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Abstract

This dissertation consists of two independent parts: oscillatory data analysis (Part I) and fast

algorithms for integral operators in computational harmonic analysis (Part II).

The first part concentrates on developing theory and efficient tools in applied and computational

harmonic analysis for oscillatory data analysis. In modern data science, oscillatory data analysis

aims at identifying and extracting principle wave-like components, which might be nonlinear and

non-stationary, underlying a complex physical phenomenon. Estimating instantaneous properties

of one-dimensional components or local properties of multi-dimensional components has been an

important topic in various science and engineering problems in resent three decades. This thesis

introduces several novel synchrosqueezed transforms (SSTs) with rigorous mathematical, statistical

analysis, and efficient implementation to tackle challenging problems in oscillatory data analysis.

Several real applications show that these transforms provide an elegant tool for oscillatory data

analysis. In many applications, the SST-based algorithms are significantly faster than the existing

state-of-art algorithms and obtain better results.

The second part of this thesis proposes several fast algorithms for the numerical implementation

of several integral operators in harmonic analysis including Fourier integral operators (including

pseudo differential operators, the generalized Radon transform, the nonuniform Fourier transform,

etc.) and special function transforms (including the Fourier-Bessel transform, the spherical harmonic

transform, etc.). These are useful mathematical tools in a wide range of science and engineering

problems, e.g., imaging science, weather and climate modeling, electromagnetics, quantum chemistry,

and phenomena modeled by wave equations. Via hierarchical domain decomposition, randomized

low-rank approximations, interpolative low-rank approximations, the fast Fourier transform, and

the butterfly algorithm, I propose several novel fast algorithms for applying or recovering these

operators.

iv



Acknowledgments

I would like to express my deepest gratitude to my advisor, Prof. Lexing Ying, for his support,

guidance and encouragement in my graduate study. His creative and critical thinking has been

inspiring me throughout my study at Stanford. He leads me by example and teaches me how to

ask questions and solve problems in the way towards a pure scientist. I also extend my gratitude to

people in Prof. Ying’s group for the happy time together.

I am also grateful to Prof. Ingrid Daubechies and Prof. Jianfeng Lu at Duke University for

their tremendous support and fruitful discussions in the research of oscillatory data analysis and its

applications. They opened my eyes to the joy and beauty of mathematics in materials science and

art investigation.

I feel privileged to have many fantastic professors who taught me and inspired me a lot at

Stanford. I express my special thanks to my thesis committee members, Prof. Biondo Biondi, Prof.

Emmanuel Candès, Prof. Lenya Ryzhik, and Prof. Andràs Vasy for their help and insights in the
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Chapter 1

Introduction

The first part of this thesis is concerned with oscillatory data analysis arising in a wide range of

science and engineering problems. Let f(x) : Rd → R be a function of d variables. We consider a

class of oscillatory functions that are superpositions of several nonlinear and non-stationary wave-like

components contaminated with addictive noise, i.e.,

f(x) =

K∑
k=1

αk(x)e2πiNkφk(x) + T (x) + e(x),

where for each k αk(x) is a smooth amplitude function, 2πNkφk(x) is a phase function with a smooth

instantaneous frequency Nkφ
′
k(x) (or a smooth local wave vector Nk∇φk(x) for d > 1), T (x) is a

smooth trend function, and e(x) is a noisy perturbation term. Our goal is to identify αke
2πiφk(x),

αk(x), φk(x) and T (x) from the superposition above. In more complicated applications, the expo-

nential waveform e2πiφk(x) is replaced with an unknown waveform sk(2πφk(x)) to be estimated.

We propose and analyze a series of synchrosqueezed transforms (SSTs) to tackle this problem.

The SST is a special time-frequency reassignment method that sharpens a linear time-frequency

representation with a synchrosqueezing procedure based upon the local oscillation of the original

time-frequency representation. This procedure enjoys a simple and efficient reconstruction formula,

which is especially important to high dimensional applications. Synchrosqueezed transforms are local

and non-parametric transforms that adapt to different data characteristics by choosing suitable linear

time-frequency transforms before synchrosqueezing. Finally, synchrosqueezed transforms are visually

informative with good readability - a good concentration of spectral energy and no misleading

interference. They allow human interaction in spectral analysis for better understanding of the

data.

We will apply this new technique to address various real problems, e.g., clinical data [171, 173],

2



CHAPTER 1. INTRODUCTION 3

seismic data [86, 153, 184], climate data [178], atomic materials science [126, 180] and art inves-

tigation in canvas [179]. In many cases, our algorithms are significantly faster than the existing

state-of-art algorithms and obtain better results. To simplify the introduction, we will motivate the

present work with dimension d = 1 in this chapter.

1.1 Time-Frequency Geometry

We can enjoy the beauty of music by perceiving its time-varying frequencies. But in general it is im-

possible to exactly ”hear” the instantaneous frequency at a given time by the Heisenberg uncertainty

principle [75]. The concept of instantaneous frequency is even not well defined in mathematics. In

a simple cosine modulation

f(x) = α cos(2π(Nx+ θ)) := α cos(2πNφ(x)),

it has a frequency equal to φ′(x) = N . In a more general situation when

f(x) = α(x) cos(2πNφ(x)), (1.1)

a naive attempt is to define the time-varying instantaneous frequency of f(x) to be the derivative of

the phase function Nφ(x). However, this definition is not unique because there are many possible

choices of α(x) and φ(x) to satisfy (1.1). One possible solution is to consider the analytic signal for

x ∈ R
f(x) = α(x)e2πiNφ(x) (1.2)

corresponding to (1.1) when α(x) is smooth enough, i.e., |α′(x)| � Nφ′(x). The analytic signal can

be computed by the Hilbert transform. For this analytic signal, the definitions of the instantaneous

frequencyNφ′(x) and the instantaneous amplitude α(x) are unique. Nevertheless, when a signal f(x)

contains two analytic components with two phase functions N1φ1(x) and N2φ2(x), the instantaneous

frequencies N1φ
′
1(x) and N2φ

′
2(x) are well-defined only if |N1φ

′
1(x) − N2φ

′
2(x)| ≥ δ(N1φ

′
1(x) +

N2φ
′
2(x)) for some pre-assumed constant δ > 0. Otherwise, f(x) can be considered as only one

wave-like component with a slightly oscillatory instantaneous frequency determined by N1φ
′
1(x) and

N2φ
′
2(x) if they are too close [128, 172]. This leads to the following definition.

Definition 1.1.1. (Instantaneous frequencies in a superposition) Suppose f(x) is a superposition

of K wave-like components in the following form

f(x) =
K∑
k=1

αk(x)e2πiNkφk(x)

with Nkφ
′
k(x)� |α′k(x)|, αk(x) > 0, and Nk+1φ

′
k+1(x)−Nkφ′k(x) ≥ δ(Nk+1φ

′
k+1(x) +Nkφ

′
k(x)) for
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some δ > 0 and all k. Then the instantaneous frequencies of f(x) are Nkφ
′
k(x) for 1 ≤ k ≤ K.

In signal community, analyzing time-frequency geometry of instantaneous frequencies has been

a traditional research line dating back to the Gabor transform (the windowed Fourier transform).

Recent challenges in various science and engineering problems have drawn people’s new attention.

There have been various powerful tools trying to bypass the curse of Heisenberg uncertainty princi-

ple or to reduce its effect. Most of them fall into four categories: linear time-frequency transforms,

quadratic time-frequency transforms, time-frequency reassignment methods, and time-frequency op-

timization with pursuits.

Linear methods, e.g., taking the energy spectrogram of a Gabor transform or a wavelet transform,

are typically efficient but provide poor resolution to visualize time-frequency geometry due to the

Heisenberg uncertainty principle. Ridge extraction methods were proposed by Delprat, Escudiè,

Guillenmain, Kronland-Martinet, Tchamitchianm, and Torrèsani [48, 81] based on the observation

that ridges of the spectrogram reveal instantaneous frequencies if the window size of these transforms

in the time domain is sufficiently small. More recently, the idea of ridge extraction was revisited

by Aoi, Lepage, Lim, Eden and Gardner in [5] using the chirplet transform, by Chui and Mhaskar

in [35] using a special windowed Fourier transform. Since ridges are not well-defined in a noisy

time-frequency plane, many efforts have been made for robust ridge extraction. Statistical analysis

of these methods are still under active research.

Quadratic methods mainly belong to the Cohen’s class of bilinear time-frequency energy distri-

butions [38], among which the Wigner-Ville distribution [167, 168] and its variants [39, 87] are most

commonly used. For an individual wave-like component, its instantaneous frequency is exactly the

“average” frequency computed relative to the Wigner-Ville distribution. However, this nice property

is not true in a superposition of several components due to the interference between different com-

ponents. Although this interference could be attenuated with a smoothing process, the smoothed

distribution gets blurry and loses its accuracy as a trade-off. In spite of many nice properties in the

theory of quadratic methods, their applications to real problems are limited by the computational

efficiency and the lack of straightforward reconstruction.

Time-frequency reassignment methods [6, 7, 8, 27, 28, 44, 74] are post-processing techniques to

improve the readability of the original linear or quadratic time-frequency transform by modifying

the original spectral energy distribution. After reassignment, the spectral energy will concentrate

around instantaneous frequencies without artificial interference. The reassignment idea was orig-

inally proposed by Kodera, Gendrin, and Villedary in [112, 113] and was revisited by Auger and

Flandrin in [7] for wider applications, both conceptually and computationally. In parallel with [7],

other techniques in the framework of reassigning time-frequency representations were developed in-

dependently, e.g., the differential reassignment [28] by Chassande-Mottin, Daubechies, Auger, and

Flandrin; the synchrosqueezed transform [44] by Daubechies and Maes. An introductory review

with recent development of reassignment methods is presented in [8] by Auger et al.
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Time-frequency optimization with pursuits [20, 31, 93, 129] is a category of various optimization

models based on sparsity in a redundant time-frequency dictionary, smoothness of object functions,

etc. The matching pursuit introduced in [129] by Mallat and Zhang computes a sparse time-frequency

representation from a redundant dictionary by iteratively selecting the most prominent atom in the

dictionary. This process prevents frequency smearing and leakage in the time-frequency plane. By

embedding the energy of each atom in the time-frequency plane, one can create a localized spectral

energy distribution. More recently, a nonlinear matching pursuit in [93] by Hou and Shi adaptively

learns a good dictionary instead of assuming a fixed redundant dictionary a priori according to the

smoothness of object functions. The basis pursuit proposed in [31] by Chen, Donoho, and Saunders

computes a nearly optimal sparse time-frequency representation via `1 optimization and creates a

localized time-frequency representation similar to the matching pursuit. The basis pursuit method is

a convex optimization that is computationally more efficient. In the scope of time-frequency detec-

tion with heavy noise, Candès, Charlton, and Helgason proposed a robust and efficient path pursuit

method for detecting a single wave-like component and estimating its instantaneous frequency in

[20] . A multi-component detection technique is still under development.

1.2 Mode Decomposition

For a superposition of several nonlinear and non-stationary wave-like components contaminated with

addictive noise, i.e.,

f(x) =

K∑
k=1

αk(x)e2πiNkφk(x) + T (x) + e(x), (1.3)

the mode decomposition problem aims at extracting the smooth trend function T (x) and each oscilla-

tory component αk(x)e2πiNkφk(x), in addition to analyzing the time-frequency geometry {Nkφ′k(x)}.
An ideal analysis tool should give a time-frequency representation with good readability (spectral

energy concentrating around instantaneous frequencies without artificial interference) and has an

efficient numerical implementation to transform, separate and reconstruct signals. An important

example is the wave field or seismic event separation problem in seismic data analysis, i.e., a seis-

mic record is decomposed into elementary wave-like components corresponding to individual wave

arrivals [72, 73, 116, 143, 163, 184]. In these problems, an amplitude function αk(x) may have

a localized support enlarging the frequency band of the corresponding component αk(x)e2πiφk(x)

[116, 184]. The mode decomposition problem becomes much more complicated in such cases and

many traditional time-frequency analysis tools come short of expectation.

One famous method is the empirical mode decomposition (EMD) method proposed and refined by

Huang et al. in [97, 98]. The 1D EMD method decomposes a signal via a sifting process and applies

the Hilbert transform to estimate the instantaneous frequency of each separated component. Starting

from the most oscillatory component, the sifting process applies spline interpolation with local
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extrema of the signal to identify a qualified oscillatory component and subtracts it from the signal.

Although many efforts have been made [47, 54, 70, 71], the mathematical analysis of this method is

still under development. In spite of many successful applications of the EMD method, its application

to noisy data is limited by the lack of robustness due to the dependence of local extrema. To improve

the robustness, recent variants of the EMD method were proposed, e.g., [174] sifts an ensemble of

white noise-added signal for many times; [94] uses a proper smooth function to approximate the

noisy signal by least-square-spline-fit. In the spirit of 1D EMD, the mode decomposition problem

in higher-dimensional cases has also been extensively studied recently: either based on surface

interpolation [123, 124, 135, 136] or based on the decomposition of 1D data slices [96, 175]. However,

the application of 2D EMD methods is limited due to the lack of ability to distinguish two wave-like

components with similar wave numbers but different wave vectors as illustrated in detail in [182].

For the purpose of designing an alternative tool for the mode decomposition problem with

more rigorous analysis and mathematical understanding, Daubechies, Lu and Wu revisited the

synchrosqueezed wavelet transform (SSWT) in [44] and proved that the SSWT can accurately

extract wave-like components and estimate their instantaneous frequencies from their superposi-

tion in [43]. This was the beginning of a systematic study of various synchrosqueezed transforms

based on 1D windowed Fourier transforms [156], 1D and 2D wave packet transforms [178, 182], 1D

vanishing-moment and minimum-supported spline-wavelet transform [34], 2D generalized curvelet

transform [184], 2D monogenic wavelet transform [37], both mathematically and computationally.

Although the synchrosqueezing operator is not Lipschitz continuous in mathematics, its robust-

ness against non-stationary Gaussian random noise (colored) with bounded Fourier spectrum is

reasonable [32, 155, 183] and can be significantly improved by designing a highly redundant time-

frequency dictionary [183]. The synchrosqueezing technique was further improved for better accuracy

in [8, 115, 137] considering time-frequency group delay, phase warping, and higher order differential

reassignment, respectively.

Another substantial research branch for mode decomposition problems is based on optimization.

Following the methodology of sifting modes from the most oscillatory one, Hou and Shi proposed

several 1D optimization models using total variations and matching pursuit in [92], using signal

sparsity in a data-driven time-frequency dictionary and matching pursuit in [93]. In the spirit of

recovering all components at one time, Dragomiretskiy and Zosso proposed 1D and 2D variational

mode decomposition methods based on the smoothness of each component after frequency shifting

in [58, 59]; Li and Demanet studied a nonlinear least-squares optimization model based on the

smoothness of amplitude and frequency functions in [116].

Other than those methods in the above research lines, many other creative methods for mode

decompositions have been proposed, [35, 36, 77, 78] to name a few.

In spite of considerable successes of modeling signals in the form of (1.3), a superposition of

a few wave-like components is too limited to describe general oscillatory patterns. In some cases,
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a decomposition in the form of (1.3) would lose important physical information as discussed in

[170, 176]. To be more general, it is natural to consider a mode decomposition of the form

f(x) =

K∑
k=1

αk(x)sk(2πNkφk(x)) + T (x) + e(x), (1.4)

where {sk(x)}1≤k≤K are 2π-periodic wave shape functions. Considering the Fourier series of sk(x),

the form of (1.4) essentially becomes the form of (1.3) with a superposition of infinite terms, i.e.,

f(x) =

K∑
k=1

∞∑
n=−∞

ŝk(n)αk(x)e2πinNkφk(x) + T (x) + e(x). (1.5)

One could combine terms with similar time-frequency geometry in the form of (1.3) to obtain a more

efficient and more meaningful decomposition in the form of (1.4). This is referred to as the general

mode decomposition in this thesis. This problem is first studied by Wu in [170] and is related to the

intrawave modulation discussed in [98].

A straightforward question would be whether the existing methods for mode decompositions can

extract general modes {αk(t)sk(2πNkφk(x))}, identify wave shape functions {sk(x)} and estimate

instantaneous frequencies {Nkφ′k(x)}. It was conjectured that the EMD methods could decompose

signals into general components of the form of (1.4) instead of the form of (1.3) based on some

case study. However, this advantage is frangible and worth more effort to understand the EMD

methods on general mode decompositions. Articles in [34, 170] show that the synchrosqueezed

wavelet transform together with a functional least-square method can be used to solve the general

mode decomposition problem for a superposition of general modes with wave shape functions sk(x)

sufficiently close to the exponential function eix, i.e., a few terms of the Fourier series of sk(x) are

sufficient to approximate sk(x). However, this class of band-limited wave shape functions in [170] is

too restrictive in some situations, e.g. ECG signals. This motivates the work in [178] that applies the

synchrosqueezed wave packet transform and a novel diffeomorphism-based spectral analysis method

to solve the general mode decomposition problem for a wide range of wave shape functions.

1.3 Contributions

In the first part of this thesis, we focus on designing and analyzing synchrosqueezed transforms (SST)

to solve a few open problems for mode decompositions. I’m the main contributor of the theory and

numerical tools in this part. These SSTs enjoy simple formulas that allow fast algorithms for forward

and inverse transforms. This is especially important to many real problems in high dimensions.

The smooth trend function of the oscillatory data becomes negligible if the linear time-frequency

transform before synchrosqueezing has enough vanishing moment. This advantage waives the trouble
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of estimating the trend function. SSTs inherit the localness of the linear time-frequency transform

before synchrosqueezing. They are able to detect local events, e.g. sudden changes in data. It is

also flexible to choose different linear transforms according to different data characteristics, e.g.,

ECG signals with spikes [170, 178], waveforms even with discontinuity [178], wave propagation with

defects and sharp boundaries [126, 180, 184]. Unlike many mode decomposition methods that are

algorithmic, SSTs are visually informative in the sense that they allow flexible human interaction in

spectral analysis. This could inspire new thoughts for better understanding of oscillatory signals.

First, we develop new theory and algorithms for 1D general mode decompositions. This is the first

constructive and effective method that is suitable for a wide range of general modes. We introduce a

1D synchrosqueezed wave packet transform in Section 2.1. This transform consists of a wave packet

transform of a certain geometric scaling and a reallocation technique for sharpening time-frequency

representations. It is proved that this transform is able to estimate instantaneous information from

a superposition of general modes. It has a better capacity of distinguishing high frequency wave-like

components than the synchrosqueezed wavelet transform. Based on diffeomorphisms through smooth

phase functions, a new spectral analysis method for estimating wave shape functions is proposed in

Chapter 5. These two analysis tools lead to a framework for general mode decompositions if these

modes satisfy certain separation conditions.

Second, we introduce multi-dimensional synchrosqueezed wave packet transforms as the first

method for “truly” multi-dimensional mode decomposition problems with rigorous mathematical

analysis in Section 2.2. Existing methods cannot separate two modes if they have similar wave num-

bers but different wave vectors. We introduce a class of superpositions of several wave-like compo-

nents satisfying certain separation conditions and prove that the multi-dimensional synchrosqueezed

wave packet transform identifies each component and estimates its local wavevector accurately.

Third, 2D synchrosqueezed curvelet transform is designed in Section 2.3 as an ideal tool for 2D

mode decompositions of wavefronts or banded wave-like components. The synchrosqueezed curvelet

transform is a combination of a generalized curvelet transform with application-dependent geometric

scaling parameters and a synchrosqueezing process for a sharpened phase space representation. In

the case of a superposition of banded wave-like components with well-separated wave-vectors, we

show that the synchrosqueezed curvelet transform is able to separate each component and estimate

its local wave-vector.

Fourth, we study several fundamental robustness properties of synchrosqueezed transforms in

Chapter 3. Although the mathematical analysis of these newly developed transforms is well de-

veloped, there is relatively little study on their robustness against noise. Assuming a generalized

Gaussian random noise, we estimate the probability of a good instantaneous frequency or local wave

vector estimate given by these transforms. The probability analysis shows that their robustness is

determined by the geometric scaling parameters and can be improved by tuning their multiscale

geometry in the frequency domain. This dependence is demonstrated by numerical experiments as
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well. Finally, we provide new insights and numerical implementations for better and more robust

estimates.

Finally, discrete analogues with efficient implementations of these synchrosqueezed transforms

are proposed in Chapter 4. A software package SynLab for fast synchrosqueezed transforms has

been published online. It is available at https://github.com/HaizhaoYang/SynLab. We apply this

package to many real problems in seismic data/image processing, atomic crystal image analysis in

materials science and canvas analysis in art investigation. They obtain better results than existing

state-of-the-art algorithms. These examples will be introduced in Chapter 6 after analyzing major

properties of synchrosqueezed transforms.



Chapter 2

Theory of Synchrosqueezed

Transforms

In this chapter, we present the theory of multi-dimensional continuous synchrosqueezed wave packet

transforms and 2D synchrosqueezed curvelet transforms to analyze wave-like components from their

superposition. This is joint work with Lexing Ying in [178, 182, 184]. Since the smooth trend

function becomes insignificant after a time-frequency transform with sufficient vanishing moments

or it can be estimated and eliminated before synchrosqueezed transform using the methods in [35],

we consider a superposition of wave-like components without a smooth trend in this chapter.

Recall that a signal to be analyzed is a complex signal

f(x) =

K∑
k=1

αk(x)e2πiNkφk(x), (2.1)

where αk(x) is the instantaneous amplitude, 2πNkφk(x) is the instantaneous phase and Nkφ
′
k(x) is

the instantaneous frequency. One wishes to decompose the signal f(x) to obtain each component

αk(x)e2πiNkφk(x) and its corresponding instantaneous properties. The synchrosqueezed transform

provides a time-frequency representation that concentrates non-zero energy around each instanta-

neous frequency Nkφ
′
k(x) or local wave vector Nk∇φk(x). The time-frequency geometry of each

component is a direct result of this localized representation. Each wave-like component can be

recovered by an inverse transform on the information restricted in each component in the time-

frequency representation. Hence, the theory of synchrosqueezed transforms focuses on the accuracy

of energy concentration on Nkφ
′
k(x) or Nk∇φk(x).

To motivate the synchrosqueezed transform, we will start with the 1D case.

10
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2.1 1D Synchrosqueezed Wave Packet Transform

2.1.1 Motivation

The synchrosqueezed wavelet transform (SSWT) was introduced in [44] to process auditory signals

for a sharpened time-frequency representation by reallocating wavelet coefficients. This idea is

inspired by the observation that the local oscillation of the phase of the wavelet coefficients is able

to reveal the instantaneous frequency of a wave-like component.

Suppose φ(x) is an appropriately chosen analytic wavelet (e.g., a Morlet wavelet), then the

continuous wavelet transform of a signal f(x) is

Wf (a, b) =

∫
f(x)a1/2φ((x− b)a) dx,

where a1/2φ((x−b)a) for a ∈ (0,+∞) and b ∈ R is a wavelet that has an essential support [b− 1
a , b+

1
a ]

in space and [a2 , 2a] in frequency. We refer to [42, 128] for a detailed introduction to wavelets.

For a purely harmonic analytic signal f(x) = αe2πiNx, its wavelet transform is

Wf (a, b) =

∫
αe2πiNx

√
aφ((x− b)a) dx

=
α√
a

∫
e2πiN( ya+b)φ(y) dy

=
α√
a
e2πiNbφ̂(

N

a
).

For fixed a, notice that Wf (a, b) is a purely harmonic analytic signal with an amplitude α√
a
φ̂(Na )

and frequency N . Hence, the local oscillation of Wf (a, b) recovers the instantaneous frequency of

f(x) in the sense that
∂bWf (a, b)

2πiWf (a, b)
= N.

Daubechies, Lu and Wu revisited the idea of the SSWT and proved that
∂bWf (a,b)
2πiWf (a,b) can act as

an instantaneous frequency information function that reveals the instantaneous frequencies φ′k(x)

in a class of superpositions in (2.1) if these wave-like components satisfy a certain well-separation

condition in the time-frequency plane [43]. The well-separation condition is requiring that the gap

between adjacent instantaneous frequencies Nkφ
′
k(x) and Nk+1φ

′
k+1(x) is sufficiently large such that

Wfk(a, b) and ∂bWfk(a, b) have essential supports well separated from others. Hence, there is only

one dominant component Wfk(a, b) in Wf (a, b) and one dominant partial derivative ∂bWfk(a, b) in

∂bWf (a, b). This leads to the following approximation

vf (a, b) :=
∂bWf (a, b)

2πiWf (a, b)
≈ ∂bWfk(a, b)

2πiWfk(a, b)
≈ Nkφ′k(b),
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when (a, b) is in the essential support of Wfk(a, b). Hence, by summing the spectral energy of

Wf (a, b) according to vf (a, b), we can obtain a sharpened spectral energy in the time-frequency

plane

Tf (v, b) =

∫
R
|Wf (a, b)|2δ(Revf (a, b)− v) da

with essential supports concentrating around Nkφ
′
k(b) independent of v for some k. Here Revf (a, b)

means the real part of a complex number vf (a, b).

By the stationary phase approximation and the smoothness of αk(x) and φk(x), Wfk(a, b) and

∂bWfk(a, b) have an essential support in [
Nkφ

′
k(x)
2 , 2Nkφ

′
k(x)]. To satisfy the well-separation condi-

tion, it is required that

2Nkφ
′
k(x) . Nk+1φ

′
k+1(x),

i.e., instantaneous frequencies should be exponentially increasing in k. This requirement limits the

application of the SSWT to analyze superpositions of wave-like components with close instantaneous

frequencies. This motivates the design of synchrosqueezed wave packet transforms (SSWPT) with

a weaker well-separation condition.

2.1.2 Definition of 1D SSWPT

We briefly introduce the 1D synchrosqueezed wave packet transform (SSWPT) in this section and

will analyze it in the next section. Wave packets here are built on an appropriately chosen mother

wave packet defined below.

Definition 2.1.1. A mother wave packet w(x) ∈ Cm(R) is of type (ε,m) for some ε > 0, and some

non-negative integer m, if ŵ(ξ) is a real-valued function with an essential support in the ball B1(0)

centered at the origin with a radius 1 satisfying that:

|ŵ(ξ)| ≤ ε

(1 + |ξ|)m
,

for |ξ| > 1.

Since w ∈ Cm(R), the above decaying requirement is easy to satisfy. Actually, we can further

assume ŵ(ξ) is essentially supported in a ball Bd(0) with a support parameter d ∈ (0, 1] for signals

with close instantaneous frequencies. However, d is just a constant in later asymptotic analysis.

Hence, we omit its discussion and consider it as 1 in the analysis but implement it in our numerical

tool. We can use this mother wave packet w(x) to define a family of wave packets through scaling,

modulation, and translation, controlled by a geometric parameter s.

Definition 2.1.2. Given the mother wave packet w(x) of type (ε,m) and a parameter s ∈ (1/2, 1),



CHAPTER 2. THEORY OF SYNCHROSQUEEZED TRANSFORMS 13

the family of wave packets {wab(x) : |a| ≥ 1, b ∈ R} is defined as

wab(x) = |a|s/2w (|a|s(x− b)) e2πi(x−b)a,

or equivalently, in the Fourier domain as

ŵab(ξ) = |a|−s/2e−2πibξŵ
(
|a|−s(ξ − a)

)
.

These definitions allow us to construct a family of compactly supported wave packets, which will

be useful in practice. It is clear from the definition that the Fourier transform ŵab(ξ) is essentially

supported in (a−|a|s, a+ |a|s). On the other hand, wab(x) is centered in space at b with an essential

support of width O(|a|−s). {wab(x) : |a| ≥ 1, b ∈ R} are all appropriately scaled to have the same

L2 norm with the mother wave packet w(x).

The instantaneous frequency of the low frequency part of a signal is not well defined as discussed

in [139]. For this reason, it is enough to consider wave packets with |a| ≥ 1. High frequency

components can be identified and extracted independently of the low frequency part so that the low

frequency part can be recovered by removing high frequency components.

Notice that if s were equal to 1, these functions would be qualitatively similar to the standard

wavelets. On the other hand, if s were equal to 1/2, we would obtain the wave atoms defined in [49].

But s ∈ (1/2, 1) is essential as we shall see in the main theorems later. The lower bound s > 1/2

makes the support of the wave packets sufficiently small for instantaneous frequency estimation,

while the upper bound s < 1 allows better resolution to distinguish close instantaneous frequencies

than wavelets, which is the purpose for proposing the SSWPT. See Figure 2.1 for an illustration of

the comparison of wavelets and wave packets in the frequency domain.

Definition 2.1.3. The 1D wave packet transform of a function f ∈ L∞ (R) is a function

Wf (a, b) = 〈f, wab〉 =

∫
R
f(x)wab(x)dx

for |a| ≥ 1, b ∈ R.

Definition 2.1.4. Instantaneous frequency information function:

Let f ∈ L∞ (R). The instantaneous frequency estimation function vf (a, b) for |a| ≥ 1 and b ∈ R
of f is defined by

vf (a, b) =


∂bWf (a,b)
2πiWf (a,b) , for |Wf (a, b)| > 0;

∞, otherwise.

It will be proved that, for a class of wave-like functions f(x) = α(x)e2πiNφ(x), vf (a, b) precisely

approximates Nφ′(b) independently of a as long as |Wf (a, b)| is large enough. Hence, if we squeeze

the coefficients Wf (a, b) together based upon the same instantaneous frequency information function
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Figure 2.1: Top: Wavelet (wave packet when s = 1) tiling and bump functions in the high frequency
Fourier domain. Each short budding in the positive part indicates the center of one bump function,
while the bump functions in the negative part are plotted. Red dots denote the support of the
Fourier transform of

∑4
n=1 e

2πinNt, where N = 60. The well-separation condition for the SSWT
is not satisfied, because the wavelet transform of these wave-like components are overlapping in
the time-frequency domain. Bottom: Wave packet tiling and bump functions with s = 1

2 . The
well-separation condition holds.

vf (a, b), then we would obtain a sharpened time-frequency representation of f(x). This motivates

the definition of the synchrosqueezed energy distribution as follows.

Definition 2.1.5. Given f ∈ L∞, the synchrosqueezed energy distribution Tf (v, b) is defined by

Tf (v, b) =

∫
R\(−1,1)

|Wf (a, b)|2δ (Revf (a, b)− v) da

for v, b ∈ R.

For a multi-component signal f(x), the synchrosqueezed energy of each component will concen-

trate around its corresponding instantaneous frequency. Hence, the SSWPT can provide information

about their instantaneous frequencies.

2.1.3 Analysis

In this section, we provide rigorous analysis of the 1D SSWPT generated from mother wave packets

of type (ε,m) to analyze a noiseless superposition of wave-like components.

Definition 2.1.6. A function f(x) = α(x)e2πiNφ(x) is an intrinsic mode type function (IMT) of
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type (M,N), if α(x) and φ(x) satisfy the conditions below.

α(x) ∈ C∞, |α′(x)| ≤M, 1/M ≤ α(x) ≤M

φ(x) ∈ C∞, 1/M ≤ |φ′(x)| ≤M, |φ′′(x)| ≤M.

Definition 2.1.7. A function f(x) is a well-separated superposition of type (M,N,K, s), if

f(x) =

K∑
k=1

fk(x),

where each fk(x) = αk(x)e2πiNkφk(x) is an IMT of type (M,Nk) such that Nk ≥ N and the phase

functions satisfy the separation condition: for any pair (a, b), there exists at most one k such that

|a|−s|a−Nkφ′k(b)| < 1.

We denote by F (M,N,K, s) the set of all such functions.

Theorem 2.1.8 below shows that the SSWPT is able to estimate instantaneous frequencies

{Nkφ′k(x)}Kk=1 of well-separated superposition of IMTs accurately. In what follows, when we write

O (·), ., or &, the implicit constants may depend on M , m and K.

Theorem 2.1.8. Suppose the mother wave packet is of type (ε,m), for any fixed ε ∈ (0, 1) and any

fixed integer m ≥ 0. For a function f(x), we define

Rε = {(a, b) : |Wf (a, b)| ≥ |a|−s/2
√
ε},

Sε = {(a, b) : |Wf (a, b)| ≥
√
ε},

and

Zk = {(a, b) : |a−Nkφ′k(b)| ≤ |a|s}

for 1 ≤ k ≤ K. For fixed M , m and K, there exists a constant N0 (M,m,K, s, ε) ' max
{
ε
−1

2s−1 , ε
−1
1−s

}
such that for any N > N0 (M,m,K, s, ε) and f(x) ∈ F (M,N,K, s) the following statements hold.

(i) {Zk : 1 ≤ k ≤ K} are disjoint and Sε ⊂ Rε ⊂
⋃

1≤k≤K Zk;

(ii) For any (a, b) ∈ Rε ∩ Zk,
|vf (a, b)−Nkφ′k(b)|

|Nkφ′k(b)|
.
√
ε;

(iii) For any (a, b) ∈ Sε ∩ Zk,
|vf (a, b)−Nkφ′k(b)|

|Nkφ′k(b)|
.

√
ε

N
s/2
k

.
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The proof of Theorem 2.1.8 relies on two lemmas as follows to estimate the asymptotic behavior

of Wf (a, b) and ∂bWf (a, b) as N going to infinity.

Lemma 2.1.9. Suppose Ωa = {k : a ∈ [ Nk2M , 2MNk]}. Under the assumption of Theorem 2.1.8, we

have

Wf (a, b) = |a|−s/2
(∑
k∈Ωa

αk(b)e2πiNkφk(b)ŵ
(
(a−Nkφ′k(b)) |a|−s

)
+O (ε)

)
,

when N > N0 (M,m,K, s, ε) ' max
{
ε
−1

2s−1 , ε
−1
1−s

}
.

Proof. Without loss of generality, we can simply assume Nk = N for all k and only prove the case

for a > 1. Because w(x) decays rapidly, the wave packet transform Wf (a, b) is well defined. By the

change of variables, we have

Wf (a, b) =

∫
R

K∑
k=1

αk(x)e2πiNφk(x)|a|s/2w(|a|s(x− b))e−2πi(x−b)adx

= |a|−s/2
K∑
k=1

∫
R
αk(|a|−sx+ b)w(x)e2πi(Nφk(|a|−sx+b)−|a|1−sx)dx.

Let us estimate Ik =
∫
R αk(|a|−sx+ b)w(x)e2πi(Nφk(|a|−sx+b)−|a|1−sx)dx. Let

h(x) = αk(|a|−sx+ b)w(x)

and

g(x) = 2π(Nφk(|a|−sx+ b)− |a|1−sx),

then

Ik =

∫
R
h(x)eig(x)dx,

and

g′(x) = 2π|a|−s(Nφ′k(|a|−sx+ b)− a).

If a < N
2M , then |g′(x)| & |a|−sN & N1−s. If a > 2MN , then |g′(x)| & |a|1−s & (N)1−s. So, if

a /∈ [ N2M , 2MN ], then |g′(x)| & (N)1−s. For real smooth functions g(x), we define the differential

operator

L =
1

i

∂x
g′
.

Because h(x) decays sufficiently fast at infinity, we perform integration by parts r times to get∫
R
heigdx =

∫
R
h(Lreig)dx =

∫
R

((L∗)rh) eigdx,

where L∗ is the adjoint of L. A few algebraic calculation shows that L∗ contributes a factor of order
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1
|g′| .

1
(N)1−s if a /∈ [ N2M , 2MN ], and we therefore have

|Ik| =
∣∣∣∣∫

R
eig ((L∗)rh) dx

∣∣∣∣ . (N)−(1−s)r . ε.

Since s < 1, if N & ε
−1

(1−s)r , then

|a|−s/2
∑
k/∈Ωa

Ik . |a|−s/2
∑
k/∈Ωa

O(ε) . |a|−s/2O(ε). (2.2)

Now let us estimate Ik when a ∈ [ N2M , 2MN ]. Recall that

Ik =

∫
R
αk(|a|−sx+ b)w(x)e2πi(Nφk(|a|−sx+b)−|a|1−sx)dx.

By Taylor expansion,

αk(|a|−sx+ b) = αk(b) + α′k(b∗)|a|−sx

and

φk(|a|−sx+ b) = φk(b) + φ′k(b)|a|−sx+
1

2
φ′′k(b∗∗)|a|−2sx2

for some b∗ and b∗∗. Notice that, if N & ε−1/s, then

|Ik − αk(b)

∫
R
w(x)e2πi(Nφk(|a|−sx+b)−|a|1−sx)dx|

. α′k(b∗)|a|−s
∫
R
|x||w(x)|dx

. O(ε).

This implies that

Ik =

(
αk(b)

∫
R
w(x)e2πi(Nφk(|a|−sx+b)−|a|1−sx)dx+O(ε)

)
for a ∈ [ N2M , 2MN ] and N & ε−1/s. Since |eix − 1| ≤ |x|, if N & ε−1/(2s−1), then we have

|Ik − αk(b)

∫
R
w(x)e2πi(Nφk(b)+Nφ′k(b)|a|−sx−|a|1−sx)dx|

.

(
O(ε) +

∣∣∣∣αk(b)

∫
R
w(x)e2πi(Nφk(b)+Nφ′k(b)|a|−sx−|a|1−sx)

(
e2πiN 1

2φ
′′
k (b∗∗)|a|−2sx2

− 1
)
dx

∣∣∣∣)
.

(
O(ε) +N |a|−2s

∫
R
x2|w(x)|dx

)
. O(ε).
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Hence, it holds that

Ik =
(
αk(b)e2πiNφk(b)ŵ

(
(a−Nφ′k(b))|a|−s

)
+O(ε)

)
, (2.3)

if a ∈ [ N2M , 2MN ] and N & max{ε−1/s, ε−1/(2s−1)} = ε−1/(2s−1).

In sum, by (2.2) and (2.3), we arrive at

Wf (a, b) = |a|−s/2
∑
k∈Ωa

Ik +
∑
k/∈Ωa

Ik


= |a|−s/2

(∑
k∈Ωa

αk(b)e2πiNφk(b)ŵ
(
(a−Nφ′k(b)) |a|−s

)
+O(ε)

)
,

if N & max{ε
−1

(1−s)r , ε
−1

2s−1 }.
Similar argument can prove the above conclusion for a < −1 and it is simple to generalize it for

different Nk to complete the proof.

The next lemma is to estimate ∂bWf (a, b) when Ωa = {k : a ∈ [ Nk2M , 2MNk]} is not empty, i.e.,

when Wf (a, b) is relevant.

Lemma 2.1.10. Suppose Ωa = {k : a ∈ [ Nk2M , 2MNk]} is not empty. Under the assumption of

Theorem 2.1.8, we have

∂bWf (a, b)

= |a|−s/2
(∑
k∈Ωa

2πiNkαk(b)φ′k(b)e2πiNkφk(b)ŵ
(
(a−Nkφ′k(b)) |a|−s

)
+ aO (ε)

)
,

when N > N0 (M,m,K, s, ε) ' max
{
ε
−1

2s−1 , ε
−1
1−s

}
.

Proof. Similar to the proof of Lemma 2.1.9, we can assume Nk = N for all k and only need to prove

the case when a > 1. By the definition of the wave packet transform, we have

∂bWf (a, b) =

K∑
k=1

2πi|a|1+s/2

∫
R
αk(x)e2πiNφk(x)w(|a|s(x− b))e−2πi(x−b)adx

−
K∑
k=1

|a|3s/2
∫
R
αk(x)e2πiNφk(x)w′(|a|s(x− b))e−2πi(x−b)adx.

Denote the first term by T1 and the second term by T2. By a similar discussion in the proof of
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Lemma 2.1.9, we have the following asymptotic estimates when N is sufficiently large.

T2 = −|a|s/2
K∑
k=1

∫
R
αk(|a|−sx+ b)w′(x)e2πi(Nφk(|a|−sx+b)−|a|1−sx)dx

= −|a|s/2
∑
k∈Ωa

∫
R
αk(|a|−sx+ b)w′(x)e2πi(Nφk(|a|−sx+b)−|a|1−sx)dx+ |a|s/2O(ε)

= |a|s/2
∑
k∈Ωa

∫
R
w(x)αk(|a|−sx+ b)e2πi(Nφk(|a|−sx+b)−|a|1−sx)

(
2πiNφ′k(|a|−sx+ b)|a|−s − 2πi|a|1−s

)
dx+ |a|−s/2

∑
k∈Ωa

∫
R
w(x)

α′k(|a|−sx+ b)e2πi(Nφk(|a|−sx+b)−|a|1−s)dx+ |a|s/2O(ε)

= |a|−s/2
∑
k∈Ωa

2πiN

∫
R
φ′k(|a|−sx+ b)αk(|a|−sx+ b)w(x)e2πi(Nφk(|a|−sx+b)−|a|1−sx)dx

−|a|1−s/2
∑
k∈Ωa

2πi

∫
R
w(x)αk(|a|−sx+ b)e2πi(Nφk(|a|−sx+b)−|a|1−sx)dx

+|a|−s/2O(1) + |a|s/2O(ε)

= |a|−s/2
∑
k∈Ωa

2πiN
(
φ′k(b)αk(b)e2πiNφk(b)ŵ(|a|−s(a−Nφ′k(b))) +O(ε)

)
−|a|1+s/2

∑
k∈Ωa

2πi

∫
R
αk(x)w(|a|s(x− b))e2πi(Nφk(x)−(x−b)a)dx

+|a|−s/2O(1) + |a|s/2O(ε),

if N & max{ε
−1

(1−s)r , ε
−1

2s−1 }. The third equality holds by integration by parts and the last equality

holds by changing variables. Notice that

T1 = |a|1+s/2
∑
k∈Ωa

2πi

∫
R
αk(x)w(|a|s(x− b))e2πi(Nφk(x)−(x−b)a)dx

+
∑
k/∈Ωa

2πi|a|1−s/2
∫
R
αk(|a|−sx+ b)w(x)e2πi(Nφk(|a|−sx+b)−|a|1−sx)dx

= |a|1+s/2
∑
k∈Ωa

2πi

∫
R
αk(x)w(|a|s(x− b))e2πi(Nφk(x)−(x−b)a)dx+ |a|1−s/2O(ε),
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if N & ε
−1

(1−s)r for any r >= 1. Hence T1 + T2 results in

∂bWf (a, b)

= |a|−s/2
∑
k∈Ωa

2πiN
(
φ′k(b)αk(b)e2πiNφk(b)ŵ(|a|−s(a−Nφ′k(b))) +O(ε)

)
+|a|−s/2O(1) + |a|s/2O(ε) + |a|1−s/2O(ε)

= |a|−s/2
(∑
k∈Ωa

2πiNαk(b)φ′k(b)e2πiNφk(b)ŵ
(
(a−Nφ′k(b)) |a|−s

)
+ |a|O(ε)

)
,

if N is sufficiently large. So, the Lemma 2.1.10 is proved.

We are now ready to prove Theorem 2.1.8 with Lemma 2.1.9 and Lemma 2.1.10.

Proof. Let us first consider (i). The well-separation condition implies that {Zk : 1 ≤ k ≤ K} are

disjoint. Let (a, b) be a point in Rε, then |Wf (a, b)| ≥ |a|−s/2
√
ε, which means that Ωa is not empty

and ∃k ∈ Ωa such that ŵ((a−Nkφ′k(b))|a|−s) 6= 0. Because the support of ŵ(ξ) is (−1, 1), we know

|a−Nkφ′k(b)| ≤ |a|s, i.e., (a, b) ∈ Zk. Hence, Rε ⊂
⋃

1≤k≤K
⋃
6=0 Zk.

To show (ii), let us recall that vf (a, b) is defined as

vf (a, b) =
∂bWf (a, b)

2πiWf (a, b)
,

for Wf (a, b) 6= 0. If (a, b) ∈ Rε
⋂
Zk, then by Lemma 2.1.9

Wf (a, b) = |a|−s/2
(∑
k∈Ωa

αk(b)e2πiNkφk(b)ŵ
(
(a−Nkφ′k(b)) |a|−s

)
+O(ε)

)
= |a|−s/2

(
αk(b)e2πiNkφk(b)ŵ

(
(a−Nkφ′k(b)) |a|−s

)
+O(ε)

)
,

as the other terms drop out, since {Zk} are disjoint. Similarly, by Lemma 2.1.10

∂bWf (a, b)

= |a|−s/2
(

2πiNkαk(b)φ′k(b)e2πiNkφk(b)ŵ
(
(a−Nkφ′k(b)) |a|−s

)
+ |a|O(ε)

)
.

Let g denote the term αk(b)e2πiNkφk(b)ŵ ((a−Nkφ′k(b)) |a|−s), then

vf (a, b) =
Nkφ

′
k(b)g + |a|O(ε)

g +O(ε)

=
Nkφ

′
k(b)(g +O(ε))

g +O(ε)
,
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since a ∈ [ Nk2M , 2MNk]. Because |Wf (a, b)| ≥ |a|−s/2
√
ε for (a, b) ∈ Rε, then |g| &

√
ε. Therefore

|vf (a, b)−Nkφ′k(b)|
|Nkφ′k(b)|

.

∣∣∣∣ O(ε)

g +O(ε)

∣∣∣∣ . √ε.
Similarly, if (a, b) ∈ Sε ∩ Zk, then

|vf (a, b)−Nkφ′k(b)|
|Nkφ′k(b)|

.

∣∣∣∣ O(ε)

g +O(ε)

∣∣∣∣ . √
ε

N
s/2
k

,

since |g| & N
s/2
k

√
ε for (a, b) ∈ Sε ∩ Zk.

Theorem 2.1.8 shows that the instantaneous frequency information function vf (a, b) can esti-

mate Nkφ
′
k(x) accurately for a class of superpositions of IMTs if their phases are sufficiently steep.

This guarantees the well concentration of the synchrosqueezed energy distribution Tf (v, b) around

Nkφ
′
k(x). The assumption s ∈ (1/2, 1) is essential to the proof. The upper bound s < 1 enables the

wave packets to detect oscillations in different directions. The lower bound s > 1/2 ensures that the

support of the wave packets is sufficiently small in space so that the second order properties of the

phase function (such as the curvature of the wave front) do not affect the synchrosqueezing estimate

of the local wavevectors.

In [43], the authors show that, for synchrosqueezed wavelet transform, each intrinsic mode func-

tion or component can be reconstructed from the synchrosqueezed coefficients by making use of a

reconstruction formula that integrates the continuous wavelet coefficient over the scale parameter

with an appropriate weight. They also prove an error bound on the reconstructed intrinsic mode

functions. In the current setting, however, we are not aware of a similar reconstruction formula

for the wave packet. Therefore, our reconstruction step is based on a Calderon-type reconstruction

formula for the wave packets as discussed in the next chapter. A similar approach based on the

Calderon reconstruction formula for the wavelets is in fact used in the numerical examples of [43] as

it is more robust in the noisy case. However, we have not been able to derive a rigorous error bound

for this Calderon-type reconstruction formula for the wave packets at this point.

Since we require N to be sufficiently large in Theorem 2.1.8, a function defined in Definition

2.1.7 is a superposition of highly oscillatory components. In practical applications, a function might

also contain a low-frequency component. For such a low-frequency component, the local wavevector

is not well-defined as it is impossible to perform a phase-amplitude decomposition as given in Defi-

nition 2.1.6 for a low-frequency signal. Thus Theorem 2.1.8 does not apply to such a superposition.

However, in practice, we observe that the synchrosqueezing step can still separate the support of

different components quite well: typically the support of high frequency components are squeezed

into regions Zk while the support of the low frequency component remains at the low-frequency part

of the Fourier domain. Therefore, by applying the reconstruction formula to the coefficients of the

low-frequency component, one is still able to identify the low-frequency component quite accurately
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even though one cannot estimate its local wavevector.

2.2 Multi-Dimensional Synchrosqueezed Wave Packet Trans-

form

2.2.1 Motivation

An obvious question, which is motivated by applications in geophysics [143, 163], is whether the

synchrosqueezing idea can be extended to multi-dimensional images. For example, in seismic

imaging analysis, different local wavevectors correspond to different seismic events, which typically

link to different geological features. A straightforward attempt would simply combine the multi-

dimensional wavelet transform with the synchrosqueezing approach. The resulting synchrosqueezed

multi-dimensional wavelet transform would be capable of separating components that have differ-

ent wavevectors at each location, just as the 1D transform does for 1D signals. However, in many

situations this is not enough since a typical multi-dimensional image can have components whose

wavevectors have the same magnitude but point in different directions, as shown in Figure 2.2(left).

Another simple idea is to synchrosqueeze an appropriately designed directional wavelet transforms

(e.g., multi-dimensional Gabor wavelets). However, the dyadic scaling property of these transforms

would still give poor resolution to distinguish wave-like components with close local wave vectors.

This phenomenon has been shown in the 1D case in last section. In fact, images from many applica-

tions related to high-frequency wave propagation have wave-like components with close local wave

vectors.

In order to design synchrosqueezed transforms that can separate multi-dimensional wave-like

components once they have different local wave vectors, we propose the multi-dimensional syn-

chrosqueezed wave packet transform (SSWPT). Similar to the 1D SSWPT, it combines the syn-

chrosqueezing idea with multi-dimensional wave packets of an appropriate geometric scaling s. The

key feature is that these wave packets have finer and, more importantly directional, support in the

multi-dimensional Fourier domain, which allows the anisotropic angular separation in the Fourier do-

main, i.e., distinguishing components oscillating in different directions, as shown in Figure 2.2(right).

As we know of, the synchrosqueezed wave packet transform is the first method equipped with this

ability so far.

2.2.2 Definition

We will briefly introduce the multi-dimensional synchrosqueezed wave packet transform proposed

in this section and analyze it in the next section. Similar to the 1D case, we can also introduce an

n-dimensional mother wave packet w(x) ∈ Cm(Rn) of type (ε,m) such that ŵ(ξ) has an essential
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Figure 2.2: Comparison of the resolutions of 2D continuous wavelets (left) and 2D continuous wave
packets (right) in the Fourier domain. Consider the superposition of two plane waves e2πip·x and
e2πiq·x with the same frequency (|p| = |q|) but different wavevectors (p 6= q). Left: The two dots in
each plot show the support of the Fourier transforms of these two plane waves and the gray region
stands for the support of a continuous wavelet. Since the isotropic support of each wavelet either
covers or misses both points p and q, the wavelet transform is not able to distinguish these two plane
waves. Right: Each gray region represents the support of a wave packet. As long as p and q are well
separated, they are in the support of two different wave packets. Hence these two plane waves can
be distinguished from each other by the wave packet transform.

support in the ball B1(0) centered at the frequency origin with a radius 1, i.e.,

|ŵ(ξ)| ≤ ε

(1 + |ξ|)m
,

for |ξ| > 1 and some non-negative integer m. A family of n-dimensional wave packets is obtained by

isotropic dilation, rotations and translations of the mother wave packet as follows, controlled by a

geometric parameter s.

