No(x)) with ged(3) = 1 and the Fourier coefficients 3(n) = 3(ged(s)n). The
requirement that 5(0) = 0 and s has a unite L?([—m,7])-norm is to normalize the general shape

function.
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Definition 5.2.3. A function f(z) = a(x)s(2rN¢(x)) is a general intrinsic mode type function
(GIMT) of type (M,N), if s(x) € Spr and a(x) and ¢(x) satisfy the conditions below.

a(z)e C®, |d|<M, 1/M<a<M
¢(x) €C™, 1M <|¢| <M, |¢"| <M.

Definition 5.2.4. For M > 0 and K > 0, the phase functions {¢i(x) 1<p<i are significantly
different of type (M, K) at b € R, if they satisfy the following conditions.
1. For any T > 0, the number of extrema of ¢y o gbj_l(:c) in (b—T,b+1T) is at most TM for
k+#3j.
2. For any T > 0 there exists ng > 0, m > 0 and No(M, K, T,b) such that Va € (ﬁ,?M% and
VN > No(M, K,T,b)

1
Nm

}ﬂ{x:b—TgxngrT})gO( )

A* ({x : |81- (¢x o fbg_l(x)) - a| = Nllfno

for k # j, where A*(-) denotes the Lebesque measure and < means the implicit constant may
depend on M, K, T and b.

The first condition in Definition assumes that the instantaneous frequencies are not oscil-
lating fast, while the second condition requires that ¢y o ¢;1(x) is far from a constant function.
The definition of significantly different phase functions is crucial to general mode decompositions.
The difference of phase functions is the key feature for grouping the Fourier expansion terms of the
general modes. If two phase functions are similar, their corresponding general modes would have
similar evolution patterns. It is reasonable to combine them as one general mode. On the other
hand, the significant-difference of phase functions guarantees that the key idea of the DSA method
can provide accurate spectral information of general shape functions, as proved in the following

theorem.
Theorem 5.2.5. Suppose f(x) = Zle fr(x), where fi(x) = ar(x)sk (2 Nror(z)) is a GIMT of

type (M, Ny) with N, > N and the phase functions {¢r(x) }h1<k<i are significantly different of type
(M,K) atb. Let so = gclm)( |5k (n)|. Define

fo¢r! ()

hk(l') = ax oqi),:l(a:)

for1 <k < K. For fizted M, K, b, sg and § > 0, ITy(M, K, s0,9,b), VT > Ty, ANg(M, K, so,T,b) >
0 such that VN > Ny the solution of the following optimization problem

(ag, ko) = arf; m)ax|]-'T(hk)(a, b)|
a,k
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satisfies |ag — nNy,| < & for some n such that sg,(n) # 0.

In what follows, when we write O(+), <, or 2, the implicit constants may depend on M, K, T

and b.

’ o~

Proof. Notice that

1 oo oo ) -1 A ~
hk($): fod)/ci (1‘) _ Z 876(77,)627TinNk$+Z Z é\j(n)ajogbli (‘T’)e27man¢jo<z$k,1(w)7

Qg O ¢k 1(1.) n=—oo j#kn=—00 Qp © d)k 1(%)

oo

Fr(hg)(a,b) = Z S’;f(n)/RwT(x_b)ebri(nN,ra)mdx

n=—oo

oL ‘ )
+> Z 5;(n /WwT(x—b)eQ’”("Nj%O%l(w)—aw)dx

1
j#k n=—oc ak o ¢y (@

by the uniform convergence of the Fourier series of si(z). The first part of Fr(hg)(a,bd) is

Li(a, k) = Z s/;c(n)/wT(x_b)e%Ti(nNk—a)mdx
n=-—o00 R
= Z TSk 27rzb (nNi— a)/wl(x)e%riT(nNkfa)xdx
n=-—oo R

= Z T (n)e*™ " Ne= i (T(a — nNy)) .