Definition 2.2.1. Given the mother wave packet w(x) of type (ε,m) and the parameter s ∈ (1/2, 1),

the family of wave packets {wab(x) : a, b ∈ Rn, |a| ≥ 1} are defined as

wab(x) = |a|ns/2w (|a|s(x− b)) e2πi(x−b)·a,

or equivalently in the Fourier domain

ŵab(ξ) = |a|−ns/2e−2πib·ξŵ
(
|a|−s(ξ − a)

)
.

In this definition, we require |a| ≥ 1. The reason is that, when |a| < 1, the above consideration
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regarding the shape of the wave packets is no longer valid. However, since we are mostly concerned

with the high frequencies as the signals of interest here are oscillatory, the case |a| < 1 is essentially

irrelevant.

Some properties can be seen immediately from the definition: the Fourier transform ŵab(ξ) is

essentially supported in B|a|s (a), a ball centered at a with a radius |a|s; wab(x) is centered in space

at b with an essential support of width O (|a|−s); {wab(x) : a, b ∈ Rn, |a| ≥ 1} are all appropriately

scaled to have the same L2 norm with the mother wave packet w(x). Notice that if s were equal

to 1/2, we would obtain the wave atoms defined in [49]. If s were equal to 1, these functions would

be qualitatively similar to the standard multi-dimensional wavelets. In general, an n-dimensional

SSWPT with a smaller s value is better distinguishing two IMTs with close propagating directions.

This is the motivation to propose n-dimensional SSWPT rather than directly generalizing the 1D

SSWT in [37, 43, 44, 172].

With this family of wave packets, we define the wave packet transform as follows.

Definition 2.2.2. The wave packet transform of a function f(x) is a function

Wf (a, b) = 〈f, wab〉 =

∫
Rn
f(x)wab(x)dx

for a, b ∈ Rn, |a| ≥ 1.

If the Fourier transform f̂(ξ) vanishes for |ξ| < 1, it is easy to check that the L2 norms of Wf (a, b)

and f(x) are equivalent, up to a uniform constant factor, i.e.,∫
R2n

|Wf (a, b)|2dadb h
∫
Rn
|f(x)|2dx. (2.4)

Definition 2.2.3. The local wave vector estimation of a function f(x) at (a, b) ∈ R2n is

vf (a, b) =


∇bWf (a,b)
2πiWf (a,b) , for Wf (a, b) 6= 0;

(∞,∞) , otherwise.

Given the wave vector estimation vf (a, b), the synchrosqueezing step reallocates the information

in the phase space and provides a sharpened phase space representation of f(x) in the following way.

Definition 2.2.4. Given f(x), the synchrosqueezed energy distribution Tf (v, b) is defined by

Tf (v, b) =

∫
Rn\B1(0)

|Wf (a, b)|2δ (Revf (a, b)− v) da

for v, b ∈ Rn.

As we shall see, for f(x) = α(x)e2πiNφ(x) with sufficiently smooth amplitude α(x) and sufficiently

steep phase Nφ(x), we can show that for each b, the estimation vf (a, b) indeed approximates N∇φ(b)
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independently of a as long as Wf (a, b) is non-negligible. As a direct consequence, for each b, the

essential support of Tf (v, b) in the v variable concentrates near N∇φ(b) (see Figure 2.3 for an

example). In addition, we have the following property∫
Tf (v, b)dvdb =

∫
|Wf (a, b)|2δ(Revf (a, b)− v)dvdadb =

∫
|Wf (a, b)|2dadb h ‖f‖22

from Fubini’s theorem and the norm equivalence (2.4), for any f(x) with its Fourier transform

vanishing for |ξ| < 1.
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Figure 2.3: 2D example: Synchrosqueezed wave packet transform applied to a deformed plane wave
f(x) = α(x)e2πiNφ(x). Left: The essential support of the wave packet transform Wf (a, b) at b1 = 1.
Right: The essential support of the synchrosqueezed energy distribution Tf (v, b) at the same b1
value. Wf (a, b) has been reallocated to form a sharp phase space representation Tf (v, b).

2.2.3 Analysis

In this section, we show that the synchrosqueezed wave packet transform can distinguish well-

separated local wavevectors from a superposition of multiple components.

Definition 2.2.5. A function f(x) = α(x)e2πiNφ(x) is an intrinsic mode type function (IMT) of

type (M,N) if α(x) and φ(x) satisfy

α(x) ∈ C∞, |∇α(x)| ≤M, 1/M ≤ α(x) ≤M

φ(x) ∈ C∞, 1/M ≤ |∇φ(x)| ≤M, |∇2φ(x)| ≤M.
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Definition 2.2.6. A function f(x) is a well-separated superposition of type (M,N,K, s) if

f(x) =

K∑
k=1

fk(x)

where each fk(x) = αk(x)e2πiNkφk(x) is an IMT of type (M,Nk) with Nk ≥ N and the phase functions

satisfy the separation condition: for any (a, b) ∈ R2n, there exists at most one fk satisfying that

|a|−s |a−Nk∇φk(b)| ≤ 1.

We denote by F (M,N,K, s) the set of all such functions.

The following theorem illustrates the main results of n-dimensional SSWPT for a superposition

of IMTs without noise or perturbation. In what follows, when we write O (·), ., or &, the implicit

constants may depend on M , m and K.

Theorem 2.2.7. Suppose the n-dimensional mother wave packet is of type (ε,m), for any fixed

ε ∈ (0, 1) and any fixed integer m ≥ 0. For a function f(x), we define

Rε = {(a, b) : |Wf (a, b)| ≥ |a|−ns/2
√
ε},

Sε = {(a, b) : |Wf (a, b)| ≥
√
ε},

and

Zk = {(a, b) : |a−Nk∇φk(b)| ≤ |a|s}

for 1 ≤ k ≤ K. For fixed M , m, and K there exists a constant N0 (M,m,K, s, ε) ' max
{
ε
−2

2s−1 , ε
−1
1−s

}
such that for any N > N0 and f(x) ∈ F (M,N,K, s) the following statements hold.

(i) {Zk : 1 ≤ k ≤ K} are disjoint and Sε ⊂ Rε ⊂
⋃

1≤k≤K Zk;

(ii) For any (a, b) ∈ Rε ∩ Zk,
|vf (a, b)−Nk∇φk(b)|

|Nk∇φk(b)|
.
√
ε;

(iii) For any (a, b) ∈ Sε ∩ Zk,

|vf (a, b)−Nk∇φk(b)|
|Nk∇φk(b)|

. N
−ns/2
k

√
ε.

Lemma 2.2.8. Suppose Ωa = {k : |a| ∈ [ Nk2M , 2MNk]}. Under the assumption of Theorem 2.2.7, we

have

Wf (a, b) = |a|−ns/2
(∑
k∈Ωa

αk(b)e2πiNkφk(b)ŵ
(
|a|−s (a−Nk∇φk(b))

)
+O (ε)

)
,
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when N > N0 (M,m,K, s, ε) ' max
{
ε
−2

2s−1 , ε
−1
1−s

}
.

Proof. Let us first estimate Wf (a, b) assuming that f(x) contains a single intrinsic mode function

of type (M,N)

f(x) = α(x)e2πiNφ(x).

Using the definition of the wave packet transform, we have the following expression for Wf (a, b).

Wf (a, b) =

∫
α(x)e2πiNφ(x)|a|ns/2w(|a|s(x− b))e−2πi(x−b)·adx

=

∫
α(b+ |a|−sy)e2πiNφ(b+|a|−sy)|a|sw(y)e−2πi|a|−sy·ad(|a|−sy)

= |a|−ns/2
∫
α(b+ |a|−sy)w(y)e2πi(Nφ(b+|a|−sy)−|a|−sy·a)dy.

We claim that when N is sufficiently large

Wf (a, b) =

|a|−ns/2O(ε), |a| /∈ [ N2M , 2MN ]

|a|−ns/2
(
α(b)e2πiNφ(b)ŵ (|a|−s(a−N∇φ(b))) +O(ε)

)
, |a| ∈ [ N2M , 2MN ].

(2.5)

First, let us consider the case |a| /∈ [ N2M , 2MN ]. Consider the integral∫
h(y)eig(y)dy

for smooth real functions h(y) and g(y), along with the differential operator

L =
1

i

〈∇g,∇〉
|∇g|2

.

If |∇g| does not vanish, we have

Leig =
〈∇g, i∇geig〉

i|∇g|2
= eig.

Assuming that h(y) decays sufficiently fast at infinity, we perform integration by parts r times to

get ∫
heigdy =

∫
h(Lreig)dy =

∫
((L∗)rh)eigdy,

where L∗ is the adjoint of L. In the current setting, Wf (a, b) = |a|−ns/2
∫
h(y)eig(y)dy with

h(y) = α(b+ |a|−sy)w(y), g(y) = 2π(Nφ(b+ |a|−sy)− |a|−sy · a),
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where h(y) clearly decays rapidly at infinity since w(y) is in the Schwartz class. In order to under-

stand the impact of L and L∗, we need to bound the norm of

∇g(y) = 2π
(
N∇φ(b+ |a|−sy)− a

)
|a|−s

from below when |a| /∈ [ N2M , 2MN ]. If |a| < N
2M , then

|∇g| & (|N∇φ| − |a|)|a|−s & |N∇φ||a|−s/2 & N1−s.

If |a| > 2MN , then

|∇g| & (|a| − |N∇φ|)|a|−s & |a| · |a|−s/2 & (|a|)1−s & N1−s.

Hence |∇g| & N1−s if |a| /∈ [ N2M , 2MN ]. Since |∇g| 6= 0 and each L∗ contributes a factor of order

1/|∇g| ∣∣∣∣∫ eig(y)((L∗)rh)(y)dy

∣∣∣∣ . N−(1−s)r.

When

N & ε−1/((1−s)r), (2.6)

we obtain ∣∣∣∣∫ eig(y)((L∗)rh)(y)dy

∣∣∣∣ . ε.

Using the fact Wf (a, b) = |a|−ns/2
∫
h(y)eig(y)dy, we have |Wf (a, b)| . |a|−ns/2ε.

Second, let us address the case |a| ∈ [ N2M , 2MN ]. We want to approximate Wf (a, b) with

|a|−ns/2α(b)e2πiNφ(x)ŵ
(
|a|−s(a−N∇φ(b))

)
.

Since w(y) is in the Schwartz class, we can assume that |w(y)| ≤ Cu
|y|u for some sufficient large u with

Cu for |y| ≥ 1. Therefore, the integration over |y| & ε−1/u yields a contribution of at most order

O(ε). We can then estimate

|Wf (a, b)| = |a|−ns/2
(∫
|y|.ε−1/u

α(b+ |a|−sy)w(y)e2πi(Nφ(b+|a|−sy)−|a|−sy·a)dy +O(ε)

)
.

A Taylor expansion of α(x) and φ(x) shows that

α(b+ |a|−sy) = α(b) +∇α(b∗) · |a|−sy

and

φ(b+ |a|−sy) = φ(b) +∇φ(b) · (|a|−sy) +
1

2
(|a|−sy)t∇2φ(b∗)(|a|−sy),



CHAPTER 2. THEORY OF SYNCHROSQUEEZED TRANSFORMS 29

where in each case b∗ is a point between b and b+ |a|−sy. We want to drop the last term from the

above formulas without introducing a relative error larger than O(ε). We begin with the estimate∫
|y|.ε−1/u

|∇α · |a|−syw(y)|dy . ε,

which holds if ε−n/u|∇α · |a|−sy| . ε, which is true when |a|−s . ε1+(n+1)/u. Since |a| ∈ [ N2M , 2MN ],

the above holds if

N & ε−(1+(n+1)/u)/s. (2.7)

We also need∫
|y|.ε−1/u

|α(b)w(y)e2πi(Nφ(b)+N∇φ(b)·|a|−sy−|a|−sy·a)| · |e2πiN/2(|a|−sy)t∇2φ(|a|−sy) − 1|dy . ε.

Since |eix − 1| ≤ |x|, the above inequality is equivalent to∫
|y|.ε−1/u

α(b)w(y)e2πi(Nφ(b)+N∇φ(b)·|a|−sy−|a|−sy·a)|2πN/2(|a|−sy)t∇2φ(|a|−sy)|dy . ε,

which is true if ε−n/uN(|a|−sy)t∇2φ(|a|−sy) . ε, which in turn holds if N |a|−2s|y|2 . ε1+n/u.

Because |y| . ε−
1
u and |a| ∈ [ N2M , 2MN ], the above inequality is valid when

N & ε−(1+(n+2)/u)/(2s−1). (2.8)

In summary, for N larger than the maximum of the right hand sides of (2.6), (2.7) and (2.8), if

|a| ∈ [ N2M , 2MN ] then we have

Wf (a, b) = |a|−ns/2
(∫
|y|.ε−1/u

α(b)w(y)e2πi(Nφ(b)+N∇φ(b)·|a|−sy−|a|−sy·a)dy +O(ε)

)

= |a|−ns/2
(∫
|y|.ε−1/u

(
α(b)e2πiNφ(b)

)
w(y)e2πi(N∇φ(b)−a)·|a|−sydy +O(ε)

)

= |a|−ns/2
(∫

Rn

(
α(b)e2πiNφ(b)

)
w(y)e2πi(N∇φ(b)−a)·|a|−sydy +O(ε)

)
= |a|−ns/2

(
α(b)e2πiNφ(b)ŵ

(
|a|−s(a−N∇φ(b))

)
+O(ε)

)
,

where the third line uses the fact that the integration of w(y) outside the set {y : |y| . ε−1/u} is

again of order O(ε).

Now let us return to the general case, where f(x) is a superposition of K well-separated intrinsic
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mode components:

f(x) =

K∑
k=1

fk(x) =

K∑
k=1

αk(x)e2πiNφk(x).

By linearity of the wave packet transform and (2.5), we find:

Wf (a, b) = |a|−ns/2O(ε),

if |a| /∈ [ N2M , 2MN ];

Wf (a, b) = |a|−ns/2
(

K∑
k=1

αk(b)e2πiNφk(b)ŵ
(
|a|−s(a−N∇φk(b))

)
+O(ε)

)
,

if |a| ∈ [ N2M , 2MN ].

The next lemma estimates ∇bWf (a, b) when Ωa is not empty, i.e., the case where Wf (a, b) is

non-negligible.

Lemma 2.2.9. Suppose Ωa = {k : |a| ∈ [ Nk2M , 2MNk]} is not empty. Under the assumption of

Theorem 2.2.7, we have

∇bWf (a, b) = 2πi|a|−ns/2
(∑
k∈Ωa

Nk∇φk(b)αk(b)e2πiNkφk(b)ŵ
(
|a|−s (a−Nk∇φk(b))

)
+ |a|O (ε)

)
,

when N > N0 (M,m,K, s, ε) ' max
{
ε
−2

2s−1 , ε
−1
1−s

}
.

Proof. The proof is similar to the one of Lemma 2.2.8. Assume that f(x) contains a single intrinsic

mode function, i.e.,

f(x) = α(x)e2πiNφ(x),

then

∇bWf (a, b) =

∫
Rn
α(x)e2πiNφ(x)|a|ns/2 (∇w(|a|s(x− b))(−|a|s) + 2πipw(|a|s(x− b))) e−2πi(x−b)·adx

=

∫
Rn
α(b+ |a|−sy)e2πiNφ(b+|a|−sy)|a|−ns/2 (∇w(y)(−|a|s) + 2πipw(y)) e−2πi|a|−sy·ady

=

∫
Rn
α(b+ |a|−sy)e2πiNφ(b+|a|−sy)|a|−ns/2∇w(y)(−|a|s)e−2πi|a|−sy·ady

+

∫
Rn
α(b+ |a|−sy)e2πiNφ(b+|a|−sy)|a|−ns/22πiaw(y)e−2πi|a|−sy·ady.

Forming a Taylor expansion and following the same argument as in the proof of Lemma 2.2.8 gives
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the following approximation for |a| ∈ [ N2M , 2MN ]

∇bWf (a, b) =
(
−2πi|a|−ns/2(a−N∇φ(b))α(b)e2πiNφ(b)ŵ(|a|−s(a−N∇φ(b))) +O(ε)

)
+ 2πi|a|−ns/2a

(
α(b)e2πiNφ(b)ŵ

(
|a|−s(a−N∇φ(b))

)
+O(ε)

)
=2πi|a|−ns/2

(
N∇φ(b)α(b)e2πiNφ(b)ŵ(|a|−s(a−N∇φ(b))) + |a|O(ε)

)
.

For f(x) =
∑K
k=1 fk(x) =

∑K
k=1 αk(x)e2πiNφk(x), taking sum over K terms gives

∇bWf (a, b) = 2πi|a|−ns/2
(∑
k∈Ωa

(
N∇φk(b)αk(x)e2πiNφk(b)ŵ(|a|−s(a−N∇φk(b)))

)
+ |a|O(ε)

)

for |a| ∈ [ N2M , 2MN ].

We are now ready to prove the theorem.

Proof. For (i), the well-separation condition implies that {Zk : 1 ≤ k ≤ K} are disjoint.

Let (a, b) be a point in Rε = {(a, b) : |Wf (a, b)| ≥ |a|−ns/2
√
ε}. From the above lemma, we have

Wf (a, b) = |a|−ns/2
(∑
k∈Ωa

αk(b)e2πiNkφk(b)ŵ
(
|a|−s(a−Nk∇φk(b))

)
+O(ε)

)
.

Therefore, there exists k between 1 and K such that ŵ (|a|−s(a−Nk∇φk(b))) is non-zero. From

the definition of ŵ(ξ), we see that this implies (a, b) ∈ Zk. Hence Rε ⊂
⋃K
k=1 Zk. It’s obvious that

Sε ⊂ Rε.
To show (ii), let us recall that vf (a, b) is defined as

vf (a, b) =
∇bWf (a, b)

2πiWf (a, b)

for Wf (a, b) 6= 0. If (a, b) ∈ Rε ∩ Zk, then

Wf (a, b) = |a|−ns/2
(
αk(b)e2πiNkφk(b)ŵ

(
|a|−s(a−Nk∇φ(b))

)
+O(ε)

)
and

∇bWf (a, b) = 2πi|a|−ns/2
(
Nk∇φk(b)αk(b)e2πiNkφk(b)ŵ(|a|−s(a−Nk∇φk(b))) + |a|O(ε)

)
as the other terms drop out since {Zk} are disjoint. Hence

vf (a, b) =
Nk∇φk(b)

(
αk(b)e2πiNkφk(b)ŵ (|a|−s(a−Nk∇φk(b))) +O(ε)

)(
αk(b)e2πiNkφk(b)ŵ (|a|−s(a−Nk∇φk(b))) +O(ε)

) .
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Let us denote the term αk(b)e2πiNkφk(b)ŵ (|a|−s(a−Nk∇φk(b))) by g. Then

vf (a, b) =
Nk∇φk(b) (g +O(ε))

g +O(ε)
.

Since |Wf (a, b)| ≥ |a|−ns/2
√
ε for (a, b) ∈ Rε, |g| &

√
ε, and therefore

|vf (a, b)−Nk∇φk(b)|
|Nk∇φk(b)|

.

∣∣∣∣ O(ε)

g +O(ε)

∣∣∣∣ . √ε.
Similarly, if (a, b) ∈ Sε ∩ Zk, then

|vf (a, b)−Nk∇φk(b)|
|Nk∇φk(b)|

.

∣∣∣∣ O(ε)

g +O(ε)

∣∣∣∣ . √
ε

N
ns/2
k

,

since |g| & N
ns/2
k

√
ε for (a, b) ∈ Sε ∩ Zk.

2.3 2D Synchrosqueezed Curvelet Transform

2.3.1 Motivation

In some applications such as wave field separation problems [143, 163] and ground roll removal

problems [17, 72, 185] in geophysics, it is required to separates overlapping wavefronts or banded

wave-like components. In this case, the boundary of these components gives rise to many nonzero

coefficients of wave packet transform, which results in unexpected interferential synchrosqueezed

energy distribution (see Figure 2.4 top-right). This would dramatically reduce the accuracy of local

wave-vector estimation, because the locations of nonzero energy provide estimation of local wave-

vectors. As shown in Figure 2.4 (top-right), there exist misleading local wave-vector estimates at

the location where the signal is negligible. Even if at the location where the signal is relevant, the

relative error is still unacceptable.

To solve this problem, an empirical idea is that, good basis elements in the synchrosqueezed

transform should look like the components, i.e., they should appear in a needle-like shape. An

optimal solution is curvelets. The curvelet transform is anisotropic (as shown in Figure 2.5 right),

and is designed for optimally representing curved edges [23, 148] and banded wavefronts [19]. This

motivates the design of the synchrosqueezed curvelet transform (SSCT) as a better tool to estimate

local wave-vectors of wavefronts or banded wave-like components in this paper. The estimate of

local wave-vectors provided by SSCT is much better than that by SSWPT as shown in Figure 2.4

(bottom).
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Figure 2.4: Top-left: A banded deformed plane wave, f(x) = e
− (φ(x)−0.7)2

(4/N)2 e2πiNφ(x), where N = 135
and φ(x) = x1 +(1−x2)+0.1 sin(2πx1)+0.1 sin(2π(1−x2)). Top-right: Number of nonzero discrete
synchrosqueezed energy of SSWPT at each grid point of space domain. Bottom-left: Relative error
between the mean local wave-vector estimate (defined in [182]) and the exact local wave-vector using
SSWPT. Bottom-right: Relative error between the mean local wave-vector estimate and the exact
local wave-vector using SSCT.

2.3.2 Definition

Below is a brief introduction to the generalized curvelet transform with a radial scaling parameter

t < 1 and an angular scaling parameter s ∈ ( 1
2 , t). Similar to the discussion in [182], it is crucial

to assume 1
2 < s < t < 1, so as to obtain accurate estimates of local wave-vectors for reasonable

large wavenumbers. It is proved in the next section, s < t guarantees precise estimates in the case

of banded wave-like components. Here are some notations for the generalized curvelet transform.
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Figure 2.5: Comparison of localized supports of continuous wavelets (left), wave packets (middle)
and curvelets (right) in the Fourier domain. Two dots in each plot show the support of the Fourier
transforms of the superposition of two plane waves e2πip·x and e2πiq·x with the same wave-number
(|p| = |q|) but different wave-vectors (p 6= q).

1. The scaling matrix

Aa =

(
at 0

0 as

)
,

where a is the distance from the center of one curvelet to the origin of Fourier domain.

2. The rotation angle θ and rotation matrix

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
.

3. The unit vector uθ = (cos θ, sin θ)T of rotation angle θ and T denotes a transpose.

4. θα represents the argument of given vector α.

5. w(x) of x ∈ R2 denotes the mother curvelet, which belongs to the class of mother wave packets

of some type (ε,m) in Section 2.2 and obeys the admissibility condition: ∃0 < c1 < c2 < ∞
such that

c1 ≤
∫ 2π

0

∫ ∞
1

a−(t+s)|ŵ
(
A−1
a R−1

θ (ξ − a · uθ)
)
|2adadθ ≤ c2

for any |ξ| ≥ 1.

With the notations above, it is ready to define a family of curvelets through scaling, modulation,

and translation as follows, controlled by the geometric parameter s and t.

Definition 2.3.1. Given geometric scaling parameters 1
2 < s < t < 1 and a mother curvelet of type

(ε,m), the family of curvelets {waθb(x), a ∈ [1,∞), θ ∈ [0, 2π), b ∈ R2} is constructed as

waθb(x) = a
t+s
2 e2πia(x−b)·uθw

(
AaR

−1
θ (x− b)

)
,



CHAPTER 2. THEORY OF SYNCHROSQUEEZED TRANSFORMS 35

or equivalently, in the frequency domain

ŵaθb(ξ) = ŵ
(
A−1
a R−1

θ (ξ − a · uθ)
)
e−2πib·ξa−

t+s
2 .

It is clear from the definition that the Fourier transform ŵaθb(ξ) has an ellipse-like essential

support {ξ : |A−1
a R−1

θ (ξ − a · uθ) | ≤ 1} centered at a ·uθ with a major radius at and a minor radius

as. Meanwhile, waθb(x) is centered in space at b with an essential support of length O (a−s) and

width O (a−t). By this appropriate construction, each curvelet is scaled to have the same L2 norm

with the mother curvelet w(x). The generalized curvelet transform can also be considered as a

generalization of the wave packet transform in Section 2.2 with two different scaling parameters s

and t. This family of functions is quantitatively similar to wavelets when s = t = 1, wave atoms [49]

when s = t = 1
2 , and curvelets [19, 24, 25] when s = 1

2 and t = 1. In real applications, it is beneficial

to adaptively tune s and t for better estimates of local wave vectors in complex data structures.

Similar to the curvelet transform, the generalized curvelet transform is defined as follows.

Definition 2.3.2. The generalized curvelet transform of a function f(x) is a function

Wf (a, θ, b) = 〈f, waθb〉 =

∫
R2

f(x)waθb(x)dx

for a ∈ [1,∞), θ ∈ [0, 2π), b ∈ R2.

If the Fourier transform f̂(ξ) vanishes for |ξ| < 1, one can check the following L2 norms equiva-

lence up to a uniform constant factor following the proof of Theorem 1 in [25], i.e.,

c1

∫
|f(x)|2dx ≤

∫
|Wf (a, θ, b)|2adadθdb ≤ c2

∫
|f(x)|2dx.

Definition 2.3.3. The local wave vector information function of a function f(x) at (a, θ, b) for

a ∈ [1,∞), θ ∈ [0, 2π), b ∈ R2 is

vf (a, θ, b) =


∇bWf (a,θ,b)
2πiWf (a,θ,b) , for Wf (a, θ, b) 6= 0;

(∞,∞) , otherwise.

Since vf (a, θ, b) estimates the local wave vectors accurately, as we shall see, reallocating the

coefficients with the same vf together would generate a sharpened phase space representation of

f(x). This motivates the design of the synchrosqueezed energy distribution as follows.

Definition 2.3.4. Given f(x), the synchrosqueezed energy distribution Tf (v, b) is

Tf (v, b) =

∫
|Wf (a, θ, b)|2δ (Revf (a, θ, b)− v) adadθ
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for v ∈ R2, b ∈ R2.

For f(x) with Fourier transform vanishing for |ξ| < 1, the following norm equivalence holds∫
Tf (v, b)dvdb =

∫
|Wf (a, θ, b)|2adadθdb h ‖f‖22

as a consequence of the L2 norm equivalence between Wf (a, θ, b) and f(x).

2.3.3 Analysis

To model a wave-like component with a band-shape support, we are going to analyze components

of the form

f(x) = e−(φ(x)−c)2/σ2

α(x)e2πiNφ(x),

where α(x) is a smooth amplitude function, φ(x) a smooth phase function, and σ is a band parameter

that controls the width of the signal.

To understand how large the bandwidth should be so as to obtain accurate local wave vec-

tor estimates by the SSCT, we assume σ = Θ (N−η) and show that the SSCT gives good esti-

mates when η < t and N is sufficiently large. In the space domain, a generalized curvelet at the

scale a = O (N) has a width O (N−t). σ ≥ N−η with η < t indicates that the bandwidth σ of

e−(φ(x)−c)2/σ2

α(x)e2πiNφ(x) can be almost as narrow as the width of a generalized curvelet that

sharing the same wave number O (N), when N is sufficiently large.

Definition 2.3.5. For any c ∈ R, N > 0 and M > 0, f(x) = e−(φ(x)−c)2/σ2

α(x)e2πiNφ(x) is a

banded intrinsic mode function of type (M,N, η), if α(x) and φ(x) satisfy

α(x) ∈ C∞, |∇α(x)| ≤M, 1/M ≤ α(x) ≤M,

φ(x) ∈ C∞, 1/M ≤ |∇φ(x)| ≤M, |∇2φ(x)| ≤M,

and σ ≥ N−η.

Definition 2.3.6. A function f(x) is a well-separated superposition of type (M,N, η, s, t,K) if

f(x) =

K∑
k=1

fk(x),

where each fk(x) = e−(φk(x)−ck)2/σ2
kαk(x)e2πiNφk(x) is a banded intrinsic mode function (IMT) of

type (M,Nk, η) with Nk ≥ N and they satisfy the separation condition: ∀a ∈ [1,∞) and ∀θ ∈ [0, 2π),

there is at most one banded intrinsic mode function fk satisfying that

|A−1
a R−1

θ (a · uθ −Nk∇φk(b)) | ≤ 1.
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We denote by F (M,N, η, s, t,K) the set of all such functions.

The first theorem in this section demonstrates the accuracy of the local wave vector estimation

of the banded IMTs when the given data does not contain noise.

Theorem 2.3.7. Suppose the 2D mother curvelet is of type (ε,m), for any fixed ε ∈ (0, 1) and any

fixed integer m ≥ 0. For a function f(x), we define

Rε =
{

(a, θ, b) : |Wf (a, θ, b)| ≥ a−
s+t
2
√
ε
}
,

Sε =
{

(a, θ, b) : |Wf (a, θ, b)| ≥
√
ε
}
,

and

Zk =
{

(a, θ, b) : |A−1
a R−1

θ (a · uθ −Nk∇φk(b)) | ≤ 1
}

for 1 ≤ k ≤ K. For fixed M , m, s, t, η, and ε, there exists

N0 (M,m, s, t, η, ε) ' max
{
ε
−1
1−t , ε

−2
t−η , ε

−2
2s−1

}
such that for any N > N0 (M,m, s, t, η, ε) and f(x) ∈ F (M,N, η, s, t,K) the following statements

hold.

(i) {Zk : 1 ≤ k ≤ K} are disjoint and Sε ⊂ Rε ⊂
⋃

1≤k≤K Zk.

(ii) For any (a, θ, b) ∈ Rε ∩ Zk,

|vf (a, θ, b)−Nk∇φk(b)|
|Nk∇φk(b)|

.
√
ε.

(iii) For any (a, θ, b) ∈ Sε ∩ Zk,

|vf (a, θ, b)−Nk∇φk(b)|
|Nk∇φk(b)|

. N
− s+t2

k

√
ε.

For simplicity, the notations O(·), . and & are used when the implicit constants may only depend

on M , m and K. The proof of Theorem 2.3.7 relies on two lemmas below to estimate Wf (a, θ, b)

and ∇bWf (a, θ, b).

Lemma 2.3.8. Suppose

Ωaθb =

{
k : a ∈

(
Nk
2M

, 2MNk

)
,
∣∣θ∇φk(b) − θ

∣∣ < arcsin

((
M

Nk

)t−s)}
.

Under the assumption of Theorem 2.3.7, the following estimation of Wf (a, θ, b) holds when N >
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N0 (M,m, s, t, η, ε) ' max
{
ε
−1
1−t , ε

−2
t−η , ε

−2
2s−1

}
:

Wf (a, θ, b) = a−
s+t
2

( ∑
k∈Ωaθb

fk(b)ŵ
(
A−1
a R−1

θ (a · uθ −Nk∇φk(b))
)

+O (ε)

)
.

Proof. We only need to discuss the case when K = 1. The result for general K is an easy extension

by the linearity of generalized curvelet transform. Suppose f(x) contains a single banded intrinsic

mode function of type (M,N, η)

f(x) = e−(φ(x)−c)2/σ2

α(x)e2πiNφ(x).

We claim that when N is large enough, the approximation of Wf (a, θ, b) holds. By the definition of

generalized curvelet transform, it holds that

Wf (a, θ, b) =

∫
R2

f(x)a
s+t
2 w(AaR

−1
θ (x− b))e−2πia(x−b)·uθdx

= a−
s+t
2

∫
R2

f(b+RθA
−1
a y)w(y)e−2πia1−ty1dy.

Step 1: We start with the proof of (2) first.

Let h(y) = w(y)e−(φ(b+RθA
−1
a y)−c)2/σ2

α(b+RθA
−1
a y) and g(y) = 2π(Nφ(b+RθA

−1
a y)− a1−ty1),

then we have

Wf (a, θ, b) = a−
s+t
2

∫
R2

h(y)eig(y)dy,

with real smooth functions h(y) and g(y). Consider the differential operator

L =
1

i

〈∇g,∇〉
|∇g|2

.

If |∇g| does not vanish, we have

Leig =
〈∇g, i∇geig〉

i|∇g|2
= eig.

By the definition of w(y), we know h(y) is decaying rapidly at infinity. Then we can apply integration

by parts to get ∫
R2

heigdy =

∫
R2

h(Leig)dy = −
∫
R2

∇ ·
( h∇g
i|∇g|2

)
eigdy.

Hence, we need to estimate
∣∣∣∇ · ( h∇g

i|∇g|2
)∣∣∣. Because

∇ ·
( h∇g
i|∇g|2

)
=

1

i

(
∇h · ∇g
|∇g|2

+ h∇ ·
( ∇g
|∇g|2

))
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and |h(y)| . 1, we only need to estimate
∣∣∣∇h·∇g|∇g|2

∣∣∣ and
∣∣∣ ∂2g
∂yi∂yj

1
|∇g|2

∣∣∣ for i, j = 1, 2.

Let z = (z1, z2)T = R−1
θ ∇φ(b+RθA

−1
a y), v1 = NA−1

a R−1
θ ∇φ(b+RθA

−1
a y) and v2 = (a1−t, 0)T ,

then ∇g(y) = 2π(v1 − v2) = 2π((Nz1 − a)a−t, Na−sz2).

Case 1: a /∈ ( N
2M , 2MN).

When a ≥ 2MN , then

|∇g(y)| ≥ a1−t −MNa−t =
a1−t

2
+ (

a

2
−MN)a−t ≥ a1−t

2
& N1−t.

When a ≤ N
2M , then

|∇g(y)| & Na−t

M
− a1−t ≥ Na−t

2M
& N1−t.

So

|∇g(y)| & N1−t (2.9)

for a /∈ ( N
2M , 2MN).

If a ≥ 2MN , then
∣∣∣ ∂2g
∂yi∂yj

∣∣∣ . Na−2s . N1−2s, implying that

∣∣∣∣ ∂2g

∂yi∂yj

1

|∇g|2

∣∣∣∣ . N1−2s/N2−2t =
1

N1−2(t−s) .

Since |z| ≥ 1
M , then either |z1| ≥ 1√

2M
or |z2| ≥ 1√

2M
holds. If a ≤ N

2M , then

∣∣∣∣ ∂2g

∂yi∂yj

1

|∇g|2

∣∣∣∣ .
Na−2s

(Nz1 − a)2a−2t +N2a−2sz2
2

=
1

(z1 − a
N )2Na−2(t−s) +Nz2

2

. max{ 1

N1−2(t−s) ,
1

N
}.

=
1

N1−2(t−s) .

In sum, ∣∣∣∣ ∂2g

∂yi∂yj

1

|∇g|2

∣∣∣∣ . 1

N1−2(t−s) (2.10)

for a /∈ ( N
2M , 2MN).

Notice that the dominant term of ∇h is

w(y)α(b+RθA
−1
a y)e−(φ(b+RθA

−1
a y)−c)2/σ2

· −2(φ(b+RθA
−1
a y)− c)

σ2
A−1
a z
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and the other terms are of order 1. Because e−
x2

σ2 · |x|σ2 ≤ e−
1
2 · 1

σ
√

2
, then

∣∣∣∣∇h · ∇g|∇g|2

∣∣∣∣ . 1

σ

∣∣∣∣ (A−1
a z) · ∇g
|∇g|2

∣∣∣∣+

∣∣∣∣ 1

|∇g|

∣∣∣∣ . Nη

∣∣∣∣ (A−1
a z) · ∇g
|∇g|2

∣∣∣∣+
1

N1−t .

Recall that ∇g = 2π(NA−1
a z − (a1−t, 0)T ), then

(A−1
a z) · ∇g
|∇g|2

≈ (Nz1 − a)a−2tz1 +Na−2sz2
2

(Nz1 − a)2a−2t +N2a−2sz2
2

.

If z1z2 6= 0, then
∣∣∣ Na−2sz22
N2a−2sz22

∣∣∣ = 1
N and

∣∣∣ (Nz1−a)a−2tz1
(Nz1−a)2a−2t

∣∣∣ ≈ 1
|Nz1−a| ≈

1
N , which implies that∣∣∣ (A−1

a z)·∇g
|∇g|2

∣∣∣ . 1
N . If z1z2 = 0, then it is easy to check that

∣∣∣ (A−1
a z)·∇g
|∇g|2

∣∣∣ ≈ 1
N . Hence,

∣∣∣∣∇h · ∇g|∇g|2

∣∣∣∣ . Nη

∣∣∣∣ (A−1
a z) · ∇g
|∇g|2

∣∣∣∣+
1

N1−t .
1

N1−η +
1

N1−t .
1

N1−t (2.11)

for a /∈ ( N
2M , 2MN).

By (2.10) and (2.11), we have∣∣∣∣∫
R2

heigdy

∣∣∣∣ =

∣∣∣∣∫
R2

∇ ·
( h∇g
i|∇g|2

)
eigdy

∣∣∣∣ . ∣∣∣∣∇ · ( h∇gi|∇g|2
)∣∣∣∣ (||w||L1 + ||∇w||L1) .

1

N1−t

for a /∈ ( N
2M , 2MN). So,

Wf (a, θ, b) = a−
s+t
2 O(ε),

when N & ε
−1
1−t and a /∈ ( N

2M , 2MN).

Case 2: a ∈ ( N
2M , 2MN) and |θ∇φ(b) − θ| ≥ θ0.

Observing that ∇g(y) = 2πA−1
a R−1

θ (N∇φ(b + RθA
−1
a y) − a · uθ), we can expect |∇g| is large

when θ∇φ(b) is far away from θ. Notice that w(y) is in the Schwartz class, then ∃Cu > 0 such that

|w(y)| ≤ Cu
yu for |y| ≥ 1 and any u large enough. So

Wf (a, θ, b) = a−
s+t
2

(∫
|y|.ε−1/u

f(b+RθA
−1
a y)w(y)e−2πia1−ty1dy +O(ε)

)
.

Define D = {y : |y| . ε−1/u} and D+ = {y : |y| . ε−1/u + 1}. Suppose XD(y) is a positive and

smooth function compactly supported in D+ such that XD(y) = 1 if y ∈ D, ||XD||L∞ ≤ 1, then

Wf (a, θ, b) = a−
s+t
2

(
O(ε) +

∫
D+

XD(y)h(y)eig(y)dy

)
.
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If |∇g(y)| is not vanishing in D+, then apply the integral by parts to get∫
D+

XDhe
igdy =

∫
D+

XDh(Leig)dy = −
∫
D+

∇ ·
(XDh∇g
i|∇g|2

)
eigdy.

We are going to estimate |∇g(y)| when a ∈ ( N
2M , 2MN) and |θ∇φ(b)− θ| ≥ θ0. By Taylor expansion,

∇φ(b+RθA
−1
a y) = ∇φ(b) +∇2φ(b∗)RθA

−1
a y,

where b∗ is between b and b+RθA
−1
a y. Notice that

|∇2φ(b∗)RθA
−1
a y| ≤ a−s|∇2φ(b∗)||y| .Ma−s(ε−1/u + 1) ≤ sin(θ0)

2M
,

when |y| . ε−1/u + 1 and ( 2M2

sin(θ0) )1/s(ε−1/u + 1)1/s ≤ a. The latter one holds when N & (ε−1/u +

1)1/(2s−t) for a ∈ ( N
2M , 2MN). So, when these conditions are satisfied, we have

∇φ(b+RθA
−1
a y) = ∇φ(b) + v,

with |v| ≤ sin(θ0)
2M . Recall the fact |θ∇φ(b) − θ| ≥ θ0, then it holds that

|A−1
a R−1

θ (N∇φ(b+RθA
−1
a y)− a · uθ)|

≥ |NA−1
a R−1

θ ∇φ(b)− (a1−t, 0)T | −N |A−1
a R−1

θ v|

≥
√

(r cosα− a)2a−2t + r2a−2s sin2 α− N

2M
sin θ0a

−s

≥ ra−s sin θ0 −
N

2M
sin θ0a

−s

≥ N

2M
sin θ0a

−s

& N1−t,

where α = θ∇φ(b) − θ and r = |N∇φ(b)| ≥ N
M . Hence, we have

|∇g(y)| & N1−t (2.12)

when a ∈ ( N
2M , 2MN), |θ∇φ(b) − θ| ≥ θ0, N & (ε−1/u + 1)1/(2s−t) and y ∈ D+.

Next, we move on to estimate
∣∣∣∇(XDh)·∇g

|∇g|2

∣∣∣ and
∣∣∣ ∂2g
∂yi∂yj

1
|∇g|2

∣∣∣ for i, j = 1, 2, under the conditions

that a ∈ ( N
2M , 2MN), |θ∇φ(b) − θ| ≥ θ0, N & (ε−1/u + 1)1/(2s−t) and y ∈ D+. First,∣∣∣∣ ∂2g

∂yi∂yj

1

|∇g|2

∣∣∣∣ ≤ Na−2s

|∇g|2
≤ N1−2s

N2−2t
=

1

N1−2(t−s) . (2.13)
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Second, as for
∣∣∣∇(XDh)·∇g

|∇g|2

∣∣∣, we only need to estimate
∣∣∣ (A−1

a z)·∇g
|∇g|2

∣∣∣ for the similar reason in the last

case. As we have shown,

(A−1
a z) · ∇g
|∇g|2

≈ (Nz1 − a)a−2tz1 +Na−2sz2
2

(Nz1 − a)2a−2t +N2a−2sz2
2

.

If z1 = 0, then
∣∣∣ (A−1

a z)·∇g
|∇g|2

∣∣∣ ≈ 1
N . If z1 6= 0 and

∣∣∣ z2z1 ∣∣∣ & as

at , then |z2| & as

Mat , since |z| ≥ 1
M . Hence,

∣∣∣∣ (A−1
a z) · ∇g
|∇g|2

∣∣∣∣ .
|(Nz1 − a)a−2tz1|+ |Na−2sz2

2 |
N2a−2sz2

2

.
|Nz1 − a| · |z1|
N2a2(t−s)z2

2

+
1

N

.
1

Nat−s|z2|
+

1

N

.
1

N
.

If z1 6= 0 and
∣∣∣ z2z1 ∣∣∣ . as

at , then

∣∣∣∣ (A−1
a z) · ∇g
|∇g|2

∣∣∣∣ ≤ |(Nz1 − a)a−2tz1|+ |Na−2sz2
2 |

|∇g|2

.
(|Nz1|+ a)a−2t|z1|+Na−2tz2

1

N2−2t

.
1

N
.

In sum, ∣∣∣∣ (A−1
a z) · ∇g
|∇g|2

∣∣∣∣ . 1

N
,

which implies that ∣∣∣∣∇(XDh) · ∇g
|∇g|2

∣∣∣∣ . 1

N1−t . (2.14)

By (2.13) and (2.14), we have∣∣∣∣∣
∫
D+

∇ ·
(XDh∇g
i|∇g|2

)
eigdy

∣∣∣∣∣ .
∣∣∣∣∇ · (XDh∇g

i|∇g|2
)∣∣∣∣ (||XDw||L1 + ||∇(XDw)||L1) .

1

N1−t

for a ∈ ( N
2M , 2MN), |θ∇φ(b) − θ| ≥ θ0 and N & (ε−1/u + 1)1/(2s−t). So,

Wf (a, θ, b) = a−
s+t
2 O(ε),
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when a ∈ ( N
2M , 2MN), |θ∇φ(b) − θ| ≥ θ0 and

N & max{(ε
−1
u + 1)

1
2s−t , ε

−1
1−t }.

.

From the discussion in the two cases above, we see that

Wf (a, θ, b) = a−
s+t
2 O(ε),

if a /∈ ( N
2M , 2MN) or |θ∇φ(b) − θ| ≥ θ0, when

N & max{(ε
−1
u + 1)

1
2s−t , ε

−1
1−t }, (2.15)

where u is any fixed positive integer. Hence, the proof of (2) when K = 1 is done.

Step2: Henceforth, we move on to prove (1), i.e., to discuss the approximation of Wf (a, θ, b),

when a ∈ ( N
2M , 2MN) and |θ∇φ(b) − θ| < θ0. Recall that

Wf (a, θ, b) = a−
s+t
2

(∫
y∈D

f(b+RθA
−1
a y)w(y)e−2πia1−ty1dy +O(ε)

)
.

Our goal is to get the following estimate

Wf (a, θ, b) = a−
s+t
2

(∫
y∈D

f(b)w(y)e2πi(N∇φ(b)·(RθA−1
a y)−a1−ty1)dy +O(ε)

)
, (2.16)

for N large enough.

First, we are going to show

Wf (a, θ, b) = a−
s+t
2

(∫
y∈D

e−
(φ(b)−c)2

σ2 α(b+RθA
−1
a y)w(y)e2πi(Nφ(b+RθA

−1
a y)−a1−ty1)dy +O(ε)

)
(2.17)

for sufficiently large N . Taylor expansion is applied again to obtain the following three expansions.

φ(b+RθA
−1
a y) = φ(b) +∇φ(b) · (RθA−1

a y) +
1

2
(RθA

−1
a y)T∇2φ(b∗)(RθA

−1
a y),

where b∗ is between b and b+RθA
−1
a y.

e−(φ(b+RθA
−1
a y)−c)2/σ2

= e−(φ(b)+∇φ(b)·(RθA−1
a y)+ 1

2 (RθA
−1
a y)T∇2φ(b∗)(RθA

−1
a y)−c)2/σ2

= e−
(φ(b)−c)2

σ2 + e−
(λ−c)2

σ2 · −2(λ− c)
σ2

(
∇φ(b) · (RθA−1

a y) +
1

2
(RθA

−1
a y)T∇2φ(b∗)(RθA

−1
a y)

)
,
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where λ ∈ [φ(b), φ(b) +∇φ(b) · (RθA−1
a y) + 1

2 (RθA
−1
a y)T∇2φ(b∗)(RθA

−1
a y)].

α(b+RθA
−1
a y) = α(b) +∇α(b∗∗) · (RθA−1

a y),

where b∗∗ is between b and b+RθA
−1
a y.

The above Taylor expansions help us to estimate the effect of phase function φ(x) in the Gaussian

term. We claim two estimates as follows.

I1 =

∫
y∈D

∣∣∣∣e− (λ−c)2

σ2 · −2(λ− c)
σ2

∇φ(b) · (RθA−1
a y)α(b+RθA

−1
a y)w(y)

∣∣∣∣ dy ≤ O(ε)

and

I2 =

∫
y∈D

∣∣∣∣e− (λ−c)2

σ2 · −2(λ− c)
σ2

1

2
(RθA

−1
a y)T∇2φ(b∗)(RθA

−1
a y)α(b+RθA

−1
a y)w(y)

∣∣∣∣ dy ≤ O(ε).

Because e−
x2

σ2 · |x|σ2 ≤ e−
1
2 · 1

σ
√

2
, we know

I2 .
1

σ

∫
y∈D
|y|2a−2sdy .

1

σ
a−2sε−

4
u < ε,

if a & σ−
1
2s ε−

1+ 4
u

2s , which is true when

N & ε−
1+ 4

u
2s−η . (2.18)

As for I1, notice that |θ∇φ(b)−θ| < θ0, then |θR−1
θ ∇φ(b)| < θ0. Let θ̃ = θR−1

θ ∇φ(b) and y = (y1, y2)T ,

then for a ∈ ( N
2M , 2MN)

I1 .
1

σ

∫
y∈D

∣∣∇φ(b) · (RθA−1
a y)

∣∣ dy
.

M

σ

∫
y∈D

∣∣∣y1

at
cos θ̃ +

y2

as
sin θ̃

∣∣∣ dy
.

Md

σ

∫
y∈D

max
γ∈[0,2π)

∣∣∣∣∣cos γ cos θ̃

at
+

sin γ sin θ̃

as

∣∣∣∣∣ dy
.

Md3L

σ
,

where d ≈ ε− 1
u is the radius of D and

L =

√
cos2 θ̃

a2t
+

sin2 θ̃

a2s
≤

√
1

a2t
+

sin2 θ0

a2s
. max{ 1

at
,
| sin θ0|
as

} . N−t.
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So

I1 .
Md3L

σ
.
Md3N−t

σ
. O(ε),

if

N & ε−
1+ 3

u
t−η . (2.19)

A direct result of the estimate of I1 and I2 is (2.17) for

N & max{ε−
1+ 3

u
t−η , ε−

1+ 4
u

2s−η }. (2.20)

Second, we need to show

Wf (a, θ, b) = a−
s+t
2

(∫
y∈D

e−
(φ(b)−c)2

σ2 α(b)w(y)e2πi(Nφ(b+RθA
−1
a y)−a1−ty1)dy +O(ε)

)
, (2.21)

which relies on the analysis of the effect of φ(x) on α(x) as follows. Since a ∈ ( N
2M , 2MN), then

I3 =

∫
y∈D

e−
(φ(b)−c)2

σ2
∣∣∇α · (RθA−1

a y)w(y)
∣∣ dy

.
∫
y∈D

∣∣RθA−1
a y

∣∣ dy
. a−sε−

3
u

. O(ε)

holds when

N & ε−
1+ 3

u
s .

Then we derive (2.21) by the estimate of I3 and (2.17) for N & ε−
1+ 3

u
s .

Finally, we should estimate the nonlinear effect of φ(x) on the oscillatory pattern and show (2.16)

for sufficiently large N . If

N & ε−
1+ 4

u
2s−1 ,

then

I4 =

∫
y∈D

∣∣∣e2πi(Nφ(b)+N∇φ(b)·(RθA−1
a y)−a1−ty1)

∣∣∣ · ∣∣∣e2πiN2 (RθA
−1
a y)T∇2φ(RθA

−1
a y) − 1

∣∣∣ dy
.

∫
y∈D

∣∣N(RθA
−1
a y)T∇2φ(RθA

−1
a y)

∣∣ dy
.

∫
y∈D

Na−2s|y|2dy

. Na−2sε−
4
u

. O(ε)
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holds by the fact that |eix − 1| ≤ |x| and a ∈ ( N
2M , 2MN). Then by (2.21) and I4, we have

Wf (a, θ, b) = a−
s+t
2

(
f(b)

∫
y∈D

w(y)e2πi(N∇φ(b)·(RθA−1
a y)−a1−ty1)dy +O(ε)

)
= a−

s+t
2

(
f(b)

∫
R2

w(y)e2πi(NA−1
a R−1

θ ∇φ(b)−(a1−t,0)T )·ydy +O(ε)

)
= a−

s+t
2

(
f(b)ŵ

(
A−1
a R−1

θ (a · uθ −N∇φ(b))
)

+O(ε)

)
,

for a ∈ ( N
2M , 2MN) and |θ∇φ(b) − θ| < θ0, if

N & max{ε−
1+ 3

u
t−η , ε−

1+ 4
u

2s−η , ε−
1+ 3

u
s , ε−

1+ 4
u

2s−1 }, (2.22)

where u is any fixed positive integer.

By (2.15) and (2.22), the requirement for N is

N & N0 = max{(ε
−1
u + 1)

1
2s−t , ε

−1
1−t , ε−

1+ 3
u

t−η , ε−
1+ 4

u
2s−η , ε−

1+ 3
u
s , ε−

1+ 4
u

2s−1 },

where u is any fixed positive integer. Hence, this completes the proof of (1) when K = 1.

In sum, we have proved this lemma when K = 1. The conclusion is also true for general K by

the linearity of generalized curvelet transform.

Lemma 2.3.9. Suppose

Ωaθb =

{
k : a ∈

(
Nk
2M

, 2MNk

)
,
∣∣θ∇φk(b) − θ

∣∣ < arcsin

((
M

Nk

)t−s)}

is not empty. Under the assumption of Theorem 2.3.7, there exists a constant N0 (M,m, s, t, η, ε) '
max

{
ε
−1
1−t , ε

−2
t−η , ε

−2
2s−1

}
such that if N > N0 (M,m, s, t, η, ε), then we have

∇bWf (a, θ, b) = a−
s+t
2

(
2πi

∑
k∈Ωaθb

Nk∇φk(b)fk(b)ŵ
(
A−1
a R−1

θ (a · uθ −Nk∇φ(b))
)

+ aO (ε)

)
.

Proof. The proof is similar to the one of Lemma 2.3.8. We only need to discuss the case K = 1 and

the case K > 1 holds by the linearity of generalized curvelet transform. Suppose

f(x) = e−
(φ(x)−c)2

σ2 α(x)e2πiNφ(x),
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we have

∇bWf (a, θ, b)

=

∫
R2

f(x)a
s+t
2

(
(−RθAa)∇w(AaR

−1
θ (x− b)) + 2πiauθw(AaR

−1
θ (x− b))

)
e−2πia(x−b)·uθdx

=

∫
R2

f(b+RθA
−1
a y)a−

s+t
2

(
(−RθAa)∇w(y) + 2πiaeθw(y)

)
e−2πia1−ty1dy

= a−
s+t
2

(
f(b)

∫
R2

(
(−RθAa)∇w(y) + 2πiaeθw(y)

)
e−2πi((a1−t,0)T−NA−1

a R−1
θ ∇φ(b))·ydy + aO(ε)

)
= a−

s+t
2

(
2πiN∇φ(b)f(b)ŵ

(
A−1
a R−1

θ (a · uθ −N∇φ(b))
)

+ aO(ε)

)
for a ∈ ( N

2M , 2MN) and |θ∇φ(b) − θ| < θ0, if N satisfies the condition in Lemma 2.3.8. Therefore, if

f has K components, we know

∇bWf (a, θ, b) = a−
s+t
2

( ∑
k∈Ωaθb

2πiNk∇φk(b)fk(b)ŵ
(
A−1
a R−1

θ (a · uθ −Nk∇φk(b))
)

+ aO(ε)

)
,

for N larger than the same constant N0 in Lemma 2.3.8.

With the above two lemmas proved, it is enough to prove Theorem 2.3.7.

Proof. We shall start from (i). {Zk : 1 ≤ k ≤ K} are disjoint as soon as f(x) is a superposition of

well-separated components. Let (a, θ, b) ∈ Rε. By Lemma 2.3.8, we have

Wf (a, θ, b) = a−
s+t
2

( ∑
k∈Ωaθb

fk(b)ŵ
(
A−1
a R−1

θ (a · uθ −Nk∇φk(b))
)

+O(ε)

)
.

Therefore, ∃k such that ŵ
(
A−1
a R−1

θ (a · uθ −Nk∇φk(b))
)
6= 0. By the definition of Zk, we see that

(a, θ, b) ∈ Zk. Hence, Rε ⊂ ∪Kk=1Zk. It’s obvious that Sε ⊂ Rε.
To show (ii), notice that (a, θ, b) ∈ Rε ∪ Zk, then

Wf (a, θ, b) = a−
s+t
2

(
fk(b)ŵ

(
A−1
a R−1

θ (a · uθ −Nk∇φk(b))
)

+O(ε)

)
,

and

∇bWf (a, θ, b) = a−
s+t
2

(
2πiNk∇φk(b)fk(b)ŵ

(
A−1
a R−1

θ (a · uθ −Nk∇φ(b))
)

+ aO(ε)

)
.

Let g = fk(b)ŵ
(
A−1
a R−1

θ (a · uθ −Nk∇φ(b))
)
, then

vf (a, θ, b) =
Nk∇φk(b)(g +O(ε))

g +O(ε)
.
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Since |Wf (a, θ, b)| ≥ a− s+t2
√
ε for (a, θ, b) ∈ Rε, then |g| &

√
ε. So

|vf (a, θ, b)−Nk∇φk(b)|
|Nk∇φk(b)|

.

∣∣∣∣ O(ε)

g +O(ε)

∣∣∣∣ . √ε.
Similarly, if (a, θ, b) ∈ Sε ∩ Zk, then

|vf (a, θ, b)−Nk∇φk(b)|
|Nk∇φk(b)|

.

∣∣∣∣ O(ε)

g +O(ε)

∣∣∣∣ . √
ε

N
(s+t)/2
k

,

since |g| & N
(s+t)/2
k

√
ε for (a, θ, b) ∈ Sε ∩ Zk.

The assumption 1
2 < s < t < 1 and η < t are essential to the proof. However, we have not

arrived to a clear opinion on the optimal values of these parameters. The difference t− s allows us

to construct directional needle-like curvelets in order to approximate banded wave-like components

or wavefronts and capture the oscillatory behavior better. When t and η approach to 1, and s

gets close to 1
2 , we can expect that the synchrosqueezed curvelet transform can separate banded

components of width approximately O(N−1), if N is large enough. On the other hand, the lower

bound s > 1/2 ensures that the support of each curvelet is sufficiently small in space so that the

second order properties of the phase function (such as the curvature of wavefronts) do not affect

the estimate of local wave-vectors. The upper bound t < 1 guarantees sufficient resolution to detect

different components with large wavenumbers.



Chapter 3

Robustness of Synchrosqueezed

Transforms

3.1 Introduction

3.1.1 Motivation

In this chapter, we will focus on the robustness analysis of synchrosqueezed transform (joint work

with Lexing Ying in [183]) on signals with a noisy perturbation term e(x):

f(x) =

K∑
k=1

αk(x)e2πiNkφk(x) + e(x). (3.1)

It follows from the definition that αk(x)e2πiNkφk(x) is a highly oscillatory component with a frequency

content also rapidly changing with x. An immediate challenge from this rapid change is that an

instantaneous frequency or the magnitude of a local wave vector may quickly increase to the sampling

rate, e.g., power-law chirps in gravitational waves [29]. Another challenge comes from a large number

of different Nk in various scales caused by the phenomenon of wave shape functions [170, 178, 180]

or equivalently intrawaves [91, 176]. When noise meets these multiscale oscillatory components,

an efficient and accurate tool with multiscale robustness to identify and analyze these wave-like

components is of great value.

A variety of synchrosqueezed transforms have been proposed to study signal (3.1), e.g., the

synchrosqueezed wavelet transform (SSWT) in [37, 43], the synchrosqueezed short time Fourier

transform (SSSTFT) in [156], the synchrosqueezed wave packet transform (SSWPT) in [178, 182]

and the synchrosqueezed curvelet transform (SSCT) in [184]. Rigorous analysis has proved that

these transforms can accurately decompose a class of superpositions of wave-like components and

49
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estimate their instantaneous (local) properties if the given signal is noiseless.

Although the literature on synchrosqueezed transforms for noiseless data is well developed and

they have been successfully applied to various real problems with noisy data, rigorous robustness

analysis of these transforms is still limited. In a recent paper [155] that addresses the robustness

analysis, it is assumed that (3.1) contains only Gaussian white noise with a variance much smaller

than ε2, where ε� 1 is the error tolerance of the estimation accuracy in [43]. This requirement is too

restricted in real applications. To deal with heavier noise, a recent paper [32] proves the robustness

against a generalized stationary Gaussian noise and analyzes statistical properties of (3.1) when it

has a trend with heteroscedasticity. However, this proof is valid only for the 1D SSWT in [43] in

analyzing wave-like components with instantaneous frequencies of constant order.

In the analysis of 1D SSWT [32, 43, 155, 156], the authors are assuming a class of well-separated

superpositions of intrinsic mode type functions. If we rephrase the definition of the 1D SSWT in

[32, 43, 155] using a statement convenient for multiscale analysis, then this class of well-separated

superpositions can be defined through the following definitions.

Definition 3.1.1. (An intrinsic mode type function for the 1D SSWT). A continuous function

f : R → C, f ∈ L∞(R) is said to be intrinsic-mode-type (IMT) with accuracy ε > 0 if f(x) =

α(x)e2πiNφ(x) with α(x) and φ(x) having the following properties:

α ∈ C1(R) ∩ L∞(R), φ ∈ C2(R)

inf
x∈R

φ′(x) > 0, sup
x∈R

φ′(x) <∞, sup
x∈R
|φ′′(x)| <∞,

|α′(x)| ≤ ε|Nφ′(x)|, |φ′′(x)| ≤ ε|φ′(x)|, ∀x ∈ R.

To guarantee accurate estimates of nonlinear wave-like components provided by the SSWT, the

approach in [43] needs to assume N to be sufficiently small. To make things concrete, consider the

requirement of Equation (3.5) in [43], which reads ε < N−3/2 in the language of this paper. For

example, if ε = 0.01, then N has to be less than 21.5. Since larger ε allows stronger nonlinearity

in Definition 3.1.1, Equation (3.5) says that high frequency wave-like components have to be nearly

linear, which is impractical for a superposition of multiscale nonlinear wave-like components. Indeed,

multiscale components are common in nature, which motivates the work in [178, 182, 184] and this

thesis.

Using our new language convenient for multiscale analysis for synchrosqueezed transforms, we

shall provide rigorous probability analysis for their multiscale robustness with different geometric

scaling. It will be shown that a trade-off between the multiscale robustness and the estimation

accuracy has to be balanced.
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3.1.2 Significance

Analyzing signals in (3.1) is also called a mode decomposition problem. A famous empirical mode

decomposition (EMD) method has initialized a very active research line in advanced and adaptive

data analysis. This method was first proposed by Huang et al. in [97] and refined in [98]. It has

good numerical performance in decomposing a class of superpositions of oscillatory components and

has been widely used in various applications, even though the mathematics behind this method

is still unknown. However, the good properties of the EMD method are fragile. It is well known

that EMD methods are not robust against noise. Therefore, synchrosqueezed transforms with well-

developed mathematical background and reasonable robustness are important alternatives. This is

illustrated in a recent review [153] by comparing several advanced tools for spectral estimations, e.g.,

the EMD method, the short-time Fourier transform, the SSWT, some basics pursuit method and

some matching pursuit method. We expect synchrosqueezed transforms can provide new insights

for oscillatory component analysis to help us understand the nature, since in some cases the EMD

method would give misleading results [178, 182].

Statistical literature on oscillatory estimation is well developed, but a multiscale oscillatory

estimation with a possible trend is perhaps more recent. Some existing models, e.g., the seasonal

auto-regressive integrated moving average [16] and the trend and seasonal components algorithm

[46], focus on forecasting. They might not be suitable for time-varying historical components as

discussed in [32]. Some methods are based on a global assumption with precise known properties of

the signal and perform a generalized likelihood ratio test. Global assumptions could be too restrictive

in analyzing local information hidden in a general time-varying component. The resulting statistics

might be sensitive to the length of the given signal. Some models are fully non-parametric and local

in nature. They can even detect an oscillatory component from totally unknown and fully noisy

data via the chirplet transform and path pursuit [20]. However, they are focusing on detecting and

analyzing only one oscillatory component and cannot be applied to more complex data. Hence, the

non-parametric robust analysis tool for multiscale components discussed in this thesis is new and

adaptive to a general problem.

The rest of this chapter is organized as follows. Sections 3.2 to 3.4 present the main theorems

for the 1D synchrosqueezed wave packet transform, the 2D synchrosqueezed wave packet transform

and the 2D synchrosqueezed curvelet transform, respectively. In each of these sections, the robust-

ness of synchrosqueezed transforms to bounded perturbation and generalized stationary Gaussian

noise is analyzed. These theorems can be generalized to show the robustness of higher dimensional

synchrosqueezed transforms.
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3.2 1D Synchrosqueezed Wave Packet Transform (SSWPT)

Theorem 2.1.8 shows that the instantaneous frequency information function vf (a, b) can estimate

Nkφ
′
k(x) accurately for a class of noiseless superpositions of IMTs if their phases are sufficiently

steep. This guarantees the well concentration of the synchrosqueezed energy distribution Tf (v, b)

around Nkφ
′
k(x). If the superposition is perturbed slightly by a contaminant, Theorem 3.2.1 below

shows that these conclusions are still valid with a reasonable error determined by the magnitude of

the perturbation.

In what follows, when we write O (·), ., or &, the implicit constants may depend on M , m and

K.

Theorem 3.2.1. Suppose the mother wave packet is of type (ε,m), for any fixed ε ∈ (0, 1) and

any fixed integer m ≥ 0. Suppose g(x) = f(x) + e(x), where e(x) ∈ L∞ is a small error term that

satisfies ‖e‖L∞ ≤
√
ε1 for some ε1 > 0. For any p ∈

(
0, 1

2

]
, let δ =

√
ε+ ε

1
2−p
1 . Define

Rδ = {(a, b) : |Wg(a, b)| ≥ |a|−s/2δ},

Sδ = {(a, b) : |Wg(a, b)| ≥ δ},

and

Zk = {(a, b) : |a−Nkφ′k(b)| ≤ |a|s}

for 1 ≤ k ≤ K. For fixed M , m and K, there exists a constant N0 (M,m,K, s, ε) ' max
{
ε
−1

2s−1 , ε
−1
1−s

}
such that for any N > N0 (M,m,K, s, ε) and f(x) ∈ F (M,N,K, s) the following statements hold.

(i) {Zk : 1 ≤ k ≤ K} are disjoint and Sδ ⊂ Rδ ⊂
⋃

1≤k≤K Zk;

(ii) For any (a, b) ∈ Rδ ∩ Zk,
|vg(a, b)−Nkφ′k(b)|

|Nkφ′k(b)|
.
√
ε+ εp1;

(iii) For any (a, b) ∈ Sδ ∩ Zk,
|vg(a, b)−Nkφ′k(b)|

|Nkφ′k(b)|
.

√
ε+ εp1

N
s/2
k

.

We introduce the parameter p to clarify the relation among the perturbation level, the threshold

and the accuracy for better understanding the influence of perturbation or noise. For the same

purpose, a parameter q will be introduced in the coming theorems. Theorem 3.2.1 shows that the

instantaneous frequency estimates provided by the SSWPT are still reasonable when the given signal

is contaminated by a bounded perturbation. Actually, if the threshold δ is larger, e.g., δ ≥
√

ε1
ε , the

relative estimate errors in (ii) and (iii) are bounded by
√
ε and

√
ε

N
s/2
k

, respectively. This also implies

that the instantaneous frequency can be better estimated by selecting the wave packet coefficient

with the largest magnitude. However, when the perturbation is overwhelming, e.g., the wave packet
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coefficients of a component are below the threshold in (ii), it is difficult to estimate instantaneous

frequencies.

Proof. We only need to discuss the case when a > 0. We estimate several inequalities first. By the

definition of the wave packet transform of e(x), we have

We(a, b) = a−s/2
∫
R
e
(
a−sy + b

)
w(y)e−2πia1−sydy.

Hence,

|We(a, b)| . ‖e‖L∞a−s/2 ≤
√
ε1a
−s/2. (3.2)

Applying the same strategy, we have

|∂bWe(a, b)| .
√
ε1

(
a1−s/2 + as/2

)
. (3.3)

If (a, b) ∈ Rδ, then |Wg(a, b)| ≥ a−s/2δ. Together with Equation (3.2), it holds that

|Wg(a, b)| ≥ |Wf (a, b)| − |We(a, b)| ≥ a−s/2 (δ −
√
ε1) ≥ a−s/2

√
ε. (3.4)

Hence, Sδ ⊂ Rδ ⊂ Rε, where Rε is defined in Theorem 2.1.8 and is a subset of
⋃

1≤k≤K Zk. So, (i)

is true by Theorem 2.1.8.

Now, let us prove (ii). Since Rδ ⊂ Rε, (a, b) ∈ Rδ ∩ Zk implies (a, b) ∈ Rε ∩ Zk. Hence, by

Theorem 2.1.8, it holds that
|vf (a, b)−Nkφ′k(b)|

|Nkφ′k(b)|
.
√
ε, (3.5)

when N is larger than a constant N0 (M,m,K, s, ε) ' max
{
ε
−1

2s−1 , ε
−1
1−s

}
. Notice that (a, b) ∈ Zk

implies a ' Nk. Hence, by Equation (3.2) to (3.5),

|vg(a, b)−Nkφ′k(b)|
|Nkφ′k(b)|

≤ |vf (a, b)−Nkφ′k(b)|
|Nkφ′k(b)|

+
| ∂bWf (a,b)
2πiWf (a,b) −

∂bWg(a,b)
2πiWg(a,b) |

|Nkφ′k(b)|

.
√
ε+

∣∣∣∣∂bWf (a, b)We(a, b)− ∂bWe(a, b)Wf (a, b)

Wf (a, b)Wg(a, b)

∣∣∣∣ 1

|Nkφ′k(b)|

.
√
ε+

∣∣∣∣We(a, b)

Wg(a, b)

∣∣∣∣+

∣∣∣∣ ∂bWe(a, b)

NkWg(a, b)

∣∣∣∣
.
√
ε+

√
ε1
δ

+

√
ε1
(
a1−s/2 + as/2

)
Nkδa−s/2

.
√
ε+

√
ε1
δ

=
√
ε+ εp1,
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when N > N0. Hence, (ii) is proved. The proof of (iii) is similar. If (a, b) ∈ Sδ ∩ Zk, then

|vg(a, b)−Nkφ′k(b)|
|Nkφ′k(b)|

≤ |vf (a, b)−Nkφ′k(b)|
|Nkφ′k(b)|

+
| ∂bWf (a,b)
2πiWf (a,b) −

∂bWg(a,b)
2πiWg(a,b) |

|Nkφ′k(b)|

.

√
ε

N
s/2
k

+

√
ε1

as/2δ
+

√
ε1
(
a1−s/2 + as/2

)
Nkδ

.

√
ε

N
s/2
k

+

√
ε1

as/2δ

.

√
ε+ εp1

N
s/2
k

,

when N > N0.

Next, we will analyze the robustness properties of the SSWPT in the presence of random per-

turbation. [76, 114, 134, 154, 161] are referred to for basic facts about generalized random fields

and complex Gaussian processes that are used throughout this chapter. To warm up, we start with

additive Gaussian white noise in Theorem 3.2.2 and extend it to a general zero mean stationary

Gaussian noise in Theorem 3.2.3. Let n be the dimension of given data. n = 1 in this section and

n = 2 in later sections. If we fix a probability space (Rn, µ) and assume that L2(Rn, µ) is separable,

a stationary Gaussian process e on Rn is an L2(Rn, µ)-valued distribution [154], i.e., a continuous

linear functional in D′(Rn, L2(Rn, µ)) such that

e : C∞0 (Rn)→ L2(Rn, µ),

which can be continuously extended to

e : L1 ∩ Cr(Rn)→ L2(Rn, µ),

for some r ∈ N or r =∞ depending on e. We assume that r is small enough such that the family of

wave packets we constructed and their derivatives belong to Cr(Rn). Suppose e has a mean functional

T : L1 ∩Cr(Rn)→ L1 ∩Cr(Rn) and a covariance functional R : L1 ∩Cr(Rn)→ L1 ∩Cr(Rn), then

we have

1. For any finite collection {fk} ⊂ L1 ∩Cr(Rn), {e(fk)} are jointly Gaussian variables and their

joint distribution is translation invariant for all translates of fk;

2. E[e(f)] = T f and E
[
e(f1)e(f2)

]
= 〈f1,Rf2〉, where 〈·, ·〉 is the L2 inner product.

Gaussian white noise is a special case of stationary Gaussian processes with T = 0 and R being

the identical functional. For the convenience of notations, for any wave packet wab(x), e(wab) and
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e(∂bwab) are denoted as We(a, b) and ∂bWe(a, b), respectively. We assume that e has an explicit

power spectral function denoted by ê(ξ). ‖ · ‖ will represent the L2 norm.

Theorem 3.2.2. Suppose the mother wave packet is of type (ε,m), for any fixed ε ∈ (0, 1) and any

fixed integer m ≥ 2
1−s +4. Suppose g(x) = f(x)+e, where e is zero mean Gaussian white noise with

a variance ε1+q
1 for some q > 0 and some ε1 > 0. For any p ∈

(
0, 1

2

]
, let δ =

√
ε+ ε

1
2−p
1 . Define

Rδ = {(a, b) : |Wg(a, b)| ≥ a−s/2δ},

Sδ = {(a, b) : |Wg(a, b)| ≥ δ},

and

Zk = {(a, b) : |a−Nkφ′k(b)| ≤ as}

for 1 ≤ k ≤ K. For fixed M and K, there exists a constant N0 (M,m,K, s, ε) ' max
{
ε
−1

2s−1 , ε
−1
1−s

}
such that for any N > N0 (M,m,K, s, ε) and f(x) ∈ F (M,N,K, s) the following statements hold.

(i) {Zk : 1 ≤ k ≤ K} are disjoint.

(ii) If (a, b) ∈ Rδ, then (a, b) ∈
⋃

1≤k≤K Zk with a probability at least

1− e−O(N−sk ε−q1 ) +O

(
ε

N
m(1−s)
k

)
.

(iii) If (a, b) ∈ Sδ, then (a, b) ∈
⋃

1≤k≤K Zk with a probability at least

1− e−ε
−q
1 ‖w‖

−2

+O

(
ε

N
m(1−s)
k

)
.

(iv) If (a, b) ∈ Rδ ∩ Zk for some k, then

|vg(a, b)−Nkφ′k(b)|
|Nkφ′k(b)|

.
√
ε+ εp1

is true with a probability at least

(
1− e−O(N2−3s

k ε−q1 )
)(

1− e−O(N−s−2
k ε−q1 )

)
+O

(
ε

N
(m−4)(1−s)−2
k

)
.

(v) If (a, b) ∈ Sδ ∩ Zk, then
|vg(a, b)−Nkφ′k(b)|

|Nkφ′k(b)|
.

√
ε+ εp1

N
s/2
k
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is true with a probability at least

(
1− e−O(N2−2s

k ε−q1 )
)(

1− e−O(N−2
k ε−q1 )

)
+O

(
ε

N
(m−4)(1−s)−2
k

)
.

Proof. Step 1: we prove this theorem when the mother wave packet is of type (0,m) first, i.e.,

compactly supported in the frequency domain.

Since wab and ∂bwab are in L1 ∩ Cm−1, We(a, b) and ∂bWe(a, b) are Gaussian variables. Hence,

Wg(a, b) = Wf (a, b)+We(a, b) and ∂bWg(a, b) = ∂bWf (a, b)+∂bWe(a, b) can be understood as Gaus-

sian variables. Furthermore, We(a, b) and (We(a, b), ∂bWe(a, b)) are circularly symmetric Gaussian

variables by checking that their pseudo-covariance matrices are zero. By the properties of Gaussian

white noise, we have E [We(a, b)] = 0,

E
[
We(a, b)We(a, b)

]
= ε1+q

1

∫
R
asw (as(x− b))w (as(x− b))dx = ε1+q

1 ‖w‖2,

and

E [We(a, b)We(a, b)] = ε1+q
1 〈wab, wab〉 = ε1+q

1 〈ŵab, ŵab〉 = ε1+q
1

∫
R
ŵab(ξ)ŵab(−ξ)dξ = 0.

The last equality holds because supp
(
ŵab(ξ)

)
∩ supp

(
̂wab(−ξ)

)
= ∅. Similarly, we know

E [∂bWe(a, b)] = E
[
(∂bWe(a, b))

2
]

= E [∂bWe(a, b)We(a, b)] = 0,

E
[
∂bWe(a, b)∂bWe(a, b)

]
= ε1+q

1 〈∂bwab, ∂bwab〉 = ε1+q
1 〈2πiξŵab, 2πiξŵab〉

and

E
[
We(a, b)∂bWe(a, b)

]
= ε1+p

1 〈wab, ∂bwab〉 = ε1+q
1 〈ŵab, 2πiξŵab〉.

Hence, We(a, b) and (We(a, b), ∂bWe(a, b)) have zero pseudo-covariance matrices and they are circu-

larly symmetric. Therefore, the distribution of We(a, b) is determined by its variance as follows

e−ε
−(1+q)
1 |z1|2‖w‖−2

πε1+q
1 ‖w‖2

.

If we define

V =

(
‖ŵ‖2 〈ŵab, 2πiξŵab〉

〈2πiξŵab, ŵab〉 〈2πiξŵab, 2πiξŵab〉

)
,

then ε1+q
1 V is the covariance matrix of (We(a, b), ∂bWe(a, b)) and its distribution is described by the
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joint probability density

e−ε
−(1+q)
1 z∗V −1z

π2ε
2(1+q)
1 detV

,

where z = (z1, z2)
T

, T and ∗ denote the transpose operator and conjugate transpose operator. V is

an invertible and self-adjoint matrix, since We(a, b) and ∂bWe(a, b) are linearly independent. Hence,

there exist a diagonal matrix D and a unitary matrix U such that V −1 = U∗DU .

Part (i) is true by previous theorems. Define the following events

G1 =
{
|We(a, b)| < a−s/2

√
ε1

}
,

G2 = {|We(a, b)| <
√
ε1} ,

G3 =
{
|∂bWe(a, b)| <

√
ε1

(
a1−s/2 + as/2

)}
,

Hk =

{
|vg(a, b)−Nkφ′k(b)|

|Nkφ′k(b)|
.
√
ε+ εp1

}
,

and

Jk =

{
|vg(a, b)−Nkφ′k(b)|

|Nkφ′k(b)|
.

√
ε+ εp1

N
s/2
k

}
,

for 1 ≤ k ≤ K. To conclude Part (ii) to (v), we need to estimate the probability P (G1), P (G2),

P (G1 ∩G3), P (G2 ∩G3), P (Hk) and P (Jk). By the calculations above, we have

P (G1) =

∫
|z1|<a−s/2

√
ε1

e−ε
−(1+q)
1 |z1|2‖w‖−2

πε1+q
1 ‖w‖2

dz1

=
2

ε1+q
1 ‖w‖2

∫ a−s/2
√
ε1

0

re−ε
−(1+q)
1 r2‖w‖−2

dr

=

∫ a−s/2ε
−q/2
1 ‖w‖−1

0

2re−r
2

dr

= 1− e−a
−sε−q1 ‖w‖

−2

,

and similarly

P (G2) =

∫
|z1|<

√
ε1

e−ε
−(1+q)
1 |z1|2‖w‖−2

πε1+q
1 ‖w‖2

dz1 = 1− e−ε
−q
1 ‖w‖

−2

.

We are ready to summarize and conclude (ii) and (iii). If (a, b) ∈ Rδ, then

|We(a, b) +Wf (a, b)| ≥ a−s/2
(
ε
1/2−p
1 +

√
ε
)
. (3.6)
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If (a, b) /∈
⋃

1≤k≤K Zk, then by Lemma 2.1.10,

|Wf (a, b)| ≤ a−s/2ε. (3.7)

Equation (3.6) and (3.7) lead to |We(a, b)| ≥ a−s/2
√
ε1. Hence,

P

(a, b) /∈
⋃

1≤k≤K

Zk

 ≤ P (|We(a, b)| ≥ a−s/2
√
ε1

)
= 1− P (G1) .

This means that if (a, b) ∈ Rδ, then (a, b) ∈
⋃

1≤k≤K Zk with a probability at least P (G1) =

1 − e−a
−sε−q1 ‖w‖

−2

= 1 − e−O(N−sk ε−q1 ), since a ' Nk if (a, b) ∈ Zk. So, (ii) is true. A similar

argument applied to (a, b) ∈ Sδ shows that (a, b) ∈
⋃

1≤k≤K Zk with a probability at least P (G2) =

1− e−ε
−q
1 ‖w‖

−2

. Hence, (iii) is proved.

Note that any rotated polydisk of radius r in (z1, z2) ∈ C2 contains a smaller polydisk of radius

2−1/2r that is aligned with the z1 and z2 planes. If we define a transform z′ = Uz and introduce

notations δ1 = a−s/2
√
ε1, δ2 =

√
ε1, δ3 =

(
a1−s/2 + as/2

)√
ε1, d1 = min{ δ1√

2
, δ3√

2
}, and d2 =

min{ δ2√
2
, δ3√

2
}, then

P (G1 ∩G3) =

∫
{|z1|<δ1,|z2|<δ3}

e−ε
−(1+q)
1 z∗V −1z

π2ε
2(1+q)
1 detV

dz1dz2

=

∫
{|z1|<δ1,|z2|<δ3}

e−ε
−(1+q)
1 (D11|z′1|

2+D22|z′2|
2)

π2ε
2(1+q)
1 detV

dz′1dz
′
2

≥
∫
{|z′1|2+|z′2|2<2d21}

e−ε
−(1+q)
1 (D11|z′1|

2+D22|z′2|
2)

π2ε
2(1+q)
1 detV

dz′1dz
′
2

≥
∫
{|z′1|<d1,|z′2|<d1}

e−ε
−(1+q)
1 (D11|z′1|

2+D22|z′2|
2)

π2ε
2(1+q)
1 detV

dz′1dz
′
2

=
4

ε
2(1+q)
1 detV

∫ d1

0

r1e
−D11r

2
1

ε
1+q
1 dr1

∫ d1

0

r2e
−D22r

2
2

ε
1+q
1 dr2

=

(
1− e

−D11d
2
1

ε
1+q
1

)(
1− e

−D22d
2
1

ε
1+q
1

)
,

and similarly

P (G2 ∩G3) =

∫
{|z1|<δ2,|z2|<δ3}

e−ε
−(1+q)
1 z∗V −1z

π2ε
2(1+q)
1 detV

dz1dz2 ≥

(
1− e

−D11d
2
2

ε
1+q
1

)(
1− e

−D22d
2
2

ε
1+q
1

)
.
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Suppose that Ξ is a real random variable with a probability density function h(ξ) = |ŵ(ξ)|2
‖ŵ‖2 , then

D−1
11 D

−1
22 = det (V )

= 4π2‖ŵ‖4
(∫

R
(asξ + a)

2 |ŵ(ξ)|2

‖ŵ‖2
dξ −

(∫
R

(asξ + a)
|ŵ(ξ)|2

‖ŵ‖2
dξ

)2
)

= 4π2‖ŵ‖4Var [asΞ + a]

' a2s,

and

D11 +D22 = det
(
V −1

) (
‖ŵ‖2 + 〈2πiξŵab, 2πiξŵab〉

)
'

1 + 4π2E
[
(asΞ + a)

2
]

a2s

' E
[(

Ξ + a1−s)2]
' a2(1−s).

This implies D11 ' a2(1−s) and D22 ' a−2. Therefore,

P (G1 ∩G3) ≥

(
1− e

−D11d
2
1

ε
1+q
1

)(
1− e

−D22d
2
1

ε
1+q
1

)
=
(

1− e−O(a2−3sε−q1 )
)(

1− e−O(a−s−2ε−q1 )
)
,

and

P (G2 ∩G3) ≥

(
1− e

−D11d
2
2

ε
1+q
1

)(
1− e

−D22d
2
2

ε
1+q
1

)
=
(

1− e−O(a2−2sε−q1 )
)(

1− e−O(a−2ε−q1 )
)
.

By Theorem 3.2.1, if (a, b) ∈ Rδ ∩ Zk for some k, then

P (Hk) ≥ P (Hk|G1 ∩G3)P (G1 ∩G3) = P (G1 ∩G3) ≥
(

1− e−O(a2−3sε−q1 )
)(

1− e−O(a−s−2ε−q1 )
)
.

Note that a ' Nk when a ∈ Zk, then

P (Hk) ≥
(

1− e−O(N2−3s
k ε−q1 )

)(
1− e−O(N−s−2

k ε−q1 )
)
.

Similarly, if (a, b) ∈ Sδ ∩ Zk for some k, then

P (Jk) ≥ P (Jk|G2 ∩G3)P (G2 ∩G3) = P (G2 ∩G3) ≥
(

1− e−O(N2−2s
k ε−q1 )

)(
1− e−O(N−2

k ε−q1 )
)
.

These arguments prove (iv) and (v).
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Step 2: we go on to prove this theorem when the mother wave packet is of type (ε,m) with

m ≥ 2
1−s +4. We would like to emphasize that the requirement is crucial to the following asymptotic

analysis and it keeps the error caused by the non-compact support of ŵ reasonably small.

The sketch of the proof is similar to the first step, but We(a, b) and (We(a, b), ∂bWe(a, b)) are

Gaussian variables not circularly symmetric. Suppose they have covariance matrices C1 and C2,

pseudo-covariance matrices P1 and P2, respectively. We can still check that they have zero mean,

C1 = ε1+q
1 ‖w‖2 and C2 = ε1+q

1 V , where V is defined in the first step. By the definition of the mother

wave packet of type (ε,m), we have

|E [We(a, b)We(a, b)]|

≤ ε1+q
1

∫
R
|ŵab(ξ)ŵab(−ξ)| dξ

≤ ε1+q
1

∫
R

∣∣ŵ (ξ − a1−s) ŵ (−ξ − a1−s)∣∣ dξ
≤ ε1+q

1

(∫
ξ>0

∣∣ŵ (ξ − a1−s) ŵ (−ξ − a1−s)∣∣ dξ +

∫
ξ<0

∣∣ŵ (ξ − a1−s) ŵ (−ξ − a1−s)∣∣ dξ)
≤ ε1+q

1 ε

(a1−s − 1)m

(∫
ξ>0

∣∣ŵ (ξ − a1−s)∣∣ dξ +

∫
ξ<0

∣∣ŵ (−ξ − a1−s)∣∣ dξ)
' 2ε1+q

1 ε

am(1−s)

∫
R
|ŵ(ξ)| dξ.

Similarly, we know ∣∣∣E [(∂bWe(a, b))
2
]∣∣∣ . 8π2ε1+q

1 ε

am(1−s)

∫
R

∣∣ξ2ŵ(ξ)
∣∣ dξ,

|E [∂bWe(a, b)We(a, b)]| .
4πε1+q

1 ε

am(1−s)

∫
R
|ξŵ(ξ)| dξ.,

E
[
∂bWe(a, b)∂bWe(a, b)

]
= ε1+q

1 〈∂bwab, ∂bwab〉 = ε1+q
1 〈2πiξŵab, 2πiξŵab〉

and

E
[
We(a, b)∂bWe(a, b)

]
= ε1+p

1 〈wab, ∂bwab〉 = ε1+q
1 〈ŵab, 2πiξŵab〉.

Hence, the magnitude of every entry in P1 and P2 is bounded by O
(

ε1+q1 ε

am(1−s)

)
. Since the covariance

matrix of (We(a, b),W
∗
e (a, b)) is

V1 =

(
C1 P1

P ∗1 C∗1

)
,

according to Equation (27) in [134], the distribution of We(a, b) is described by the following distri-

bution
e−

1
2 (z∗1 ,z1)V −1

1 (z1,z
∗
1 )T

π
√

detV1

,
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which is

e
−
C1|z1|

2−Re(P∗1 z21)
C2
1−P1P

∗
1

π
√
C2

1 − P1P ∗1
.

Notice that
C1√

C2
1 − P1P ∗1

= 1 +O

(
P1P

∗
1

C2
1

)
= 1 +O

(
ε2

a2m(1−s)

)
,

C1|z1|2 −Re
(
P ∗1 z

2
1

)
C1|z1|2

= 1 +O
( ε

am(1−s)

)
,

and
C2

1

C2
1 − P ∗1

= 1 +O

(
ε2

a2m(1−s)

)
.

Hence,

e−
1
2 (z∗1 ,z1)V −1

1 (z1,z
∗
1 )T

π
√

detV1

=
e−ε

−(1+q)
1 |z1|2‖w‖−2

πε1+q
1 ‖w‖2

(
1 +O

(
ε|z1|2

ε1+q
1 am(1−s)

))
.

By the same argument, the covariance matrix of (We(a, b), ∂bWe(a, b),W
∗
e (a, b), ∂bW

∗
e (a, b)) is

V2 =

(
C2 P2

P ∗2 C∗2

)
.

Let z = (z1, z2)
T

, where T and ∗ denote the transpose operator and conjugate transpose operator,

respectively. Then the distribution of (We(a, b), ∂bWe(a, b)) is described by the joint probability

density

e−
1
2 (z∗1 ,z

∗
2 ,z1,z2)V −1

2 (z1,z2,z
∗
1 ,z
∗
2 )T

π2
√

detV2

. (3.8)

Notice that C2 = ε1+p
1 V and V has eigenvalues of order a2 and a2(s−1). Hence, C2 has eigenvalues

of order ε1+p
1 a2 and ε1+p

1 a2(s−1). Recall that the magnitude of every entry in P2 is bounded by

O
(

ε1+q1 ε

am(1−s)

)
. This means that V2 is nearly dominated by diagonal blocks C2 and C∗2 . Basic spectral

theory for linear transforms shows that

V −1
2 =

(
C−1

2

(C∗2 )−1

)
+ Pε,

where Pε is a matrix with 2-norm bounded by

O

(
ε1+q
1 ε

am(1−s)

)
O(ε1+p

1 a2(s−1))−2 = O
(
ε
−(1+q)
1 εa(m−4)(s−1)

)
.
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m−6
m−4 ≥ s ensures the above spectral analysis. Since every entry of P2 is bounded by O

(
ε1+q1 ε

am(1−s)

)
,

detV2 = (detC2)2 +O

(
ε
4(1+q)
1 ε

am−2−(m+2)s

)
,

where the residual comes from the entry bound and the eigenvalues of C2. Hence (3.8) is actually

e−ε
−(1+q)
1 z∗V −1ze−

1
2 (z∗1 ,z

∗
2 ,z1,z2)Pε(z1,z2,z

∗
1 ,z
∗
2 )T

π2ε
2(1+q)
1

√
(detV )2 +O

(
ε

am−2−(m+2)s)

) .

By the same argument in the first step, we can show that there exist a diagonal matrix D =

diag{a2(1−s), a−2} and a unitary matrix U such that V −1 = U∗DU . Part (i) is still true by previous

theorems. To conclude Part (ii) to (v), we still need to estimate the probability of those events

defined in the first step, i.e., P (G1), P (G2), P (G1 ∩G3), P (G2 ∩G3), P (Hk) and P (Jk). By the

calculations above, we have

P (G1) =

∫
|z1|<a−s/2

√
ε1

e−
1
2 (z∗1 ,z1)V −1

1 (z1,z
∗
1 )T

π
√

detV1

dz1

=

∫
|z1|<a−s/2

√
ε1

e−ε
−(1+q)
1 |z1|2‖w‖−2

πε1+q
1 ‖w‖2

(
1 +O

(
ε|z1|2

ε1+q
1 am(1−s)

))
dz1

=
2

ε1+q
1 ‖w‖2

∫ a−s/2
√
ε1

0

(
r +O

(
ε

ε1+q
1 am(1−s)

)
r3

)
e−ε

−(1+q)
1 r2‖w‖−2

dr

=

∫ a−s/2ε
−q/2
1 ‖w‖−1

0

2re−r
2

dr +O

(
2ε‖w‖2

am(1−s)

)∫ a−s/2ε
−q/2
1 ‖w‖−1

0

r3e−r
2

dr

= 1− e−a
−sε−q1 ‖w‖

−2

+O
( ε

am(1−s)

)
,

and similarly

P (G2) = 1− e−ε
−q
1 ‖w‖

−2

+O
( ε

am(1−s)

)
.

Hence, we can conclude (ii) and (iii) follows the same proof in the first step. Next, we look at

the last two part of this theorem.

Recall that we have defined a transform z′ = Uz and introduced notations δ1 = a−s/2
√
ε1,

δ2 =
√
ε1, δ3 =

(
a1−s/2 + as/2

)√
ε1, d1 = min{ δ1√

2
, δ3√

2
}, and d2 = min{ δ2√

2
, δ3√

2
} in the first step.
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Using the same notations and a similar argument, we have

P (G1 ∩G3)

=

∫
{|z1|<δ1,|z2|<δ3}

e−
1
2 (z∗1 ,z

∗
2 ,z1,z2)V −1

2 (z1,z2,z
∗
1 ,z
∗
2 )T

π2
√

detV2

dz1dz2

=

∫
{|z1|<δ1,|z2|<δ3}

e−ε
−(1+q)
1 z∗V −1ze−

1
2 (z∗1 ,z

∗
2 ,z1,z2)Pε(z1,z2,z

∗
1 ,z
∗
2 )T

π2ε
2(1+q)
1

√
(detV )2 +O

(
ε

am−2−(m+2)s)

) dz1dz2 (3.9)

Since
detV√

(detV )2 +O
(

ε
am−2−(m+2)s)

) = 1 +O
( ε

a(m−2)(1−s))

)
, (3.10)

we can drop out the term O
(

ε
am−2−(m+2)s)

)
in (3.9), which would generate an absolute error no more

than O
(

ε
a(m−2)(1−s))

)
in the estimate of P (G1 ∪G3). Let

g(z) = −1

2
(z∗1 , z

∗
2 , z1, z2)Pε(z1, z2, z

∗
1 , z
∗
2)T ,

then

P (G1 ∩G3)

≈
∫
{|z1|<δ1,|z2|<δ3}

e−ε
−(1+q)
1 z∗V −1zeg(z)

π2ε
2(1+q)
1 detV

dz1dz2

=

∫
{|z1|<δ1,|z2|<δ3}

e−ε
−(1+q)
1 (D11|z′1|

2+D22|z′2|
2)eg(U

∗z′)

π2ε
2(1+q)
1 detV

dz′1dz
′
2

≥
∫
{|z′1|2+|z′2|2<2d21}

e−ε
−(1+q)
1 (D11|z′1|

2+D22|z′2|
2)eg(U

∗z′)

π2ε
2(1+q)
1 detV

dz′1dz
′
2

≥
∫
{|z′1|<d1,|z′2|<d1}

e−ε
−(1+q)
1 (D11|z′1|

2+D22|z′2|
2)eg(U

∗z′)

π2ε
2(1+q)
1 detV

dz′1dz
′
2

=
1

π2ε
2(1+q)
1 detV

∫ d1

0

∫ d1

0

∫ 2π

0

∫ 2π

0

r1r2e
−D11r

2
1

ε
1+q
1 e

−D22r
2
2

ε
1+q
1 eg̃(r1,θ1,r2,θ2)dθ1dθ2dr1dr2

=
1

π2ε
2(1+q)
1 detV

∫ d1

0

∫ d1

0

∫ 2π

0

∫ 2π

0

r1r2e
−D11r

2
1

ε
1+q
1 e

−D22r
2
2

ε
1+q
1

(
eg̃(r1,θ1,r2,θ2) − 1

)
dθ1dθ2dr1dr2

+

(
1− e

−D11d
2
1

ε
1+q
1

)(
1− e

−D22d
2
1

ε
1+q
1

)
, (3.11)

where g̃(r1, θ1, r2, θ2) = g(U∗z′). Recall that the 2-norm of Pε is bounded byO
(
ε
−(1+q)
1 εa(m−4)(s−1)

)
.
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Hence,

|g̃(r1, θ1, r2, θ2)| ≤ O
(
ε
−(1+q)
1 εa(m−4)(s−1)

) (
|z1|2 + |z2|2

)
= O

(
ε
−(1+q)
1 εa(m−4)(s−1)

) (
r2
1 + r2

2

)
.

Therefore, the first term in (3.11) is bounded by

O
(
εa(m−4)(s−1)

)
ε
3(1+q)
1 detV

∫ d1

0

∫ d1

0

r1r2e
−D11r

2
1

ε
1+q
1 e

−D22r
2
2

ε
1+q
1

(
r2
1 + r2

2

)
dr1dr2

= O
( ε

a(m−4)(1−s)

)∫ √
D11

ε
1+q
1

d1

0

∫ √
D22

ε
1+q
1

d1

0

r1r2

(
r2
1

D11
+

r2
2

D22

)
e−r

2
1e−r

2
2dr1dr2

≤ O

(
ε

D22a(m−4)(1−s)

)∫ ∞
0

∫ ∞
0

r1r2

(
r2
1 + r2

2

)
e−r

2
1e−r

2
2dr1dr2

= O
( ε

a(m−4)(1−s)−2

)
. (3.12)

The analysis in (3.10) and (3.12) implies that

P (G1 ∪G3) ≥

(
1− e

−D11d
2
1

ε
1+q
1

)(
1− e

−D22d
2
1

ε
1+q
1

)
+O

( ε

a(m−4)(1−s)−2

)
.

and similarly

P (G2 ∩G3) =

∫
{|z1|<δ2,|z2|<δ3}

e−
1
2 (z∗1 ,z

∗
2 ,z1,z2)V −1

2 (z1,z2,z
∗
1 ,z
∗
2 )T

π2
√

detV2

dz1dz2

≥

(
1− e

−D11d
2
2

ε
1+q
1

)(
1− e

−D22d
2
2

ε
1+q
1

)
+O

( ε

a(m−4)(1−s)−2

)
.

The rest of the proof is exactly the same as the one in the first step and consequently we know this

theorem is also true for a mother wave packets of type (ε,m) with m satisfying m ≥ 2
1−s + 4.

Thus far, we considered the robustness to small perturbation and Gaussian white noise. Next,

we will show that Theorem 3.2.2 can be extended to a broader class of colored noise.

Theorem 3.2.3. Suppose the mother wave packet is of type (ε,m), for any fixed ε ∈ (0, 1) and any

fixed integer m ≥ 2
1−s + 4. Suppose g(x) = f(x) + e, where e is a zero mean stationary Gaussian

process. Let ê(ξ) denote the spectrum of e, maxξ |ê(ξ)| ≤ ε−1 and Ma = max|ξ|<1 ê(a
sξ + a). For

any p ∈ (0, 1
2 ] and q > 0, let δa = M

( 1
2−p)/(1+q)

a +
√
ε,

Rδa = {(a, b) : |Wg(a, b)| ≥ a−s/2δa},

Sδa = {(a, b) : |Wg(a, b)| ≥ δa},
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and

Zk = {(a, b) : |a−Nkφ′k(b)| ≤ as}

for 1 ≤ k ≤ K. For fixed M and K, there exists a constant N0 (M,m,K, s, ε) ' max
{
ε
−1

2s−1 , ε
−1
1−s

}
such that for any N > N0 (M,m,K, s, ε) and f(x) ∈ F (M,N,K, s) the following statements hold.

(i) {Zk : 1 ≤ k ≤ K} are disjoint.

(ii) If (a, b) ∈ Rδa , then (a, b) ∈
⋃

1≤k≤K Zk with a probability at least

1− e−O(N−sk M−q/(1+q)a ) +O

(
ε

N
m(1−s)
k

)
.

(iii) If (a, b) ∈ Sδa , then (a, b) ∈
⋃

1≤k≤K Zk with a probability at least

1− e−O(M−q/(1+q)a ) +O

(
ε

N
m(1−s)
k

)
.

(iv) If (a, b) ∈ Rδa ∩ Zk for some k, then

|vg(a, b)−Nkφ′k(b)|
|Nkφ′k(b)|

.
√
ε+Mp/(1+q)

a

is true with a probability at least

(
1− e−O(N2−3s

k M−q/(1+q)a )
)(

1− e−O(N−s−2
k M−q/(1+q)a )

)
+O

(
ε

N
(m−4)(1−s)−2
k

)
.

(v) If (a, b) ∈ Sδa ∩ Zk, then

|vg(a, b)−Nkφ′k(b)|
|Nkφ′k(b)|

. N
−s/2
k

(√
ε+Mp/(1+q)

a

)
is true with a probability at least

(
1− e−O(N2−2s

k M−q/(1+q)a )
)(

1− e−O(N−2
k M−q/(1+q)a )

)
+O

(
ε

N
(m−4)(1−s)−2
k

)
.

Proof. The proof of this theorem is nearly identical to Theorem 3.2.2 but for the covariance functional

of the noise term which is now a general functional R : L1 ∩ Cm−1 → L1 ∩ Cm−1.

Step 1: In a similar structure, we prove the case when the mother wave packet is of type (0,m).

We can still check that Wg(a, b) = Wf (a, b) +We(a, b) and ∂bWg(a, b) = ∂bWf (a, b) + ∂bWe(a, b)
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are Gaussian variables. Furthermore, We(a, b) and (We(a, b), ∂bWe(a, b)) are still circularly symmet-

ric Gaussian variables. Since the Gaussian process e is zero mean, we have E [We(a, b)] = 0 and

E [∂bWe(a, b)] = 0. Note that R can be “diagonalized” to a functional D by the Fourier transform

denoted as F in the sense that

〈f1,Rf2〉 = 〈f1,F∗DFf2〉 = 〈f̂1, êf̂2〉

for any f1 and f2 in L1 ∩ Cm−1. Hence,

E
[
We(a, b)We(a, b)

]
= 〈wab,Rwab〉 = 〈ŵab, êŵab〉 = 〈ŵ, ê(asξ + a)ŵ〉

and

E [We(a, b)We(a, b)] = 〈wab,Rwab〉 = 〈ŵab, ê(−ξ)ŵab(−ξ)〉 =

∫
R
ŵab(ξ)ŵab(−ξ)ê(−ξ)dξ = 0.

If we introduce σ2 = 〈ŵ, ê(asξ + a)ŵ〉 for simplicity and a random variable Ξ with a probability

density function σ−2|ŵ|2ê(asξ + a), then by a similar argument, we know

E
[
(∂bWe(a, b))

2
]

= E [∂bWe(a, b)We(a, b)] = 0,

E
[
∂bWe(a, b)∂bWe(a, b)

]
= 〈∂bwab,R∂bwab〉 = 4πσ2E

[
(asΞ + a)

2
]
,

and

E
[
We(a, b)∂bWe(a, b)

]
= 〈wab,R∂bwab〉 = 2πiσ2E [asΞ + a] .

Hence, We(a, b) and (We(a, b), ∂bWe(a, b)) have zero pseudo-covariance matrices and they are circu-

larly symmetric. Therefore, the distribution of We(a, b) is determined by its variance as follows

e−σ
−2|z1|2

πσ2
.

If we define

V =

(
1 2πiE [asΞ + a]

−2πiE [asΞ + a] 4π2E [(asΞ + a)]

)
,

then σ2V is the covariance matrix of (We(a, b), ∂bWe(a, b)) and its distribution is described by the

joint probability density

e−σ
−2z∗V −1z

π2σ4 detV
,

where z = (z1, z2)
T

. V is an invertible and self-adjoint matrix, since We(a, b) and ∂bWe(a, b) are

linearly independent. Hence, there exist a diagonal matrix D and a unitary matrix U such that
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V −1 = U∗DU .