n=—oo

Hence, 3Ty(M, K, s¢, 6, b) such that, if T > Tp, then |I1(a, k)| has well-separated sheer energy peaks
at a = nNj of order T sk(n)‘ and |I1(a, k)| < % if |a — nNy| > ¢ for all n. The estimate of the

second part

0o _ -1 | 7
:Z Z ‘%(n)/WMT(ZE—b)egm("Nj%O(bkl(x)—ax)dx

1
j#kn=—o00 R O © (bk ("E

relies on the estimate of each term

Iin = SAJ(n)/ o Lh(x) wr(x — b2 (N ¢iody @)-a2) gy
R % © ¢ ()

Notice that L’Cix;wrp(ae b) and 27 (nN;¢;0 ¢, ' (x) —az) are real smooth functions and wyz (z —b)

has a compact support in (b —T,b+T). If 9, (nN;p;j o ¢ ' (x) — azx) # 0 in (b—T,b+T), a similar
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argument of the integration by parts in Lemma [2:1.9] shows that

1
(n)] |an3:c(¢j o (b,:l)(x) — a| '

|Ijn| ,S ‘é\J

Therefore, the order of |Ij,| is determined by points @ such that [nN;0,(¢; o ¢; ")(z) — a| is van-
ishing or relatively small.
Ifa¢ (2M2,2nN M?), then by the fact that 9,(¢; o ;") (z) € 1z, M?], we have

\anaw(qu o ¢,;1)(x) — a‘ 2 nN;
, which implies

(5.6)

nN; a
If a € (3375, 2nN; M?), then ;5 € (5377, 2M?). Let

a-{o

Because the phase functions are significantly different of type (M, K) at b, for fixed T there exists
ng > 0, m > 0 and Ny (M, K, T,b) such that for v € (5372,2M?) and nN; > Ny (M, K, T,b), we
have \*(A4) < O((nN yr)- This gives

0 (95 0 oy (2)) —

1

< (nN')l_nO}ﬂ{x:b—T<x<b+T}.
j

2M2 >

<o Bml,

-1

5\(77,)/ MM (ZU_b)eQFi(an¢J°¢;l($)—aI)dx

J 1 T
A ago ¢y ()

By the definition of significant-difference of type (M, K), (R\ A)N (b —T,b+ T) is a union of at

most O(T'M) intervals. Hence, similar to the method of stationary phase, we have

j . ; -1 S
sAj(n)/R MwT(x_b)€2ﬂ'2(an¢jo¢k () =a2) g | < O |55(n)| )

\A O © qi)lzl(x) (nN; )
In sum,
—1
|Ij’n| < -y / CK] o ¢k (x) 'LUT(Qj _ b)e2ﬂ—i(an¢J°¢1:1(x)—aﬂc)dl‘
- A 0k 0 ¢y ()
+15 (Tl) / Q; © ¢k 1(3’3) UJT(x _ b)ezﬁi(an¢jo¢;:1(:D)faz)d$
Aapod, (x)

(nN;)m (nNj)m ™
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Recall that Ny > N and > [$p(n)| < M for 1 <k < K. So, if N > Ny(M,K,T,b)

n=-—oo

nansY Y (oS o5 co M sor Ly 6
j#kn=—o0 J

where 7 = min{ng, 71 }.
- \ 1/1
By (5.6) and (5.7), 3Ny = max {Nl(M, K, T,b), (Tio) T?’O} such that YN > Np, we have

I (a, k)| < L.

Let Ej be the index set {n : §y(n) # 0} and (7, k) = argmax |$;(n)|. Now suppose N > Nj.
(k)
Let |Fr(hi)(a,b)| take the maximum value at the pair (ag, ko). If there is no n € Zj, such that

lag — nNg,| < ¢, then

2T's
[Fr (ko) (a0, D)| < T3 (a0, ko) | + | Ta(ao, Ko)| < =5
However, for the pair (7, l;:), we have
T 2T
| Fr(hi)(R,b)] = ’11 ‘ - ’12 ‘ > T'so — % > 350.