Part (i) is true by previous theorems. Define the following events

G1 = {|We(a, b)| < a−s/2M1/(2+2q)
a },

G2 = {|We(a, b)| < M1/(2+2q)
a },

G3 = {|∂bWe(a, b)| < M1/(2+2q)
a

(
a1−s/2 + as/2

)
},

Hk =

{
|vg(a, b)−Nkφ′k(b)|

|Nkφ′k(b)|
.
√
ε+Mp/(1+q)

a

}
,

and

Jk =

{
|vg(a, b)−Nkφ′k(b)|

|Nkφ′k(b)|
. N

−s/2
k

(√
ε+Mp/(1+q)

a

)}
,

for 1 ≤ k ≤ K. Now we estimate the probability P (G1), P (G2), P (G1 ∩G3), P (G2 ∩G3), P (Hk)

and P (Jk). By the calculations above, we have

P (G1) =

∫
|z1|<a−s/2M1/(2+2q)

a

e−σ
−2|z1|2

πσ2
dz1 = 1− e−a

−sM1/(1+q)
a σ−2

≥ 1− e−O(a−sM−q/(1+q)a ),

and similarly

P (G2) ≥ 1− e−O(M−q/(1+q)a ).

We are ready to summarize and conclude (ii) and (iii). If (a, b) ∈ Rδa , then

|We(a, b) +Wf (a, b)| ≥ a−s/2
(
M

( 1
2−p)/(1+q)

a +
√
ε
)
. (3.13)

If (a, b) /∈
⋃

1≤k≤K Zk, then by Lemma 2.1.10,

|Wf (a, b)| ≤ a−s/2ε. (3.14)

Equation (3.13) and (3.14) lead to |We(a, b)| ≥ a−s/2M
( 1
2−p)/(1+q)

a . Hence,

P

(a, b) /∈
⋃

1≤k≤K

Zk

 ≤ P (|We(a, b)| ≥ a−s/2M
( 1
2−p)/(1+q)

a

)
= 1− P (G1) .

This means that if (a, b) ∈ Rδa , then (a, b) ∈
⋃

1≤k≤K Zk with a probability at least P (G1) ≥
1 − e−O(a−sM−q/(1+q)a ) = 1 − e−O(N−sk M−q/(1+q)a ), since a ' Nk if (a, b) ∈ Zk. So, (ii) is true. A

similar argument applied to (a, b) ∈ Sδa shows that (a, b) ∈
⋃

1≤k≤K Zk with a probability at least

P (G2) = 1− e−O(M−q/(1+q)a ). Hence, (iii) is proved.
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If we introduce notations δ1 = a−s/2M
1/(2+2q)
a , δ2 = M

1/(2+2q)
a , δ3 =

(
a1−s/2 + as/2

)
M

1/(2+2q)
a ,

d1 = min{ δ1√
2
, δ3√

2
}, and d2 = min{ δ2√

2
, δ3√

2
}, then it follows from the same proof in Theorem 3.2.2

that

P (G1 ∩G3) =

∫
{|z1|<δ1,|z2|<δ3}

e−σ
−2z∗V −1z

π2σ4 detV
dz1dz2

≥
(

1− e−
D11d

2
1

σ2

)(
1− e−

D22d
2
1

σ2

)
,

and similarly

P (G2 ∩G3) =

∫
{|z1|<δ2,|z2|<δ3}

e−σ
−2z∗V −1z

π2σ4 detV
dz1dz2 ≥

(
1− e−

D11d
2
2

σ2

)(
1− e−

D22d
2
2

σ2

)
.

Note that

D−1
11 D

−1
22 = det (V ) = 4π2a2sVar [Ξ]

and

D11 +D22 =
1 + 4π2E

[
(asΞ + a)

2
]

4π2a2sVar [Ξ]

We assume D22 ≤ D11. Since |E [Ξ]| . 1 and E
[
Ξ2
]
. 1, then

D22 =
det
(
V −1

)
D11

' 1

detV (D11 +D22)
=

1

1 + 4π2E
[
(asΞ + a)

2
] ' a−2,

and

D11 '
1 + 4π2E

[
(asΞ + a)

2
]

4π2a2sVar [Ξ]
& a2−2s.

This implies

P (G1 ∩G3) ≥
(

1− e−
D11d

2
1

σ2

)(
1− e−

D22d
2
1

σ2

)
&

(
1− e−O(a2−3sM−q/(1+q)a )

)(
1− e−O(a−s−2M−q/(1+q)a )

)
,

and

P (G2 ∩G3) ≥
(

1− e−
D11d

2
2

σ2

)(
1− e−

D22d
2
2

σ2

)
&

(
1− e−O(a2−2sM−q/(1+q)a )

)(
1− e−O(a−2M−q/(1+q)a )

)
.
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By Theorem 3.2.1, if (a, b) ∈ Rδa ∩ Zk for some k, then

P (Hk) ≥ P (Hk|G1 ∩G3)P (G1 ∩G3) = P (G1 ∩G3) .

Note that a ' Nk when a ∈ Zk, then

P (Hk) ≥
(

1− e−O(N2−3s
k M−q/(1+q)a )

)(
1− e−O(N−s−2

k M−q/(1+q)a )
)
.

Similarly, if (a, b) ∈ Sδa ∩ Zk for some k, then

P (Jk) ≥
(

1− e−O(N2−2s
k M−q/(1+q)a )

)(
1− e−O(N−2

k M−q/(1+q)a )
)
.

These arguments prove (iv) and (v).

Step 2: We discuss the case for a mother wave packet of type (ε,m) for m ≥ 2
1−s + 4.

Similar to what we have already seen in the second step of the proof of Theorem 3.2.2. Wg(a, b) =

Wf (a, b) + We(a, b) and ∂bWg(a, b) = ∂bWf (a, b) + ∂bWe(a, b) are Gaussian. (We(a, b), ∂bWe(a, b))

and We(a, b) are nearly circularly symmetric Gaussian variables. Using the same strategy in Step 2

in the proof of Theorem 3.2.2 and the notations in Step 1 in this theorem, we can still check that:

1. The distribution of We(a, b) is well approximated by

e−σ
−2|z1|2

πσ2
,

where σ2 = 〈ŵ, ê(asξ + a)ŵ〉.

2. The distribution of (We(a, b), ∂bWe(a, b)) is well approximated by

e−σ
−2z∗V −1z

π2σ4 detV
,

where

V =

(
1 2πiE [asΞ + a]

−2πiE [asΞ + a] 4π2E [(asΞ + a)]

)
,

and V has eigenvalues D−1
22 ' a2 and D−1

11 . a2(s−1).

Suppose G1, G2, G3 are the events defined in the first step, then the well approximation here means

that:
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1.

P (G1) =

∫
{|z1|<a−s/2M1/(2+2q)

a }

e−σ
−2|z1|2

πσ2
dz1 +O

( ε

am(1−s)

)
= 1− e−a

−sM1/(1+q)
a +O

(
ε

am(1−s)

)
σ−2

≥ 1− e−O(a−sM−q/(1+q)a ) +O
( ε

am(1−s)

)
,

similarly

P (G2) ≥ 1− e−O(M−q/(1+q)a ) +O
( ε

am(1−s)

)
.

2.

P (G1 ∩G3) =

∫
{|z1|<δ1,|z2|<δ3}

e−σ
−2z∗V −1z

π2σ4 detV
dz1dz2 +O

( ε

a(m−4)(1−s)−2

)
≥

(
1− e−

D11d
2
1

σ2

)(
1− e−

D22d
2
1

σ2

)
+O

( ε

a(m−4)(1−s)−2

)
&

(
1− e−O(a2−3sM−q/(1+q)a )

)(
1− e−O(a−s−2M−q/(1+q)a )

)
+O

( ε

a(m−4)(1−s)−2

)
,

and similarly

P (G2 ∩G3) =

∫
{|z1|<δ2,|z2|<δ3}

e−σ
−2z∗V −1z

π2σ4 detV
dz1dz2 +O

( ε

a(m−4)(1−s)−2

)
≥

(
1− e−

D11d
2
2

σ2

)(
1− e−

D22d
2
2

σ2

)
+O

( ε

a(m−4)(1−s)−2

)
&

(
1− e−O(a2−2sM−q/(1+q)a )

)(
1− e−O(a−2M−q/(1+q)a )

)
+O

( ε

a(m−4)(1−s)−2

)
.

Following the proof in the first step, it is straightforward to see this theorem is true for a mother

wave packet of type (ε,m) with m ≥ 2
1−s + 4.

Theorem 3.2.2 and 3.2.3 illustrate that when the sampling rate of a given signal is high enough

such that the wave-like components are relatively smooth in terms of the noise, the SSWPT can

estimate the instantaneous frequencies of these components accurately with a high probability. In

particular, Theorem 3.2.3 says that if the noise spectrum is not overwhelming the wave packet

coefficients of IMTs, the SSWPT can provide accurate estimates with a high probability. Part (ii)

and (iii) in the last two theorems demonstrate that the influence of noise can be significantly reduced

with a proper threshold after the wave packet transform and we could obtain useful information with

a high probability. Part (iv) and (v) show that the synchrosqueezing process is able to concentrate

the wave packet representation to the instantaneous frequencies with a reasonable probability after
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properly thresholding. Hence, the essential support of the synchrosqueezed energy distribution helps

to estimate the instantaneous frequencies statistically.

In the above discussion, we have not optimized the dependence of N on ε. There are two extra

steps to minimize the lower bound for N . Comparing Definition 3.1.1 and Definition 2.1.6, it is

clear that we have allowed fully nonlinearity to IMTs in the previous theorems. The requirement

ε
−1

2s−1 can be reduced to a constant order if we restrict to a slightly smaller class of IMTs with

weaker nonlinearity. For example, if Nk . ε−1/s or Nk . ε−1/(2s−1), then we impose extra condition

|α′k(x)| ≤ εNs
k |φ′k(x)| or |φ′′k(x)| ≤ εN2s−1

k |φ′k(x)|, respectively. A careful inspection of the proof of

Lemma 2.1.9 and 2.1.10 in the Taylor expansion approximation shows that these lemmas are still

true. Hence, the synchrosqueezed transforms remain accurate.

Another step is to look at ε
−1
1−s , which comes from the decaying estimate of wave packet coef-

ficients Wf (a, b) when their scales a do not match the oscillation Nk of IMTs. If we further take

advantage of the decay speed of the mother wave packet, we will see |Wf (a, b)| would decay much

faster when this mismatch occurs. For example, a mother wave packet in Cm satisfies that

ŵ(ξ) ≤ Cm (1 + |ξ|)−m .

Since the mother wave packet is decaying rapidly at infinity, we can simply assume that the smooth

amplitude function of the IMT has a compact support large enough and only need to bound |Wf (a, b)|
for b at the support center. Since φ ∈ C∞, by the diffeomorphism equivalence in Lemma 2.2 in [49]

by Demanet and Ying, which is also valid for the wave packet transform by careful inspection, it

is sufficient to assume φ(x) = x. It follows from the discussion in Lemma 2.3 in [49] that we only

require the following bound for previous theorems:

|Wf (a, b)| ≤ a−s/2Cm (1 + |a−N |)−m/2 ≤ ε.

Thus, we see |Wf (a, b)| decays rapidly when a /∈
[
N

2M , 2MN
]

for a reasonable large N . In practice,

ε cannot be too small for numerical purposes and the number of periods of the input data is large

enough so that a nonlinear wave-like component is well defined. Hence, the above requirement is

not a main issue.

We close this section with a few extra remarks. First, s ∈ (1/2, 1) is essential in those theorems

if we do not impose extra condition on the nonlinearity of IMTs. Second, as pointed out in [178],

another advantage of allowing s ∈ (1/2, 1) is that a smaller s leads to a better scale resolution to

distinguish two IMTs with close instantaneous frequencies or a sequence of IMTs with instantaneous

frequencies spreading out in the time-frequency domain. We refer to [178] for a detailed discussion.

Finally, the theorems above provide a new insight that a smaller s yields a synchrosqueezed transform

with better robustness. This new insight is especially important when designing synchrosqueezed

transforms compactly supported or decaying fast in the time domain. Theorem 3.2.2 and 3.2.3 show
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that the parameter m in the mother wave packet has to be large enough, satisfying m ≥ 2
1−s + 4.

In a special case, if a compactly supported synchrosqueezed wavelet transform (corresponding to

s = 1) is preferable in some application, its mother wavelet is better to be C∞.

3.3 2D Synchrosqueezed Wave Packet Transform (SSWPT)

We will focus on the robustness of the 2D SSWPT illustrated in the next two theorems. Appendix

A.1 is referred to for the proofs of these theorems.

Theorem 3.3.1. Suppose the 2D mother wave packet is of type (ε,m), for any fixed ε ∈ (0, 1) and

any fixed integer m ≥ 0. Suppose g(x) = f(x) + e(x), where e(x) ∈ L∞ is a small error term that

satisfies ‖e‖L∞ ≤ ε1 for some ε1 > 0. For p ∈
(
0, 1

2

]
, let δ =

√
ε+ ε

1
2−p
1 . Define

Rδ = {(a, b) : |Wf (a, b)| ≥ |a|−sδ},

Sδ = {(a, b) : |Wf (a, b)| ≥ δ},

and

Zk = {(a, b) : |a−Nk∇φk(b)| ≤ |a|s}

for 1 ≤ k ≤ K. For fixed M , m, s, ε and K, there exists a constant N0 (M,m,K, s, ε) '
max

{
ε
−2

2s−1 , ε
−1
1−s

}
such that for any N > N0 and f(x) ∈ F (M,N,K, s) the following statements

hold.

(i) {Zk : 1 ≤ k ≤ K} are disjoint and Sδ ⊂ Rδ ⊂
⋃

1≤k≤K Zk;

(ii) For any (a, b) ∈ Rδ ∩ Zk,
|vg(a, b)−Nk∇φk(b)|

|Nk∇φk(b)|
.
√
ε+ εp1;

(iii) For any (a, b) ∈ Sδ ∩ Zk,

|vg(a, b)−Nk∇φk(b)|
|Nk∇φk(b)|

. N−sk
(√
ε+ εp1

)
.

Theorem 3.3.1 shows that the 2D SSWPT is robust to a bounded perturbation. Actually, if the

threshold δ is larger, e.g., δ ≥
√

ε1
ε , the relative estimate errors in (ii) and (iii) are bounded by

√
ε

and
√
ε

Nsk
, respectively. Hence, the local wave vector estimates are better if the wave packet coefficient

with the largest magnitude is selected. However, when the perturbation is overwhelming, e.g., the

wave packet coefficients of a 2D IMT are below the threshold in (ii), it is difficult to estimate its

local wave vector. Next, Theorem 3.3.2 will illustrate the robustness properties of the 2D SSWPT

to a zero mean stationary Gaussian noise.
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Theorem 3.3.2. Suppose the 2D mother wave packet is of type (ε,m), for any fixed ε ∈ (0, 1)

and any fixed integer m ≥ max
{

2(1+s)
1−s , 2

1−s + 4
}

. Suppose g(x) = f(x) + e, where e is a zero

mean stationary Gaussian process with a spectrum denoted by ê(ξ) and maxξ |ê(ξ)| ≤ ε−1. Define

Ma = max|ξ|<1 ê(|a|sξ + a). For any p ∈ (0, 1
2 ] and q > 0, let δa = M

( 1
2−p)/(1+q)

a +
√
ε,

Rδa = {(a, b) : |Wg(a, b)| ≥ |a|−sδa},

Sδa = {(a, b) : |Wg(a, b)| ≥ δa},

and

Zk = {(a, b) : |a−Nk∇bφk(b)| ≤ |a|s}

for 1 ≤ k ≤ K. For fixed M , m, s, ε and K, there exists a constant N0 (M,m,K, s, ε) '
max

{
ε
−2

2s−1 , ε
−1
1−s

}
such that for any N > N0 and f(x) ∈ F (M,N,K, s) the following statements

hold.

(i) {Zk : 1 ≤ k ≤ K} are disjoint.

(ii) If (a, b) ∈ Rδa , then (a, b) ∈
⋃

1≤k≤K Zk with a probability at least

1− e−O(N−2s
k M−q/(1+q)a ) +O

(
ε

N
m(1−s)
k

)
.

(iii) If (a, b) ∈ Sδa , then (a, b) ∈
⋃

1≤k≤K Zk with a probability at least

1− e−O(M−q/(1+q)a ) +O

(
ε

N
m(1−s)
k

)
.

(iv) If (a, b) ∈ Rδa ∩ Zk for some k, then

|vg(a, b)−Nk∇φk(b)|
|Nk∇φk(b)|

.
√
ε+Mp/(1+q)

a

is true with a probability at least(
1− e−O(N2−4s

k M−q/(1+q)a )
)(

1− e−O(N−4s
k M−q/(1+q)a )

)(
1− e−O(N−2−2s

k M−q/(1+q)a )
)

+O

(
ε

N
(m−4)(1−s)−2
k

)
+O

(
ε

N
m−2−(m+2)s
k

)
.

(v) If (a, b) ∈ Sδa ∩ Zk for some k, then

|vg(a, b)−Nk∇φk(b)|
|Nk∇φk(b)|

. N−sk

(√
ε+Mp/(1+q)

a

)
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is true with a probability at least(
1− e−O(N2−2s

k M−q/(1+q)a )
)(

1− e−O(N−2s
k M−q/(1+q)a )

)(
1− e−O(N−2

k M−q/(1+q)a )
)

+O

(
ε

N
(m−4)(1−s)−2
k

)
+O

(
ε

N
m−2−(m+2)s
k

)
.

We would like to remark that the requirement of N0 (M,K, s, ε) ' max
{
ε
−2

2s−1 , ε
−1
1−s

}
can be

relieved if we impose a weak assumption on the nonlinearity of IMTs, as discussed in the end of

Section 3.2. For example,

|∇αk(x)| ≤ εNs
k |∇φk(x)| and |∇2φk(x)| ≤ εN2s−1

k |∇φk(x)|.

Hence, the theorems introduced in this section are multiscale indeed.

Theorem 3.3.1 and 3.3.2 show that the local wave vector estimates by the 2D SSWPT are ro-

bust against bounded perturbation and additive Gaussian random noise, if a threshold is properly

chosen after the wave packet transform. First, the robustness becomes stronger as s gets smaller.

Second, similar to the 1D case, as we increase the sampling rate of the signal to make IMTs rela-

tively smoother compared to Gaussian random noise, the SSWPT can estimate local wave vectors

accurately with a high probability.

3.4 2D Synchrosqueezed Curvelet Transform (SSCT)

In some applications such as the wave field separation problem [143, 163] and the ground roll removal

problem [17, 72, 185] in geophysics, the IMTs to be analyzed and decomposed would have bounded

supports in space, sometimes even banded supports. This motivates the design of the SSCT as a

better tool to estimate local wave vectors of banded IMTs with close propagating directions in [184].

As we shall see in the following theorems, the geometric scaling of the SSCT is crucial to obtaining

an accurate estimate of local wave vectors.

To model a wave-like component with a band-shape support, we are going to analyze components

of the form

f(x) = e−(φ(x)−c)2/σ2

α(x)e2πiNφ(x),

where α(x) is a smooth amplitude function, φ(x) a smooth phase function, and σ is a band parameter

that controls the width of the signal.

To understand how large the bandwidth should be in order to obtain accurate local wave vec-

tor estimates by the SSCT, we assume σ = Θ (N−η) and show that the SSCT gives good esti-

mates when η < t and N is sufficiently large. In the space domain, a generalized curvelet at the

scale a = O (N) has a width O (N−t). σ ≥ N−η with η < t indicates that the bandwidth σ of



CHAPTER 3. ROBUSTNESS OF SYNCHROSQUEEZED TRANSFORMS 75

e−(φ(x)−c)2/σ2

α(x)e2πiNφ(x) can be almost as narrow as the width of a generalized curvelet that

sharing the same wave number O (N), when N is sufficiently large.

Definition 3.4.1. For any c ∈ R, N > 0 and M > 0, a function f(x) = e−(φ(x)−c)2/σ2

α(x)e2πiNφ(x)

is a banded intrinsic mode function of type (M,N, η), if α(x) and φ(x) satisfy

α(x) ∈ C∞, |∇α(x)| ≤M, 1/M ≤ α(x) ≤M,

φ(x) ∈ C∞, 1/M ≤ |∇φ(x)| ≤M, |∇2φ(x)| ≤M,

and σ ≥ N−η.

Definition 3.4.2. A function f(x) is a well-separated superposition of type (M,N, η, s, t,K) if

f(x) =

K∑
k=1

fk(x),

where each fk(x) = e−(φk(x)−ck)2/σ2
kαk(x)e2πiNφk(x) is a banded intrinsic mode function (IMT) of

type (M,Nk, η) with Nk ≥ N and they satisfy the separation condition: ∀a ∈ [1,∞) and ∀θ ∈ [0, 2π),

there is at most one banded intrinsic mode function fk satisfying that

|A−1
a R−1

θ (a · uθ −Nk∇φk(b)) | ≤ 1.

We denote by F (M,N, η, s, t,K) the set of all such functions.

We are ready to discuss the robustness of the 2D SSCT illustrated in the next two theorems. We

refer to their proofs in Appendix B.

Theorem 3.4.3. Suppose the 2D mother wave packet is of type (ε,m), for any fixed ε ∈ (0, 1) and

any fixed integer m ≥ 0. Suppose g(x) = f(x) + e(x), where e(x) ∈ L∞ is a small error term that

satisfies ‖e‖L∞ ≤ ε1 for some ε1 ≥ 0. For any p ∈ (0, 1
2 ], let δ =

√
ε+ ε

1
2−p
1 . Define

Rδ =
{

(a, θ, b) : |Wf (a, θ, b) | ≥ a−
s+t
2 δ
}
,

Sδ = {(a, θ, b) : |Wf (a, θ, b)| ≥ δ} ,

and

Zk =
{

(a, θ, b) : |A−1
a R−1

θ (a · uθ −Nk∇φk(b)) | ≤ 1
}

for 1 ≤ k ≤ K. For fixed M , m, s, t, η, ε and K, there exists

N0 (M,m, s, t, η, ε,K) ' max
{
ε
−1
1−t , ε

−2
t−η , ε

−2
2s−1

}
such that for any N > N0 and f(x) ∈ F (M,N, η, s, t,K) the following statements hold.
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(i) {Zk : 1 ≤ k ≤ K} are disjoint and Sδ ⊂ Rδ ⊂
⋃

1≤k≤K Zk.

(ii) For any (a, θ, b) ∈ Rδ ∩ Zk,

|vg(a, θ, b)−Nk∇φk(b)|
|Nk∇φk(b)|

.
√
ε+ εp1.

(iii) For any (a, θ, b) ∈ Sδ ∩ Zk,

|vg(a, θ, b)−Nk∇φk(b)|
|Nk∇φk(b)|

. N
− s+t2

k (
√
ε+ εp1).

Theorem 3.4.3 justifies the robustness of the 2D SSCT to a bounded perturbation. Next theorem

below will illustrate its robustness against additive zero mean stationary Gaussian noise.

Theorem 3.4.4. Suppose the 2D mother wave packet is of type (ε,m), for any fixed ε ∈ (0, 1)

and any fixed integer m ≥ max
{

2(1+s)
1−t , 2

1−t + 4
}

. Suppose g(x) = f(x) + e, where e is a zero

mean stationary Gaussian process with a spectrum denoted by ê(ξ) and maxξ |ê(ξ)| ≤ ε−1. Define

Ma = max|ξ|<1 ê (RθAaξ + a · uθ). For any p ∈ (0, 1
2 ] and q > 0, let δa = M

( 1
2−p)/(1+q)

a +
√
ε,

Rδa =
{

(a, θ, b) : |Wf (a, θ, b)| ≥ a−
s+t
2 δa

}
,

Sδa = {(a, θ, b) : |Wf (a, θ, b)| ≥ δa} ,

and

Zk =
{

(a, θ, b) : |A−1
a R−1

θ (a · uθ −Nk∇φk(b)) | ≤ 1
}

for 1 ≤ k ≤ K. For fixed M , m, s, t, η, ε and K, there exists

N0 (M,m, s, t, η, ε,K) ' max
{
ε
−1
1−t , ε

−2
t−η , ε

−2
2s−1

}
such that for any N > N0 and f(x) ∈ F (M,N, η, s, t,K) the following statements hold.

(i) {Zk : 1 ≤ k ≤ K} are disjoint.

(ii) If (a, θ, b) ∈ Rδa , then (a, θ, b) ∈
⋃

1≤k≤K Zk with a probability at least

1− e−O
(
N
−(s+t)
k M−q/(1+q)a

)
+O

(
ε

N
m(1−t)
k

)
.

(iii) If (a, θ, b) ∈ Sδa , then (a, θ, b) ∈
⋃

1≤k≤K Zk with a probability at least

1− e−M
−q/(1+q)
a +O

(
ε

N
m(1−t)
k

)
.
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(iv) If (a, θ, b) ∈ Rδa ∩ Zk for some k, then

|vg(a, θ, b)−Nk∇φk(b)|
|Nk∇φk(b)|

.
√
ε+Mp/(1+q)

a

is true with a probability at least

(
1− e−O(N2−s−3t

k M−q/(1+q)a )
)(

1− e−O
(
N
−(3s+t)
k M−q/(1+q)a

))(
1− e−O(N−2−s−t

k M−q/(1+q)a )
)

+O

(
ε

N
(m−4)(1−t)−2
k

)
+O

(
ε

Nm−2−mt−2s
k

)
.

(v) If (a, θ, b) ∈ Sδa ∩ Zk for some k, then

|vg(a, θ, b)−Nk∇φk(b)|
|Nk∇φk(b)|

. N
−(s+t)/2
k

(√
ε+Mp/(1+q)

a

)
is true with a probability at least(

1− e−O(N2−2t
k M−q/(1+q)a )

)(
1− e−O(N−2s

k M−q/(1+q)a )
)(

1− e−O(N−2
k M−q/(1+q)a )

)
+O

(
ε

N
(m−4)(1−t)−2
k

)
+O

(
ε

Nm−2−mt−2s
k

)
.

Similar to the discussion in previous sections, the requirement for N0 = max
{
ε
−1
1−t , ε

−2
t−η , ε

−2
2s−1

}
can be further optimized if we impose extra conditions on the nonlinearity of IMTs and consider the

polynomial decaying of the mother curvelet in the frequency domain.

Up to now, we have proved that the SSCT is able to accurately and robustly estimate the local

wave vectors of banded IMTs, if their essential supports can be modeled by a Gaussian function with

an essential support larger than the width of a curvelet sharing the same order of oscillation. Before

closing this section, we would like to emphasize a new understanding of the results obtained in those

theorems in this section: if the amplitude function of an IMT has a vanishing boundary, then the

vanishing rate can be almost as fast as the oscillation. If an IMT has a sharp boundary, the estimates

provided by synchrosqueezed transforms are reliable at the locations almost O(1) wave lengths away

from the boundary (see Figure 3.1 right). As a corollary in 1D cases, a similar conclusion is true as

illustrated in Figure 3.1 left.
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Figure 3.1: The reliable estimation area of an IMT with boundaries. Left and middle right: syn-
chrosqueezed transforms can provide accurate estimates at the locations O(N−η) away from a
boundary. Middle left and right: if the width of an IMT is less than O(N−η), the accuracy of
synchrosqueezed transforms is still an open problem.



Chapter 4

Discrete Synchrosqueezed

Transforms

4.1 Fast Discrete SSWPT and Mode Decomposition

4.1.1 Implementation

In this section, we describe in detail the discrete synchrosqueezed wave packet transform proposed

mainly following the work in [182, 178] with Lexing Ying. Let us first recall the continuous setting.

For a given superposition f(x) of several well-separated components in Rd, the synchrosqueezed

wave packet transform consists of the following steps:

(i) Apply the wave packet transform to obtain Wf (a, b) and the gradient ∇bWf (a, b);

(ii) Compute the approximate instantaneous frequency or local wavevector vf (a, b) and perform

synchrosqueezing to get Tf (v, b);

(iii) Use a clustering algorithm to identify the support of the new representation Tf (v, b) of different

intrinsic mode type functions;

(iv) Reconstruct each intrinsic mode type function using the dual frame.

In order to realize these steps in the discrete setting, we first introduce a discrete implementation of

the wave packet transform in the first part of Section 4.1.1. The full discrete algorithm will then be

discussed in the second part of Section 4.1.1. A few numerical examples will be provided in 4.1.2 to

demonstrate the efficiency of these algorithms.

79
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Multi-dimensional discrete wave packet transform

For simplicity, we consider functions that are periodic over the unit square [0, 1)d in a d-dimensional

space. Let

X = {(n/L : n ∈ Zd, 0 ≤ nj < L, for 1 ≤ j ≤ d}

be the spatial grid of size L in each dimension at which these functions are sampled. The corre-

sponding Fourier grid is

Ξ = {ξ ∈ Zd : −L/2 ≤ ξj < L/2, for 1 ≤ j ≤ d}.

For a function f(x) ∈ `d(X), the discrete forward Fourier transform is defined by

f̂(ξ) =
1

Ld/2

∑
x∈X

e−2πix·ξf(x),

while the discrete inverse Fourier transform of g(ξ) ∈ `d(Ξ) is

ǧ(x) =
1

Ld/2

∑
ξ∈Ξ

e2πix·ξg(ξ).

In both transforms, the factor 1
Ld/2

ensures that these discrete transforms are isometries between

`d(X) and `d(Ξ).

A filterbank-based time-frequency transform is a natural choice to design the discrete wave packet

transform due to the localization requirement of wave packets in the frequency domain. It also enjoys

fast implementation. In order to design a discrete wave packet transform using the filterbank-based

method, we need to specify how to decimate the momentum space and the position space. Let us

focus on the 1D case and first consider the momentum space. In the continuous setting, the Fourier

transform ŵab(ξ) of the wave packets for a fixed a value have the profile

|a|−sd/2ŵ(|a|−s(ξ − a)), (4.1)

modulo complex modulation. In 1D transform, we sample the Fourier domain [−L/2, L/2] with a

set of points a (as shown in Figure 4.1 marked in blue) and associate with each a ∈ A a window

function ga(ξ) ( see Figure 4.1 in black) that behaves qualitatively as ŵ(|a|−s(ξ − a)) essentially

centered at a. More precisely, ga(ξ) is required to satisfy the following conditions:

• ga(ξ) is non-negative and centered at a with an essentially compact support of width La =

O(|a|s); ga(ξ) decays sufficiently fast outside this essential support;

• ga(|a|sτ + a) is a sufficiently smooth function of τ , so that the discrete wave packets decay

rapidly in the spatial domain;
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• C1 ≤
∫
|ga(|a|sτ + a)|2dτ ≤ C2 for constants C1, C2 > 0 which are independent of a;

• In addition, for any ξ ∈ [−L/2, L/2),
∑
a∈A |ga(ξ)|2 = 1.

Figure 4.1: The 1D sample set A in blue. Each stick represents a point a in A. Each a is associated
with a 1D window function ga(ξ) in black of size O(as) in the frequency domain.

In higher dimensional cases, the set A and functions {ga(ξ), a ∈ A} can be generated by tensor

product using the results in 1D.

One possible way to specify the set A and the functions {ga(ξ), a ∈ A} is to follow the construc-

tions of the wave atom frame in [49] or the Gaussian wave packets of [142]. In both constructions, the

parabolic scaling s = 1/2 is used in order to represent the oscillatory patterns efficiently. However,

in the current setting, the proposed wave packet transform requires s ∈ (1/2, 1) and hence one needs

to increase the support of ga(ξ) accordingly. We refer to [49, 142] for more detailed discussions.

The above conditions for ga(ξ), a ∈ A also impose a constraint on the sampling density of the set

A. In the frequency plane, the set A becomes denser near the origin and sparser for large ξ. A

straightforward calculation shows that the total number of samples in A is of order O(L(1−s)d).

The decimation of the position space is much easier; we simply discretize it with a uniform grid

of size LB in each dimension as follows:

B = {n/LB : n ∈ Zd, 0 ≤ nj < LB , for 1 ≤ j ≤ d}.

As we shall see, the only requirement is that LB ≥ maxa∈A La so that the discrete wave packets can

form a frame.

For each fixed a ∈ A and b ∈ B, the discrete wave packet, still denoted by wab(x) without causing

much confusion, is defined through its Fourier transform as

ŵab(ξ) =
1

L
d/2
B

e−2πib·ξga(ξ) (4.2)
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for ξ ∈ Ξ. In fact, to match the quantity in (4.1), one should define

ŵab(ξ) =
1

L
d/2
a

e−2πib·ξga(ξ) (4.3)

as it was defined in [182]. However, (4.3) would lead to weak spectral energy of in the high frequency

domain. A high frequency wave-like component becomes hardly visible after synchrosqueezed trans-

form. Hence, in practice, we adopt the definition in (4.2) instead of (4.3). Since ga(ξ) is centered

at a and has a support of width La = O(|a|s), this function fits into the scaling of wave packets.

Applying the discrete inverse Fourier transform provides its spatial description

wab(x) =
1

(L · LB)d/2

∑
ξ∈Ξ

e2πi(x−b)·ξga(ξ).

For a function f(x) defined on x ∈ X, the discrete wave packet transform is a map from `2(X) to

`2(A×B), defined by

Wf (a, b) = 〈wab, f〉 = 〈ŵab, f̂〉 =

∫
ŵab(ξ)f̂(ξ)dξ =

1

L
d/2
B

∑
ξ∈Ξ

e2πib·ξga(ξ)f̂(ξ). (4.4)

The following result shows that {wab, (a, b) ∈ A×B} forms a tight frame.

Proposition 4.1.1. For any function f(x) in `2(X), we have

∑
a∈A,b∈B

|Wf (a, b)|2 = ‖f‖22.

Proof. From the definition of the wave packet transform, we have

∑
a∈A,b∈B

|Wf (a, b)|2 =
∑

a∈A,b∈B

∣∣∣∣∣∣
∑
ξ∈Ξ

1

L
d/2
B

e2πib·ξga(ξ)f̂(ξ)

∣∣∣∣∣∣
2

=
∑
a∈A

∑
ξ∈Ξ

∣∣∣ga(ξ)f̂(ξ)
∣∣∣2

=
∑
ξ∈Ξ

|f̂(ξ)|2.

For a function h(a, b) in `2(A×B), the transpose of the wave packet transform is given by

W t
h(x) :=

∑
a∈A,b∈B

h(a, b)wab(x). (4.5)
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The next result shows that this transpose operator allows us to reconstruct f(x), x ∈ X from its

wave packet transform Wf (a, b), (a, b) ∈ A×B.

Proposition 4.1.2. For any function f(x) with x ∈ X,

f(x) =
∑

a∈A,b∈B

Wf (a, b)wab(x).

Proof. Let us consider the Fourier transform of the right hand side. It is equal to

∑
a∈A,b∈B

∑
η∈Ξ

1

L
d/2
B

e2πib·ηga(η)f̂(η)

 · 1

L
d/2
B

e−2πib·ξga(ξ)

=
∑
a∈A

∑
η∈Ξ

1

LdB

(∑
b∈B

e2πib·(η−ξ)ga(η)f̂(η)

) ga(ξ)

=
∑
a∈A

(ga(ξ))2f̂(ξ) = f̂(ξ),

where the second step uses the fact that in the η sum only the term with η = ξ yields a non-zero

contribution.

Let us now turn to the discrete approximation of ∇bWf (a, b). From the continuous definition,

we have

∇bWf (a, b) = ∇b〈ŵab, f̂〉 = 〈−2πiξŵab(ξ), f̂(ξ)〉.

Therefore, we define the discrete gradient ∇bWf (a, b) in a similar way

∇bWf (a, b) =
∑
ξ∈Ξ

1

L
d/2
B

2πiξe2πib·ξga(ξ)f̂(ξ). (4.6)

The above definitions give rise to fast algorithms for computing the forward wave packet trans-

form, its transpose, and the discrete gradient operator. All three algorithms heavily rely on the fast

Fourier transform (FFT). For the forward transform

Wf (a, b) =

 1

L
d/2
B

∑
ξ∈Ξ

e2πib·ξga(ξ)f̂(ξ)

 ,

we have the following algorithm

Algorithm 4.1.3. Forward transform from f(x) to Wf (a, b)

1: Compute f̂(ξ) with ξ ∈ Ξ from f(x) with x ∈ X using a forward FFT of size L.

2: for each a ∈ A do

3: Form ga(ξ)f̂(ξ) on the support of ga(ξ)
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4: Wrap the result modulo LB onto the domain [−LB/2, LB/2)d

5: Apply an inverse FFT of size LB to the wrapped result to get Wf (a, b) for all b ∈ B
6: end for

The transpose operator (4.5) can be written equivalently in the Fourier domain as

Ŵ t
h(ξ) =

∑
a∈A,b∈B

h(a, b)
1

L
d/2
B

e−2πib·ξga(ξ) =
∑
a∈A

(∑
b∈B

1

L
d/2
B

h(a, b)e−2πib·ξ

)
ga(ξ),

which suggests the following algorithm for the transpose operator:

Algorithm 4.1.4. Transpose operator from h(a, b) to W t
h(x)

1: for each a ∈ A do

2: Apply a forward FFT of size LB to h(a, b)

3: Unwrap the result modulo LB onto the support of ga(ξ)

4: Multiply the unwrapped data with ga(ξ) and add the product to get f̂(ξ)

5: end for

6: Compute f(x) with x ∈ X from f̂(ξ) with ξ ∈ Ξ using an inverse FFT of size L.

To implement the discrete gradient operator in (4.6), we have the following algorithm.

Algorithm 4.1.5. Discrete gradient operator from f(x) to ∇bWf (a, b)

1: Compute f̂(ξ) with ξ ∈ Ξ from f(x) with x ∈ X using a forward FFT of size L.

2: for each a ∈ A do

3: Form 2πiξga(ξ)f̂(ξ) on the support of ga(ξ)

4: Wrap the result modulo LB onto the domain [−LB/2, LB/2)d

5: Apply an inverse FFT of size LB to each component of the wrapped result to get ∇bWf (a, b)

for all b ∈ B
6: end for

As we mentioned earlier, the conditions on {ga(ξ), a ∈ A} imply that there areO(Ld(1−s)) samples

in set A. A straightforward calculation shows that the computational cost of all three algorithms is

O(Ld logL+Ld(1−s)LdB logLB) with LB ≥ maxa∈A La = O(Ls). If we choose LB to be of the same

order as Ls, the complexity of these algorithms is O(Ld logL), which is the cost of an FFT on a

Cartesian grid with L grid points in each dimension.

Description of the full algorithm

With the discrete transforms and their fast algorithms available, we now go through the steps of the

synchrosqueezed wave packet transform.

For a given function f(x) defined on x ∈ X, we apply Algorithm 4.1.3 to compute Wf (a, b)

and Algorithm 4.1.5 to compute ∇bWf (a, b). The approximate local wavevector vf (a, b) is then
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estimated by

vf (a, b) =
∇bWf (a, b)

2πiWf (a, b)

for a ∈ A, b ∈ B with Wf (a, b) 6= 0. In view of Theorem 2.2.7, a threshold |Wf (a, b)| ≥ |a|−ds/2
√
ε

(|a| ≥ 1) is necessary. Since we adopt (4.2) instead of (4.3) in the numerical implementation, we

only need a uniform threshold independent of the scale a. Following Theorem 2.2.7, we define a

discrete set Rε with

Rε = {(a, b) : a ∈ A, b ∈ B, |Wf (a, b)| ≥
√
ε}

and vf (a, b) provides an approximate estimate for the local wavevector only for (a, b) ∈ Rε.
To specify the synchrosqueezed energy distribution Tf (v, b), we first place in the Fourier domain

a d-dimensional Cartesian grid of step-size ∆:

V = {n∆ : n ∈ Zd}.

At each v = n∆ ∈ V , we associate a cell Dv centered at v

Dv =

d∏
j=1

[
(nj −

1

2
)∆, (nj +

1

2
)∆

)
.

Then the discrete synchrosqueezed energy distribution is defined as

Tf (v, b) =
∑

(a,b)∈Rε:Revf (a,b)∈Dv

|Wf (a, b)|2.

It is straightforward to check that

∑
v∈V,b∈B

Tf (v, b) =
∑

(a,b)∈Rε

|Wf (a, b)|2 ≤ ‖f‖22

where the last inequality comes from Proposition 4.1.1 and the fact that Rε is a subset of A×B.

Suppose that f(x) is a superposition of K well-separated intrinsic mode functions:

f(x) =

K∑
k=1

fk(x) =

K∑
k=1

αk(x)e2πiNkφk(x).

From the previous discussion, we know that, for each b ∈ B, vf (a, b) points approximately to one of

Nk∇φk(b), depending on a. Therefore, after synchrosqueezing, Tf (v, b) is essentially supported in the

phase space near the K “discrete” surfaces {(Nk∇φk(b), b), b ∈ B}. The next step is to decompose

the essential support of Tf (v, b) into K clusters, one for each intrinsic mode type function, through

a suitable clustering method. The resulting clusters are defined to be U1, . . . , UK . In many cases,
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the number of components K is not known a priori and needs to be discovered from the function

Tf (v, b).

We estimate the instantaneous frequencies or local wave vectors Nk∇φk(b) efficiently by identi-

fying the energy peaks in Uk. To obtain finer estimates, we can compute the weighted average of

vf (a, b) over each cluster Uk as follows

Nk∇φk(b) =

∑
(a,b):Revf (a,b)∈Uk |Wf (a, b)|2Revf (a, b)∑

(v,b)∈Uk Tf (v, b)
. (4.7)

In the final step, we recover each intrinsic mode function by computing.

fk(x) =
∑

(a,b):Revf (a,b)∈Uk

Wf (a, b)wab(x).

This step can be carried out efficiently by restricting Wf (a, b) to the set {(a, b) : Revf (a, b) ∈ Uk}
and applying Algorithm 4.1.4 to the restriction for each k.

4.1.2 Numerical Examples

This section presents several numerical examples to illustrate the proposed synchrosqueezed wave

packet transforms. Throughout all examples, the threshold value ε is 10−4 and the size L of the

Cartesian grid X of the discrete algorithm is 512. In the implementation of the discrete wave packet

transforms, the scaling parameter s is equal to 2/3, which is a good balance as discussed previously.

We will only show 2D examples because the results in other dimensions are similar.
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Figure 4.2: Relative error R(b) of local wavevector estimation.



CHAPTER 4. DISCRETE SYNCHROSQUEEZED TRANSFORMS 87

Local wavevector estimation

We first test the accuracy of the local wavevector information function vf (a, b). Let f(x) be a

deformed plane wave

f(x) = α(x)e2πiNφ(x).

Theorem 2.2.7 shows that, for each fixed point b in space, the estimate vf (a, b) approximates the

local wavevector at b for any a that satisfies the condition (a, b) ∈ Rε. Though vf (a, b) for any such

a provides an estimate of the local wavevector at b, it is more useful to combine them together to

obtain a unique local wavevector estimate for each fixed b. More precisely, we compute the weighted

average as in (4.7) to estimate local wave vectors. Denoting the weighted average as vmf (b), we can

define the (discrete) relative error R(b) between vmf (b) and the exact local frequency N∇φ(b) as

R(b) =
|vmf (b)−N∇φ(b)|
|N∇φ(b)|

.

We perform the above test on a deformed plane wave f(x) with α(x) = 1, φ(x) = φ(x1, x2) =

x1 + x2 + β sin(2πx1) + β sin(2πx2) with β = 0.1, and N = 135. The relative error R(b) shown in

Figure 4.2 is of order 10−2, which agrees with Theorem 2.2.7 on that the relative approximation

error is O(
√
ε).

Intrinsic mode decomposition

Here f(x) is a sum of two deformed plane waves

f(x) = e2πiNφ1(x) + e2πiNφ2(x),

φ1(x) = φ1(x1, x2) = x1 + x2 + β sin(2πx1) + β sin(2πx2),

φ2(x) = φ2(x1, x2) = −x1 + x2 − β sin(2πx1) + β sin(2πx2)

with N = 135 and β = 0.1. The algorithm described in Section 4.1.1 is applied to f(x) to extract

these two components. Figure 4.3 summarizes the results of this test. The first row shows the

superposition f(x) (left) and the synchrosqueezed energy distribution Tf (v, b) with b1 fixed at 1

(right). For a fixed b1 value Tf (v, b) concentrates near two curves. More generally, in phase space

Tf (v, b) concentrates near two 2D surfaces. The second row shows the two sets U1 and U2 after the

clustering steps. Finally, the third row plots the two reconstructed components.
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Figure 4.3: A mode decomposition without noise. Top-left: A superposition of two deformed plane
waves with the bottom-left corner showing a zoomed-in view of the highlighted rectangle. Top-
right: Synchrosqueezed energy distribution Tf (v, b) at b1 = 1. Second row: The support of Tf (v, b)
is clustered into two subsets. Third row: The two reconstructed components.
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4.2 Fast Discrete SSCT and Mode Decomposition

4.2.1 Implementation

In this section, we describe the 2D discrete synchrosqueezed curvelet transform and the mode decom-

position in detail. The description mainly follows the work in [184] with Lexing Ying. Let us first

recall the continuous setting. Suppose f(x) is a superposition of several well-separated components,

the mode decomposition by the SSCT consists of the following steps:

(i) Apply the generalized curvelet transform to obtain Wf (a, θ, b) and the gradient ∇bWf (a, θ, b);

(ii) Compute the local wave vector estimate vf (a, θ, b) and concentrate the energy around it to get

Tf (v, b);

(iii) Separate the essential supports of the concentrated phase space energy distribution Tf (v, b)

into several components by clustering techniques;

(iv) Restrict Wf (a, θ, b) to each resulting component and reconstruct corresponding intrinsic mode

functions using the dual frame.

We first introduce a discrete implementation of the generalized curvelet transform for Step (i) and

Step (iv). The full discrete algorithm will then be summarized later.

2D Discrete generalized curvelet transforms

For simplicity, we consider periodic functions over the unit square [0, 1)2 in 2D. If it is not the case,

the functions will be periodized by multiplying a smooth decaying function near the boundary of

[0, 1)2. We follow basic discrete setting in Section 4.1. Recall that

X = {(n1/L, n2/L) : 0 ≤ n1, n2, < L, n1, n2 ∈ Z}

is the L × L spatial grid at which these functions are sampled. The corresponding L × L Fourier

grid is

Ξ = {(ξ1, ξ2) : −L/2 ≤ ξ1, ξ2 < L/2, ξ1, ξ2 ∈ Z}.

For a function f(x) ∈ `2(X), the discrete forward Fourier transform is defined by

f̂(ξ) =
1

L

∑
x∈X

e−2πix·ξf(x).

For a function g(ξ) ∈ `2(Ξ), the discrete inverse Fourier transform is

ǧ(x) =
1

L

∑
ξ∈Ξ

e2πix·ξg(ξ).
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Figure 4.4: Left: Sampled point set A in Fourier domain for an image of size 512× 512. Each point
represents the center of the support of a window function. The window function centered at the
origin is supported on a disk and is not indicated in this picture. The size of finest scale is set to
be small (e.g. 16) in order to save memory. Right: An example of a fan-shaped window function
ga,θ(ξ).

In order to design a discrete curvelet transform, we need to specify how to decimate the Fourier

domain in (a, θ) and the position space in b. Let us first consider the Fourier domain (a, θ). In the

continuous setting, the Fourier transform ŵaθb(ξ) for fixed (a, θ) have the profile

a−
s+t
2 ŵ(A−1

a R−1
θ (ξ − a · uθ)), (4.8)

modulo complex modulation. In the discrete setting, we sample the Fourier domain [−L/2, L/2)2

with a set of points A (Figure 4.4 left) and associate with each (a, θ) ∈ A a window function ga,θ(ξ)

(Figure 4.4 right) that behaves qualitatively as ŵ(A−1
a R−1

θ (ξ − a · uθ)). More precisely, ga,θ(ξ) is

required to satisfy the following conditions:

• ga,θ(ξ) is non-negative and centered at a·uθ with a compact fan-shaped support of length O(at)

and width O(as), which is approximately a directional elliptical support {ξ : |A−1
a R−1

θ (ξ − a ·
uθ)| ≤ 1}.

• ga,θ(RθAaτ + a · uθ) is a sufficiently smooth function of τ , thus making the discrete curvelets

to decay rapidly in the spatial domain;

• C1 ≤
∫
|ga,θ(RθAaτ + a ·uθ)|2dτ ≤ C2 for positive constants C1 and C2, independent of (a, θ);

• In addition, for any ξ ∈ [−L/2, L/2)2,
∑

(a,θ)∈A |ga,θ(ξ)|2 = 1.

We follow the discretization and construction of frames in [23] to specify the set A and window

functions, and refer to [19] for detail implementation. The difference here is that, we do not restrict
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angular scaling parameter to s = 1
2 and radial scaling parameter to t = 1. This allows us to

adaptively adjust the size of tiles according to data structure. In the construction of the tiling in

this article, the scaling parameters s and t remain constant as the scale changes.

The decimation of the position space b is much easier; we simply discretize it with an LB × LB
uniform grid as follows:

B = {(n1/LB , n2/LB) : 0 ≤ n1, n2 < LB , n1, n2 ∈ Z}.

The only requirement is that LB is large enough so that a sampling grid of size LB × LB can cover

the supports of all window functions.

For each fixed (a, θ) ∈ A and b ∈ B, the discrete curvelet, still denoted by waθb(x) without

causing much confusion, is defined through its Fourier transform as

ŵaθb(ξ) =
1

LB
e−2πib·ξga,θ(ξ) (4.9)

for ξ ∈ Ξ. In fact, to match the quantity in (4.8), one should define

ŵaθb(ξ) =
1

La
e−2πib·ξga,θ(ξ) (4.10)

with La = a
s+t
2 . However, (4.10) would lead to weak spectral energy of in the high frequency domain.

A high frequency wave-like component becomes hardly visible after synchrosqueezed transform.

Hence, in practice, we adopt the definition in (4.9) instead of (4.10). Applying the discrete inverse

Fourier transform provides its spatial description

waθb(x) =
1

L · LB

∑
ξ∈Ξ

e2πi(x−b)·ξga,θ(ξ).

For a function f(x) defined on x ∈ X, the discrete curvelet transform is a map from `2(X) to

`2(A×B), defined by

Wf (a, θ, b) = 〈waθb, f〉 = 〈ŵaθb, f̂〉 =
1

LB

∑
ξ∈Ξ

e2πib·ξga,θ(ξ)f̂(ξ). (4.11)

We can introduce an inner product on the space `2(A×B) as follows: for any two functions g(a, θ, b)

and h(a, θ, b),

〈g, h〉 =
∑

(a,θ)∈A,b∈B

g(a, θ, b)h(a, θ, b).

The following result shows that {waθb : (a, θ, b) ∈ A × B} forms a tight frame when equipped with

this inner product.
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Proposition 4.2.1. For any function f(x) for x ∈ X, we have

∑
(a,θ)∈A,b∈B

|Wf (a, θ, b)|2 = ‖f‖22.

Proof. From the definition of the curvelet transform, we have

∑
(a,θ)∈A,b∈B

|Wf (a, θ, b)|2 =
∑

(a,θ)∈A,b∈B

∣∣∣∣∣∣
∑
ξ∈Ξ

1

LB
e2πib·ξga,θ(ξ)f̂(ξ)

∣∣∣∣∣∣
2

=
∑

(a,θ)∈A

∑
ξ∈Ξ

∣∣∣ga,θ(ξ)f̂(ξ)
∣∣∣2

=
∑
ξ∈Ξ

|f̂(ξ)|2.

For a function h(a, θ, b) in `2(A×B), the transpose of the curvelet transform is given by

W t
h(x) :=

∑
(a,θ)∈A,b∈B

h(a, θ, b)waθb(x). (4.12)

The next result shows that this transpose operator allows us to reconstruct f(x), x ∈ X from its

curvelet transform Wf (a, θ, b), (a, θ, b) ∈ A×B.

Proposition 4.2.2. For any function f(x) with x ∈ X,

f(x) =
∑

(a,θ)∈A,b∈B

Wf (a, θ, b)waθb(x).

Proof. Let us consider the Fourier transform of the right hand side. It is equal to

∑
(a,θ)∈A,b∈B

∑
η∈Ξ

1

LB
e2πib·ηga,θ(η)f̂(η)

 · 1

LB
e−2πib·ξga,θ(ξ)

=
∑

(a,θ)∈A

∑
η∈Ξ

1

L2
B

(∑
b∈B

e2πib·(η−ξ)ga,θ(η)f̂(η)

) ga,θ(ξ)

=
∑

(a,θ)∈A

(ga,θ(ξ))
2f̂(ξ) = f̂(ξ),

where the second step uses the fact that in the η sum only the term with η = ξ yields a nonzero

contribution.

Let us now turn to the discrete approximation of ∇bWf (a, θ, b). From its continuous definition,
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we have

∇bWf (a, θ, b) = ∇b〈ŵaθb, f̂〉 = 〈−2πiξŵaθb(ξ), f̂(ξ)〉.

Therefore, we define the discrete gradient ∇bWf (a, θ, b) in a similar way

∇bWf (a, θ, b) =
∑
ξ∈Ξ

1

LB
2πiξe2πib·ξga,θ(ξ)f̂(ξ). (4.13)

The above definitions give rise to fast algorithms for computing the forward generalized curvelet

transform, its transpose, and the discrete gradient operator. All three algorithms heavily rely on

the fast Fourier transform (FFT). The detailed implementation of these fast algorithms is similar

to Algorithm 4.1.3, 4.1.4 and 4.1.5. The computational cost of all three algorithms is O(L2 logL+

L2−s−tL2
B logLB) with LB large enough so that a grid of size LB ×LB can cover the supports of all

window functions. If we choose LB to be of the same order as Lt, the complexity of these algorithms

is O(L2+t−s logL).

Description of the full algorithm

We now go through the steps of the discrete synchrosqueezed curvelet transform.

For a given function f(x) defined on x ∈ X, we apply fast algorithms to compute Wf (a, θ, b) and

∇bWf (a, θ, b). Then the local wave vector estimate vf (a, θ, b) is computed by

vf (a, θ, b) =
∇bWf (a, θ, b)

2πiWf (a, θ, b)

for (a, θ) ∈ A, b ∈ B with Wf (a, θ, b) 6= 0.

In view of Theorem 2.3.7, a threshold |Wf (a, θ, b)| ≥ |a|−(s+t)/2
√
ε (a ≥ 1) is necessary. Since

we adopt (4.9) instead of (4.10) in the numerical implementation, we only need a uniform threshold

independent of the scale a. Following Theorem 2.3.7, we define a discrete set Rε with

Rε = {(a, b) : a ∈ A, b ∈ B, |Wf (a, b)| ≥
√
ε}

and vf (a, b) provides an approximate estimate for the local wavevector only for (a, b) ∈ Rε.
The energy resulting in Revf (a, θ, b) should be stacked up to obtain Tf (Revf (a, θ, b), b). To

realize this step, a two dimensional Cartesian grid of step size ∆ is generated to discretize the

Fourier domain of Tf (v, b) in variable v as follows:

V = {(n1∆, n2∆) : n1, n2 ∈ Z}.
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At each v = (n1∆, n2∆) ∈ V , we associate a cell Dv centered at v

Dv =

[
(n1 −

1

2
)∆, (n1 +

1

2
)∆

)
×
[
(n2 −

1

2
)∆, (n2 +

1

2
)∆

)
.

Then Tf (v, b) is estimated by

Tf (v, b) =
∑

(a,θ,b):Revf (a,θ,b)∈Dv

|Wf (a, θ, b)|2.

It is straightforward to check that

∑
v∈V,b∈B

Tf (v, b) =
∑

(a,b)∈Rε

|Wf (a, θ, b)|2 ≤ ‖f‖22

where the last inequality comes from Proposition 4.2.1 and the fact that Rε is a subset of A×B.

Suppose that f(x) is a superposition of K well-separated banded intrinsic mode type functions:

f(x) =

K∑
k=1

fk(x) =

K∑
k=1

e−(φk(x)−ck)2/σ2
kαk(x)e2πiNkφk(x).

In the discrete implementation, we choose a threshold parameter δ > 0 and define the set S to be

{(v, b) : v ∈ V, b ∈ B, Tf (v, b) ≥ δ}.

After synchrosqueezing, Tf (v, b) is essentially supported in the phase space nearK “discrete” surfaces

{(Nk∇φk(b), b), b ∈ B}. Hence, under the separation condition given by Theorem 2.3.7, S will have

K well-separated clusters U1, . . . , UK , and they would be identified by a suitable clustering method.

Once we discover U1, . . . , UK , we can define Wfk(a, θ, b) by restricting Wf (a, θ, b) to the set

{(a, θ, b) : Revf (a, θ, b) ∈ Uk}. Then, we can recover each intrinsic mode type function efficiently

using the fast algorithm discussed to compute

fk(x) =
∑

(a,θ)∈A,b∈B

Wfk(a, θ, b)waθb(x).

A weighted average of vf (a, θ, b) similar to (4.7) gives good estimates of local wave vectors Nk∇φk(b).

4.2.2 Numerical Examples

In this section, we start with error analysis of local wave vector estimation using synchrosqueezed

curvelet transform, and compare it with synchrosqueezed wave packet transform. Afterward, some

mode decomposition examples of synthetic data will be presented to illustrate the efficiency of
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proposed synchrosqueezed curvelet transform. For all the synthetic examples in this section, the size

L of the Cartesian gridX of the discrete algorithm is 512, the threshold value ε = 10−4 forWf (a, θ, b).

The scaling parameters of synchrosqueezed curvelet transform are t = 1 − 1
8 and s = 1

2 + 1
8 , as an

appropriate balance as discussed previously. In the meantime, we chose t = s = 1
2 + 1

8 to construct

discrete synchrosqueezed wave packet transform for a reasonable comparison.

Local wave vector estimation

In Theorem 2.3.7, we have seen that the estimate vf (a, θ, b) approximates the local wave vector at

b, if (a, b) ∈ Rε. In such region, though vf (a, θ, b) provides an accurate estimate of the local wave

vector at each b, it is more rational to average them up to obtain a unique local wave vector estimate

for each fixed b. By the definition of synchrosqueezed energy distribution, Tf (Revf (a, θ, b), b) truly

reflects a natural weight of vf (a, θ, b) in variables a and θ. More precisely, we compute similar

weighted average as in (4.7) to estimate local wave vectors. Denoting the weighted average as vmf (b),

we can define the (discrete) relative error R(b) between vmf (b) and the exact local frequency N∇φ(b)

as

R(b) =
|vmf (b)−N∇φ(b)|
|N∇φ(b)|

.

We test the accuracy for a noise free deformed plane wave f(x) = α(x)e2πiNφ(x) with α(x) = 1,

φ(x) = φ(x1, x2) = x1 + (1− x2) + 0.1 sin(2πx1) + 0.1 sin(2π(1− x2)), and N = 135 (see Figure 4.5

left). The relative error R(b) of SSCT shown in Figure 4.5 (middle) is of order 10−2, which agrees

with Theorem 2.3.7 on that the relative approximation error is of order O(
√
ε). The synchrosqueezed

wave packet transform and the synchrosqueezed curvelet transform share the same accuracy in this

case shown by Figure 4.5 middle and right.
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Figure 4.5: Left: A deformed plane wave propagating in the full space with zoomed-in data indicated
by a rectangle. Middle: Relative error R(b) of local wave vector estimation using SSCT. Right:
Relative error R(b) of local wave vector estimation given by SSWPT.

We compare the efficiency of SSCT and SSWPT in a noiseless case of a banded deformed plane

wave f(x) = e−(φ(x)−c)2/σ2

α(x)e2πiNφ(x) with the same parameters in last example and two more
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parameters c = 0.7 and σ = 4
135 . As we discussed at the beginning of this subsection, vf (a, θ, b) is

only computed in the relevant region |Wf (a, θ, b)| ≥
√
ε. So, the relative error will be set to be zero

at the position b such that |Wf (a, θ, b)| <
√
ε for all (a, θ). The numerical result matches well with

our theoretical prediction, showing that SSCT estimates local wave vectors of this banded wave-like

component within a relative error of order O(
√
ε). However, SSWPT fails the truth as we discussed

in the section of introduction.
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Figure 4.6: Left: A banded deformed plane wave. The zoomed-in data comes from the small
rectangle. Middle: Relative error R(b) of local wave vector estimation using SSCT. Right: Relative
error R(b) of local wave vector estimation given by SSWPT.

4.2.3 Intrinsic Mode Decomposition for Synthetic Data

In many applications, it is required to extract each component from a superposition. To show that

our algorithm may provide a solution, we present some numerical examples of mode decompositions

for highly oscillatory synthetic seismic data in noiseless and noisy cases (see Figure 4.7 top). Figure

4.7 shows the results of the application of our algorithm described in Section 4.2.1. On the left is

a noiseless example and the example on the right has additive noise. Each mode of given data is

accurately recovered in the noiseless case. In the noisy case, different modes with different propaga-

tion characters are completely separated. Each recovered mode practically reflects the curvature of

corresponding mode in the original data, though there is some energy loss due to the threshold to

remove noise.

In some other applications, one component might be disrupted (e.g. randomly shifted in this

example), and it is required to remove such component and recover others. Here we randomly shift

the first mode in the previous example in the vertical direction and apply our algorithm to recover the

second mode. The numerical results summarized in Figure 4.8 show the capability of our algorithm

to solve such a problem with or without noise. In this problem, the disrupted component can be

considered as noise with high energy, i.e., this is a problem with very small signal-to-noise ratio. It

is even more problematic that random shifting may create some texture similar to the mode to be
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Figure 4.7: Example 2. Left: A mode decomposition without noise. Right: A mode decomposition
with noise. Top: A superposition of two components. Second row: The first recovered relevant
mode. Third row: The second recovered relevant mode.

recovered in some region. Fortunately, the synchrosqueezed representation is so concentrated that

the resolution is still good enough to separate the mode from such similar texture by appropriately

thresholding Tf (a, θ, b).

The left example in Figure 4.8 shows the result of noiseless data. The recovered mode looks
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almost the same as the one recovered in noiseless example in Figure 4.7 bottom left, except some

energy loss due to thresholding. It is of interest to add some background noise to see how well our

algorithm is performing. Figure 4.8 right shows the result of the noisy case. The result (see Figure

4.8 bottom right) is almost identical with the recovered mode in Figure 4.7 bottom left.
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Figure 4.8: Example 3. Left: Mode identification without noise. Right: Mode identification with
noise Top: A superposition of two components, one of which is disrupted by random shifting and
need to be removed. Second row: The recovered relevant mode.

4.3 Numerical Robustness Analysis

In this section, we provide numerical examples to demonstrate the conclusions of those theorems

in the robustness analysis in Chapter 3 and explain several ideas to obtain reliable instantaneous

frequency or local wave vector information from extremely noisy data.

In all examples, we assume the given data g(x) = f(x) + e(x) is defined in [0, 1]n, where f(x) is

the target signal, e(x) is Gaussian white noise with a distribution σ2N (0, 1), and n is the number

of dimensions. We would only focus on testing the robust performance of the SSWPT, since the
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SSCT has similar properties. Detailed implementations of these transforms have been discussed in

[178, 180, 182, 184], Section 4.1 and Section 4.2. As we have seen in the theorems in Chapter 3, a

proper thresholding adaptive to the noise level after the wave packet/generalized curvelet transform

is important to obtain an accurate instantaneous frequency/local wave vector estimate. We refer to

[55, 56] for estimating noise level and [155] for designing thresholds for the SSWT. The generalization

of these techniques for the SSWPT and the SSCT is straightforward.

Our main purpose in this section is to show the robustness properties of synchrosqueezed trans-

forms with various scaling parameters. We compare the performance of the SSWPT with s =

1/2 + k/8, where k = 1, 2 and 3, in both noiseless cases and highly noisy cases. For the purpose of

showing how the synchrosqueezing process is affected by heavy noise, we are using a small uniform

threshold δ = 10−2 (rather than a threshold adaptive to noise level) and setting σ2 such that the

noise is overwhelming the original signal in all of our synthetic toy models. The accuracy tolerance

in the theorems ε = 10−4.

4.3.1 Robustness Tests for 1D SST
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Figure 4.9: Left: A 1D synthetic benchmark signal. It is normalized using L∞ norm. Right: A
noisy signal generated with Gaussian white noise 0.75N (0, 1).

We start from testing the 1D SSWPT. In some real applications, IMTs are only supported in a

bounded domain or they have sharp changes in instantaneous frequencies. Hence, we would like to

test a benchmark signal in which there is a component with a bounded support and an oscillatory

instantaneous frequency, and a component with an exponential instantaneous frequency (see Figure

4.9). Of a special interest to test the performance of synchrosqueezed transforms for impulsive

waves, a wavelet component is added in this signal at x = 0.2. The synthetic benchmark signal1 is

1Prepared by Professor Mirko van der Baan and available at [153, 162].
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generated using the example functions:

f1(x) = 0.6 cos(700πx);

f2(x) = 0.8 cos(300πx);

f3(x) = 0.7 cos(1300πx+ 5 sin(20πx));

f4(x) = sin

(
80π1005x/4

ln(100)

)
;

f5(x) = 3e−50x2

cos(50x).

The sampling rate of this signal is 8192 Hz and the instantaneous frequency range is 150 − 1600

Hz. The Gaussian white noise in this example is 0.75N (0, 1). To make a fair comparison, we have

tuned the size of the essential support of mother wave packets to obtain a good result for each kind

of synchrosqueezed transforms.

Although we have not identified the optimal value of the scaling parameter s, it is clear from

Theorem 3.2.2 and 3.2.3 that the synchrosqueezed transform with a smaller s is more robust. As

shown in the second and the third rows in Figure 4.10, in the noisy cases, the synchrosqueezed

energy distribution with s = 0.625 (in the first column) is better than the one with s = 0.75 (in the

second column), which is better than the one with s = 0.875 (in the last column). This agrees with

the conclusion in Theorem 3.2.2 and 3.2.3 that a smaller s results in a higher probability to obtain

a better instantaneous frequency estimate.

Another key point of Theorem 3.2.2 and 3.2.3 is that a wave packet coefficient with a larger

magnitude gives a better instantaneous frequency estimate with a higher probability. A highly

redundant wave packet transform with a denser translation grid in space and scaling grid in frequency

would have wave packets better fitting local oscillation of IMTs. In another word, there would be

more coefficients with larger magnitudes. The resulting synchrosqueezed energy distribution has

higher non-zero energy concentrating around instantaneous frequencies. This is also validated in

Figure 4.10. The synchrosqueezed energy distributions in the third row are obtained by a SSWPT

with a 16 times denser grid in frequency than the grid used in the second row. Hence, instantaneous

frequencies are much more visible if a SSWPT with a higher redundancy is applied.

It is also interesting to observe that the synchrosqueezed transform with a smaller s is better

to capture the component boundaries, e.g. at x = 0.39, 0.59 and 0.77 and is more robust to an

impulsive perturbation (see Figure 4.9 and 4.10 at x = 0.2 and an example of α stable noise in

Figure 4.11 and 4.12). Boundaries and impulse perturbation would produce frequency aliasing. The

SSWPT with a smaller s has wave packets with a smaller support in frequency and a larger support

in space. Hence, it is more robust to frequency aliasing in the sense that the influence of impulsive

perturbation is smoothed out and the synchrosqueezed energy of the target components might not

get dispersed when it meets the frequency aliasing, as shown in Figure 4.12.
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However, if s is small, the instantaneous frequency estimate might be smoothed out and it is

difficult to observe detailed information of instantaneous frequencies. As shown in the first row

of Figure 4.10, when the input signal is noiseless, the synchrosqueezed transforms with s = 0.75

and 0.875 have better accuracy than the one with s = 0.625. In short, it is important to have

tunable scaling parameters to design problem dependent synchrosqueezed transforms, which has

been implemented in the SynLab toolbox.
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Figure 4.10: Synchrosqueezed energy distributions with s = 0.625 (left column), s = 0.75 (middle
column) and s = 0.875 (right column). In the first row, we apply the SSWPT to clean data. In the
second row, the SSWPT with a smaller redundancy is applied to the noisy data with 0.75N (0, 1)
noise in Figure 4.9. In the last row, a highly redundant SSWPT is applied to the same noisy data.
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Figure 4.11: Left: A 1D synthetic benchmark signal. Right: A signal contaminated by an α stable
random noise [1] with parameters α = 1, dispersion= 0.9, δ = 1, N = 8192. The noise is rescaled to
have a 15 L∞-norm by dividing a constant factor.
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Figure 4.12: Synchrosqueezed energy distributions with s = 0.625 (left), s = 0.75 (middle) and
s = 0.875 (right) using highly redundant SSWPTs. The synchrosqueezed energy with a smaller s is
smoother and the influence of impulsive noise is weaker.

4.3.2 Robustness Tests for 2D SST

We now explore the performance of the 2D SSWPT using a single IMT in Figure 4.13. The function

f(x) = e2πi(60(x1+0.05 sin(2πx1))+60(x2+0.05 sin(2πx2))) (4.14)

is uniformly sampled in [0, 1]2 with a sampling rate 512 Hz and is disturbed by additive Gaussian

white noise 5N (0, 1). The 2D SSWPTs with s = 0.625, 0.75 and 0.875 are applied to this noisy

example and their results are shown in Figure 4.14. Since the synchrosqueezed energy distribution

Tf (x1, x2, k1, k2) of an image is a function in R4, we fix x2 = 0, stack the results in k2, and visualize∫
R Tf (x1, 0, k1, k2)dk2.

The results in Figure 4.14 again validate the theoretical conclusion in Theorem 3.3.2 that a



CHAPTER 4. DISCRETE SYNCHROSQUEEZED TRANSFORMS 103

x
1

x
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x
1

x
2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 4.13: Left: A 2D noiseless IMT. Right: A noisy IMT generated with Gaussian white noise
5N (0, 1).

smaller scaling parameter s and a higher redundancy yield to a better robustness. A new idea here

to achieve a better robustness is to design adaptive synchrosqueezed transforms tracing the possible

frequency band of IMTs. A band-limited synchrosqueezed transform is designed in [180] for an

efficient tool to analyze atomic crystal images. Numerical experiments will show that this method

is strongly robust to noise. This inspires the idea of adaptive synchrosqueezed transforms above.

We will do a simple experiment to justify this idea. In this experiment, we apply the band-limited

SSWPT to the same 2D noisy image and present the results in the last row of Figure 4.14. Comparing

to the results in the second row of Figure 4.14, the band-limited SSWPT clearly outperforms the

original SSWPT.

4.3.3 Component Test

We will present the last example to validate the results of those theorems in the robustness analysis.

Suppose we look at a region in the time-frequency or phase space domain and we know there might

be only one IMT in this region. This assumption is reasonable because, after the synchrosqueezed

transform, one might be interested in the synchrosqueezed energy in a particular region: is this

corresponding to a component or just heavy noise? A straightforward solution is that, at each time

or space grid point, we only reassign those coefficients with the largest magnitude. By Theorem

3.3.2, if there is an IMT, we can obtain a sketch of its instantaneous frequency or local wave vector

with a high probability. If there is only noise, we would obtain random reassigned energy with a

high probability. Using this idea, we apply the band-limited SSWPT with s = 0.625 and 10 times

redundancy to a noisy version of the image in Figure 4.13 left. From left to right, Figure 4.15 shows

the results of a noisy image (4.14) with 5N (0, 1) noise, a noisy image (4.14) with 10N (0, 1) noise,

and an image with only noise, respectively. A reliable sketch of the local wave vector is still visible
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Figure 4.14: Stacked synchrosqueezed energy distribution
∫
R Tf (x1, 0, k1, k2)dk2 of the noisy 2D

signal in Figure 4.13. From left to right, s = 0.625, 0.75 and 0.875. From top to bottom: standard
redundancy, 10 times redundancy and 10 times redundancy with a SSWPT restricted to a frequency
band from 20 to 120 Hz.

even if the input image is highly noisy.

4.3.4 Real Examples

In the last part of this section, we introduce a newly developed atomic crystal image analysis

method based on synchrosqueezed transforms [180] to demonstrate the robustness of synchrosqueezed

transforms in real applications. We will further study this application later in Chapter 6. In materials

science, the information hidden in an atomic crystal image, e.g., grain boundaries, isolated defects,

deformation field of each grain, is important for better understanding the properties of materials. As
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Figure 4.15: Top row: The synchrosqueezed energy distribution of the highly redundant band-limited
SSWPT with a frequency band 20 to 120 Hz. Bottom row: reassigned wave packet coefficients with
the largest magnitude at a space location. Left column: 5N (0, 1) noise. Middle column: 10N (0, 1)
noise. Right column: noise only.

seen in Figure 4.16 (a), an atomic crystal image can be considered as an assemble of several general

IMTs [180], where a general IMT is a superposition of a few IMTs with similar local wave vectors,

e.g., with local wave vectors {(nk∂b1φ(b),mk∂b2φ(b))} for some φ(b) and a few pairs (nk,mk). The

method in [180] automatically determines a frequency band of the input image and applies a band-

limited SSWPT to estimate the synchrosqueezed energy of each IMT. The location of the essential

synchrosqueezed energy reveals grain boundaries, isolated defects and deformation fields (denoted by

∇F (x1, x2) ∈ R2×2). Integrating ∇F (x1, x2) around a defect region can estimate the Burgers vector

corresponding to the defect region. The distortion volume of ∇F (x1, x2), i.e., det (∇F (x1, x2))− 1

can reflect the strain stress on the grains (e.g. see Figure 4.16 (c)).

We apply the method in [180] to a phase field crystal image (Figure 4.16 (a)) and show the

detected grain boundaries and isolated defects in Figure 4.16 (b), and the distortion volume in

Figure 4.16 (c). To demonstrate the robustness, we generate additive Gaussian white noise with a

distribution 0.5N (0, 1) and 1.4N (0, 1), respectively and present the noisy results in the second and

the third rows of Figure 4.16. In the results of extremely noisy cases, even if no crystal structure

visible by human eyes, the SSWPT method is still able to reveal grain boundaries and isolated

defects with a reasonable accuracy. The distortion volume in Figure 4.16 (f) and (i) still roughly
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reflects the strain stress encoded by color.
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Figure 4.16: Atomic crystal image analysis using 2D synchrosqueezed transforms. First row: Results
of noiseless data. Second row: Results of noisy data with Gaussian white noise 0.5N (0, 1). Third
row: Results of noisy data with Gaussian white noise 1.4N (0, 1). First column: input images.
Second column: detected grain boundaries and isolated defects. Third column: distortion volume.
Zoomed-in images show that our method can still identify isolated defects even if noise is heavy.



Chapter 5

Diffeomorphism Based Spectral

Analysis

5.1 Introduction

In Section 2.1, we have introduced the 1D synchrosqueezed transform to analyze the instantaneous

properties of a complex signal of the form

f(x) =

K∑
k=1

fk(x) =

K∑
k=1

αk(x)e2πiNkφk(x), (5.1)

where αk(x) is the instantaneous amplitude, 2πNkφk(x) is the instantaneous phase and Nkφ
′
k(x) is

the instantaneous frequency. One wishes to decompose the signal f(x) to obtain each component

fk(x) and its corresponding instantaneous properties. This is referred to as the mode decomposition

problem.

In spite of considerable successes of analyzing signals by decomposing them in the form of (5.1),

a superposition of a few wave-like components belongs to a very limited class of oscillatory patterns.

Most of all, a decomposition in the form of (5.1) would lose important physical information in some

cases as detailed in [170, 176]. To be more concrete, we take the daily atmospheric CO2 concentration

data in [176] as an example (provided by National Oceanic and Atmospheric Administration at

Mauna Loa (MLO)). The method based on wavelet transforms is capable of decomposing data in

the form of (5.1), providing one annual cycle, one semiannual cycle and a growing trend (see Figure

5.1). However, each component alone cannot reflect the true nonlinear evolution pattern: the CO2

concentration slowly increased in a longer period and quickly decreased in a shorter period. This

special pattern is a result of seasonal photosynthetic drawdown and respiratory release of CO2 by

terrestrial ecosystems [176]. Fortunately, such a nonlinear evolution pattern can be recovered by

107
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Figure 5.1: The top signal is the observed CO2 concentration of recent 31 years (1981-2011) at MLO.
Below the original signal are the components provided by the wavelet transform. Only relevant
components are separated and presented.

summing up the annual cycle and the semiannual cycle as shown in Figure 5.2. This motivates the

study of a more general decomposition of the form

f(x) =

K∑
k=1

fk(x) =

K∑
k=1

αk(x)sk(2πNkφk(x)), (5.2)

where {sk(x)}1≤k≤K are 2π-periodic general shape functions. By applying the Fourier expansion of

general shape functions, the form of (5.2) is informally similar to the form of (5.1) with a superpo-

sition of infinite terms, i.e.,

f(x) =

K∑
k=1

αk(x)sk(2πNkφk(x)) =

K∑
k=1

∞∑
n=−∞

ŝk(n)αk(x)e2πinNkφk(x). (5.3)

One could combine terms with similar oscillatory patterns in the form of (5.1) to obtain a more

efficient and more meaningful decomposition in the form of (5.2). This is the general mode decom-

position problem discussed in this chapter.

Although there have been well-established methods for mode decompositions, there is relative

little literature for solving general mode decomposition problems due to the complex time-frequency

geometry of (5.2). In the analysis of existing methods [43, 90, 170], they require a certain well-

separation condition of ŝk(n)αk(x)e2πinNkφk(x) (e.g., see Definition 2.1.7). However, the superposi-

tion of two nearby Fourier expansion terms ŝk(n)αk(x)e2πinNkφk(x) and ŝk(n+1)αk(x)e2πi(n+1)Nkφk(x)

are not well separated when n is large. For two different instantaneous frequencies Nkφ
′
k(x) and
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Figure 5.2: Wave shapes of relevant components provided by wavelet transform. Left: Annual
wave shape. Middle: Semiannual wave shape. Right: Summation of the annual wave shape and
semiannual wave shape.

Njφ
′
j(x), their multiples may have crossover frequencies with high probability. Although [89] shows

that two different components ŝk(n)αk(x)e2πinNkφk(x) and ŝj(m)αj(x)e2πimNjφj(x) can be separated

if their instantaneous frequencies nNkφ
′
k(x) and mNjφ

′
j(x) intersects at only a few points, in general,

there is no existing method for the general mode decomposition with many instantaneous frequencies

intersecting at many points.

This chapter introduces the diffeomorphism based spectral analysis method (DSA) in [178] as

the first attempt to tackle the general mode decomposition problem with complex time-frequency

geometry. The DSA method consists of diffeomorphisms and a short-time Fourier transform (in

practice, the Fourier transform is applied if f(x) is defined only in a bounded interval). Note

that the wave-like components ŝk(n)αk(x)e2πinNkφk(x) with small n are relatively well separated

in the sense that they would only intersect at a few points. Hence, we assume that the basic

instantaneous frequencies Nkφ
′
k(x) and instantaneous amplitudes |ŝk(1)|αk(x) can be estimated by

existing methods. With this information available, it is shown that the DSA method is capable of

decomposing a wide class of general superpositions accurately.

5.2 Diffeomorphism Based Spectral Analysis (DSA)

5.2.1 Implementation of the DSA

As discussed above, we assume that the basic instantaneous frequencies Nkφ
′
k(x) and instantaneous

amplitudes |ŝk(1)|αk(x) are known in this section. In practice, they are estimated by existing

mode decomposition methods, e.g. the synchrosqueezed wave packet transform (SSWPT). Detailed

description of searching for this basic information can be found in [178]. In what follows, the DSA
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is introduced to identify all the nonzero Fourier expansion terms in

f(x) =

K∑
k=1

αk(x)sk(2πNkφk(x)) =

K∑
k=1

∞∑
n=−∞

ŝk(n)αk(x)e2πinNkφk(x), (5.4)

assuming {Nkφ′k(x)}Kk=1 and {|ŝk(1)|αk(x)}Kk=1 are known.

Without loss of generality, let us assume we are analyzing a signal f(x) for x ∈ [0, T0] with

T0 > 0 sufficiently large and f(x) is periodic over this interval. For non-periodic signals, introducing

mirror extended signals can reduce the boundary effect. Notice that the smooth function φk(x) has

the interpretations of a warping in each general mode via a diffeomorphism φk : R → R. With the

instantaneous frequencies {Nkφ′k(x)}Kk=1 available, we can therefore define the instantaneous phase

profile by

pk(x) =
1

mk

∫ t

0

Nkφ
′
k(x)dx,

where mk = 1
2

(
max
t
Nkφ

′
k(x) + min

t
Nkφ

′
k(x)

)
. Because pk(x) is a smooth monotonous function, we

can define the inverse-warping profile in [0, 1] by

hk(x) =
f ◦ p−1

k (x)

|ŝk(1)|αk ◦ p−1
k (x)

=

∞∑
n=−∞

ŝk(n)

|ŝk(1)|
e2πi(nmkt+nNkφk(0))

+
∑
j 6=k

∞∑
n=−∞

ŝj(n)

|ŝk(1)|
αj ◦ p−1

k (x)

αk ◦ p−1
k (x)

e2πinNjφj◦p−1
k (x).

If the diffeomorphisms φk : R → R are significantly different, which will be defined later in

Definition 5.2.4, and the phases 2πNkφk(x) are sufficiently steep in [0, T0], which will be clarified

later, the Fourier transform of each inverse-warping profile ĥk(ξ) will have sheer peaks at ξ = nmk

and will be relative small elsewhere. This motivates the design of the DSA method as follows.

Step 1: Input: A signal f(x), its instantaneous phase profiles {pk(x)}Kk=1 and instantaneous

amplitudes {|ŝk(1)|αk(x)}Kk=1.

Step 2: Initialize: Set up the initial residual r(x) = f(x) and the tolerance ε. Let fk(x) = 0

be the initial guess of the kth general mode and denote Sk = ∅ as the initial guess of the spectrum

information of the kth general shape function sk for k = 1, . . . , K.

Step 3: For k = 1, . . . , K, compute the inverse-warping profiles in [0, 1] by

hk(x) =
r ◦ p−1

k (x)

|ŝk(1)|αk ◦ p−1
k (x)

.

Step 4: Apply the Fourier transform on hk(x) in [0, 1] to obtain ĥk(ξ) for k = 1, . . . , K and
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solve the following optimization problem,

(τ, j) = arg max
(ξ,k)

|ĥk(ξ)|. (5.5)

Then τ ≈ nmj for some n such that ŝj(n) 6= 0.

Step 5: Let g(x) = e2πiτt. Warp the harmonic g(x) with the jth instantaneous phase profile

pj(x) and multiply the warped harmonic by the jth instantaneous amplitude |ŝj(1)|αj(x) to obtain

|ŝj(1)|αj(x)g ◦ pj(x) ≈ |ŝj(1)|αj(x)e2πinmjpj(x)

= |ŝj(1)|e−2πinNjφj(0)αj(x)e2πinNjφj(x).

Step 6: Solve the L2 minimization problem for a complex factor β ∈ C such that

β = arg min
β∈C

‖r(x)− β|ŝj(1)|αj(x)g ◦ pj(x)‖L2 .

Then

β|ŝj(1)|αj(x)g ◦ pj(x) ≈ ŝj(n)αj(x)e2πinNjφj(x),

which implies

|β| ≈ |ŝj(n)|
|ŝj(1)|

.

Step 7: Update: Compute the new residual

r(x) = r(x)− β|ŝj(1)|αj(x)g ◦ pj(x).

Update the jth recovered general mode

fj(x) = fj(x) + β|ŝj(1)|αj(x)g ◦ pj(x),

and the jth spectrum information set

Sj = Sj ∪ {(τ, |β|)}.

Step 8: If ‖r(x)‖L2 > ε, repeat step 3-7. Otherwise, stop iterating and export the general mode

estimates fk and the spectrum information Sk for k = 1, . . . , K.

Note that in general there is no guarantee to obtain a constant β such that we have exact equality

in Step 6, since many components are overlapping in the Fourier domain. However, as long as the

phase functions are significantly different, the interference of other components is small. Moreover,

as long as Step 4 is accurate, the approximation of ŝj(n)αj(x)e2πinNjφj(x) can be retrieved in later
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iteration process, since the error

ŝj(n)αj(x)e2πinNjφj(x) − β|ŝj(1)|αj(x)g ◦ pj(x)

is a new wave-like component with the same phase function nNjφj(x) and smaller spectral energy

to be recovered.

5.2.2 Analysis of the DSA

As discussed above, the key step of the DSA is the estimation in (5.5). Theorem 5.2.5 in this section

proves that (5.5) can provide precise spectral analysis, if phase functions are significantly different

and steep enough. We consider the following short-time Fourier transform with real-valued, non-

negative and smooth window function w1(x) compactly supported in (−1, 1) such that |ŵ1| has a

sheer peak around the origin and rapidly decays elsewhere.

Definition 5.2.1. Given the window function w1(x) and a parameter T > 1, the short-time Fourier

transform of a function f(x) with a parameter T is a function

FT (f)(a, b) =

∫
R
f(x)wT (x− b)e−2πiaxdx

for a, b ∈ R, where wT (x) = w1(x/T ) and FT denote the short-time Fourier transform operator with

the parameter T .

Next, we introduce the model of wave-like components in the general mode decomposition.

Definition 5.2.2. General shape functions:

The general shape function class SM consists of 2π-periodic functions s(x) in the Wiener Al-

gebra with a unit L2([−π, π])-norm and a L∞-norm bounded by M satisfying the following spectral

conditions:

1. The Fourier series of s(x) is uniformly convergent;

2.
∑∞
n=−∞ |ŝ(n)| ≤M and ŝ(0) = 0;

3. Let Λ be the set of integers {|n| : ŝ(n) 6= 0}. The greatest common divisor gcd(s) of all the

elements in Λ is 1.

In fact, if gcd(s) > 1, then the general mode s(2πNφ(x)) can be considered as a more oscillatory

mode s̃(2π gcd(s)Nφ(x)) with gcd(s̃) = 1 and the Fourier coefficients ̂̃s(n) = ŝ(gcd(s)n). The

requirement that ŝ(0) = 0 and s has a unite L2([−π, π])-norm is to normalize the general shape

function.
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Definition 5.2.3. A function f(x) = α(x)s(2πNφ(x)) is a general intrinsic mode type function

(GIMT) of type (M,N), if s(x) ∈ SM and α(x) and φ(x) satisfy the conditions below.

α(x) ∈ C∞, |α′| ≤M, 1/M ≤ α ≤M

φ(x) ∈ C∞, 1/M ≤ |φ′| ≤M, |φ′′| ≤M.

Definition 5.2.4. For M > 0 and K > 0, the phase functions {φk(x)}1≤k≤K are significantly

different of type (M,K) at b ∈ R, if they satisfy the following conditions.

1. For any T > 0, the number of extrema of φk ◦ φ−1
j (x) in (b − T, b + T ) is at most TM for

k 6= j.

2. For any T > 0 there exists η0 > 0, η1 > 0 and N0(M,K, T, b) such that ∀a ∈ ( 1
2M2 , 2M

2) and

∀N > N0(M,K, T, b)

λ∗
({

x :
∣∣∂x (φk ◦ φ−1

j (x)
)
− a
∣∣ ≤ 1

N1−η0

}
∩ {x : b− T ≤ x ≤ b+ T}

)
. O(

1

Nη1
)

for k 6= j, where λ∗(·) denotes the Lebesgue measure and . means the implicit constant may

depend on M , K, T and b.

The first condition in Definition 5.2.4 assumes that the instantaneous frequencies are not oscil-

lating fast, while the second condition requires that φk ◦ φ−1
j (x) is far from a constant function.

The definition of significantly different phase functions is crucial to general mode decompositions.

The difference of phase functions is the key feature for grouping the Fourier expansion terms of the

general modes. If two phase functions are similar, their corresponding general modes would have

similar evolution patterns. It is reasonable to combine them as one general mode. On the other

hand, the significant-difference of phase functions guarantees that the key idea of the DSA method

can provide accurate spectral information of general shape functions, as proved in the following

theorem.

Theorem 5.2.5. Suppose f(x) =
∑K
k=1 fk(x), where fk(x) = αk(x)sk(2πNkφk(x)) is a GIMT of

type (M,Nk) with Nk ≥ N and the phase functions {φk(x)}1≤k≤K are significantly different of type

(M,K) at b. Let s0 = max
(k,n)
|ŝk(n)|. Define

hk(x) =
f ◦ φ−1

k (x)

αk ◦ φ−1
k (x)

for 1 ≤ k ≤ K. For fixed M , K, b, s0 and δ > 0, ∃T0(M,K, s0, δ, b), ∀T > T0, ∃N0(M,K, s0, T, b) >

0 such that ∀N > N0 the solution of the following optimization problem

(a0, k0) = arg max
(a,k)

|FT (hk)(a, b)|
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satisfies |a0 − nNk0 | < δ for some n such that ŝk0(n) 6= 0.

In what follows, when we write O(·), ., or &, the implicit constants may depend on M , K, T

and b.

Proof. Notice that

hk(x) =
f ◦ φ−1

k (x)

αk ◦ φ−1
k (x)

=

∞∑
n=−∞

ŝk(n)e2πinNkx +
∑
j 6=k

∞∑
n=−∞

ŝj(n)
αj ◦ φ−1

k (x)

αk ◦ φ−1
k (x)

e2πinNjφj◦φ−1
k (x),

then

FT (hk)(a, b) =
∞∑

n=−∞
ŝk(n)

∫
R
wT (x− b)e2πi(nNk−a)xdx

+
∑
j 6=k

∞∑
n=−∞

ŝj(n)

∫
R

αj ◦ φ−1
k (x)

αk ◦ φ−1
k (x)

wT (x− b)e2πi(nNjφj◦φ−1
k (x)−ax)dx

by the uniform convergence of the Fourier series of sk(x). The first part of FT (hk)(a, b) is

I1(a, k) =

∞∑
n=−∞

ŝk(n)

∫
R
wT (x− b)e2πi(nNk−a)xdx

=

∞∑
n=−∞

T ŝk(n)e2πib(nNk−a)

∫
R
w1(x)e2πiT (nNk−a)xdx

=

∞∑
n=−∞

T ŝk(n)e2πib(nNk−a)ŵ1 (T (a− nNk)) .

Hence, ∃T0(M,K, s0, δ, b) such that, if T > T0, then |I1(a, k)| has well-separated sheer energy peaks

at a = nNk of order T
∣∣∣ŝk(n)

∣∣∣ and |I1(a, k)| < Ts0
3 if |a − nNk| ≥ δ for all n. The estimate of the

second part

I2(a, k) =
∑
j 6=k

∞∑
n=−∞

ŝj(n)

∫
R

αj ◦ φ−1
k (x)

αk ◦ φ−1
k (x)

wT (x− b)e2πi(nNjφj◦φ−1
k (x)−ax)dx

relies on the estimate of each term

Ijn = ŝj(n)

∫
R

αj ◦ φ−1
k (x)

αk ◦ φ−1
k (x)

wT (x− b)e2πi(nNjφj◦φ−1
k (x)−ax)dx.

Notice that
αj◦φ−1

k (x)

αk◦φ−1
k (x)

wT (x−b) and 2π(nNjφj ◦φ−1
k (x)−ax) are real smooth functions and wT (x−b)

has a compact support in (b− T, b+ T ). If ∂x(nNjφj ◦ φ−1
k (x)− ax) 6= 0 in (b− T, b+ T ), a similar
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argument of the integration by parts in Lemma 2.1.9 shows that

|Ijn| . |ŝj(n)| 1∣∣nNj∂x(φj ◦ φ−1
k )(x)− a

∣∣ .
Therefore, the order of |Ijn| is determined by points x such that

∣∣nNj∂x(φj ◦ φ−1
k )(x)− a

∣∣ is van-

ishing or relatively small.

If a /∈ (
nNj
2M2 , 2nNjM

2), then by the fact that ∂x(φj ◦ φ−1
k )(x) ∈ [ 1

M2 ,M
2], we have

∣∣nNj∂x(φj ◦ φ−1
k )(x)− a

∣∣ & nNj

, which implies

|Ijn| .
|ŝj(n)|
nNj

.
1

N
. (5.6)

If a ∈ (
nNj
2M2 , 2nNjM

2), then a
nNj
∈ ( 1

2M2 , 2M
2). Let

A =

{
x :

∣∣∣∣∂x (φj ◦ φ−1
k (x)

)
− a

nNj

∣∣∣∣ ≤ 1

(nNj)1−η0

}
∩ {x : b− T ≤ x ≤ b+ T} .

Because the phase functions are significantly different of type (M,K) at b, for fixed T there exists

η0 > 0, η1 > 0 and N1(M,K, T, b) such that for a
nNj
∈ ( 1

2M2 , 2M
2) and nNj > N1(M,K, T, b), we

have λ∗(A) . O( 1
(nNj)η1

). This gives

∣∣∣∣ŝj(n)

∫
A

αj ◦ φ−1
k (x)

αk ◦ φ−1
k (x)

wT (x− b)e2πi(nNjφj◦φ−1
k (x)−ax)dx

∣∣∣∣ . O(
|ŝj(n)|

(nNj)η1
).

By the definition of significant-difference of type (M,K), (R \A) ∩ (b − T, b + T ) is a union of at

most O(TM) intervals. Hence, similar to the method of stationary phase, we have∣∣∣∣∣ŝj(n)

∫
R\A

αj ◦ φ−1
k (x)

αk ◦ φ−1
k (x)

wT (x− b)e2πi(nNjφj◦φ−1
k (x)−ax)dx

∣∣∣∣∣ . O(
|ŝj(n)|

(nNj)η0
).

In sum,

|Ijn| ≤

∣∣∣∣∣ŝj(n)

∫
R\A

αj ◦ φ−1
k (x)

αk ◦ φ−1
k (x)

wT (x− b)e2πi(nNjφj◦φ−1
k (x)−ax)dx

∣∣∣∣∣
+

∣∣∣∣ŝj(n)

∫
A

αj ◦ φ−1
k (x)

αk ◦ φ−1
k (x)

wT (x− b)e2πi(nNjφj◦φ−1
k (x)−ax)dx

∣∣∣∣
. O(

|ŝj(n)|
(nNj)η1

) +O(
|ŝj(n)|

(nNj)η0
).
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Recall that Nk ≥ N and
∞∑

n=−∞
|ŝk(n)| ≤M for 1 ≤ k ≤ K. So, if N > N1(M,K, T, b)

|I2(a, k)| .
∑
j 6=k

∞∑
n=−∞

(
O(
|ŝj(n)|

(nNj)η1
) +O(

|ŝj(n)|
(nNj)η0

)

)
. O(

(K − 1)M

Nη
) . O(

1

Nη
), (5.7)

where η = min{η0, η1}.

By (5.6) and (5.7), ∃N0 = max

{
N1(M,K, T, b),

(
3
Ts0

)1/η

, 3
Ts0

}
such that ∀N > N0, we have

|I2(a, k)| < Ts0
3 .

Let Ξk be the index set {n : ŝk(n) 6= 0} and (ñ, k̃) = arg max
(n,k)

|ŝk(n)|. Now suppose N > N0.

Let |FT (hk)(a, b)| take the maximum value at the pair (a0, k0). If there is no n ∈ Ξk0 such that

|a0 − nNk0 | < δ, then

|FT (hk0)(a0, b)| ≤ |I1(a0, k0)|+ |I2(a0, k0)| < 2Ts0

3
.

However, for the pair (ñ, k̃), we have

∣∣FT (hk̃)(ñ, b)
∣∣ ≥ ∣∣∣I1(ñ, k̃)

∣∣∣− ∣∣∣I2(ñ, k̃)
∣∣∣ > Ts0 −

Ts0

3
>

2Ts0

3
.

This conflicts with the fact that |FT (hk)(a, b)| takes the maximum value less than 2Ts0
3 at the pair

(a0, k0). Hence, there exists n ∈ Ξk0 satisfying that |a0 − nNk0 | < δ. This completes the proof.

In practice, the signal f(x) is defined in a bounded interval, e.g., [0, T0] without loss of gen-

erality. Applying the Fourier transform on f(x) in [0, T0] is equivalent to applying the short-

time Fourier transform on f(x) with a rectangle window function centered at t = T0/2. In this

sense, Theorem 5.2.5 implies that the DSA method can accurately decompose f(x) into GIMTs

{αk(x)sk(2πNkφk(x))}Kk=1 and analyzes the spectra of general shape functions {αk(x)}Kk=1 by ex-

tracting the Fourier expansion terms ŝk(n)αk(x)e2πinNkφk(x) one by one from the one with highest

energy.

5.3 Numerical Examples

In this section, some numerical examples of synthetic and real data are provided to demonstrate

the properties of the proposed DSA method. In all of these examples, the 1D SSWPT is applied to

provide basic instantaneous frequencies and instantaneous amplitudes as input of the DSA method.

The mother wave packet w(x) of the SSWPT is constructed using the same method in [49] with a

support parameter d = 1. The scaling parameter s is equal to 2/3. For the purpose of convenience,

the synthetic data is defined in [0, 1] and the number of samples is between 213 and 215.
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5.3.1 Synthetic Examples
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Figure 5.3: Top left: The general shape function s1(x) and its spectral energy |ŝ1(ξ)|. Top right:
The general shape function s2(x) and its spectral energy |ŝ2(ξ)|. Bottom: A superposition of general
modes generated by using s1(x) and s2(x).

Example 1: In the first example, we illustrate the performance of the SSWPT and the DSA

step by step for general mode decompositions. Let us consider a toy model in which there are two

general modes

f1(x) = α1(x)s1(2πN1φ1(x)) = (1 + 0.05 sin(4πx))s1 (120π(x+ 0.01 sin(2πx)))

and

f2(x) = α2(x)s2(2πN2φ2(x)) = (1 + 0.1 sin(2πx))s2 (180π(x+ 0.01 cos(2πx))) ,

where s1(x) and s2(x) are periodic general shape functions defined in [0, 1] as shown in Figure 5.3.

Let f(x) = f1(x) + f2(x) (see Figure 5.3 bottom) and we try to recover f1(x) and f2(x) from f(x).

As proved in Chapter 2 and Chapter 4, the SSWPT is able to provide a sharpened time-frequency

representation of f(x), the synchrosqueezed energy distribution Tf (v, x), with essential supports

concentrating around the instantaneous frequencies of f(x) (see Figure 5.4 left). By a proper curve

extraction and classification method in [178], we can identify well-separated instantaneous frequen-

cies of f1(x) and f2(x) in the low frequency part (see Figure 5.4 middle) and their basic instan-

taneous frequencies N1φ
′
1(x) and N2φ

′
2(x) (see Figure 5.4 right). The inverse SSWPT on the syn-

chrosqueezed energy distribution restricted to the each essential support recovers ŝ1(n1)e2πin1N1φ1(x)

and ŝ2(n2)e2πin2N2φ2(x) for some n1 and n2. Hence, the instantaneous amplitudes are identified by

taking the absolute value of them (see Figure 5.5 left).

As we can see in the this example, the SSWPT can provide accurate estimates of instantaneous
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Figure 5.4: Left: The synchrosqueezed energy distribution of f(x). Middle: The instantaneous
frequency estimates and the result of curve classification as indicated by different colors. Right: The
red curves are the estimates of basic instantaneous frequencies and the blue curves are the real basic
instantaneous frequencies Nkφ

′
k(b).
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Figure 5.5: Blue: Real signals. Red: Reconstructed results. Left: Estimated normalized instanta-
neous amplitude and real normalized instantaneous amplitudes. Middle and right: The real general
modes and the recovered general modes by simply summing up the identified components with
well-separated instantaneous frequencies.

frequencies and instantaneous amplitudes from the well-separated essential supports of the syn-

chrosqueezed energy distribution. However, by simply summing up the reconstructed modes cannot

recover satisfactory f1(x) and f2(x) (see Figure 5.5 middle and right). As Figure 5.6 shows, consid-

ering only the well-separated essential supports of the synchrosqueezed energy distribution would

ignore modes with weak energy and crossover frequencies, the information of which is indispens-

able to reconstruct exact general modes. This desires the DSA method for exact reconstructions of

general modes.

With the basic instantaneous frequencies and instantaneous amplitudes provided by the SSWPT,

the DSA is able to recover the general modes f1(x) and f2(x) as shown in Figure 5.7.

Example 2: In what follows, we would study the robustness against noise. The shapes of general

modes are determined by all the Fourier expansion terms, including those weak energy terms that
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Figure 5.6: Left: log10(Tf (v, x)) in the visible time-frequency domain. Right: log10(Tf (v, x)) in the
low frequency part of the time-frequency domain. Some components with weak energy are interfering
other terms. Only a few components are well separated.

0 0.01 0.02 0.03 0.04
−1.5

−1

−0.5

0

0.5

1

1.5

Time (Second)
0 0.01 0.02 0.03 0.04

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (Second)

Figure 5.7: Blue: Real signals. Red: Reconstructed results. Two recovered general modes provided
by the DSA method.

have been concealed by noise. The noise used here is a Gaussian random noise n(x) with zero mean

and variance σ2. To quantify the influence of the noise on each general mode, we introduce the

following Signal-to-Noise Ratio (SNR)

SNR[dB] = min

{
10 log10

(
‖fi‖L2

σ2

)
, 1 ≤ i ≤ K

}
,

where {fi}Ki=1 are the general modes contained in the original signal f(x).