This conflicts with the fact that |Fr(hy)(a,b)| takes the maximum value less than 255 at the pair
(ao, ko). Hence, there exists n € Zy, satisfying that |ag — nNg,| < §. This completes the proof. [

In practice, the signal f(x) is defined in a bounded interval, e.g., [0,Tp] without loss of gen-
erality. Applying the Fourier transform on f(z) in [0,7p] is equivalent to applying the short-
time Fourier transform on f(z) with a rectangle window function centered at ¢ = Tp/2. In this
sense, Theorem implies that the DSA method can accurately decompose f(z) into GIMTSs
{ag(z)sk (2 Nyor(z)) HE | and analyzes the spectra of general shape functions {ay(z)}< | by ex-

2min Ny ¢ (z)

tracting the Fourier expansion terms si(n)ay(z)e one by one from the one with highest

energy.

5.3 Numerical Examples

In this section, some numerical examples of synthetic and real data are provided to demonstrate
the properties of the proposed DSA method. In all of these examples, the 1D SSWPT is applied to
provide basic instantaneous frequencies and instantaneous amplitudes as input of the DSA method.
The mother wave packet w(z) of the SSWPT is constructed using the same method in [49] with a
support parameter d = 1. The scaling parameter s is equal to 2/3. For the purpose of convenience,

the synthetic data is defined in [0, 1] and the number of samples is between 2!3 and 21°.
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5.3.1 Synthetic Examples
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Figure 5.3: Top left: The general shape function s;(z) and its spectral energy |$1(€)|. Top right:
The general shape function ss(x) and its spectral energy |52(€)|. Bottom: A superposition of general
modes generated by using s1(x) and sa(x).

Example 1: In the first example, we illustrate the performance of the SSWPT and the DSA
step by step for general mode decompositions. Let us consider a toy model in which there are two

general modes
fi(z) = aq(z)s1(27nN1p1(x)) = (1 + 0.05sin(4dwx))sy (1207 (2 + 0.01sin(27z)))

and
fa(x) = ag(x)s2(2m Nag2(x)) = (1 + 0.1sin(27x)) s (1807 (z 4 0.01 cos(27z))) ,

where s1(x) and sy(z) are periodic general shape functions defined in [0, 1] as shown in Figure
Let f(z) = fi(z) + fa(x) (see Figure [5.3| bottom) and we try to recover fi(z) and f(z) from f(z).

As proved in Chapter 2Jand Chapter[d] the SSWPT is able to provide a sharpened time-frequency
representation of f(x), the synchrosqueezed energy distribution Ty(v,x), with essential supports
concentrating around the instantaneous frequencies of f(x) (see Figure left). By a proper curve
extraction and classification method in [I78], we can identify well-separated instantaneous frequen-
cies of fi(x) and fo(z) in the low frequency part (see Figure middle) and their basic instan-
taneous frequencies N1¢)(z) and Nagh(z) (see Figure right). The inverse SSWPT on the syn-
chrosqueezed energy distribution restricted to the each essential support recovers 57 (ng )e?™ N 161(2)

2minaNa2¢2(2) for some ny and ny. Hence, the instantaneous amplitudes are identified by

and $3(nsg)e
taking the absolute value of them (see Figure [5.5]left).

As we can see in the this example, the SSWPT can provide accurate estimates of instantaneous
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Figure 5.4: Left: The synchrosqueezed energy distribution of f(z). Middle: The instantaneous
frequency estimates and the result of curve classification as indicated by different colors. Right: The
red curves are the estimates of basic instantaneous frequencies and the blue curves are the real basic
instantaneous frequencies Ny ¢} (b).
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Figure 5.5: Blue: Real signals. Red: Reconstructed results. Left: Estimated normalized instanta-
neous amplitude and real normalized instantaneous amplitudes. Middle and right: The real general
modes and the recovered general modes by simply summing up the identified components with
well-separated instantaneous frequencies.

frequencies and instantaneous amplitudes from the well-separated essential supports of the syn-
chrosqueezed energy distribution. However, by simply summing up the reconstructed modes cannot
recover satisfactory fi(z) and fo(z) (see Figure|5.5| middle and right). As Figure 5.6/ shows, consid-
ering only the well-separated essential supports of the synchrosqueezed energy distribution would
ignore modes with weak energy and crossover frequencies, the information of which is indispens-
able to reconstruct exact general modes. This desires the DSA method for exact reconstructions of
general modes.