Let us revisit Example 1 in Figure 5.4 and study its noisy case,

f(x) = α1(x)s1(2πN1φ1(x)) + α2(x)s2(2πN2φ2(x)) + n(x).

Figure 5.8 shows two superpositions with different noise levels. As the reconstructed results show

in Figure 5.9 and Figure 5.10 left, the instantaneous frequencies are accurately estimated, even if

the signal is disturbed by severe noise. The essential feature of the general modes are recovered.
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When the noise is overwhelming the general modes, additional denoising procedure is application

dependent, as we will show in the next example.
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Figure 5.8: Noisy signals of Example 1 and their SNRs are 6 and −3, respectively.

As a comparison, the EEMD method in [174] is applied to the noisy data with SNR = 6 in this

example. In the EEMD, we set up the ratio of the standard deviation of the added noise and that of

the original data as 0.2. The ensemble number is 50 and the expected number of modes is 5. This

method is able to provide several modes in different frequency scales shown in Figure 5.10 (right).

However, they are not those modes expected.

Example 3: It is worth pointing out that suitable denoising according to the feature of recov-

ered modes can significantly improve the results. Combining the DSA with some post processing

techniques can detect general shape functions in a wider class than the one defined in Definition

5.2.2. For example, we test piecewise constant shape functions s3 and s4 as shown in Figure 5.11.

A noisy superposition of general modes is generated as follows.

f(x) = α3(x)s3(2πN3φ3(x)) + α4(x)s4(2πN4φ4(x)) + n(x),

where α3(x) = 1 + 0.4 sin(4πt), α4(x) = 1 − 0.3 sin(2πt), N3 = 120, N4 = 185, φ3(x) = t +

0.005 sin(2πt), and φ4(x) = t + 0.01 cos(4πt). In this example, the SSWPT is applied to estimate

the instantaneous information first and then the DSA method is applied to decompose f(x) into

two general modes. Finally, a TV norm minimization is applied to obtain the final results shown in

Figure 5.11. The DSA method is able to detect the basic feature of these general modes and the

post processing TV norm minimization helps to reduce the noise.
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Figure 5.9: Noisy Example 1. Top: SNR = 6. Bottom: SNR = −3. Left: The synchrosqueezed
energy distributions of signals. Middle left: The real instantaneous frequencies (blue) and the
estimated instantaneous frequencies (red). Middle right and right: Recovered general modes.
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Figure 5.10: Left: Noisy signals of Example 1 with SNR = 6. The first row: original data. The
second and the third row: the first noiseless general mode and its recovered result. The fourth and
the fifth row: The second noiseless general mode and its recovered result. Right: The first row:
original data. Rows below the first one: identified modes provided by the EEMD method.

5.3.2 Real Applications

Example 4: In the first example of real applications, we study ECG signals. Two real ECG general

shape functions s5(x) and s6(x) (see Figure 5.12) are cut out from real ECG signals in [79] and [170]
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Figure 5.11: The first row: A noisy superposition with SNR = 0. The second and the third row:
The first noiseless general mode and its recovered result. The fourth and the fifth row: The second
noiseless general mode and its recovered result.

. A noisy superposition with SNR = 0 is generated as follows:

f(x) = α5(x)s5(2πN5φ5(x)) + α6(x)s6(2πN6φ6(x)) + n(x),

where α5(x) = 1 + 0.05 sin(2πx), α6(x) = 1 + 0.05 cos(2πx), N5 = 150, N6 = 220, φ5(x) = x +

0.006 sin(2πx), and φ6(x) = x+0.006 cos(2πx). As shown in Figure 5.12, the synchrosqueezed energy

distribution is well concentrated around the real instantaneous frequencies and the instantaneous

frequencies are accurately estimated. Most importantly, the main spikes of real ECG shape functions

are precisely recovered, even if the SNR is small. The decomposition results are plotted in Figure

5.13 left.

As a comparison, the EEMD method with the same parameters in previous examples is also

applied to the same data. As shown in Figure 5.13 right, the EEMD method cannot provide useful

mode decomposition results.

Example 5: Let us revisit the example shown in Figure 5.1 in the introduction. The original

data f0(x) has a slowly growing trend linear in time. Suppose fr(x) is the linear regression of f0(x)

and let f(x) = f0(x)− fr(x). The synchrosqueezed energy distribution of f(x) shown in Figure 5.14

left has three essential supports corresponding to three wave-like components. By weighting the

locations of theses supports, we obtain the instantaneous frequency estimates of each component as

shown in Figure 5.14. According to the evolutive pattern of the intrinsic frequencies, there are only

two general modes contained in the superposition. The curve classification step in [178] automatically

groups the annual estimate and the semiannual estimate together. Hence, the decomposition result
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Figure 5.12: Left: The synchrosqueezed energy distribution of Example 5. Middle left: Real instan-
taneous frequencies (red) and instantaneous frequency estimates (blue). Middle right: Real ECG
shape function s5(x) (blue) and its estimate (red). Right: Real ECG shape function s6(x) (blue)
and its estimate (red).
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Figure 5.13: Left: The first row is a noisy superposition of two synthetic ECG signals with SNR = 0.
The second and the third row: the first noiseless ECG component and its recovered result. The fourth
and the fifth row: the second noiseless ECG component and its recovered result. Right: The first
row is the same superposition of two ECG signals. Rows below the first one are identified modes
provided by the EEMD method.
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Figure 5.14: Left: Tf (a, b) of the 31 years CO2 concentration data. Middle left: The instantaneous
frequency of the annual cycle. Middle right: The instantaneous frequency of the semiannual cycle.
Right: the instantaneous frequency of the low frequency cycle. The curve classification algorithm
groups the annual and semiannual cycle together.

contains a general mode that is the sum of the annual cycle and the semiannual cycle shown in

Figure 5.15. Because of the low frequency of the third term, it is reasonable to combine it with fr(x)

to obtain a slowly varying growing trend shown in Figure 5.15.

5.4 Conclusion

This chapter introduces the diffeomorphism based spectral analysis (DSA) method to solve the

general mode decomposition problem. Given the instantaneous information, the DSA method is able

to decompose a general superposition accurately. There are many future directions for the general

mode decomposition problem. The most important work is to estimate the instantaneous information

of each general mode without any well-separation condition. Another work of importance is the

rigorous noise analysis of these methods. Although the numerical results have shown robustness

against random Gaussian noise, a theoretical analysis is still missing. It is also of interest to study

other types of noise and to explore the effects of noise on the reconstruction. Finally, it would be

appealing to weaken the significant-difference condition of phase functions in Theorem 5.2.5 and to

classify the class of significantly different phase functions.
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Figure 5.15: Decomposition results of the 31 years CO2 concentration data. Top: The original data
f0(x). Second row: The signal f(x) = f0(x)− fr(x). Third row: The remaining noise term. Fourth
row: The annual general mode. Last row: The slowly growing mode, which is the sum of fr(x) and
the low frequency component.



Chapter 6

Applications

Oscillatory signals with nonlinear and non-stationary wave-like patterns are ubiquitous in science

and engineering, e.g., clinical data [171, 173], seismic data [73, 86, 153], climate data [155, 176],

astronomical data [20, 30], art forensics [179], and materials science [147, 180]. Analyzing instanta-

neous properties (e.g., instantaneous frequencies, instantaneous amplitudes and instantaneous phases

[13, 139]) or local properties (concepts for 2D signals similar to “instantaneous” in 1D) of signals

has been an important topic for over two decades. In this chapter, we introduce the application

of synchrosqueezed transforms to two real problems in materials science (joint work with Jianfeng

Lu, Benedikt Wirth, and Lexing Ying in [126, 180]) and art forensics (joint work with Jianfeng Lu,

William P. Brown, Ingrid Daubechies, and Lexing Ying in [179]).

6.1 Atomic Crystal Analysis

6.1.1 Introduction

In materials science, crystal image analysis on a microscopic length scale has become an important

research topic recently [189, 147, 12, 14, 150, 62, 64, 151, 152]. The development of image acquisition

techniques (such as high resolution transmission electron microscopy (HR-TEM) [109]) and the

advancement of atomic simulation of molecular dynamics [2] or mean field models like phase field

crystals [61, 63] create data of large scale crystalline solids with defects at an atomic resolution. This

provides unprecedented opportunities in understanding materials properties at a microscopic level.

Defects, like dislocations, grain boundaries, vacancies, etc., play a fundamental role in polycrys-

talline materials. They greatly change the material behavior from a perfect crystal and affect the

macroscopic properties of the materials. Analysis of crystal images helps understand the defects

and their effects on crystalline materials. While the defect analysis is traditionally done by visual

inspection, the large amount of data made available due to advances in imaging and simulation

126



CHAPTER 6. APPLICATIONS 127

techniques creates a need of efficient computer-assisted or automated analysis.

Crystal deformation at the atomic scale is another important quantity that characterizes poly-

crystalline materials. When the deformation, denoted by ψ, is well-defined, the tensor field F = ∇ψ
describes the local crystal strain; the polar decomposition of F at each point gives grain rotations;

the curl of F provides information about defects and the well-known Burgers vector that represents

the magnitude and direction of the lattice distortion resulting from a dislocation. Since it is al-

most impossible to estimate the deformation manually, the development of computer-aided analysis

becomes important.

For crystalline materials, defects are physical domains of the materials such that it is not possible

to identify a smooth crystal deformation φ = ψ−1 that maps the atomic configuration back to a

perfect lattice. In other words, the deformation gradient G = ∇φ = F−1 is irregular and has nonzero

curl at the defect location. In the opposite case, when a smooth deformation map does exist, the

affine transform given by the gradient of the map, G = ∇φ, transforms the image locally to an

undistorted lattice of atoms. Therefore, for a defect-free region of the material, G is a gradient field

and thus is curl-free: curlG = 0. Crystal image analysis hence requires the detection of the defect

regions and preferably also the estimation of the local elastic deformation G away from the defects.

In this work, we will limit our scope to 2D images of (slices of) polycrystalline materials and

aim at extracting mesoscopic and microscopic information from the given images. This involves the

identification of point defects, dislocations, deformations, grains and grain boundaries. Grains are

material regions that are composed of a single crystal, possibly with different orientations (which

will be referred as crystal rotations later, since we are working in 2D); they are usually slightly

deformed due to defects and interactions with neighboring grains at grain boundaries. Grains might

contain point defects like vacancies and interstitials, for which we would like identify their positions.

Crystal analysis should also be able to locate cores and Burgers vectors for dislocations, which play

an important role in crystal plasticity. The estimated gradient field G should be curl-free in the

interior of each grain. We refer the readers to [111] for more background details of polycrystals

and crystal defects. Our proposed method provides a reliable and efficient way for extracting this

information from crystal images.

Our contribution

Due to the lattice structure on the microscopic scale, crystal images are highly oscillatory (see Figure

6.1 (right) as an example). Inspired by this, we introduce a new characterization of grains by studying

2D general shape functions and 2D general intrinsic mode type functions, which are superpositions

of nonlinear and non-stationary wave-like components (more precise definitions will be given in

Section 6.1.2). Using these concepts, a crystal image can be considered as an assemblage of 2D

general intrinsic mode type functions with non-overlapping supports, specified propagating directions

and smoothly varying local wave vectors (see Figure 6.1 (left) as an example). In this model, crystal
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defects and grain boundaries can be detected through the discontinuity and irregularity of these

components; crystal rotations and crystal deformations are estimated from a linear system provided

by local wave vectors of underlying wave-like components.

Figure 6.1: A phase field crystal (PFC) image and its zoomed-in image. Courtesy of Benedikt Wirth
[64].

In this section, we propose a two-step method to analyze crystal images. In the first step,

we adapt 2D synchrosqueezed transforms to the problems at hand. First, 2D synchrosqueezed

transforms are applied to obtain the synchrosqueezed energy distributions of underlying wave-like

components. Second, since the synchrosqueezed energy is concentrating on local wave vectors,

these local wave vectors can be estimated by averaging the supports of the synchrosqueezed energy

distribution. Third, the irregularity of each wave-like component can be measured by the irregularity

of its corresponding synchrosqueezed energy distribution. Finally, with such information ready, the

crystal image can be analyzed as discussed previously. In the second step, we propose a variational

approach based on the information obtained in the first step. The optimization procedure improves

the robustness of the analysis and, importantly, makes the results better agree with the physical

nature of defects.

Previous works

One important class of methods for crystal image analysis is variation based. General variational

methods for texture classification and segmentation have been extensively studied (see [131, 26, 165,

145, 166, 9], for example).

The method in [12] proposed to segment crystal images into disjoint regions with different con-

stant crystal rotations using the Chan-Vese level-set approximation in [26] of the piecewise con-

stant Mumford-Shah segmentation in [133]. The method involves search for a global deformation

φ : Ω→ R2 acting on all grains. To speed up the expensive optimization in [12], the authors in [14]

proposed a convex relaxation via functional lifting and the authors in [150] proposed a more efficient
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version by penalizing the segmentation interfaces according to jumps in crystal rotations. Although

a corresponding GPU implementation of these methods is very fast, a bottleneck still exists due to

the large memory cost coming from the additional dimension for the functional lifting process.

More recently, Matt Elsey and Benedikt Wirth [62, 64] proposed a variational model based on

finding a tensor map, the gradient of the inverse deformation ∇(φ−1) : Ω→ R2×2 and developed an

efficient L1−L2 regularization scheme. Crystal defects, rotations, grain boundaries and strain can be

recovered by the information hidden in ∇(φ−1). In addition, a corresponding GPU implementation

is proposed and it shortens the runtime for a 10242 image to about 40 seconds. The variational

method has been extended to 3D cases via sophisticated optimization algorithms in [65].

Another class of methods for texture classification and segmentation are based on a local, direc-

tion sensitive frequency analysis [159, 147]. [159] constructed an over-complete wavelet frame for

texture feature extraction and segmented textures in a reduced feature space by clustering tech-

niques. However, the frame is not sensitive to crystal rotations and local defects. Hence, it cannot

distinguish two grains with a small angle boundary and cannot detect local defects. This method is

neither capable of providing estimates of crystal deformations. The work [147] develops a heuristic

method that uses a “wavelet like” patch according to a given reference crystal and quantify the

similarity between local crystal patches with the reference. By looking up a prefabricated table of

crystal rotation angles and their corresponding similarity, crystal rotations of each crystal patch can

be estimated. However, in the case of deformed crystals, this method may be problematic.

The method to be presented in this section follows a different spirit from those methods. It is

based on a novel model characterizing deformed periodic textures using 2D general intrinsic mode

type functions and an efficient phase space representation method, 2D synchrosqueezed transforms

proposed recently. An analytic characterization of periodic textures allows rigorous analysis and

indeed it is proved that 2D synchrosqueezed transforms can estimate the local wave vectors of

underlying wave-like components of textures (grains in this paper) precisely under certain conditions.

Most of all, nonlinear deformations of crystals are available by solving a simple linear system provided

by local wave vectors.

The rest of this section is organized as follows. In Section 6.1.2, we introduce a crystal image

model on the microscopic length scale based on 2D general intrinsic mode type functions and prove

that 2D synchrosqueezed transforms are able to estimate the local properties of the underlying wave-

like components of general intrinsic mode type functions. In Section 6.1.3, two efficient algorithms

based on 2D discrete band-limited synchrosqueezed transforms are proposed to detect crystal defects,

estimate crystal rotations and elastic deformations. In Section 6.1.4, we present the variational

optimization based on physical properties of atomic materials to refine the results provided by

previous sections. In Section 6.1.5, several numerical examples of synthetic and real crystal images

are provided to demonstrate the robustness and the reliability of our methods. Finally, we conclude

with some discussion on future works in Section 6.1.6.
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6.1.2 Crystal Image Models and Theory

In this section, at first, we describe a new model to characterize atomic crystal images. Inspired

by the periodicity of crystal images, 2D general intrinsic mode type functions are defined as a key

ingredient of the characterization of a perfect crystal image. Second, we prove that the 2D syn-

chrosqueezed transforms accurately estimate the local wave vectors of these wave-like components,

and hence provides a useful tool for crystal image analysis.

2D general intrinsic mode type functions

A perfect crystal image, i.e., a single undeformed grain without defects, is characterized by a periodic

function with two space variables. We will limit ourselves to simple crystals (Bravais lattices). In

2D space domain, there are five kinds of Bravais lattices: oblique, rectangular, centered rectangular

(rhombic), hexagonal, and square [111]. In a discrete setting, we can denote the perfect reference

lattice as

L = {c1a1 + c2a2 : c1, c2 integers} ,

where a1, a2 ∈ R2 represent two fixed lattice vectors. The lattices and corresponding unit cells are

shown in Figure 6.2. For each lattice type, through an affine transform, we can transform the unit

|a | = |a |, φ = 90°1 2|a | = |a |, φ = 120°1 2

a1

|a | ≠ |a |, φ = 90°1 2 |a | ≠ |a |, φ ≠ 90°1 2
|a | ≠ |a |, φ ≠ 90°1 2

1 2 3

54

φ

a1

a2

φ
a2

φ

a1

a2

φ

a1

a2φ

a1

a2

Figure 6.2: Five fundamental 2D Bravais lattices: 1 oblique, 2 rectangular, 3 centered rectangular
(rhombic), 4 hexagonal, and 5 square. Courtesy of Wikipedia.
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cell to a square. As an example, for the hexagonal lattice, the transform is given by

x 7→ Fx; F =

(
1 −

√
3

3

0 2
√

3
3

)
.

Hence, by introducing the matrix F , we can set up a reference configuration function as

f(x) = αS(2πFx) + c,

for x ∈ R2. Here, S(x) is a 2π periodic general shape function (the rigorous definition is given later),

which has a unit L2([−π, π]2)-norm and a zero mean. α and c are two parameters.

Allowing a rotation and a translation, a crystal image function for an undeformed grain is then

modeled by

f(x) = αS(2πNF (Rθx+ z)) + c,

where N is the reciprocal of the lattice parameter, Rθ is the rotation matrix

Rθ =

(
cos θ − sin θ

sin θ cos θ

)

corresponding to a rotation angle θ, and z ∈ R2 gives the translation. In the case of multi-grains, it

is expected that

f(x) =

M∑
k=1

χΩk(x) (αkSk (2πNkFk(Rθkx+ zk)) + ck) ,

where χΩk(x) is the indicator function defined as

χΩk(x) =

1, x ∈ Ωk

0, otherwise,
(6.1)

and Ωk is the domain of the kth grain with Ωk ∩ Ωj = ∅, if k 6= j. With these notations, grain

boundaries are interpreted as ∪∂Ωk (in real crystal images, grain boundaries would be a thin tran-

sition region instead of a sharp boundary ∪∂Ωk). In the presence of local defects, e.g., an isolated

defect and a terminating line of defects, ∪∂Ωk may include irregular boundaries and may contain

point boundaries inside ∪Ωk.

Considering an uneven distribution of atoms on the mesoscopic length scale and possible reflection

of light when generating crystal images, the amplitudes αk and the global trends ck are assumed to

be smooth functions αk(x) and ck(x), respectively, in the domain Ωk.

Notice that the rotation matrix Rθk and the translation position zk act as a linear transformation

ψk from x to ψk(x) = R−θk(x − zk). In a more complicated case, a smooth nonlinear deformation
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ψk : R2 → R2 transferring an atom from position x to ψk(x) is introduced. Let φk(x) = ψ−1
k (x)

defined in Ωk, then the crystal image function becomes

f(x) =

M∑
k=1

χΩk(x) (αk(x)Sk (2πNkFkφk(x)) + ck(x)) . (6.2)

This motivates the definition of 2D general shape functions and 2D general intrinsic mode type

functions as follows.

Definition 6.1.1 (2D general shape function). The 2D general shape function class SM consists

of periodic functions S(x) with a periodicity (2π, 2π), a unit L2([−π, π]2)-norm, and an L∞-norm

bounded by M satisfying the following conditions:

1. The 2D Fourier series of S(x) is uniformly convergent;

2.
∑
n∈Z2 |Ŝ(n)| ≤M and Ŝ(0, 0) = 0;

3. Let Λ be the set of integers {|n1| ∈ N : Ŝ(n1, n2) 6= 0 or Ŝ(n2, n1) 6= 0 for some n2 ∈ Z}. The

greatest common divisor of all the elements in Λ is 1.

The requirement that Ŝ(0, 0) = 0, which is equivalent to a zero mean over [−π, π]2, guarantees a

well-separation between the oscillatory part αk(x)Sk (2πNkFkφk(x)) and the smooth trend ck(x) in

(6.2), when Nk is sufficiently large. The third condition implies the uniqueness of similar oscillatory

patterns in SM up to a scaling, i.e., if S(x) ∈ SM , S(Nx) /∈ SM for any positive integer N > 1.

Definition 6.1.2 (2D general intrinsic mode type function (GIMT)). f(x) = α(x)s(2πNFφ(x)) is

a 2D GIMT of type (M,N,F ), if S(x) ∈ SM , α(x) and φ(x) satisfy the conditions below.

α(x) ∈ C∞, |∇α| ≤M, 1/M ≤ α ≤M,

φ(x) ∈ C∞, 1/M ≤
∣∣∇(nT Fφ)/|nT F |

∣∣ ≤M, and∣∣∇2(nT Fφ)/|nT F |
∣∣ ≤M, ∀n ∈ Z2 s.t. ŝ(n) 6= 0.

Hence, in the domain Ωk of each grain, the crystal image is a superposition of a 2D general

intrinsic mode type function and a smooth trend. Applying the 2D Fourier series of each 2D general

shape function Sk(x), it holds that

f(x) =

M∑
k=1

χΩk(x) (αk(x)Sk (2πNkFkφk(x)) + ck(x))

=

M∑
k=1

χΩk(x)

(∑
n∈Z2

αk(x)Ŝk(n)e2πiNkn
T Fkφk(x) + ck(x)

)
,

(6.3)
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In the domain Ωk, each underlying wave-like component

αk(x)Ŝk(n)e2πiNkn
T Fkφk(x)

is an intrinsic mode type function studied in [182, 184]. Hence, if they satisfy the well-separation

condition defined in [182, 184] and each Nk is large enough, the 2D synchrosqueezed wave packet

transforms and the synchrosqueezed curvelet transforms are expected to estimate the local wave

vectors Nk∇(nT Fkφk(x)) accurately for x away from ∂Ωk.

Based on the estimates of local wave vectors, it is possible to define and analyze crystal rotations

as follows.

Definition 6.1.3. Given a reference configuration S(2πNFx), a deformation φ(x), an amplitude

function α(x) and a trend function c(x) such that f(x) = α(x)S(2πNFφ(x)) + c(x) is a 2D GIMT

of type (M,N,F ), suppose Ŝ(n) 6= 0, then the reference configuration has a local wave vector v(n) =

NnT F and f(x) has a local wave vector vφ = NnT F∇φ(x). The local rotation function of f(x)

with respect to v(n) is defined as

β(f)(x) = arg(vφ(x))− arg(v(n)),

where arg(v) means the argument of a vector v.

In the case of an undeformed crystal image f(x) = α(x)S(2πNF (Rθx+z))+c(x), φ(x) = Rθx+z

is a composition of a rotation and a translation. Then the local rotation function β(f)(x) = θ with

respect to any local wave vector v(n). This agrees with an intuition of a global crystal rotation.

However, a global crystal rotation is not well defined in a real crystal image due to a nonlinear crystal

deformation. This motivates the definition of a local crystal rotation in Definition 6.1.3. Because

the nonlinear deformation φ(x) is a smooth function with det (∇φ(x)) ≈ 1, local rotation functions

β(f)(x) vary smoothly and are approximately the same with respect to any local wave vector.

2D synchrosqueezed transforms

Our goal is to apply and adapt the 2D synchrosqueezed transforms to analyze the 2D general intrinsic

mode type functions in the image function (6.3). This problem is similar to but different from the 1D

general mode decomposition problems studied in [170, 178], where 1D synchrosqueezed transforms

are applied to estimate the instantaneous properties of 1D general intrinsic mode type functions.

Generalizing the conclusions in [178, 184], the theorem below shows that the 2D synchrosqueezed

transforms precisely estimate the local wave vectors of the wave-like components in (6.3) at the

points away from boundaries.

Theorem 6.1.4. For a 2D general intrinsic mode type function f(x) of type (M,N,F ) with |F | ≥ 1,
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any ε > 0 and any r > 1, we define

Rε =
{

(a, θ, b) : |Wf (a, θ, b)| ≥ a−
s+t
2
√
ε, a ≤ 2MNr

}
and

Zn =
{

(a, θ, b) :
∣∣A−1

a R−1
θ

(
a · uθ −N∇(nT Fφ(b))

)∣∣ ≤ 1, a ≤ 2MNr
}

For fixed M , r, s, t, and ε, there exists N0(M, r, s, t, ε) > 0 such that for any N > N0(M, r, s, t, ε)

and a 2D GIMT f(x) of type (M,N,F ), the following statements hold.

(i)
{
Zn : Ŝ(n) 6= 0

}
are disjoint and Rε ⊂

⋃
Ŝ(n)6=0 Zn;

(ii) For any (a, θ, b) ∈ Rε ∩ Zn, ∣∣vf (a, θ, b)−N∇(nT Fφ(b))
∣∣

|N∇(nT Fφ(b))|
.
√
ε.

For simplicity, the notations O(·), . and & are used when the implicit constants may only

depend on M , s, t, and K. The proof of the theorem is similar to those theorems in Section 2.3

and [184, 178] and relies on two lemmas that have been proved in Section 2.3. Let us recall these

lemmas again.

Lemma 6.1.5. Suppose f(x) =
∑K
k=1 fk(x) =

∑K
k=1 e

−(φk(x)−ck)2/σ2
kαk(x)e2πiNφk(x) is a well-

separated superposition of type (M,N,K). Set

Ω =

{
(a, θ) : a ∈

(
N

2M
, 2MN

)
,∃k s.t.

∣∣θ∇φk(b) − θ
∣∣ < θ0

}
,

where θ0 = arcsin((MN )t−s). For any ε > 0, there exists N0(M, s, t, ε) such that the following estima-

tion of Wf (a, θ, b) holds for any N > N0.

(1) If (a, θ) ∈ Ω,

Wf (a, θ, b) = a−
s+t
2

 ∑
k: |θ∇φk(b)−θ|<θ0

fk(b)ŵ
(
A−1
a R−1

θ (a · uθ −N∇φk(b))
)

+O(ε)

 ;

(2) Otherwise,

Wf (a, θ, b) = a−
s+t
2 O(ε).

Lemma 6.1.6. Suppose f(x) =
∑K
k=1 fk(x) =

∑K
k=1 e

−(φk(x)−ck)2/σ2
kαk(x)e2πiNφk(x) is a well-

separated superposition of type (M,N,K). For any ε > 0, there exists N0(M, s, t, ε) such that the
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following estimation of ∇bWf (a, θ, b) holds for any N > N0.

∇bWf (a, θ, b) = a−
s+t
2

2πiN
∑

k: |θ∇φk(b)−θ|<θ0

∇φk(b)fk(b)ŵ
(
A−1
a R−1

θ (a · uθ −N∇φ(b))
)

+O(ε)

 ,

when

(a, θ) ∈ Ω =

{
(a, θ) : a ∈

(
N

2M
, 2MN

)
,∃k s.t.

∣∣θ∇φk(b) − θ
∣∣ < θ0

}
.

In the scope of this section, we have σk = ∞ for all k. Now, we are ready to prove Theorem

6.1.4.

Proof of Theorem 6.1.4. By the uniform convergence of the 2D Fourier series of general shape func-

tions, we have

Wf (a, θ, b) =
∑
n∈Z2

Wfn(a, θ, b),

where fn(x) = Ŝ(n)α(x)e2πiNnT Fφ(x). Introduce the short hand notation, φ̃n(x) = nT Fφ(x)/|nT F |,
then

fn(x) = Ŝ(n)α(x)e2πiN |nT F |φ̃n(x).

By the property of 2D general intrinsic mode functions, fn(x) is a well-separated superposition of

type (M,N |nT F |, 1) defined in Section 2.3.

For each n, we estimate Wfn(a, θ, b). By Lemma 6.1.5, there exists a uniform N1(M, s, t, d, ε)

independent of n such that, if N |nT F | > N1,

Wfn(a, θ, b) = a−
s+t
2

(
fn(b)ŵ

(
A−1
a R−1

θ

(
a · uθ −N |nT F |∇φ̃n(b)

))
+
∣∣∣Ŝ(n)

∣∣∣O(ε)
)

for (a, θ) ∈ Ωn, and

Wfn(a, θ, b) = a−
s+t
2

∣∣∣Ŝ(n)
∣∣∣O(ε)

for (a, θ) 6∈ Ωn. Here

Ωn =

{
(a, θ) : a ∈

(
N |nT F |

2M
, 2MN |nT F |

)
,
∣∣∣θ∇φ̃n(b) − θ

∣∣∣ < θ0

}
,

and θ0 = arcsin(( M
N |nT F | )

t−s). Let Γaθ = {n ∈ Z2 : (a, θ) ∈ Ωn}, then

Wf (a, θ, b) = a−
s+t
2

( ∑
n∈Γaθ

fn(b)ŵ
(
A−1
a R−1

θ

(
a · uθ −N |nT F |∇φ̃n(b)

))
+
∑
n

∣∣∣Ŝ(n)
∣∣∣O(ε)

)

= a−
s+t
2

( ∑
n∈Γaθ

fn(b)ŵ
(
A−1
a R−1

θ

(
a · uθ −N |nT F |∇φ̃n(b)

))
+O(ε)

)
.
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Notice that for any n 6= ñ, the distance between the local wave vectors N |nT F |∇φ̃n(b) and

N |ñT F |∇φ̃ñ(b) are bounded below. In fact,∣∣∣N |nT F |∇φ̃n(b)−N |ñT F |∇φ̃ñ(b)
∣∣∣ = N

∣∣(n− ñ)T F∇φ(b)
∣∣

≥ N

M
|(n− ñ)T F | ≥ N

M
.

The first inequality above is due to the definition of 2D general intrinsic mode type function. Observe

that the support of a general wave packet centered at (a cos(θ), a sin(θ)) is within a disk with a

radius of length at. Because the range of a of interest is a ≤ 2MNr, the general wave packets of

interest have supports of size at most 2(2MNr)t. Hence, if N
M ≥ 2(2MNr)t, which is equivalent to

N ≥ (21+tM1+trt)
1

1−t , then for each (a, θ, b) of interest, there is at most one n ∈ Z2 such that

∣∣A−1
a R−1

θ

(
a · uθ −N∇(nT Fφ(b))

)∣∣ ≤ 1.

This implies that {Zn} are disjoint sets. Notice that ŵ(x) decays when |x| ≥ 1. The above statement

also indicates that there is at most one n ∈ Γaθ such that

fn(b)ŵ
(
A−1
a R−1

θ

(
a · uθ −N |nT F |∇φ̃n(b)

))
6= 0.

Hence, if (a, θ, b) ∈ Rε, there must be some n such that Ŝ(n) 6= 0 and

Wf (a, θ, b) = a−
s+t
2

(
fn(b)ŵ

(
A−1
a R−1

θ

(
a · uθ −N |nT F |∇φ̃n(b)

))
+O(ε)

)
. (6.4)

By the definition of Zn, we see (a, θ, b) ∈ Zn. So, Rε ⊂
⋃
Ŝ(n)6=0 Zn and (1) is proved.

Now, we estimate ∇bWf (a, θ, b). Suppose (a, θ, b) ∈ Rε ∩ Zn. Similar to the estimate of

Wf (a, θ, b), by Lemma 6.1.6, there exits N2(M, s, t, ε) such that if N > N2 then

∇bWf (a, θ, b)

= a−
s+t
2

(
2πiN

∑
n∈Γaθ

|nT F |∇φ̃n(b)fn(b)ŵ
(
A−1
a R−1

θ (a · uθ −N |nT F |∇φ̃n(b))
)

+O(ε)

)
= a−

s+t
2

(
2πiN |nT F |∇φ̃n(b)fn(b)ŵ

(
A−1
a R−1

θ (a · uθ −N |nT F |∇φ̃n(b))
)

+O(ε)
)

for the same n in (6.4).

Let g = fn(b)ŵ
(
A−1
a R−1

θ (a · uθ −N |nT F |∇φ̃n(b))
)

, then

vf (a, θ, b) =
N |nT F |∇φ̃n(b)g +O(ε)

g +O(ε)
.
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Since |Wf (a, θ, b)| ≥ a− s+t2
√
ε for (a, θ, b) ∈ Rε, then |g| &

√
ε. So

∣∣vf (a, θ, b)−N∇(nT Fφ(b))
∣∣

|N∇(nT Fφ(b))|
=

∣∣∣vf (a, θ, b)−N |nT F |∇φ̃n(b)
∣∣∣∣∣∣N |nT F |∇φ̃n(b)

∣∣∣
.

∣∣∣∣ O(ε)

g +O(ε)

∣∣∣∣
.
√
ε.

The above estimate holds for N > N0 = max{N1, N2, (2
1+tM1+trt)

1
1−t }. The proof is complete.

In the crystal image analysis, grains would have local defects, irregular boundaries and smooth

trends caused by reflection etc. First, it is important to know where we can keep the local wave

vector estimates accurate. Suppose a 2D general intrinsic mode type function Ŝ(n)α(x)e2πiNnT Fφ(x)

is defined in a domain Ω with a boundary ∂Ω. The smallest scale used to estimate local wave vectors

is of order N
M . Hence, the general wave packets used have supports of size at most Mt

Nt by Mt

Nt . Let

us denote a perfect interior of Ω as

Ω̃ =

{
x ∈ Ω : |x− y| > M t

N t
,∀y ∈ ∂Ω

}
,

then the estimates of local wave vectors remain accurate in Ω̃. As the numerical results in [43, 182,

184, 178] show, synchrosqueezed transforms can still approximately recover instantaneous or local

properties near ∂Ω.

The second concern is the influence of the smooth trends ck(x) in (6.2). By the method of

stationary phase, the Fourier transform ĉk(ξ) would decay quickly as |ξ| increases. Hence, the

influence of smooth trends is essentially negligible when the synchrosqueezed transforms are applied

to estimate local wave vectors NnT F∇φ(x)) with a sufficiently large wave number.

6.1.3 Crystal Defect Analysis Algorithms and Implementations

This section introduces several algorithms based on the features of crystal images and 2D syn-

chrosqueezed transforms for a fast analysis of local defects, crystal rotations and deformations. As

discussed in the introduction, we will focus on the analysis of an image with only one type of crystals,

i.e., suppose

f(x) =

M∑
k=1

χΩk(x) (αk(x)S (2πNFφk(x)) + ck(x))

=

M∑
k=1

χΩk(x)

(∑
n∈Z2

Ŝ(n)αk(x)e2πiNnT Fφ(x) + ck(x)

)
.
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In the 2D space domain, there are five kinds of Bravais lattices, which are oblique, rectangular,

centered rectangular (rhombic), hexagonal, and square [111] as shown in Figure 6.2. Accordingly,

there are five kinds of 2D Fourier power spectra |Ŝ(n)|. These spectra have a few dominant wave

vectors in terms of energy, i.e., a few |Ŝ(n)| with large values. At each interior point of a grain,

a sufficiently localized Fourier transform is able to recover an approximate distribution of the 2D

Fourier power spectrum, based on which the corresponding reference configuration of this grain can

be specified. Hence, for the simplicity of a presentation, we will restrict ourselves to the analysis

of images of hexagonal crystals (e.g. Figure 6.3 (left)). A generalization of our algorithms to other

kinds of simple crystal images is straightforward. In the case of a complex lattice, there might

be numerous local wave vectors with relatively large energy. Feature extraction and dimension

reduction techniques should be applied to provide a few crucial local wave vectors. This would be

an interesting future work.

We will introduce two fast algorithms for crystal image analysis. Algorithm 6.1.7 provides es-

timates of grain boundaries and crystal rotations; while Algorithm 6.1.8 further identifies point

defects, dislocations, and deformations. To make our presentation more transparent, the algorithms

and implementations are introduced with toy examples. For Algorithm 6.1.7, we will use the exam-

ple in Figure 6.3 (left) which contains two undeformed grains with a straight grain boundary. While

Figure 6.3 is a synthetic example, it illustrates nicely the key feature of atomic crystal images and

the idea of local phase plane spectrum. In this example, the reciprocal lattice parameter N = 120

and the crystal rotations are given by 15 and 52.5 degrees on the left and right respectively. We

introduce Algorithm 6.1.8 using strained examples of a small angle boundary (see Figure 6.6 (left))

and with some isolated dislocations (see Figure 6.6 (right)). These are examples from phase field

crystal simulations [63].

Band-limited 2D fast SST

Typically, each grain

χΩk(x) (αk(x)S (2πNFφk(x)) + ck(x))

in a polycrystalline crystal image can be identified as a 2D general intrinsic mode type function of

type (M,N,F ) with a small M near 1, unless the strain is too large. Hence, the 2D Fourier power

spectrum of a multi-grain image would have several well-separated nonzero energy annuli centered

at the origin due to crystal rotations (see an example shown in Figure 6.3 (middle)). Suppose the

radially average Fourier power spectrum is defined as

E(r) =
1

r

∫ 2π

0

∣∣∣f̂(r, θ)
∣∣∣ dθ,
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where f̂(r, θ) = f̂(ξ) for ξ = (r cos(θ), r sin(θ))T ∈ R2. Then E(r) would have several well-separated

energy bumps (see Figure 6.3 (right)) for the same reason.

As we can see in Figure 6.3 (middle), a hexagonal crystal image with a single grain

f(x) = α(x)S (2πNFφ(x)) + c(x)

has six dominant local wave vectors close to vj(θ(x)), j = 0, 1, . . . , 5, which are the vertices of a

hexagon centered at the origin in the Fourier domain, i.e.,

vj(θ(x)) =

(
N cos(θ(x) +

jπ

3
), N sin(θ(x) +

jπ

3
)

)T
, j = 0, 1, . . . , 5,

for θ(x) ∈ [0, π3 ). Suppose S (2πNF (x)) is a reference configuration, then the local rotation function

with respect to each vertex vj(0) is

β(f)(x) ≈ arg(vj(θ(x)))− arg(vj(0)) = θ(x). (6.5)

Actually, f(x) can approximately be considered as a rotated version of αS (2πNF (x+ z)) + c by an

angle θ(x) + kπ
3 for any k ∈ Z due to the crystal symmetry. The restriction θ(x) ∈ [0, π3 ) guarantees

a unique local rotation function β(f)(x).
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Figure 6.3: Left: An undeformed example of two hexagonal grains with a vertical line boundary.
Middle: Its Fourier power spectrum. The number of dominant local wave vectors is 12 due to the
superposition of spectrum of the two grains. Right: Its radially average Fourier power spectrum
with the identified most dominant energy bump indicated by two red circles.

The discussion above shows that it is sufficient to compute the local rotation function using the

dominant local wave vectors. To reduce the computational cost of 2D SST, the support of the most

dominant energy bump in the radially average Fourier power spectrum should be identified (see

Figure 6.3 (right)). Suppose the support (i.e. frequency band) is [r1, r2]. Then a band-limited 2D

fast SST can be introduced following a similar methodology in [184] to estimate local wave vectors
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with wave numbers in [r1, r2] provided by the frequency band detection.

As an example, Figure 6.4 shows the synchrosqueezed energy distribution Tf (a, θ, b) in a polar

coordinate at three different positions. Because the crystal image is real, it is enough to compute

the synchrosqueezed energy distribution for θ ∈ [0, π). The results show that the essential support

of Tf (a, θ, b) can accurately estimate local wave vectors when location b is not at the boundary.

When b is at the boundary, the essential support of Tf (a, θ, b) can still provide some information,

e.g. crystal rotations.
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Figure 6.4: The synchrosqueezed energy distribution Tf (a, θ, b) of Figure 6.3 (left) at three different
points bi, i = 1, 2, 3. Left: b1 = (0.25, 0.5) is in the middle of the left grain. Middle: b2 = (0.5, 0.5)
is at the boundary. Right: b3 = (0.75, 0.5) is in the middle of the right grain. Note that the scale of
colorbar is different in the middle panel.

Defect detection algorithms

As we can see in Figure 6.4, the synchrosqueezed energy around each local wave vector∇
(
NnT Fφ(x)

)
is stable and of order |Ŝ(n)|αk(x) when x is in the perfect interior Ω̃k. Moreover, the energy would

decrease fast near the boundary ∂Ωk and becomes zero soon outside Ωk. This motivates the applica-

tion of synchrosqueezed energy distribution to identify grain boundaries by detecting the irregularity

of energy distribution as follows.

Algorithm 6.1.7 (Fast defect detection algorithm based on stacked synchrosqueezed energy).

• Step 1: Stack the synchrosqueezed energy distribution and define a stacked synchrosqueezed

energy distribution as

T̃f (a, θ, b) = Tf (a, θ, b) + Tf (a, θ +
π

3
, b) + Tf (a, θ +

2π

3
, b)

for θ ∈ [0, π3 ).
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• Step 2: Compute an angular total energy distribution

Ea(θ, b) =

∫ r2

r1

T̃f (a, θ, b)da.

• Step 3: For each b, identify the most dominant energy bump in Ea(θ, b). Denote the range of

this bump as [θ11(b), θ12(b)].

• Step 4: Compute the total energy of the first identified bump as

TE1(b) =

∫ θ12(b)

θ11(b)

Ea(θ, b)dθ.

• Step 5: Compute a weighted average angle of the first bump as

Angle(b) =
1

TE1(b)

∫ θ12(b)

θ11(b)

Ea(θ, b)θdθ.

• Step 6: For each b, update Ea such that Ea(θ, b) = 0, if θ ∈ [θ11(b), θ12(b)]. Update the most

dominant energy bump in Ea. Denote the range of this bump as [θ21(b), θ22(b)].

• Step 7: Compute the total energy of the second identified bump by

TE2(b) =

∫ θ22(b)

θ21(b)

Ea(θ, b)dθ.

• Step 8: Compute the boundary indicator function

BD(b) =
1√

TE1(b)− TE2(b) + 1
.

The synchrosqueezed energy distribution of each grain behaves like an energy bump essentially

supported in Ωk and quickly decays outside Ωk. Hence, two energy bumps have close energy in the

transition area containing the grain boundary. Since TE1(b) acts as the maximum of two energy

distributions and TE2(b) acts as the minimum (see Figure 6.5 (left)), TE1(b)−TE2(b) decays near the

grain boundary and the boundary indicator function BD(b) is relatively large at the grain boundary.

As Figure 6.5 (middle) shows, the grain boundary can be identified from a gray-scale image of BD(b).

The local rotation function with respect to each local wave vector of the reference hexagonal con-

figuration are approximately the same. Since, the synchrosqueezed energy distribution Tf (a, θ, b) is

stacked together per π
3 in θ, the weighted average Angle(b) approximates the local rotation functions

in a weighted average sense. As shown in Figure 6.5 (right), Angle(b) accurately reflects the crystal

rotations in this example.
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Figure 6.5: Left: The total energy function TE1(b) in blue and TE2(b) in red for fixed b2 = 0.5.
Middle: The boundary indicator function BD(b). Right: The weighted average angle Angle(b) as
an approximation of crystal rotations. The real crystal rotations are 15 degrees on the left and 57.5
degrees on the right.

The stacking step in Algorithm 6.1.7 is averaging the influence of each local wave vector. This

gives a stable result of grain boundary and crystal rotation estimates even with severe noise as will

be illustrated in Section 6.1.5. However, Algorithm 6.1.7 might miss some local defects that would

not influence all local wave vectors simultaneously. For example, in Figure 6.6 (left), two of the

underlying wave-like components have smoothly changing directions, while the third one changes its

direction suddenly at a line segment, resulting in a small angle boundary. At some local dislocations,

as Figure 6.6 (right) shows, the dislocation might not cause irregularity to all wave-like components.

Hence, to be more sensitive to local irregularity, it is reasonable to remove the stacking step in

Algorithm 6.1.7, if noise is relatively small. This motivates the following algorithm.
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Figure 6.6: Left: An example of a small angle boundary. Right: An example of some isolated
dislocations. Courtesy of Benedikt Wirth. The sizes of these images are 512× 512 pixels.

Algorithm 6.1.8 (Fast defect detection algorithm with enhanced sensitivity).
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• Step 1: Define T̃j(a, θ, b) = Tf (a, θ+ jπ/3, b) for θ ∈ [0, π3 ) and j = 0, 1, 2. Apply Steps 2− 8

in Algorithm 6.1.7 to T̃j(a, θ, b) to compute TE1j(b), TE2j(b), Anglej(b) and BDj(b) for each

j.

• Step 2: For each j = 0, 1, 2, compute the weight function

Wj(b) =
TE1j(b) + TE2j(b)∑

j

(TE1j(b) + TE2j(b))
.

• Step 3: Compute the weighted average angle

Angle(b) =
∑
j

Wj(b)Anglej(b).

• Step 4: Compute the weighted boundary indicator function

BD(b) =
∑
j

Wj(b)BDj(b).

In the example in Figure 6.6 (left), only the second local wave vector exhibits irregularity at the

small angle boundary, resulting in a sharp decrease of TE11(b) and a sharp increase of TE21(b) at

the boundary. Hence, as shown in Figure 6.7, the weighted boundary indicator function BD(b) with

BD1(b) as a key integrand can clearly indicate the small angle boundary. As Figure 6.8 shows, the

top point dislocation in the example in Figure 6.6 (right) interrupts the first and third underlying

wave-like component, resulting in a sharp decrease in TE10(b) and TE12(b) and a sharp increase in

TE20(b) and TE22(b). Therefore, the weighted boundary indicator function can reveal this point

dislocation. The results in Figure 6.7 and 6.8 indicates that the information of some local defects is

hidden behind some particular local wave vectors. By using the synchrosqueezed energy distribution

of each local wave vector individually, more information of local defects can be discovered.

Recovery of inverse deformation gradient

In addition to grain boundaries and crystal rotations, a reliable extraction of the elastic deformation

of a crystal image is also essential for an efficient material characterization. Instead of estimating the

elastic inverse deformation φ(x) directly, we would emphasize how to recover the inverse deformation

gradient

∇φ(x) =

(
∂x1

φ1(x) ∂x2
φ1(x)

∂x1φ2(x) ∂x2φ2(x)

)
,

and how to read more information from ∇φ(x), e.g., directions of Burgers vectors.
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Figure 6.7: Top: TE1j(b) (in blue) and TE2j(b) (in red) of Figure 6.6 (left) for fixed b1 = 0.5 and
j = 0, 1, 2 from left to right, respectively. Center: The weighted average angle functions Anglej(b)
provided by each local wave vector for j = 0, 1, 2, respectively. Bottom left: the weighted boundary
indicator function BD(b). Bottom right: the weighted average angle function Angle(b).

The estimation of the inverse deformation gradient ∇φ(x) relies on the complete estimate of at

least two local wave vectors ∇
(
NnT Fφ(x)

)
. Let us continue with hexagonal crystal images as an

example. In this case, there are six local wave vectors of interest as discussed in Section 6.1.3. By

symmetry, it is enough to consider those in the upper half plane of the Fourier domain. They are

vj(x) = (∇φ(x))
T
(
N cos(

jπ

3
), N sin(

jπ

3
)

)T
, j = 0, 1, 2.

At each location x, we can estimate vj(x) efficiently by identifying peaks in the synchrosqueezed

energy distribution Tf (a, θ, x). Denote these estimates as vest
j (x), then we have an over-determined

linear system at each x

vest
j (x) ≈ (∇φ(x))

T
(
N cos(

jπ

3
), N sin(

jπ

3
)

)T
, j = 0, 1, 2.
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Figure 6.8: Top: TE1j(b) (in blue) and TE2j(b) (in red) of Figure 6.6 (right) for fixed b1 = 0.8 and
j = 0, 1, 2, respectively. Center: The weighted average angle functions Anglej(b) provided by each
local wave vector for j = 0, 1, 2, respectively. Bottom left: the weighted boundary indicator function
BD(b). Bottom right: the weighted average angle function Angle(b).

Notice that the reciprocal number N can be estimated by arg maxE(r), where E(r) is the radially

average Fourier power spectrum of the given crystal image. Hence, a least square method is sufficient

to provide a good estimate G0(x) ∈ R2×2 of the inverse deformation gradient ∇φ(x):

G0(x) = argmin
G

3∑
j=1

∥∥∥∥vest
j (x)−G

(
N cos(

jπ

3
), N sin(

jπ

3
)

)∥∥∥∥2

2

.

As the synchrosqueezed energy distribution Tf (a, θ, x) is no longer valid around the crystal de-

fects, we may characterize the defect region by using an indicator function generated by thresholding

a smoothed version of the weighted boundary indicator function BD(x).

To better interpret the inverse deformation gradient G0, we compute its polar decomposition

G0(x) = U0(x)P0(x) for each point x, where U0(x) is a rotation matrix and P0(x) is a positive-

semidefinite symmetric matrix. The rotation angle of U0(x) describes the crystal orientation at x;
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Figure 6.9: Top panel: Estimated inverse deformation gradient G0 ∈ R2×2 of the atomic crystal
image in Figure 6.6 (right). Bottom panel: The crystal orientation, the difference in principal
stretches, and the volume distortion of G0. The grey mask in these figures is the defect region
identified by thresholding the smoothed boundary indication function.

Vol(x) = det(G0(x))−1 indicates the volume distortion of G0(x); the quantity |λ1(x)−λ2(x)|, where

λ1(x) and λ2(x) are the eigenvalues of P0(x), characterizes the difference in the principal stretches
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of G0(x) as a measure of shear strength. The bottom panel of Figure 6.9 shows these quantities

corresponding to the estimate of G0 in the top panel. In the later numerical examples, instead of

G itself we will always present the crystal orientation, the volume distortion, and the difference in

principal stretches.

In the presence of a lattice distortion of a dislocation, a Burgers vector is introduce to represent

this distortion. On one side of a Burgers vector, the space between atoms is slightly compressed,

while the space on the other side is expanded. Hence, the local volume distortion would be positive

on one side of the Burgers vector and negative on the other side. Figure 6.9 (bottom) shows the

local distortion volume estimate Vol(x) of the example in Figure 6.6 (right). Vol(x) reaches its local

maximum and local minimum near each point dislocation and the direction of the corresponding

Burgers vector can be directly read off from the color coding of Vol(x).

6.1.4 Variational Model to Retrieve Deformation Gradient

We have shown that the synchrosqueezed transform is able to provide good mesoscopic information

of atomic crystal images. This information is obtained point-wise directly from the synchrosqueezed

energy distribution. In what follows, we will discuss a variational model based on continuous physical

properties of crystal materials to improve the results provided by the synchrosqueezed transform.