With the basic instantaneous frequencies and instantaneous amplitudes provided by the SSWPT,
the DSA is able to recover the general modes fi(x) and f2(z) as shown in Figure

Example 2: In what follows, we would study the robustness against noise. The shapes of general

modes are determined by all the Fourier expansion terms, including those weak energy terms that



CHAPTER 5. DIFFEOMORPHISM BASED SPECTRAL ANALYSIS 119

n
=1
S
S

@

<1

S

~
=]
S

Hz)
2
& 2
3 3

H

o 9

g 2

8 8

% ":‘
io4
\ :
5 #

IS
S
S
¢

@
S
5
s

Frequency
i S
U

. WL e e~ g
400
200 SRS — f==5Snl—
e e———— - 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Time (Second) Time (Second)

Figure 5.6: Left: log,o(Tt(v,2)) in the visible time-frequency domain. Right: log,o(Tt(v,z)) in the
low frequency part of the time-frequency domain. Some components with weak energy are interfering
other terms. Only a few components are well separated.
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Figure 5.7: Blue: Real signals. Red: Reconstructed results. Two recovered general modes provided
by the DSA method.

have been concealed by noise. The noise used here is a Gaussian random noise n(z) with zero mean

2

and variance 0. To quantify the influence of the noise on each general mode, we introduce the

following Signal-to-Noise Ratio (SNR)
Jasiex),

where {f;}£ | are the general modes contained in the original signal f(z).

[ fill 2
2

g

SNR[dB] = min {1010g10 (

Let us revisit Example 1 in Figure p.4) and study its noisy case,
f(x) = a1(x)s1(2nN11(x)) + az(x)s2 (2w Naga(x)) + n(x).

Figure [5.8 shows two superpositions with different noise levels. As the reconstructed results show
in Figure [5.9| and Figure left, the instantaneous frequencies are accurately estimated, even if

the signal is disturbed by severe noise. The essential feature of the general modes are recovered.
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When the noise is overwhelming the general modes, additional denoising procedure is application

dependent, as we will show in the next example.

5
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Figure 5.8: Noisy signals of Example 1 and their SNRs are 6 and —3, respectively.

As a comparison, the EEMD method in [I74] is applied to the noisy data with SNR = 6 in this
example. In the EEMD, we set up the ratio of the standard deviation of the added noise and that of
the original data as 0.2. The ensemble number is 50 and the expected number of modes is 5. This
method is able to provide several modes in different frequency scales shown in Figure (right).
However, they are not those modes expected.

Example 3: It is worth pointing out that suitable denoising according to the feature of recov-
ered modes can significantly improve the results. Combining the DSA with some post processing
techniques can detect general shape functions in a wider class than the one defined in Definition
For example, we test piecewise constant shape functions s3 and s, as shown in Figure [5.11

A noisy superposition of general modes is generated as follows.

f(z) = az(z)s3(2mN3p3(z)) + a(x)s4(2m Naa()) + n(x),

where az(x) = 1+ 0.4sin(4nt), ay(z) = 1 — 0.3sin(2nt), N3 = 120, Ny = 185, ¢3(z) = t +
0.005sin(27t), and ¢4(x) = t + 0.01 cos(4nt). In this example, the SSWPT is applied to estimate
the instantaneous information first and then the DSA method is applied to decompose f(z) into
two general modes. Finally, a TV norm minimization is applied to obtain the final results shown in
Figure [5.11] The DSA method is able to detect the basic feature of these general modes and the

post processing TV norm minimization helps to reduce the noise.
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Figure 5.9: Noisy Example 1. Top: SNR = 6. Bottom: SNR = —3. Left: The synchrosqueezed
energy distributions of signals. Middle left: The real instantaneous frequencies (blue) and the
estimated instantaneous frequencies (red). Middle right and right: Recovered general modes.
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Figure 5.10: Left: Noisy signals of Example 1 with SNR = 6. The first row: original data. The
second and the third row: the first noiseless general mode and its recovered result. The fourth and
the fifth row: The second noiseless general mode and its recovered result. Right: The first row:
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