In particular, we retrieve the inverse deformation gradient G0 to obtain a new deformation gradient

G that better agrees with physical system. Before introducing the optimization model, we are going

to summarize a few properties of atomic crystal.

Elastic energy in grain interior

Assume the image domain is Ω and the defect region is given by Ωd ⊂ Ω. We expect the displacement

field G to minimize the elastic energy of the system outside the defect region, since the system under

imaging is in a quasistatic state. Given G0 a rough guess of the deformation gradient, this motivates

the energy minimization

min
G

∫
Ω\Ωd

|G−G0|2 +W (G) dx (6.6)

where |·| denotes the Frobenius norm of a matrix, |A| = (tr(AT A))1/2, and W is the elastic stored

energy density.

Since our reference lattice represents the undeformed equilibrium state of the crystal and the

atom configuration in the image is produced by the (local) deformation φ−1, the stored elastic

energy can be expressed in the standard Lagrangian form as the integral over the reference domain

φ(Ω \ Ωd) of an elastic energy density w that depends on ∇(φ−1) = G−1 ◦ φ−1,∫
φ(Ω\Ωd)

w(G−1 ◦ φ−1(y)) dy .
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Here, w satisfies the standard conditions coming from first principles, i. e. w is frame indifferent,

w(A) = 0 for A ∈ SO(2), w(A) > 0 else, and w(A) = ∞ if detA ≤ 0. After a change of variables

the elastic energy turns into ∫
Ω\Ωd

W (G) dx

for W (G) = w(G−1) detG, where it is easy to see that W has the same above properties as w. For

w (or equivalently W ) one can use a material-specific, possibly anisotropic energy density. To be

specific, since our numerical examples are all concerned with a triangular lattice exhibiting isotropic

elastic behavior, we here simply restrict ourselves to the following neo-Hookean-type elastic energy

density

W (G) =
µ

2
(|G|2 − 2) +

(µ
2

+
λ

2

)
(detG− 1)2

− µ(detG− 1).

(6.7)

Note that in (6.6), the fidelity and elastic energy terms are both evaluated outside the defect region.

Within the defect region, since it is not possible to map the local configuration of atoms back to

the reference state, the estimate G0 is not trustworthy. It is also well known that the elastic energy

blows up logarithmically approaching the dislocation core, and hence it only makes sense to penalize

the elastic energy away from the defects.

Burgers vectors and curlG

As explained previously, away from defects, G can be interpreted as the gradient ∇φ of an inverse

deformation φ deforming the configuration of the given image into a perfect reference crystal of

a fixed orientation. Now the fact that gradient fields are always curl-free can be exploited as a

constraint

curlG =

(
∂x1

G12 − ∂x2
G11

∂x1
G22 − ∂x2

G21

)
= 0 on Ω \ Ωd, (6.8)

where Ω and Ωd denote the image domain and the defect region, respectively. In the defect re-

gion Ωd, however, the interpretation of G as a deformation gradient breaks down since there is no

smooth deformation of the crystal that can undo the lattice defect. In fact, denoting the connected

components of Ωd by Ω1
d, . . . ,Ω

l
d, it is shown in [64] that the integral

Bi =

∫
Ωid

curlG dx (6.9)

is related to the Burgers vectors associated with the defects in Ωid. If Ωid contains an isolated

dislocation surrounded by a regular lattice, Bi just represents the Burgers vector of that dislocation.

If Ωid contains multiple dislocations or even a section of a high angle grain boundary, Bi represents

the accumulated Burgers vector of all defects in Ωid (note that a high angle grain boundary may
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be thought of as a string of dislocations with distance smaller than the lattice spacing so that the

single dislocations are not clearly spatially separated). As in the case of Ω \ Ωd, where we know

curlG = 0, we also have a priori information on curlG in Ωid. In particular we know that Bi is a

Burgers vector and thus must lie in the discrete set of Bravais lattice vectors of the perfect reference

lattice L. We thus identify Bi by projecting the (potentially noisy) estimate
∫

Ωid
curlG0 dx onto L

and then impose (6.9) as a constraint on G. In fact, instead of prescribing the accumulated curl in

Ωid via (6.9) we may just as well prescribe

curlG = bi on Ωid (6.10)

for a function bi : Ωid → R2 with
∫

Ωid
bi dx = Bi (in mathematically more precise terms, bi may be a

distribution). This is possible since we are only interested in the field G outside of Ωd and since any

field G : Ω→ R2×2 satisfying (6.8) and (6.9) can be modified on Ωd to a field satisfying (6.10). The

function bi is here simply chosen as bi = diag(α, β) curlG0 with α, β ∈ R such that
∫

Ωid
bi dx = Bi

(i.e., an overall scaling of curlG0). Summarizing, a potential constrain in our variational method to

extract G from the initial guess G0 we will prescribe the constraint

curlG = b for b =

0 on Ω \ Ωd;

bi on Ωid .
(6.11)

Refined defect regions

On the one hand, the threshold to identify Ωd should be chosen very low to yield thin and localized

defect regions (e. g. such that defect regions Ωid around single dislocations stay separated from each

other), on the other hand, the thinner the identified defect region Ωid the worse will the estimate of

the Burgers vectors Bi be. A compromise is to first use thick defect regions Ω̃id in order to estimate

the Burgers vectors Bi and then to impose the constraint (6.11) with a much finer estimate of the

Ωid. However, it may happen that a thick patch Ω̃id contains multiple thin connected components

Ωi1d , . . . ,Ω
ik
d . In that case the Bij are defined as the closest projections of

∫
Ω
ij
d

curlG0 dx onto L

under the constraint Bi1 + . . .+Bik = B̃i, where B̃i is the accumulated Burgers vector of the patch

Ω̃id. In order to obtain a very thin and localized Ωd we simply identify the ridge of 3−mass(b) inside

the thick Ω̃d and then dilate this ridge by a few pixels.

Introduction of jump sets for topological consistency

A Bravais lattice does typically not only exhibit translational, but also rotational symmetry. The

so-called point group P ⊂ SO(2) comprises all those rotations which leave the reference lattice

invariant. This leads to an ambiguity in the deformation gradient G: if G correctly describes the

local configuration of the crystal, then RG for any R ∈ P does so as well. Even though the constraint
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γ

G=I

G=R

Figure 6.10: Along a closed path γ traversing a sequence of crystal grains, the deformation gradient
G changes continuously from I to R 6= I. The gray shade indicates the local crystal orientation from
the identity I (white) to R (dark gray). Dots represent point dislocations; lines indicate high angle
grain boundaries. Along the path γ all grains are connected by low angle grain boundaries.

(6.11) has the effect that the matrix field G will be locally consistent (in the sense that for any y in

a neighborhood of x ∈ Ω we have |G(y) − G(x)| = minR∈P |RG(y) − G(x)|), global consistency is

often not guaranteed. Indeed, Figure 6.10 shows a situation in which along a closed path γ ⊂ Ω, G

changes continuously from the identity I to an element R 6= I of the point group. Since R describes

the same local crystal configuration as I, the curl where G jumps from R to I is spurious. As in [64],

this inconsistency can be remedied by introducing a cut set S across which G is allowed to jump by

a point group element,

G− = RG+ for some R ∈ P ,

where G− and G+ denote the value of G on either side of S. Henceforward, we consider the constrain

curlG = b on Ω \ S , G−(G+)−1 ∈ P on S (6.12)

instead of (6.8)

To find a good cut set S, let Q 6= I denote the element of P closest to I. For each point x ∈ Ω we

compute Gi(x), i = 1, 2, 3, according to Gi(x) = Ri(x)G0(x) with Ri(x) = argminR∈P |RG0(x) −
Q

i
3 |. Here, Q

i
3 denotes rotation by i

3 of the rotation angle of Q. Of all three matrix fields we

compute the curl and identify the regions where each of the Gi has the least curl. The boundaries

between those regions are chosen as S, and in each region we reinitialize G0 as that Gi with the least

curl. Since the spurious curl at each point can occur at most for one of the Gi, the new initialization

does not exhibit any spurious curl. Note that we also take care that Ωd∩S = ∅ so that the estimation

of Burgers vectors is not impaired.
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Constrained minimization model

Combining the discussion for 6.6 and (6.12), now we are ready to describe the variational model to

retrieve the initial guess G0 for a new G that better agrees with physical meaning:

min
G:Ω→R2×2

∫
Ω\Ωd

|G−G0|2 +W (G) dx (6.13)

s. t. curlG = b on Ω \ S , G−(G+)−1 ∈ P on S ,

where G− and G+ denote the value of G on either side of S. It is convenient to describe the numerical

algorithm to solve this optimization in discretized form, even though all objects have a continuous

equivalent. Throughout, a superscript d denotes discrete differential operators.

In the discrete setting, the image domain Ω is discretized via M · N Cartesian pixels, indexed

by x-y-position (m,n) ∈ Ω = {1, . . . ,M} × {1, . . . , N} (the pixel spacing is assumed to be one).

For an index m we denote by m+ = m + 1 and m− = m − 1 the next larger or next smaller

index, where for simplicity we assume periodic boundary conditions and use cyclic indexing, i. e.

(M+, n) = (1, n), (m,N+) = (m, 1), (1−, n) = (M,n), (m, 1−) = (m,N) for all (m,n) ∈ Ω.

The matrix fields are discretized accordingly, G,G0 ∈ (R2×2)M×N . The jump set S follows the

edges between the pixels and is represented as a collection of horizontal or vertical pixel pairs,

S ⊂ {((m,n), (k, l)) ∈ Ω × Ω : (k, l) = (m+, n) or (k, l) = (m,n+)}. Furthermore, we define the

function R : S → P such that R(m,n),(k,l) is the point group element with smallest distance to

(G0)m,n(G0)−1
k,l . R is extended to Ω× Ω by the identity in P . Derivatives in x- and y-direction are

replaced by finite differences that respect the point group equivalence across S,

(∂dxG)ijm,n = (R(m,n),(m+,n)Gm+,n)ij −Gijm,n ,

(∂dyG)ijm,n = (R(m,n),(m,n+)Gm,n+)ij −Gijm,n ,

where superscript ij denotes the (i, j)-matrix entry. In particular, the discrete curl and Laplacian

are defined as

curld : (R2×2)M×N → (R2)M×N ,

(curldG)m,n = ∂dxG
:2
m,n − ∂dyG:1

m,n ,

∆d : (R2)M×N → (R2)M×N ,

∆d = − curld(curld)∗ ,

where G:i
m,n denotes the ith column of the matrix Gm,n and the superscript ∗ denotes the adjoint
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operator, which in this particular case is given by

(curld)∗ : (R2)M×N → (R2×2)M×N ,

((curld)∗V )m,n =[
Vm,n −RT(m,n−),(m,n)Vm,n−

∣∣∣RT(m−,n),(m,n)Vm−,n − Vm,n
]
.

In sum, after discretization, our optimization problem reads

minG∈Cb E[G]

for E[G] =
∑

(m,n)∈Ω

(
|Gm,n − (G0)m,n|2 +W (Gm,n)

)
and Cb = {G ∈ (R2×2)M×N : curldG = b} .

Fast algorithm for the constrained minimization

In the constrained minimization, the constraint space Cb is an affine space and can be expressed as

Ĝ + C0 for a Ĝ with curld Ĝ = b. Hence, the energy can be minimized using a standard projected

nonlinear conjugate gradient (NCG) descent in Cb. In more detail, we employ a Fletcher–Reeves

NCG method in which the derivative ∂dGE of E with respect to G is always orthogonally projected

onto C0 (i. e. onto its component parallel to Cb) so that the algorithm is performed within the

subspace Cb. Due to accumulating numerical errors we also have to project the current estimate G

back onto Cb from time to time. Denoting the projection onto Cb by projCb , the NCG algorithm is

initialized with Ĝ = projCbG0.

The projection projCbF is the solution to the constraint minimization mincurldG=b

∑
m,n|Gm,n−

Fm,n|2, which satisfies the optimality conditions

b = curld F , 0 = F −G+ (curld)∗Λ

for a Lagrange multiplier Λ ∈ (R2)M×N . Applying curld to the second equation we obtain

curldG− b = −∆dΛ .

Note that ker(∆d) ⊥ range(curld). Denoting by (−∆d)−1 : range(∆d) → ker(∆d)⊥ the inverse of

−∆d, we obtain Λ = (−∆d)−1(curldG− b) and thus

projCbG = F = G− (curld)∗(−∆d)−1(curldG− b) .

Once Ĝ is computed, the projection onto Cb can also be obtained as

projCbF = Ĝ+ projC0
(F − Ĝ) .
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For the above projection we need to invert the discrete Laplacian operator. Using periodic

boundary conditions this would be very fast using FFT if there was no jump set S. However, with

nonempty jump set S, our finite difference operators do not turn into pointwise multiplications in

Fourier space. In order to obtain a fast inversion we decompose ∆d = ∆d
0 + J , where ∆d

0 is the

standard discrete Laplacian and J the linear operator accounting for the point group,

∆d
0 : (R2)M×N → (R2)M×N ,

(∆d
0V )m,n = Vm−,n + Vm+,n + Vm,n− + Vm,n+ − 4Vm,n ,

J : (R2)M×N → (R2)M×N ,

(JV )m,n = (RT(m−,n),(m,n) − I)Vm−,n

+ (R(m,n),(m+,n) − I)Vm+,n

+ (RT(m,n−),(m,n) − I)Vm,n−

+ (R(m,n),(m,n+) − I)Vm,n+ .

Note that J is symmetric, and it is highly sparse and thus has a very small range L = rangeJ and

a large kernel ker J = ker JT = L⊥. If we decompose V ∈ (R2)M×N into

V = VL + VL⊥ ∈ L⊕ L⊥ ,

then we obtain

−∆dV = B ⇔ −∆d
0VL⊥ = (∆d

0 + J)VL +B . (6.14)

The solvability condition tells us that ker ∆d
0 is orthogonal to the right-hand side, so we can just as

well project the right-hand side onto (ker ∆d
0)⊥ by subtracting the mean,

−∆d
0VL⊥ = proj(ker ∆d

0)⊥
(
(∆d

0 + J)VL +B
)
.

Now choosing a basis L = 〈v1, . . . , vK〉 and ker ∆d
0 = 〈s1, s2〉, we write

VL =

K∑
i=1

λivi ,
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VL⊥ = a1s1 + a2s2 + (−∆d
0)−1proj(ker ∆d

0)⊥
(
(∆d

0 + J)VL +B
)

= a1s1 + a2s2 + (−∆d
0)−1proj(ker ∆d

0)⊥B

+

K∑
i=1

λi

(
(−∆d

0)−1proj(ker ∆d
0)⊥Jvi − vi

)
,

where (−∆d
0)−1 : (ker ∆d

0)⊥ → (ker ∆d
0)⊥ denotes the inverse of −∆d

0. The degrees of freedom

λ1, . . . , λK , a1, a2 now have to satisfy the K+2 equations vj ·VL⊥ = 0, j = 1, . . . ,K, (due to vj ∈ L)

and sj ·
(
(∆d

0 + J)VL +B
)

= 0, j = 1, 2, (the solvability condition for (6.14)) where the dot denotes

the dot product. In detail, the equations are given by

0 = a1vj · s1 + a2vj · s2 + vj · (−∆d
0)−1proj(ker ∆d

0)⊥B

+

K∑
i=1

λi

((
(−∆d

0)−1proj(ker ∆d
0)⊥vj

)
· Jvi − vj · vi

)
,

0 = sj ·B +

K∑
i=1

λisj · Jvi .

To solve for λ := (λ1, . . . , λK , a1, a2)T , we write the linear system as a matrix vector equation. Since

we need to solve systems of the form −∆dV = B several times for different values of B, we perform

a QR decomposition,

QRPλ = rhs ,

where P is a permutation matrix such that the lower rows of R are zero (this is possible since

the solution to −∆dV = B is only uniquely specified up to a two-dimensional subspace due to

dim ker ∆d = 2) and all other rows have nonzero diagonal elements. Note that this decomposition is

the bottleneck of the algorithm with a complexity of O(K3). The degrees of freedom corresponding

to the zero-rows can now be chosen freely (say, as zero), and the resulting

V = a1s1 + a2s2 + (−∆d
0)−1proj(ker ∆d

0)⊥B

+

K∑
i=1

λi(−∆d
0)−1proj(ker ∆d

0)⊥Jvi

= a1s1 + a2s2 + (−∆d
0)−1proj(ker ∆d

0)⊥

[
K∑
i=1

λiJvi +B

]

solves B = −∆dV . Note that (−∆d
0)−1 can readily be computed via FFT and that the vi can

be chosen as shifted versions of v̂j ∈ (R2)M×N , j = 1, 2, with v̂j = 0 except for the jth en-

try of v̂j1,1 being one. Thus, (−∆d
0)−1proj(ker ∆d

0)⊥vi can be evaluated efficiently as just a shift of

(−∆d
0)−1proj(ker ∆d

0)⊥ v̂
j .
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6.1.5 Examples and Discussions

In this section, there will be a series of experiments of synthetic and real images to illustrate the

performance of Algorithm 6.1.7, 6.1.8 and the variational model. In the first part of this section,

we focus on the application of Algorithm 6.1.7 to detect grain boundaries and to estimate crystal

rotations. The robustness of this method will be emphasized and supported by some noisy examples

and examples with blurry grain boundaries. In the second part, Algorithm 6.1.8 is applied to obtain

initial results of crystal analysis followed by the variational model to retrieve the initial results.

Algorithm 6.1.8 is more sensitive to local defects and is able to discover Burgers vectors of these

dislocations by estimating the local volume distortion Vol(b).

The main parameters for the SST-based analysis are two geometric scaling parameters s and

t in the 2D SST (for details see [183]). Smaller scaling parameters result in better robustness of

SSTs while larger scaling parameters give more accurate estimates in noiseless cases [183]. Hence,

we adopt t = s ≈ 1 in the examples with less noise and use t = s ≈ 0.8 when the crystal image is

noisy. As discussed in [183], for images with heavy noise, the synchrosqueezed transform can still

provide reasonable initial guess via a highly redundant transform with more computational cost. The

variational model parameters λ and µ in (6.7) are simply set to 1 in all of the following examples.

The synchrosqueezed transform is very efficient. In the first part, all numerical results by Algo-

rithm 6.1.7 are obtained within 5 seconds. In the second part, the SST-based method can down-

sample the original image in the frequency domain and reduce the mesh size for the variational

optimization. Hence, the computational mesh of the optimization model is independent of the size

of crystal images. The main computational cost comes from the inverse of the Laplacian operator.

This cost is depending on the number of points of the singularity set S. By reducing the mesh size,

the number of points in S can be reduced and the computational cost is significantly reduced, e.g.,

from 13 minutes to 20 seconds in the example of PFC image of size 1024 × 1024. The runtime for

the first two real examples is less than 10 seconds. The runtime for the last example with heavy

noise is about 1 minute due to extra effort to obtain robustness of the synchrosqueezed transform.

Examples for Algorithm 6.1.7

Our first example is a phase field crystal (PFC) image in Figure 6.11 (left). It contains several grains

with low and high angle grain boundaries and some point dislocations. As shown in Figure 6.11

(middle), the weighted average angle Angle(b) is changing gradually in the interior of a grain and

sharp at a large angle boundary. Figure 6.11 (right) shows the boundary indicator function BD(b).

Large angle grain boundaries appear in a form of line segments. Adjacent point dislocations are

connected and identified as grain boundaries, while light grey regions identify well-separated point

dislocations. As pointed out later, some isolated point dislocation may be missed due to the stacking

step, while Algorithm 6.1.8 is better suited for detecting local defects.

We next consider a real data example of a twin boundary in a TEM-image in GaN (see Figure
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Figure 6.11: Analysis results of a large phase field crystal image (of size 1024×1024 pixels) provided
by Algorithm 6.1.7. Left: A phase field crystal (PFC) image and its zoomed-in image. Courtesy of
Benedikt Wirth [64]. Middle: The weighted average angle Angle(b) and its zoomed-in result. Right:
The boundary indicator function BD(b) and its zoomed-in result.

6.12 (left)). Algorithm 6.1.7 identifies two grains as shown in Figure 6.12 (middle) and estimates

their rotation angles. The grain boundary is approximated by a smooth curve in the image of the

boundary indicator function BD(b) in Figure 6.12 (right).
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Figure 6.12: Left: A TEM-image of size 420 × 444 pixels in GaN. Courtesy of David M. Tricker
(Department of material science and metallurgy, University of Cambridge). Middle: The weighted
average angle Angle(b) provided by Algorithm 6.1.7. Right: The boundary indicator function BD(b)
provided by Algorithm 6.1.7.

Figure 6.13 shows an example of wide boundaries in a photograph of a bubble raft. In this case,

the transition between two grains is not sharp due to large distortion and the local crystal structure

is heavily disturbed near the boundary. Nevertheless, Algorithm 6.1.7 is capable of identifying three

grains with sharp grain boundaries matching the distortion area as shown in Figure 6.13 (middle)

and 6.13 (right).
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Figure 6.13: Left: A photograph of a bubble raft with large disorders and wide boundaries. Courtesy
to Barrie S. H. Royce in Princeton University. The image size is 223× 415. Middle and right: The
weighted average angle Angle(b) and the boundary indicator function provided by Algorithm 6.1.7.

 

 

 

 

Figure 6.14: A noise-free PFC image (left) and its noisy version (right) with a zoom-in detailing the
marked part.

Examples for Algorithm 6.1.8 and the variational model

In the examples in this part, we compare the initial estimated strain G0 provided by Algorithm

6.1.8 and the improved results G from the variational method (6.13), where each time we display

crystal orientations, difference in principal stretches, and volume distortion. For better visualization

we mask out the identified defect regions, which is generated by thresholding a smoothed version

of boundary indicator function BD(x) from Algorithm 6.1.8, since there is no meaningful notion of

strain in these regions. The curl of G0 (which in general violates the physical constraint of being

zero outside Ωd and of being compatible with the defects’ Burgers vectors) as well as the average

curlG per connected defect region (which is compatible with the defects’ Burgers vectors) are also

shown.
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(a) (b)

(c) (d)

Figure 6.15: Results of the image in Figure 6.14 (left). From panel (a) to (d): crystal orientation,
difference in principal stretches, curl of the inverse deformation gradient, and volume distortion. In
each panel, the left figure shows the initial results from SST and the right one shows the optimized
results from the variational method. Particularly in (c)-right, the average curl on each connected
defect region is shown.

Figure 6.16: Results of Figure 6.14 (right) using the same visualization as in Figure 6.15.
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Figure 6.17: Results of crystal analysis for Figure 6.12 (left) and, using the same visualization as in
Figure 6.15.

Since the PFC model is a well-established method to simulate elastic and plastic deformations,

free surfaces, and multiple crystal orientations in nonequilibrium processes. We revisit it again to

test Algorithm 6.1.8 and the variational model. A noiseless PFC image is given in Figure 6.14

(left) and its results are presented in Figure 6.15. Compared to the initial strain estimate G0, the

optimized G is smoother, exhibits a much smaller overall volume distortion and shear (as visualized

by the difference in principal stretches), and sharpens the compression-dilation dipoles around each

single dislocation.

The noisy PFC image of Figure 6.14 (right) is generated by adding 50% Gaussian random noise.

Obviously, this leads to strong artifacts in the estimated deformation G0. Remarkably, after the

optimization we retrieve an estimate G almost as good as in the noiseless case as shown in Figure 6.16,

which demonstrates the robustness of our method.

We also revisit other two real examples in the first part of this section. The TEM-image of

GaN (Figure 6.12 left), contains a string of dislocations forming a large angle grain boundary. The

artificial strong spatial variation of crystal orientation, shear and volume distortion in the SST result

is greatly reduced after applying the optimization as shown in Figure 6.17. Even more importantly,

the unphysical curl away from the defects is completely removed such that the curl of G is fully

concentrated in the single defect regions around each dislocation (the total curl of each region

equaling the dislocation’s Burgers vector).

The photograph of a bubble raft with strongly disordered and blurry grain boundaries has been

shown in Figure 6.13 (right). The result of Algorithm 6.1.8 (see Figure 6.18) shows a spurious strong

shear of the local crystal structure close to the grain boundaries, especially near the triple junction.

One of the reasons for this behavior is that the SST, like any wavelet type transform, extracts
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Figure 6.18: Results of crystal analysis for Figure 6.13 (left), using the same visualization as in
Figure 6.15.

directional and strain information from image patches, which here have to be larger than the unit

cells. Thus, the grain boundaries are diffused, and information near the grain boundary is not

trustworthy. The optimization can mostly remedies this effect.

The last experimental example is a TEM-image of a twin and a high angle grain boundary in

Al (Figure 6.19). The crystal structures in each grain are also slightly stretched. Although this

example is very challenging, the Algorithm 6.1.8 can still provide an accurate defect region estimate

and a reasonable initial guess G0 (see Figure 6.20). After optimization, we obtain a curl-free inverse

deformation gradient G in the grain interior. The difference of principal stretches becomes smaller

and the volume distortion gets closer to zero outside the defect region.

6.1.6 Conclusion

This section has introduced a new model for atomic crystal images and several tools for their

multiscale analysis. Through various synthetic and real data, it has been shown that the proposed

methods are able to provide robust and reliable estimates of mesoscopic properties, e.g., crystal

defects, rotations, elastic deformations and grain boundaries. Since these methods are well suitable

for parallelization, parallel computing will considerably reduce the runtime. This would be appealing

in the analysis of a series of large crystal images to study the time evolution of crystals on a

microscopic length scale.

We focus on the analysis of images with the presence of only one type of crystal and without

solid and liquid interfaces in this paper. The extension is not difficult. In fact, in the presence of

liquid, the solid-liquid interface can be identified as “boundary between grains” by our method. One
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Figure 6.19: A TEM-image of Al (courtesy of the National Center for Electron Microscopy at the
Lawrence Berkeley National Laboratory).

Figure 6.20: Results of crystal analysis for Figure 6.19, using the same visualization as in Figure 6.15.
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could use imaging methods for detecting geometric objects in the cartoon part of images [18, 108] to

identify the liquid part immediately after grains are identified by our method. Moreover, when the

given image consists of multiple types of crystals, local Fourier transforms taken at enough sampling

positions can identify reference crystals. Fixing one type of reference crystals, we apply our method

to extract the boundaries, the rotations, the defects and the deformations of grains of this type. A

complete analysis can be obtained by combining the results of each type of reference crystals.

Another interesting and challenging future direction is to analyze crystal images corresponding

to complex lattices. First, it might be difficult to automatically identify reference crystals directly

from a given image. The information hidden in the image is very redundant and hence feature

extraction and dimension reduction techniques are necessary. Second, the well-separation condition

for synchrosqueezed transforms may not hold due to a large number of underlying wave-like compo-

nents of each grain. A 2D generalization of the 1D diffeomorphism based spectral analysis method

in [178] may provide a solution to this problem.

The current methods can be easily extended to 3D crystal analysis by designing a 3D syn-

chrosqueezed transform. This should be relevant for applications.

6.2 Canvas Weave Analysis in Art Forensics

6.2.1 Introduction

Quantitative canvas weave analysis has many applications in art investigations of paintings, including

dating, forensics, canvas rollmate identification [110, 125, 160]. Traditionally, canvas analysis is

based on X-radiograph. Prior to serving as a painting canvas, a piece of fabric is coated with a

priming agent; smoothing its surface makes this layer thicker between and thinner right on top of

weave threads. These variations affect the X-ray absorption, making the weave pattern stand out

in X-ray images of the finished painting. To characterize this pattern, it is customary to visually

inspect small areas within the X-radiograph and count the number of horizontal and vertical weave

threads; averages of these then estimate the overall canvas weave density. The tedium of this process

typically limits its practice to just a few sample regions of the canvas. In addition, it does not capture

subtler information beyond weave density, such as thread angles or variations in the weave pattern.

Application of signal processing techniques to art investigation are now increasingly used to develop

computer-assisted canvas weave analysis tools.

In their pioneering work [100], Johnson et al developed an algorithm for canvas thread-counting

based on windowed Fourier transforms (wFT); further developments in [101, 104] extract more

information, such as thread angles and weave patterns. Successful applications to paintings of art

historical interest include works by van Gogh [85, 164], Diego Velázquez [57], Johannes Vermeer

[121], among others [102, 103, 105, 106, 107].

A more robust and automated analysis technique was later developed by Erdmann et al [68],
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based on autocorrelation and pattern recognition algorithms, requiring less human intervention

(e.g., choosing proper frequency range and window size of windowed Fourier transforms). Unlike

the Fourier-space based approach of [100], [68] uses only the real-space representation of the canvas.

Likewise, [41] also uses real-space based features for canvas texture characterization.

We consider here a new automated analysis technique for quantitative canvas analysis, based on

the 2D synchrosqueezed transforms. Synchrosqueezing has shown to be a useful tool in problems

presented previously. Observing that the canvas weave texture of interest consists of a sparse su-

perposition of close to but not quite periodic template functions, it is natural to consider 2D SST

as an alternative for canvas analysis; as illustrated by the results we obtained, reported here, this

intuition proved to be correct. The method, as shown below, is very robust and offers fine scale

weave density and thread angle information for the canvas. We compare our results with those in

[68, 100, 101, 104].

We explain our model for X-radiography images for canvas analysis in Section 6.1.2; the use

and limitations of windowed Fourier transforms are discussed in Section 6.2.3. Section 6.2.3 intro-

duces the synchrosqueezed transform, with applications to quantitative canvas analysis; section 6.2.4

presents various examples, applying our technique in art investigation.

6.2.2 Model of the Canvas Weave Pattern in X-Radiography

We denote by f the intensity of an X-radiograph of a painting; see Figure 6.21a for a (zoomed-in)

example. Because X-rays penetrate deeply, the image consists of several components: the paint layer

itself, primer, canvas (if the painting is on canvas or on wood panel overlaid with canvas), possibly

a wood panel (if the painting is on wood), and sometimes extra slats (stretchers for a painting on

canvas, or a cradle for a painting on wood, thinned and cradled according to earlier conservation

practice.) This X-ray image may be affected by noise or artifacts of the acquisition process. We

model the intensity function f as an additive superposition of the canvas contribution, denoted by

c(x), and a remainder, denoted by p(x), that incorporates all the other components. Our approach

to quantitative canvas analysis relies on a simple model for the X-ray image of the weave pattern in

the “ideal” situation. Since it is produced by the interleaving of horizontal and vertical threads in

a periodic fashion, a natural general model is

f(x) = c(x) + p(x) := a(x)S(2πNφ(x)) + p(x). (6.15)

In this expression, S is a periodic function on the square [0, 2π)2, the details of which reflect the

basic weave pattern of the canvas, e.g., whether it is a plain weave or perhaps a twill weave. This

is a generalization of more specific assumptions used in the literature – for instance, in [100] plain

weave canvas is modeled by taking for S a sum of sinusoidal functions in the x and y directions; in

[104], more general weave patterns (in particular twill) are considered. The parameter N in (6.15)
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gives the averaged overall weave density of the canvas (in both directions). The function φ, which

maps the image domain to R2, is a smooth deformation representing the local warping of the canvas;

it contains information on local thread density, local thread angles, etc. The slowly varying function

a(x) accounts for variations of the amplitude of the X-ray image of the canvas, e.g., due to variation

in illumination conditions.

In some cases, the X-ray image fails to show canvas information in portions of the painting (e.g.

when the paint layer dominates); the model (6.15) is then not uniformly valid. Because our analysis

uses spatially localized information (analyzing the image patch by patch), this affects our results only

locally: in those (small) portions of the image we have no good estimates for the canvas parameters.

For simplicity, this exposition assumes that (6.15) is valid for the whole image.

We rewrite c by representing the weave pattern function S, periodic on [0, 2π)2, in terms of its

Fourier series,

c(x) =
∑
n∈Z2

a(x)Ŝ(n)e2πiNn·φ(x). (6.16)

This is a superposition of smoothly warped plane-waves with local wave vectors N∇(n · φ(x)). The

idea of our analysis is to extract the function φ by exploiting that the Fourier coefficients {Ŝ(n)}
are dominated by a few leading terms.

6.2.3 Fourier-Space Based Canvas Analysis

Windowed Fourier transform

Because a and φ vary slowly with x, we can use Taylor expansions to approximate the function for

x near x0 as

c(x) ≈
∑
n∈Z2

a(x0)Ŝ(n)e2πiNn·φ(x0)e2πiN(x−x0)·∇x(n·φ)(x0). (6.17)

The right hand side of (6.17) is a superposition of complex exponentials with frequencies w =

(w1, w2), with

wl =

2∑
l′=1

nl′(∂lφl′)(x0);

these would stand out in a Fourier transform as peaks in the 2D Fourier spectrum. Since the

approximation is accurate only near x0, we also use a windowed Fourier transform with envelope

given by, e.g., a Gaussian centered at x0 with width σ. We have then

W (x0, k) :=
1

2πσ2

∫∫
e−2πik(x−x0)e−(x−x0)2/2σ2

c(x) d2x

≈
∑
n∈Z2

a(x0)Ŝ(n)e2πiNnφ(x0)e−2π2σ2[k−N∇x(n·φ)(x0)]2 . (6.18)
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Instead of being sharply peaked, the spectrum of the windowed Fourier transform is thus “spread

out” around the N∇x(n · φ)(x0) – a manifestation of the well-known uncertainty principle in signal

processing, with a trade-off w.r.t. the parameter σ: a larger σ reduces the “spreading” at the price

of a larger error in the approximation (6.17), since the Gaussian is then correspondingly wider in

the real space.

The method of [100, 104] uses the local maxima of the amplitude of the windowed Fourier

transform to estimate the location of {N∇(n · φ(x0))} for a selection of positions x0 of the X-ray

image (local swatches are used instead of the Gaussian envelope, but the spirit is the same). For

ideal signals, (6.18) shows that the maxima of the amplitude |W (x0, ·)| identify the dominating wave

vectors in Fourier-space, which are then used to extract information, including weave density and

thread angles. Thread density is estimated by the length of the wave vectors; the weave orientation

is determined by the angles. This back-of-the-envelope calculation is fairly precise when N is much

larger than 1, resulting in a small O(N−1) error in the Taylor expansions and stationary phase

approximations. In terms of the canvas, N � 1 means that the inverse of the average thread density

must be much smaller than the length scale of the variation of the canvas texture, which is typically

on the scale of the size of the painting. This is essentially a high-frequency assumption, ensuring

that stationary phase approximations can be applied in the time-frequency analysis. Details can be

found in standard references of time-frequency analysis, e.g., the book [69].

In more complicated scenarios, in particular, when the X-ray signal corresponding to the canvas

is heavily “contaminated” by the other parts of the painting, it is desirable to have more robust

and refined analysis tools at hand than locating local maxima of the Fourier spectrum. The syn-

chrosqueezed transforms are nonlinear time-frequency analysis tools developed for this purpose, in

different (1D and 2D) applications which suggests they could be suitable for canvas analysis in chal-

lenging situations. A comparison of the two methods is shown in Figure 6.21 and will be explained

below.

Synchrosqueezed transforms

The crucial observation is that the phase of the complex function W (x, k), obtained from the win-

dowed Fourier transform (6.18) contains information on the local frequency (i.e., local wave vectors)

of the signal. Indeed, for (x, k) such that k is close to N∇x(n · φ), we have

wf (x, k) :=
1

2π
=
(
∇x lnW (x, k)

)
= N∇x(n · φ)(x) + o(N), (6.19)

where =(z) stands for the imaginary part of the complex number z. Motivated by this heuristic, the

synchrosqueezed windowed Fourier transform “squeezes” the time-frequency spectrum by reassigning
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the amplitude at (x, k) to (x,wf (x, k)) as

T (x, ξ) :=

∫∫
|W (x, k)|2δ(ξ − wf (x, k)) d2k. (6.20)

This significantly enhances the sharpness of the time-frequency representation, leading to an esti-

mate of the local frequency of the signal, that enjoys better properties than the windowed Fourier

transform, as we illustrate below. This gives a sharpened energy distribution on phase space:

T (x, ξ) ≈
∑
n∈Z2

|a(x)|2
∣∣Ŝ(n)

∣∣2δ(ξ −N∇(n · φ(x))), (6.21)

in the sense of distributions. See Chapter 2 or [180, 182, 184] for more details, as well as an

analysis of the method. The peaks of the synchrosqueezed spectrum T then provide estimates of the

N∇(n · φ(x)), determining local measurement of both the thread count and the angle. Figure 6.21

illustrates the resulting spectrum of the 2D SST, compared with the wFT for a sample X-ray image

from a canvas. The reassignment carried out in (6.20), taking into account the local oscillation

of the phase of a highly redundant wFT (in practice we adopt the generalized curvelet transform)

rather than the maximum energy of the wFT to reduce the influence of noise, results in a much more

concentrated spatial frequency portrait. As illustrated by the behavior of the estimates when extra

noise is added, this leads to increased robustness for the estimates of the dominating wave vectors,

which determine the thread count and angle. The performance and the robustness of the 2D SST

are supported by rigorous mathematical analysis and numerical illustration in Chapter 3 and [183].

6.2.4 Applications to Art Investigations

Let us now present some results of quantitative canvas analysis using 2D SST.

The first example (Fig. 6.22a) is the painting F205 by van Gogh, the X-ray image of which

is publicly available as part of the RKD dataset [144] provided by the Netherlands Institute for

Art History; this was one of the first examples analyzed using the method based on the windowed

Fourier transform; see [100, Figure 4] and also [104, Figure 6]. In Figure 6.23, the thread count and

thread angle estimates are shown for horizontal and vertical threads. Comparing with the previous

results in [100, 104], we observe that the general characteristics of the canvas agree quite well. For

example, [104] reports average thread counts of 13.3 threads/cm (horizontal) and 16.0 threads/cm

(vertical), while our method obtains 13.24 threads/cm (horizontal) and 15.92 threads/cm (vertical).

Compared to the earlier results, the current analysis gives a more detailed spatial variation of the

thread counts. In particular, it captures the oscillation of the thread count on a much finer scale.

We don’t know whether such fine details will have applications beyond the canvas characterization

already achieved by less detailed methods, but it is interesting that they can be captured by an
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(a) A sample swatch of X-ray
image

(b) Spectra of wFT and SST

(c) Swatch with added noise (d) Spectra of wFT and SST

Figure 6.21: (a) A sample swatch of an X-ray image, in which canvas is clearly visible (in most
places) despite the paint layers on top of the canvas; (b) The spectrum of the windowed Fourier
transform (wFT) (top) and SST (bottom) at one location. Local maxima (circled in red) indicate the
wave vector estimates; the insets show the intensity profile on a cross section (dashed line) through
two maxima; (c) The same swatch as in (a) with noise added (such that the noise level is visually
comparable to the real data example in Figure 6.28) to test for robustness; (d) The wFT and SST
spectra again at the same location, illustrating the more robust nature of the SST estimate (due to
its taking into account phase information of the wFT in a neighborhood of the peaks of the absolute
value of the wFT as well as the peak values). For comparison, the positions of the red circles are
the same as in (b). The peaks are displaced in wFT due to noise, while the result of SST is not
affected.

automatic method. Note that visual inspection confirms the presence of these fine details.

We next consider a painting of Vermeer, Woman in Blue Reading a Letter (L17), the X-ray

image of which is also available as part of the RKD dataset [144]. The canvas analysis for Vermeer’s

paintings is considerably more challenging than that of van Gogh’s [121]. This can be understood

by direct comparison of the X-ray images in Figures 6.22b and 6.22a. The stretchers and nails

significantly perturb the X-ray image for the Vermeer. The results are shown in Figures 6.24 and

6.25. Although the thread count and angle estimate are affected by artifacts in the X-ray image,

they still provide a detailed characterization of the canvas weave. This is justified by the result
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(a) X-ray image, van Gogh’s
F205

(b) X-ray image, Vermeer’s
L17

Figure 6.22: (a) X-ray image of van Gogh’s painting Portrait of an Old Man with Beard, 1885, Van
Gogh Museum, Amsterdam (F205); (b) X-ray image of Vermeer’s painting Woman in Blue Reading
a Letter, 1663-64, Rijksmuseum Amsterdam, Amsterdam (L17). X-ray images provided by Professor
C. Richard Johnson through the RKD dataset [144].

in Figure 6.25, which shows a zoom-in for the X-ray image and the vertical thread angle map. It

is observed that the algorithm captures (and quantifies) detailed deviations in the vertical thread

angle recognizable by visual inspection. Despite the challenges, the 2D SST-based canvas analysis

performs quite well on the Vermeer example.

To test the algorithm on a different type of canvas weave, we applied it to the X-ray image of

Albert P. Ryder’s The Pasture, a painting on twill canvas. Figure 6.26 shows the result for a portion

of the canvas. The twill canvas pattern is clear on the zoomed-in X-ray image. The method is still

able to capture fine scale features of the canvas; the admittedly higher number of artifacts is due to

the increased difficulty to “read” a twill vs. a standard weave pattern, as well as a weaker canvas

signal on the X-ray.

For our final example, we apply the 2D SST-based canvas analysis to The Peruzzi Altarpiece

by Giotto di Bondone and his assistants. The altarpiece is in the collection of the North Carolina

Museum of Art; see Figure 6.27 for the altarpiece as well as the X-ray images used in the analysis.

This is a painting on wood panel, but the ground of traditional white gesso was applied over a

coarsely woven fabric interlayer glued to a poplar panel. We carried out a canvas analysis on the

fabric interlayer, likely a hand woven linen cloth. The results of a canvas analysis based on the

synchrosqueezed transform are shown in Figure 6.29. This example is much more challenging than

the previous ones, since the X-ray intensity contributed by the canvas is much weaker because the

ground does not contain lead; see e.g., Figure 6.28, a detail of the X-ray image of the Christ panel.

The canvas is barely visible, in sharp contrast to the X-ray images in, e.g., Figures 6.21a or 6.25.

All panels except the central Christ panel are cradled; the wood texture of these cradles interferes
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Figure 6.23: The canvas analysis results of van Gogh’s F205 using the synchrosqueezed transform:
(a) and (b): thread count map of the horizontal and vertical threads; (c) and (d): the estimated
thread angle. Compare with [104, Figure 6].

with the canvas pattern on the X-ray image, introducing an additional difficulty. This difficulty is

reflected in our results: e.g., the vertical thread count for the central panel has much fewer artifacts

than those of the other panels (see Figure 6.29). [In future work, we will explore carrying out a

canvas analysis after signal-processing-based virtual cradle removal – see [187].]

One interesting ongoing art investigation debate concerning this altarpiece is the relative position

of the panels of John the Baptist and Francis of Assisi. While the order shown in Figure 6.27, with

Francis in the right-most position, and the Baptist second from right, is the most commonly accepted

[149], there have been alternative arguments that the Francis panel should be instead placed next to

the central panel. Typically the grain of the wood as seen in X-rays can be used to set the relative

position of panels in an altarpiece painted on a single plank of wood, but because the cradle pattern

obscures an accurate reading of the X-rays of the Baptist and Francis this proposed alternative

orientation can not be discounted. We wondered what ordering (if any) would be suggested by the
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Figure 6.24: Canvas analysis results of Vermeer’s L17 using the synchrosqueezed transform: (a) and
(b) are thread count map of the horizontal and vertical threads; (c) and (d) show the estimated
thread angle. Average thread density is 14.407 threads/cm (horizontal) and 14.817 threads/cm
(vertical). The boxed region of the vertical thread angle map (panel (d)) is shown, enlarged, in
Figure 6.25; it is part of a striking anomaly in the vertical angle pattern in this canvas, lining up
along one vertical traversing the whole canvas.



CHAPTER 6. APPLICATIONS 171

(a) X-ray image (zoomed-in) (b) Vertical thread angle
(zoomed-in)

Figure 6.25: Details of the X-ray image and the corresponding vertical thread angle map for Ver-
meer’s L17, highlighting two examples (boxed regions) of noticeable fine scale variation of the vertical
thread angle, readily recognizable also by visual inspection of the corresponding zones in the X-ray
image.

canvas analysis. Under the assumption that the pieces of canvas are cut off consecutively from one

larger piece of cloth, we investigated which arrangement provides the best matching. One plausible

arrangement of the canvas is shown in Figure 6.30. Our analysis suggests that the canvas of the

central panel should be rotated for 90 degrees clockwise to match with the other panels. (The larger

height of the central panel, possibly exceeding the width of the cloth roll, may have necessitated

this.) Moreover, a better matching is achieved if the canvas of the panel of the Baptist is flipped

horizontally (in other words, flipped front to back). Given our results, it seems unlikely that the

Francis-panel canvas would fit best to the left of the Baptist-panel canvas. A better, more precise

result will be possible after virtual cradle removal. Of course, even a more thorough canvas roll

arrangement would not be conclusive evidence for the relative position of the panels themselves; but

combined with other elements in a more exhaustive study, it can play a significant role.

6.2.5 Conclusion

We apply 2D synchrosqueezed transforms to quantitative canvas weave analysis for art investigations.

The synchrosqueezed transforms offer a sharpened phase-space representation of the X-ray image of

the paintings, which yields fine scale characterization of thread count and thread angle of the canvas.

We demonstrated the effectiveness of the method on art works by van Gogh, Vermeer, and Ryder.

The tool is applied to The Peruzzi Altarpiece by Giotto and his assistants, to provide insight into

the issue of panel arrangement. A software package has been developed and available freely online

to help conservators investigate canvas painting.
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(a) X-ray image (b) X-ray image (zoomed-in)
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Figure 6.26: (a) X-ray image of Albert P. Ryder’s The Pasture, 1880-85, North Carolina Museum of
Art, Raleigh. (b) is an enlargement of the red-boxed region, with clearly recognizable twill canvas
weave. (c) and (d) show the thread count maps corresponding to the zoomed-in region shown in
(b). Note the much higher thread counts than for plain weave canvas, typical for the finer threads
used in twill weave. The bottom-right insets of (b), (c) and (d) show the further zoom-in of the
green-boxed region for visual inspection. The horizontal thread count matches the changes observed
in the X-ray image quite well.
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Figure 6.27: Giotto di Bondone and assistants, The Peruzzi Altarpiece, ca. 1310-15, North Carolina
Museum of Art, Raleigh. The panels from left to right are John the Evangelist, the Virgin Mary,
Christ in Majesty, John the Baptist, and Francis of Assisi. The resolution of the X-ray image used
in the analysis is 300 DPI. The vertical and (less obvious) horizontal stripes on the X-ray images in
all panels except the central panel of Christ are caused by cradling. Each X-ray image is a mosaic
of 4 X-ray films, leading to visible boundaries of the different pieces (thin horizontal and vertical
lines) on the X-ray image.

Figure 6.28: A zoomed-in X-ray image of the central panel in The Peruzzi Altarpiece. The canvas
texture is barely visible, even though the image is scaled such that the thread density is comparable
with that of the zoomed-in X-ray in Figure 6.25.
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Figure 6.29: Canvas analysis result of the Giotto altarpiece. First row: deviation of vertical thread
angle; second row: deviation of vertical thread count; third row: deviation of horizontal thread
angle; fourth row: deviation of horizontal thread count. The panels are in the same order as in
Figure 6.27.
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Figure 6.30: A candidate canvas matching and arrangement for The Peruzzi Altarpiece by Giotto
and his assistants. Top row: deviation of weft thread angle. Bottom row, deviation of warp thread
count. (The weft thread count and warp thread angle are not shown as they are less helpful in
inferring a possible arrangement.) The canvas pieces from left to right correspond to the panels for
John the Evangelist, the Virgin Mary, Christ in Majesty, John the Baptist, and Francis of Assisi
(in that order). The canvas of the central panel is rotated clockwise by 90 degrees, and that of the
Baptist is flipped horizontally.



Chapter 7

Conclusions of Part I

7.1 Summary

The first part of this thesis has introduced a few new algorithms that enable accurate, efficient and

reasonably robust data analysis involving nonlinear wave phenomenon. These algorithms can be

widely applied in various areas. In geophysics, they can be applied to problems like seismic wave

field separation, ground-roll removal and seismic imaging. In biological and clinical study, they can

analyze oscillatory cellular behaviors, tissue level patterns and organism clocks. In astronomy, they

can help to solve the gravitational wave detection problem. In materials science, they have been

applied to atomic crystal analysis. In art forensics, a new method for painting canvas analysis has

been established based on our algorithms. In most cases, our algorithms are significantly faster than

the existing state-of-art algorithms and obtain better results. In some difficult examples, we still

achieve reliable results efficiently.

7.2 Future Work

Oscillatory data analysis has been an active research line in the past two decades and many important

problems remain open. The robustness analysis in [183] suggests that a more adaptive time-frequency

transform would lead to a better SST. A good alternative is the chirplet transform [20, 30, 29]. It

is possible to develop a more robust method for oscillatory data analysis based on the chirplet

transform. Another important issue is to develop methods to handle crossover frequencies, i.e.

∇φk(x) = ∇φj(x) for some k 6= j at some point x. Although this is an ill-posed problem, it

is very important in real applications. In terms of statistical detection with heavy noise, there

is relatively little study on multi-component detection. In real data, there are probably several

oscillatory components hidden in a heavily noisy background. Hence, it is significant to establish

a novel statistical theory for multi-component detection. In terms of denoising, statistics theory

176



CHAPTER 7. CONCLUSIONS OF PART I 177

and numerical tools for denoising smooth or sparse objects have been well established. However,

they all focus on constructing a good approximation for the given signal. In some oscillatory data

analysis, engineers are more interested in a good approximation for the phase function in the wave-

like component.



Part II

Fast Algorithms for Integral

Operators in Harmonic Analysis
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Chapter 8

Introduction

One of the key problems in computational harmonic analysis is the rapid evaluation of the dense

matrix-vector multiplication arising from integral operators in harmonic analysis of the form

L(g(ξ))(x) =

∫
Ω

K(x, ξ)g(ξ)dξ for x ∈ X. (8.1)

There are numerous useful integral transforms of this form in science and engineering. Some famous

examples are the Fourier transform and the Laplacian transform. Suppose N is the number of grid

points in each dimension, then after discretization the problem in (8.1) becomes a matrix-vector

multiplication

u = Kg (8.2)

where K ∈ CNd×Nd is the discrete analogue of the kernel function K(x, ξ), g ∈ CNd is an input

vector, u ∈ CNd is an output vector, and d is the dimension of the problem.

The application of these transforms may be very expensive due to mainly three reasons that

could result in a large matrix-vector multiplication with a dense matrix K. Different from linear

systems coming from the discretization of partial differential equation, the matrix K representing

the integral kernel K(x, ξ) are usually dense. In the singular integral transform for which the kernel

function K(x, ξ) is singular at some points, it requires a large N to guarantee good numerical

accuracy to characterize the singularity. There are also a wide range of integral transforms with

highly oscillatory kernels. By the Nyquist-Shannon sampling theorem, N has be sufficiently large

such that the discrete analogue u = Kg can approximate the continuous integral in (8.1) precisely.

Given a matrix K ∈ CNd×Nd and a vector g ∈ CNd , the direct computation of the vector

u = Kg ∈ CNd takes O(N2d) operations since each entry of K contributes to the result. The

application of K becomes prohibitive when N is large. A lot of work has been devoted to performing

this computation more efficiently without sacrificing the accuracy. Such a reduction in computational
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complexity depends highly on the algebraic and numerical properties of the matrix K. For certain

types of matrices K, such as the Fourier matrix, numerically low-rank matrices, hierarchically semi-

separable (HSS) matrices [177], and hierarchical matrices [82, 122], there exist fast algorithms for

computing Kg accurately in O(Nd logN) or even O(Nd) operations.

In this part of the thesis, we propose several fast algorithms to accelerate the application of large

K when it satisfies a special low-rank property. For such a matrix, the rows are typically indexed

by a set of points, say X, and the columns by another set of points, say Ω. Both X and Ω are often

point sets in Rd for some dimension d. Associated with X and Ω are two hierarchical trees TX and

TΩ, respectively and both trees are assumed to have the same depth L = O(logN), with the top

level being level 0 and the bottom one being level L. Such a matrix K of size Nd × Nd is said to

satisfy the complementary low-rank property if for any level `, any node A in TX at level `, and

any node B in TΩ at level L− `, the submatrix KA,B , obtained by restricting K to the rows indexed

by the points in A and the columns indexed by the points in B, is numerically low-rank, i.e., for

a given precision ε there exists a low-rank approximation of KA,B with the 2-norm error bounded

by ε and the rank bounded polynomially in logN and log(1/ε). In many applications, one can even

show that the rank is only bounded polynomially in log(1/ε) and is independent of N . Similarly,

it is straightforward to generalize the concept of the complementary low-rank property to a matrix

with different row and column dimensions. A well-known example of the complementary low-rank

matrices is the matrix representation of a nonuniform Fourier transform.

In general, a matrix K coming from real applications may not satisfy the complementary low-rank

property in the whole domain X×Ω, but the property is true locally in X×Ω. For example, a kernel

K(x, ξ) = e2πıΦ(x,ξ) coming from a two-dimensional Fourier integral operator (FIO) [21, 22, 119]

may not have a discrete analogue that is complementary low-rank due to the possible singularity of

Φ(x, ξ) at ξ = 0. The FIO kernel K(x, ξ) is complementary low-rank in a subdomain X×Ωj ⊂ X×Ω

with ξ = 0 away from Ωj . There are mainly two methods to deal with this irregularity at ξ = 0.

One idea is to apply a well-designed transformation mapping the domain X ×Ω into a new domain

X × P such that ξ = 0 is mapped to the boundary of P . After this transformation, the new kernel

function defined on X × P would be complementary low-rank and our proposed fast algorithms are

applicable. Another idea is to partition X × Ω into a sequence of subdomains X × Ωj such that

the kernel function K(x, ξ) is complementary low-rank in each subdomain. Thus, we can apply the

proposed fast algorithms to apply K(x, ξ) efficiently in each subdomain.

We will introduce two kinds of fast algorithms for complementary low-rank matrices. In the first

situation, we assume that an explicit kernelK(x, ξ) is known, e.g., an FIO kernelK(x, ξ) = e2πıΦ(x,ξ),

and the kernel is applied to only a few input functions. In this situation, we propose a multiscale

butterfly algorithm to efficiently evaluate

u(x) =

∫
Ω

e2πıΦ(x,ξ)g(ξ)dξ for x ∈ X.
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The multiscale butterfly algorithm requires only O(Nd logN) operations and O(Nd) memory to

evaluate the above integral without precomputation. The complexity has a prefactor smaller than

the well-known butterfly algorithm for FIOs in [22]. The multiscale butterfly algorithm can be

extended to evaluate (8.1) if K(x, ξ) is complementary low-rank away from ξ = 0.

In the second situation, we assume that the complementary low-rank matrix K is repeatedly

applied to a large number of input vectors or functions. This assumption is motivated by fast

sweeping methods for Helmholtz equations and iterative methods for Kirchoff migration in which K

is repeatedly applied. In this situation, we propose the butterfly factorization, which represents

K as a product of L+ 3 sparse matrices:

K ≈ ULGL−1 · · ·GL/2ML/2(HL/2)∗ · · · (HL−1)∗(V L)∗, (8.3)

where the depth L = O(logN) of TX and TΩ is assumed to be even, and all factors are sparse

matrices with O(Nd) nonzero entries. Once the butterfly factorization has been constructed, storing

and applying K only requires O(Nd logN) complexity with a small prefactor. The construction of

the butterfly factorization is problem-dependent. We consider two cases that are quite common in

applications:

1. Only black-box routines for computing Kg and K∗g in O(Nd logN) operations are given.

2. Only a black-box routine for evaluating any entry of the matrix K in O(1) operations is given.

In the first case, the butterfly factorization can be constructed in O(N1.5d logN) operations with

O(N1.5d) memory complexity. In the second case, the operation and memory complexity for the

construction is O(N1.5d) and O(Nd logN), respectively.

The rest of this thesis is organized as follows. In Chapter 9, we introduce the multiscale butterfly

algorithm for FIOs. The application of this algorithm to other complementary low-rank kernels is

straightforward. In Chapter 10, we start introducing the butterfly factorization for complementary

low-rank matrices coming from one-dimensional problems. The butterfly factorization for multi-

dimensional complementary low-rank matrices is introduced in Chapter 11. We close this part of

thesis with a conclusion in Chapter 12.



Chapter 9

Multiscale Butterfly Algorithm

9.1 Introduction

This chapter is concerned with the rapid application of

(Lg)(x) =

∫
Rd
K(x, ξ)g(ξ)dξ, (9.1)

where g(ξ) is an input function, K(x, ξ) is a complementary low-rank kernel or a kernel that is

complementary low-rank away from ξ = 0. A famous example is the Fourier integral operators

(FIOs), which are defined as

(Lf)(x) =

∫
Rd
a(x, ξ)e2πiΦ(x,ξ)f̂(ξ)dξ, (9.2)

where

• a(x, ξ) is an amplitude function that is smooth in both x and ξ,

• Φ(x, ξ) is a phase function that is smooth in (x, ξ) for ξ 6= 0 and obeys the homogeneity

condition of degree 1 in ξ, namely, Φ(x, λξ) = λΦ(x, ξ) for each λ > 0, and

• f̂ is the Fourier transform of the input f defined by

f̂(ξ) =

∫
Rd
e−2πix·ξf(x)dx.

We will focus on the two-dimensional FIOs to introduce the multiscale butterfly algorithm to evaluate

(9.2) efficiently. This is joint work with Yingzhou Li and Lexing Ying in [119]. Extending this

algorithm to other complementary low-rank kernels in (9.1) is straightforward. In a typical setting,

it is often assumed that the problem is periodic (i.e., a(x, ξ), Φ(x, ξ), and f(x) are all periodic in x)

182
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or the function f(x) decays sufficiently fast so that one can embed the problem in a sufficiently large

periodic cell. A simple discretization in two dimensions considers functions f given on a Cartesian

grid

X =
{
x =

(n1

N
,
n2

N

)
, 0 ≤ n1, n2 < N with n1, n2 ∈ Z

}
(9.3)

in a unit square and defines the discrete Fourier integral operator by

(Lf)(x) =
∑
ξ∈Ω

a(x, ξ)e2πiΦ(x,ξ)f̂(ξ), x ∈ X,

where

Ω =

{
ξ = (n1, n2),−N

2
≤ n1, n2 <

N

2
with n1, n2 ∈ Z

}
, (9.4)

and f̂ is the discrete Fourier transform of f

f̂(ξ) =
1

N2

∑
x∈X

e−2πix·ξf(x).

In most examples, since a(x, ξ) is a smooth symbol of order zero and type (1, 0) [11, 21, 51, 88,

181], a(x, ξ) is numerically low-rank in the joint X and Ω domain and its numerical treatment is

relatively easy. Therefore, we will simplify the problem by assuming a(x, ξ) = 1 in the following

analysis and the algorithm description. We refer the reader to [22] for discussion on how to deal

with a nonconstant amplitude function. Under this assumption, the discrete FIO discussed in this

chapter takes the following form:

(Lf)(x) =
∑
ξ∈Ω

e2πiΦ(x,ξ)f̂(ξ), x ∈ X. (9.5)

A direct computation of (9.5) takes O(N4) operations, which is quadratic in the number of degrees

of freedom, N2. Hence, a practical need is to design efficient and accurate algorithms to evaluate

(9.5). This research topic is of great interest for computing wave equations especially in geophysics

[52, 95, 157, 186].

9.1.1 Previous Work

An earlier method for the rapid computation of general FIOs is the algorithm for two-dimensional

problems proposed in [21]. This method starts by partitioning the frequency domain Ω into O(
√
N)

wedges of equal angle. The integral (9.5) restricted to each wedge is then factorized into two compo-

nents, both of which can be handled efficiently. The first one has a low-rank structure that leads to

an O(N2 logN) fast computation, while the second one is a non-uniform Fourier transform which

can be evaluated in O(N2 logN) steps with the algorithms developed in [3, 60, 140]. Summing the



CHAPTER 9. MULTISCALE BUTTERFLY ALGORITHM 184

computational cost over all O(
√
N) wedges gives an O(N2.5 logN) computational cost.

Shortly after, an algorithm with quasilinear complexity for general FIOs was proposed in [22]

using the framework of the butterfly algorithms in [132, 138]. This approach introduces a polar coor-

dinate transformation in the frequency domain to remove the singularity of Φ(x, ξ) at ξ = 0, proves

the existence of low-rank separated approximations between certain pairs of spatial and frequency

domains, and implements the low-rank approximations with oscillatory Chebyshev interpolations.

The resulting algorithm evaluates (9.5) with O(N2 logN) operations and O(N2) memory, both

essentially linear in terms of the number of unknowns.

Another related research direction seeks sparse representations of the FIOs using modern basis

functions from harmonic analysis. A sparse representation allows fast matrix-vector products in

the transformed domain. Local Fourier transforms [10, 15, 40], wavelet-packet transforms [99], the

curvelet transform [19, 23, 24, 25], the wave atom frame [49, 50], and the wave packet frame [4, 45]

have been investigated for the purpose of operator sparsification. In spite of favorable asymptotic

behaviors, the actual representations of the FIOs typically have a large prefactor constant in terms

of both the computational time and the memory requirement. This makes them less competitive

compared to the approaches in [21, 22].

9.1.2 Motivation

The main motivation of the current work is to improve the performance of the butterfly algorithm in

[22]. As we pointed out earlier, this algorithm starts by applying a polar coordinate transformation

in the frequency domain to remove the singularity of the phase function at ξ = 0. For this reason,

we refer the reader to this algorithm as the polar butterfly algorithm. More precisely, the polar

butterfly algorithm introduces a polar-Cartesian coordinate transformation T : (p1, p2) → (ξ1, ξ2)

such that

ξ = (ξ1, ξ2) =

√
2

2
Np1e

2πip2 , e2πip2 = (cos 2πp2, sin 2πp2). (9.6)

Let P = T−1(Ω). By definition, each point p = (p1, p2) ∈ P belongs to [0, 1]2. The new phase

function Ψ(x, p) in the p variable is now given by

Ψ(x, p) :=
1

N
Φ(x, ξ) =

√
2

2
Φ(x, e2πip2)p1, (9.7)

where the last identity comes from the homogeneity of Φ(x, ξ) in ξ. Thus, computing (9.5) is

equivalent to evaluate

(Lf)(x) =
∑
ξ∈Ω

e2πiΦ(x,ξ)f̂(ξ) =
∑
p∈P

e2πiNΨ(x,p)f̂(T (p)). (9.8)
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The new phase function Ψ(x, p) is smooth in the whole domain (x, p) ⊂ [0, 1]2× [0, 1]2, since Φ(x, ξ)

is smooth in (x, ξ) for ξ 6= 0. This smoothness guarantees a low-rank separated approximation

of e2πiNΨ(x,p) when x and p are properly restricted to certain subdomains in X × P under certain

geometric configuration. This low-rank property allows for the application of the butterfly algorithm

in [188] and results in a fast algorithm with an O(N2 logN) computational complexity and an O(N2)

memory complexity.

However, the application of this polar-Cartesian transformation comes with several drawbacks,

which result in a large prefactor of the computational complexity. First, due to the polar grid in

the frequency domain, the points in P for the butterfly algorithm are irregularly distributed and a

separate Chebyshev interpolation matrix is required for the evaluation at each point. In order to

avoid the memory bottleneck from storing these interpolation matrices, the polar butterfly algorithm

generates these interpolation matrices on-the-fly during the evaluation. This turns out to be expen-

sive in the operation count. Second, since the amplitude and phase functions are often written in

the Cartesian coordinates, the polar butterfly algorithm applies the polar-Cartesian transformation

for each kernel evaluation. Finally, in order to maintain a reasonable accuracy, the polar butterfly

algorithm divides the frequency domain into multiple parts and applies the same butterfly algorithm

to each part separately. This also increases the actual running time by a nontrivial constant factor.

9.1.3 Our Contribution

Those drawbacks of the polar butterfly algorithm motivate us to propose a multiscale butterfly

algorithm using a Cartesian grid both in the spatial and the frequency domains. To deal with the

singularity of the kernel Φ(x, ξ) at ξ = 0, we hierarchically decompose the frequency domain into

a union of nonoverlapping Cartesian coronas with a common center ξ = 0 (see Figure 9.1). More

precisely, define

Ωj =

{
(n1, n2) :

N

2j+1
< max(|n1|, |n2|) ≤

N

2j

}
∩ Ω

for j = 1, . . . , logN − s, where s is just a small constant integer. The domain Ωd = Ω \ ∪jΩj is the

remaining square grid at the center of constant size. Following this decomposition of the frequency

domain, one can write (9.5) accordingly as

(Lf)(x) =
∑
j

∑
ξ∈Ωj

e2πiΦ(x,ξ)f̂(ξ)

+
∑
ξ∈Ωd

e2πiΦ(x,ξ)f̂(ξ). (9.9)

The kernel function of (9.9) is smooth in each subdomain Ωj and a Cartesian butterfly algo-

rithm is applied to evaluate the contribution from Ωj . For the center square Ωd, since it contains

only a constant number of points, a direct summation is used. Because of the multiscale nature

of the frequency domain decomposition, we refer to this algorithm as the multiscale butterfly
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Ω1 Ω2

· · ·

· · · ΩlogN−s Ωd

Figure 9.1: This figure shows the frequency domain decomposition of Ω. Each subdomain Ωj ,
j = 1, . . . , logN − s, is a corona and Ωd is a small square domain near the origin.

algorithm. As we shall see, the computational and memory complexity of the multiscale butterfly

algorithm are still O(N2 logN) and O(N2), respectively. On the other hand, the prefactors are much

smaller, since the multiscale butterfly is based on the Cartesian grids and requires no polar-Cartesian

transformation.

9.1.4 Organization

The rest of this chapter is organized as follows. Section 9.2 presents the overall structure of a but-

terfly algorithm. Section 9.3 proves a low-rank property that is essential to the multiscale butterfly

algorithm. Section 9.4 combines the results of the previous two sections and describes the multiscale

butterfly algorithm in detail. In Section 9.5, numerical results of several examples are provided to

demonstrate the efficiency of the multiscale butterfly algorithm. Finally, we conclude this chapter

with some discussion in Section 9.6.

9.2 The Butterfly Algorithm

This section provides brief description of the overall structure of the butterfly algorithm. In this

section, X and Ω refer to two general sets of M points in R2, respectively. We assume the points in

these two sets are distributed quasi-uniformly but they are not necessarily the sets defined in (9.3)

and (9.4).

Given an input {g(ξ), ξ ∈ Ω}, the goal is to compute the potentials {u(x), x ∈ X} defined by

u(x) =
∑
ξ∈Ω

K(x, ξ)g(ξ), x ∈ X,

where K(x, ξ) is a kernel function. Let DX ⊃ X and DΩ ⊃ Ω be two square domains containing X
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and Ω respectively. The main data structure of the butterfly algorithm is a pair of quadtrees TX and

TΩ. Having DX as its root box, the tree TX is built by recursive dyadic partitioning of DX until each

leaf box contains only a few points. The tree TΩ is constructed by recursively partitioning in the

same way. With the convention that a root node is at level 0, a leaf node is at level L = O(logM)

under the quasi-uniformity condition about the point distributions, where M is the number of points

in X and Ω. Throughout, we shall use A and B to denote the square boxes of TX and TΩ with `A

and `B denoting their levels, respectively.

At the heart of the butterfly algorithm is a special low-rank property. Consider any pair of boxes

A ∈ TX and B ∈ TΩ obeying the condition `A + `B = L. The butterfly algorithm assumes that the

submatrix {K(x, ξ)}x∈A,ξ∈B to be approximately of a constant rank. More precisely, for any ε, there

exist a constant rε independent of M and two sets of functions {αABt (x)}1≤t≤rε and {βABt (ξ)}1≤t≤rε
such that the following holds:∣∣∣∣∣K(x, ξ)−

rε∑
t=1

αABt (x)βABt (ξ)

∣∣∣∣∣ ≤ ε, ∀x ∈ A,∀ξ ∈ B. (9.10)

The number rε is called the ε-separation rank. The exact form of the functions {αABt (x)}1≤t≤rε and

{βABt (ξ)}1≤t≤rε of course depends on the problem to which the butterfly algorithm is applied.

For a given square B in DΩ, define uB(x) to be the restricted potential over the sources ξ ∈ B

uB(x) =
∑
ξ∈B

K(x, ξ)g(ξ).

The low-rank property gives a compact expansion for {uB(x)}x∈A, as summing (9.10) over ξ ∈ B
with weights g(ξ) gives∣∣∣∣∣∣uB(x)−

rε∑
t=1

αABt (x)

∑
ξ∈B

βABt (ξ)g(ξ)

∣∣∣∣∣∣ ≤
∑
ξ∈B

|g(ξ)|

 ε, ∀x ∈ A.

Therefore, if one can find coefficients {δABt }1≤t≤rε obeying

δABt ≈
∑
ξ∈B

βABt (ξ)g(ξ), 1 ≤ t ≤ rε, (9.11)

then the restricted potential {uB(x)}x∈A admits a compact expansion

∣∣∣∣∣uB(x)−
rε∑
t=1

αABt (x)δABt

∣∣∣∣∣ ≤
∑
ξ∈B

|g(ξ)|

 ε, ∀x ∈ A.

A key point of the butterfly algorithm is that for each pair (A,B), the number of terms in the
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expansion is independent of M .

Computing {δABt }1≤t≤rε by means of (9.11) for all pairs A,B is not efficient when B is a large

box because for each B there are many paired boxes A. The butterfly algorithm, however, comes

with an efficient way of computing {δABt }1≤t≤rε recursively. The general structure of the algorithm

consists of a top down traversal of TX and a bottom up traversal of TΩ, carried out simultaneously.

1. Construct the trees TX and TΩ with root nodes DX and DΩ.

2. Let A be the root of TX . For each leaf box B of TΩ, construct the expansion coefficients

{δABt }1≤t≤rε for the potential {uB(x)}x∈A by simply setting

δABt =
∑
ξ∈B

βABt (ξ)g(ξ), 1 ≤ t ≤ rε. (9.12)

3. For ` = 1, 2, . . . , L, visit level ` in TX and level L− ` in TΩ. For each pair (A,B) with `A = `

and `B = L−`, construct the expansion coefficients {δABt }1≤t≤rε for the potential {uB(x)}x∈A
using the low-rank representation constructed at the previous level (` = 0 is the initialization

step). Let P be A’s parent and C be a child of B. Throughout, we shall use the notation

C � B when C is a child of B. At level ` − 1, the expansion coefficients {δPCs }1≤s≤rε of

{uC(x)}x∈P are readily available and we have

∣∣∣∣∣uC(x)−
rε∑
s=1

αPCs (x)δPCs

∣∣∣∣∣ ≤
∑
ξ∈C

|g(ξ)|

 ε, ∀x ∈ P.

Since uB(x) =
∑
C�B u

C(x), the previous inequality implies that

∣∣∣∣∣uB(x)−
∑
C�B

rε∑
s=1

αPCs (x)δPCs

∣∣∣∣∣ ≤
∑
ξ∈B

|g(ξ)|

 ε, ∀x ∈ P.

Since A ⊂ P , the above approximation is of course true for any x ∈ A. However, since `A+`B =

L, the sequence of restricted potentials {uB(x)}x∈A also has a low-rank approximation of size

rε, namely, ∣∣∣∣∣uB(x)−
rε∑
t=1

αABt (x)δABt

∣∣∣∣∣ ≤
∑
ξ∈B

|g(ξ)|

 ε, ∀x ∈ A.

Combining the last two approximations, we obtain that {δABt }1≤t≤rε should obey

rε∑
t=1

αABt (x)δABt ≈
∑
C�B

rε∑
s=1

αPCs (x)δPCs , ∀x ∈ A. (9.13)

This represents an overdetermined linear system for {δABt }1≤t≤rε in cases when {δPCs }1≤s≤rε,C�B
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Figure 9.2: Hierarchical domain trees of the two-dimensional butterfly algorithm. Left: TX for the
spatial domain DX . Right: TΩ for the frequency domain DΩ. The interactions between subdomains
A ⊂ DX and B ⊂ DΩ are represented by left-right arrow lines.

are available. Instead of computing {δABt }1≤t≤rε with a least-square method, the butterfly al-

gorithm typically uses an efficient linear transformation approximately mapping {δPCs }1≤s≤rε,C�B
into {δABt }1≤t≤rε . The actual implementation of this step is very much application-dependent.

4. Finally, let ` = L and set B to be the root node of TΩ. For each leaf box A ∈ TX , use the

constructed expansion coefficients {δABt }1≤t≤rε to evaluate u(x) for each x ∈ A,

u(x) =

rε∑
t=1

αABt (x)δABt . (9.14)

A schematic illustration of this algorithm is provided in Figure 9.2. We would like to emphasize

that the strict balance between the levels of the target boxes A and source boxes B maintained

throughout this procedure is the key to obtaining the accurate low-rank separated approximations.

9.3 Low-Rank Approximations

In this section, the sets X and Ω refer to the sets defined in (9.3) and (9.4). In order to apply

the algorithm in Section 9.5, one would require the existence of the following low-rank separated

representation:

e2πiΦ(x,ξ) ≈
rε∑
t=1

αABt (x)βABt (ξ)

for any pair of boxes A and B such that `A + `B = L. However, this is not true for a general FIO

kernel e2πiΦ(x,ξ) due to the singularity of Φ(x, ξ) at the origin ξ = 0, i.e., when the square B in Ω is

close to the origin of the frequency domain. However, if the frequency domain B is well separated

from the origin ξ = 0 in a relative sense, one can prove a low-rank separated representation.

In order to make it more precise, for two given squares A ⊂ X and B ⊂ Ω, we introduce a new
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function called the residue phase function

RAB(x, ξ) := Φ(x, ξ)− Φ(cA, ξ)− Φ(x, cB) + Φ(cA, cB), (9.15)

where cA and cB are the centers of A and B respectively. Using this new definition, the kernel can

be written as

xe2πiΦ(x,ξ) = e2πiΦ(cA,ξ)e2πiΦ(x,cB)e−2πiΦ(cA,cB)e2πiRAB(x,ξ). (9.16)

Theorem 9.3.1. Suppose Φ(x, ξ) is a phase function that is real analytic for x and ξ away from

ξ = 0. There exist positive constants ε0 and N0 such that the following is true. Let A and B be two

squares in X and Ω, respectively, obeying wAwB ≤ 1 and dist(B, 0) ≥ N
4 . For any positive ε ≤ ε0

and N ≥ N0, there exists an approximation∣∣∣∣∣e2πiRAB(x,ξ) −
rε∑
t=1

α̃ABt (x)β̃ABt (ξ)

∣∣∣∣∣ ≤ ε
for x ∈ A and ξ ∈ B with rε . log4( 1

ε ). Moreover,

• when wB ≤
√
N , the functions {β̃ABt (ξ)}1≤t≤rε can all be chosen as monomials in (ξ − cB)

with a degree not exceeding a constant times log2(1/ε),

• and when wA ≤ 1/
√
N , the functions {α̃ABt (x)}1≤t≤rε can all be chosen as monomials in

(x− cA) with a degree not exceeding a constant times log2(1/ε).

In Theorem 9.3.1, wA and wB denote the side lengths of A and B, respectively; dist(B, 0) denotes

the distance between the square B and the origin 0 in the frequency domain. The distance is given

by dist(B, 0) = minξ∈B ‖ξ − 0‖. Throughout this chapter, when we write O(·), . and &, the implicit

constant is independent of N and ε.

Proof. Since wAwB ≤ 1, we have either wA ≤ 1/
√
N or wB ≤

√
N , or we have both.

Let us first consider the case wB ≤
√
N . Then

RAB(x, ξ) = Φ(x, ξ)− Φ(cA, ξ)− Φ(x, cB) + Φ(cA, cB)

= [Φ(x, ξ)− Φ(cA, ξ)]− [Φ(x, cB)− Φ(cA, cB)]

= H(x, ξ)−H(x, cB),

where H(x, ξ) := Φ(x, ξ) − Φ(cA, ξ). The function RAB(x, ξ) inherits the smoothness from Φ(x, ξ).

Applying the multivariable Taylor expansion of degree k in ξ centered at cB gives

RAB(x, ξ) =
∑

1≤|i|<k

∂iξH(x, cB)

i!
(ξ − cB)i +

∑
|i|=k

∂iξH(x, ξ∗)

i!
(ξ − cB)i, (9.17)
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where ξ∗ is a point in the segment between cB and ξ. Here i = (i1, i2) is a multi-index with i! = i1!i2!,

and |i| = i1 + i2. Let us first choose the degree k so that the second sum in (9.17) is bounded by

ε/(4π). For each i with |i| = k, the definition of H(x, ξ) gives

∂iξH(x, ξ∗) =
∑
|j|=1

∂jx∂
i
ξΦ(x∗, ξ∗)(x− cA)j ,

for some point x∗ in the segment between cA and x. Using the fact that Φ(x, ξ) is real-analytic over

|ξ| = 1 gives that there exists a radius R such that

|∂jx∂iξΦ(x, ξ)| ≤ Ci!j! 1

R|i+j|
= Ci!j!

1

Rk+1
,

for ξ with |ξ| = 1. Here the constant C is independent of k. Since Φ(x, ξ) is homogeneous of degree

1 in ξ, a scaling argument shows that

|∂jx∂iξΦ(x∗, ξ∗)| ≤ Ci!j! 1

Rk+1|ξ∗|k−1
.

Since dist(B, 0) ≥ N/4 and wAwB ≤ 1, we have∣∣∣∣∣∂iξH(x, ξ∗)

i!
(ξ − cB)i

∣∣∣∣∣ ≤ 2Ci!j!

i!

1

Rk+1|ξ∗|k−1
wAw

k
B ≤

2C

Rk+1

(
4√
N

)k−1

.

Combining this with (9.17) gives∣∣∣∣∣∣RAB(x, ξ)−
∑

1≤|i|<k

∂iξH(x, cB)

i!
(ξ − cB)i

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
|i|=k

∂iξH(x, ξ∗)

i!
(ξ − cB)i

∣∣∣∣∣∣ ≤ 2C(k + 1)

Rk+1

(
4√
N

)k−1

.

Therefore, for a sufficient large N0(R), if N > N0(R), choosing k = kε = O(log(1/ε)) ensures that

the difference is bounded by ε/(4π).

The special case k = 1 results in the following bound for RAB(x, ξ)

|RAB(x, ξ)| ≤ 4C

R2
.

To simplify the notation, we define

RABε (x, ξ) :=
∑

1≤|i|<kε

∂iξH(x, cB)

i!
(ξ − cB)i,

i.e., the first sum on the right-hand side of (9.17) with k = kε. The choice of kε together with (9.17)
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implies the bound

|RABε (x, ξ)| ≤ 4C

R2
+ ε.

Since RABε (x, ξ) is bounded, a direct application of Lemma 3.2 of [22] gives∣∣∣∣∣e2πiRABε (x,ξ) −
dε∑
p=0

(2πiRABε (x, ξ))p

p!

∣∣∣∣∣ ≤ ε/2, (9.18)

where dε = O(log(1/ε)). Since RABε (x, ξ) is a polynomial in (ξ − cB), the sum in (9.18) is also a

polynomial in (ξ − cB) with degree bounded by kεdε = O(log2(1/ε)). Since our problem is in two

dimensions, there are at most O(log4(1/ε)) possible monomials in (ξ − cB) with degree bounded

by kεdε. Grouping the terms with the same multi-index in ξ results in an O(log4(1/ε)) term ε-

accurate separated approximation for e2πiRABε (x,ξ) with the factors {β̃ABt (ξ)}1≤t≤rε being monomials

of (ξ − cB).

Finally, from the inequality |eıa − eıb| ≤ |a − b|, it is clear that a separated approximation

for e2πiRABε (x,ξ) with accuracy ε/2 is also one for e2πiRAB(x,ξ) with accuracy ε/2 + ε/2 = ε. This

completes the proof for the case wB ≤
√
N .

The proof for the case wA ≤ 1/
√
N is similar. The only difference is that we now group with

RAB(x, ξ) = [Φ(x, ξ)− Φ(x, cB)]− [Φ(cA, ξ)− Φ(cA, cB)]

and apply the multivariable Taylor expansion in x centered at cA instead. This results in an

O(log4(1/ε)) term ε-accurate separated approximation for e2πiRAB(x,ξ) with the factors {α̃ABt (x)}1≤t≤rε
being monomials of (x− cA).

Though the above proof is constructive, it is cumbersome to construct the separated approx-

imation this way. On the other hand, the proof shows that when wB ≤
√
N , the ξ-dependent

factors in the low-rank approximation of e2πiRAB(x,ξ) are all monomials in (ξ− cB). Similarly, when

wA ≤ 1/
√
N , the x-dependent factors are monomials in (x − cA). This suggests using Chebyshev

interpolation in x when wA ≤ 1/
√
N and in ξ when wB ≤

√
N . For this purpose, we associate with

each box a Chebyshev grid as follows.

For a fixed integer q, the Chebyshev grid of order q on [−1/2, 1/2] is defined by{
zi =

1

2
cos

(
iπ

q − 1

)}
0≤i≤q−1

.

A tensor-product grid adapted to a square with center c and side length w is then defined via shifting

and scaling as

{c+ w(zi, zj)}i,j=0,1,...,q−1

In what follows, MB
t is the two-dimensional Lagrange interpolation polynomial on the Chebyshev
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grid adapted to the square B (i.e., using c = cB and w = wB).

Theorem 9.3.2. Let A and B be as in Theorem 9.3.1. Then for any ε ≤ ε0 and N ≥ N0 where ε0

and N0 are the constants in Theorem 9.3.1, there exists qε . log2(1/ε) such that the following hold:

• when wB ≤
√
N , the Lagrange interpolation of e2πiRAB(x,ξ) in ξ on a qε × qε Chebyshev grid

{gBt }1≤t≤rε adapted to B obeys∣∣∣∣∣e2πiRAB(x,ξ) −
rε∑
t=1

e2πiRAB(x,gBt )MB
t (ξ)

∣∣∣∣∣ ≤ ε, ∀x ∈ A,∀ξ ∈ B, (9.19)

• when wA ≤ 1/
√
N , the Lagrange interpolation of e2πiRAB(x,ξ) in x on a qε× qε Chebyshev grid

{gAt }1≤t≤rε adapted to A obeys∣∣∣∣∣e2πiRAB(x,ξ) −
rε∑
t=1

MA
t (x)e2πiRAB(gAt ,ξ)

∣∣∣∣∣ ≤ ε, ∀x ∈ A,∀ξ ∈ B. (9.20)

Both (9.19) and (9.20) provide a low-rank approximation with rε = q2
ε . log4(1/ε) terms.

The proof for this follows exactly that of Theorem 3.3 in [22].

Finally, we are ready to construct the low-rank approximation for the kernel e2πiΦ(x,ξ), i.e.,

e2πiΦ(x,ξ) ≈
rε∑
t=1

αABt (x)βABt (ξ). (9.21)

When wB ≤
√
N , one multiply (9.19) with e2πiΦ(cA,ξ)e2πiΦ(x,cB)e−2πiΦ(cA,cB), which gives that

∀x ∈ A,∀ξ ∈ B ∣∣∣∣∣e2πiΦ(x,ξ) −
rε∑
t=1

e2πiΦ(x,gBt )
(
e−2πiΦ(cA,g

B
t )MB

t (ξ)e2πiΦ(cA,ξ)
)∣∣∣∣∣ ≤ ε.

In terms of the notation in (9.21), the expansion functions are given by

αABt (x) = e2πiΦ(x,gBt ), βABt (ξ) = e−2πiΦ(cA,g
B
t )MB

t (ξ)e2πiΦ(cA,ξ), 1 ≤ t ≤ rε. (9.22)

This is a special interpolant of the function e2πiΦ(x,ξ) in the ξ variable, which prefactors the oscilla-

tion, performs the interpolation, and then remodulates the outcome. When wA ≤ 1/
√
N , multiply

(9.20) with e2πiΦ(cA,ξ)e2πiΦ(x,cB)e−2πiΦ(cA,cB) and obtain that ∀x ∈ A,∀ξ ∈ B∣∣∣∣∣e2πiΦ(x,ξ) −
rε∑
t=1

(
e2πiΦ(x,cB)MA

t (x)e−2πiΦ(gAt ,cB)
)
e2πiΦ(gAt ,ξ)

∣∣∣∣∣ ≤ ε.
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The expansion functions are now

αABt (x) = e2πiΦ(x,cB)MA
t (x)e−2πiΦ(gAt ,cB), βABt (ξ) = e2πiΦ(gAt ,ξ), 1 ≤ t ≤ rε. (9.23)

Due to the presence of the demodulation and remodulation steps in the definitions (9.22) and

(9.23), we refer to them as oscillatory Chebyshev interpolations.

9.4 Multiscale Butterfly Algorithm

In this section, we combine the low-rank approximations described in Section 9.3 with the butterfly

algorithm in Section 9.2. Due to the restriction on the distance between B and the origin, we

decompose (9.5) into a multiscale summation

(Lf)(x) =
∑
ξ∈Ωd

e2πiΦ(x,ξ)f̂(ξ) +
∑
j

∑
ξ∈Ωj

e2πiΦ(x,ξ)f̂(ξ), (9.24)

where

Ωj =

{
(n1, n2) :

N

2j+1
< max(|n1|, |n2|) ≤

N

2j

}
∩ Ω

for j = 1, . . . , logN − s, s is a constant, and Ωd = Ω \ ∪jΩj .
The term of Ωd can be evaluated directly since |Ωd| = O(1). Let us now fix an Ωj . Since any

square B in Ωj always stays away from the origin, the results in Section 9.3 apply to the term for Ωj

in (9.24). Therefore, the butterfly algorithm as described in Section 9.2 can be adapted to evaluate

∑
ξ∈Ωj

e2πiΦ(x,ξ)f̂(ξ)

for the Cartesian domains X and Ωj . In contrast to the polar butterfly algorithm that works in the

polar coordinates for Ω, we refer to this one as the Cartesian butterfly algorithm.

9.4.1 Cartesian Butterfly Algorithm

To make it more explicit, let us first consider the interaction between (X,Ω1), with the low-rank

approximation implemented using the oscillatory Chebyshev interpolation discussed in Section 9.3.

1. Preliminaries. Construct two quadtrees TX and TΩ1
for X and Ω1 by uniform hierarchical

partitioning. Let b be a constant greater than or equal to 4 and define N1 = N .

2. Initialization. For each square A ∈ TX of width 1/b and each square B ∈ TΩ1 of width b, the

low-rank approximation functions are

αABt (x) = e2πiΦ(x,gBt ), βABt (ξ) = e−2πiΦ(cA,g
B
t )MB

t (ξ)e2πiΦ(cA,ξ), 1 ≤ t ≤ rε. (9.25)
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Hence, we can define the expansion weights {δABt }1≤t≤rε with

δABt :=
∑
ξ∈B

βABt (ξ)f̂(ξ) = e−2πiΦ(cA,g
B
t )
∑
ξ∈B

(
MB
t (ξ)e2πiΦ(cA,ξ)f̂(ξ)

)
. (9.26)

3. Recursion. Go up in tree TΩ1
and down in tree TX at the same time until we reach the level

such that wB =
√
N1. At each level, visit all the pairs (A,B). We apply the Chebyshev

interpolation in variable ξ and still define the approximation functions given in (9.25). Let

{δPCs }1≤s≤rε denote the expansion coefficients available in previous steps, where P is A’s

parent, C is a child of B, and s indicates the Chebyshev grid points in previous domain pairs.

We define the new expansion coefficients {δABt }1≤t≤rε as

δABt := e−2πiΦ(cA,g
B
t )
∑
C�B

rε∑
s=1

MB
t (gCs )e2πiΦ(cA,g

C
s )δPCs , (9.27)

where we recall that the notation C � B means that C is a child of B.

4. Switch. For the levels visited, the Chebyshev interpolation is applied in variable ξ, while the

interpolation is applied in variable x for levels l > log(N1)/2. Hence, we are switching the

interpolation method at this step. Now we are still working on level l = log(N1)/2 and the

same domain pairs (A,B) in the last step. Let δABs denote the expansion weights obtained by

Chebyshev interpolation in variable ξ in the last step. Correspondingly, {gBs }s are the grid

points in B in the last step. We take advantage of the interpolation in variable x in A and

generate grid points {gAt }1≤t≤rε in A. Then we can define new expansion weights

δABt :=

rε∑
s=1

e2πiΦ(gAt ,g
B
s )δABs .

5. Recursion. Go up in tree TΩ1
and down in tree TX at the same time until we reach the level

such that wB = N1/b. We construct the approximation functions by Chebyshev interpolation

in variable x as follows:

αABt (x) = e2πiΦ(x,cB)MA
t (x)e−2πiΦ(gAt ,cB), βABt (ξ) = e2πiΦ(gAt ,ξ). (9.28)

We define the new expansion coefficients {δABt }1≤t≤rε as

δABt :=
∑
C�B

e2πiΦ(gAt ,cC)
rε∑
s=1

(
MP
s (gAt )e−2πiΦ(gPs ,cC)δPCs

)
, (9.29)

where again P is A’s parent and C is a child box of B.
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6. Termination. Finally, we reach the level that wB = N1/b. For each B on this level and for

each square A ∈ TX of width b/N1, we apply the approximation functions given by (9.28) and

obtain

uB(x) := e2πiΦ(x,cB)
rε∑
t=1

(
MA
t (x)e−2πiΦ(gAt ,cB)δABt

)
(9.30)

for each x ∈ A. Finally, summing over all B on this level, we have

uΩ1(x) :=
∑
B

uB(x) (9.31)

for each x ∈ A.

We would like to emphasize that the center part of the tree TΩj is always empty since Ωj is a corona.

Accordingly, the algorithm skips this empty part.

For a general Ωj , the interaction between (X,Ωj) follows a similar algorithm, except that we

replace Ω1 with Ωj , u
Ω1(x) with uΩj (x), and N1 with Nj = N/2j−1, and stop at the level that

wB = Nj/b.

Finally, (9.24) is evaluated via

(Lf)(x) = uΩd(x) +
∑
j

uΩj (x). (9.32)

9.4.2 Complexity Analysis

The cost of evaluating the term of Ωd takes at most O(N2) steps since |Ωd| = O(1). Let us now

consider the cost of the terms associated with {Ωj}.
For the interaction between X and Ω1, the computation consists of two parts: the recursive

evaluation of {δABt } and the final evaluation of uΩ1(x). The recursive part takes O(q3N2 logN)

since there are at most O(N2 logN) pairs of squares (A,B) and the evaluation of {δABt } for each

pair takes O(q3) steps via dimension-wise Chebyshev interpolation. The final evaluation of uΩ1(x)

clearly takes O(q2N2) steps as we spend O(q2) on each point x ∈ X.

For the interaction between X and Ωj , the analysis is similar. The recursive part now takes

O(q3N2
j logNj) steps (with Nj = N/2j−1) as there are at most O(N2

j logNj) pairs of squares

involved. The final evaluation still takes O(q2N2) steps.

Summing these contributions together results in the total computational complexity

O(q3N2 logN) +O(q2N2 logN) = O(q3N2 logN) = O(r3/2
ε N2 logN).

The multiscale butterfly algorithm is also highly efficient in terms of memory as the Cartesian

butterfly algorithm is applied sequentially to evaluate (9.30) for each Ωj . The overall memory

complexity is O(N
2

b2 ), only 1
b2 of that the original Cartesian butterfly algorithm.



CHAPTER 9. MULTISCALE BUTTERFLY ALGORITHM 197

9.5 Numerical Results

This section presents several numerical examples to demonstrate the effectiveness of the multiscale

butterfly algorithm introduced above. In truth, FIOs usually have nonconstant amplitude functions.

Nevertheless, the main computational difficulty is the oscillatory phase term. We refer to [22] for

detailed fast algorithms to deal with nonconstant amplitude functions. Our MATLAB implemen-

tation can be found on the authors’ personal homepages. The numerical results were obtained on

a desktop with a 3.5 GHz CPU and 32 GB of memory. Let {ud(x), x ∈ X}, {um(x), x ∈ X} and

{up(x), x ∈ X} be the results of a discrete FIO computed by a direct matrix-vector multiplication,

the multiscale butterfly algorithm and the polar butterfly algorithm [22], respectively. To report on

the accuracy, we randomly select a set S of 256 points from X and evaluate the relative errors of

the multiscale butterfly algorithm and the polar butterfly algorithm by

εm =

√∑
x∈S |ud(x)− um(x)|2∑

x∈S |ud(x)|2
and εp =

√∑
x∈S |ud(x)− up(x)|2∑

x∈S |ud(x)|2
. (9.33)

According to the description of the multiscale butterfly algorithm in Section 9.4, we recursively

divide Ω into Ωj , j = 1, 2, . . . , logN − s, where s is 5 in the following examples. This means that the

center square Ωd is of size 25×25 and the interaction from Ωd is evaluated via a direct matrix-vector

multiplication. Suppose qε is the number of Chebyshev points in each dimension. There is no sense

in using butterfly algorithms to construct {δABt } when the number of points in B is fewer than q2
ε .

Hence, the recursion step in butterfly algorithms starts from the squares B that are a couple of

levels away from the bottom of TΩ such that each square contains at least q2
ε points. Similarly, the

recursion stops at the squares in TX that are the same number of levels away from the bottom. In

the following examples, we start from level logN − 3 and stop at level 3 (corresponding to b = 23

defined in Section 9.4) which matches with qε (4 to 11).

In order to make a fair comparison, we compare the MATLAB versions of the polar butterfly

algorithm and the multiscale butterfly algorithm. Hence, the running time of the polar butterfly

algorithm here is slower than that in [22], which was implemented in C++.

Example 1. The first example is a generalized Radon transform whose kernel is given by

Φ(x, ξ) = x · ξ +
√
c21(x)ξ2

1 + c22(x)ξ2
2 ,

c1(x) = (2 + sin(2πx1) sin(2πx2))/3,

c2(x) = (2 + cos(2πx1) cos(2πx2))/3.

(9.34)

We assume the amplitude of this example is a constant 1. Now the FIO models an integration

over ellipses where c1(x) and c2(x) are the axis lengths of the ellipse centered at the point x ∈ X.

Table 9.1 summarize the results of this example given by the polar butterfly algorithm and the
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multiscale butterfly algorithm.

Multiscale Butterfly Polar Butterfly
N, qε εm Tm(sec) N, qε εp Tp(sec) Tp/Tm
256,5 7.89e-02 6.96e+01 256,5 4.21e-02 4.84e+02 6.96e+00
512,5 9.01e-02 3.62e+02 512,5 5.54e-02 2.34e+03 6.46e+00

1024,5 9.13e-02 1.81e+03 1024,5 4.26e-02 1.14e+04 6.31e+00
2048,5 9.47e-02 8.79e+03 2048,5 - - -
256,7 6.95e-03 8.20e+01 256,7 5.66e-03 5.97e+02 7.28e+00
512,7 8.43e-03 4.16e+02 512,7 5.89e-03 2.82e+03 6.79e+00

1024,7 8.45e-03 2.03e+03 1024,7 4.84e-03 1.35e+04 6.64e+00
2048,7 8.42e-03 1.04e+04 2048,7 - - -
256,9 3.90e-04 1.10e+02 256,9 8.25e-04 7.74e+02 7.04e+00
512,9 3.42e-04 5.39e+02 512,9 6.78e-04 3.57e+03 6.61e+00

1024,9 7.61e-04 2.74e+03 1024,9 4.18e-04 1.67e+04 6.09e+00
2048,9 4.82e-04 1.25e+04 2048,9 - - -
256,11 2.15e-05 1.84e+02 256,11 3.69e-05 1.15e+03 6.27e+00
512,11 1.89e-05 8.60e+02 512,11 5.53e-05 5.10e+03 5.93e+00

1024,11 1.96e-05 4.27e+03 1024,11 2.042e-05 2.30e+04 5.39e+00
2048,11 1.50e-05 1.82e+04 2048,11 - - -

Table 9.1: Comparison of the multiscale butterfly algorithm and the polar butterfly algorithm for
the phase function in (9.34). Tm is the running time of the multiscale butterfly algorithm; Ta is the
running time of the polar butterfly algorithm; and Tm/Tp is the speedup factor.

Example 2. Next, we provide an FIO example with a smooth amplitude function,

u(x) =
∑
ξ∈Ω

a(x, ξ)e2πiΦ(x,ξ)f̂(ξ), (9.35)

where the amplitude and phase functions are given by

a(x, ξ) = (J0(2πρ(x, ξ)) + iY0(2πρ(x, ξ)))e−πiρ(x,ξ),

Φ(x, ξ) = x · ξ + ρ(x, ξ),

ρ(x, ξ) =
√
c21(x)ξ2

1 + c22(x)ξ2
2 ,

c1(x) = (2 + sin(2πx1) sin(2πx2))/3,

c2(x) = (2 + cos(2πx1) cos(2πx2))/3.

Here, J0 and Y0 are Bessel functions of the first and second kinds. We refer the reader to [21] for

more details of the derivation of these formulas. As discussed in [22], we compute the low-rank

approximation of the amplitude functions a(x, ξ) first:

a(x, ξ) ≈
sε∑
t=1

gt(x)ht(ξ).
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In the second step, we apply the multiscale butterfly algorithm to compute

ut(x) =
∑
ξ∈Ω

e2πiΦ(x,ξ)f̂(ξ)ht(ξ),

and sum up all gt(x)ut(x) to evaluate

u(x) =
∑
t

gt(x)ut(x).

Table 9.2 summarizes the results of this example given by the direct method and the multiscale

butterfly algorithm.

N, qε εm Td(sec) Tm(sec) Td/Tm
256,7 5.10e-03 3.78e+03 6.07e+02 6.23e+00
512,7 7.29e-03 3.71e+04 3.50e+03 1.06e+01

1024,7 6.16e-03 6.42e+05 1.70e+04 3.77e+01
256,9 4.49e-04 2.34e+03 7.88e+02 2.97e+00
512,9 4.04e-04 3.66e+04 4.64e+03 7.90e+00

1024,9 3.88e-04 6.21e+05 2.17e+04 2.86e+01
256,11 1.86e-05 2.48e+03 1.33e+03 1.86e+00
512,11 1.80e-05 3.60e+04 6.94e+03 5.18e+00

1024,11 2.39e-05 5.96e+05 2.83e+04 2.11e+01

Table 9.2: Numerical results given by the multiscale butterfly algorithm for the FIO in (9.35). Td
is the running time of the direct evaluation; Tm is the running time of the multiscale butterfly
algorithm; and Td/Tm is the speedup factor.

Note that the accuracy of the multiscale butterfly algorithm is well controlled by the number of

Chebyshev points qε. This indicates that our algorithm is numerically stable. Another observation

is that the relative error improves on average by a factor of 12 every time qε is increased by a

factor of 2. As we can see in those tables, for a fixed kernel and a fixed qε, the accuracy is almost

independent of N . Hence, in practical applications, one can increase the value of qε until a desired

accuracy is reached in the problem with a small N . In the comparison in Table 9.1, the multiscale

butterfly algorithm and the polar butterfly algorithm use qε = {5, 7, 9, 11} and achieve comparable

accuracy. Meanwhile, as we observed from Table 9.1, the relative error decreasing rate of the

multiscale butterfly algorithm is larger than the decreasing rate of the polar butterfly algorithm.

This means if a high accuracy is desired, the multiscale butterfly algorithm requires a smaller qε to

achieve it comparing to the polar butterfly algorithm.

The second concern about the algorithm is the asymptotic complexity. From the Tm column of

Table 9.1 and 9.2, we see that Tm almost quadrupled when the problem size doubled under the same

qε. According to this, we are convinced that the empirical running time of the multiscale butterfly

algorithm follows the O
(
N2 logN

)
asymptotic complexity. Note that the speedup factor over the
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polar butterfly algorithm is about 6 and the multiscale butterfly algorithm obtains better accuracy.

This makes the multiscale butterfly algorithm quite attractive to practitioners who are interested in

evaluating an FIO with a large N .

Example 3. Extending the multiscale butterfly algorithm to higher dimensions is straightfor-

ward. There are two main modifications: higher-dimensional multiscale domain decomposition and

Chebyshev interpolation. In three dimensions, the frequency domain is decomposed into cubic shells

instead of coronas. The kernel interpolation is applied on a three-dimensional Chebyshev grids.

We apply our three-dimensional multiscale butterfly algorithm to a simple example integrating over

spheres with different radii. We assume a constant amplitude function and the kernel function is

given by

Φ(x, ξ) = x · ξ + c(x)
√
ξ2
1 + ξ2

2 , c(x) = (3 + sin(2πx1) sin(2πx2) sin(2πx3))/4. (9.36)

Table 9.3 summarizes the results of this example given by the direct method and the multiscale

butterfly algorithm.

N, qε εm Td(sec) Tm(sec) Td/Tm
64,5 9.41e-02 1.82e+04 2.50e+03 7.31e+00

128,5 7.57e-02 6.21e+05 2.42e+04 2.57e+01
256,5 8.23e-02 3.91e+07 2.35e+05 1.66e+02
64,7 1.20e-02 1.83e+04 7.32e+03 2.50e+00

128,7 1.03e-02 6.03e+05 4.48e+04 1.35e+01
256,7 8.13e-03 4.39e+07 3.81e+05 1.15e+02

Table 9.3: Numerical results given by the multiscale butterfly algorithm for the phase function in
(9.36).

9.6 Conclusion

A simple and efficient multiscale butterfly algorithm for evaluating FIOs is introduced in this chap-

ter. This method hierarchically decomposes the frequency domain into multiscale coronas in order

to avoid possible singularity of the phase function Φ(x, ξ) at ξ = 0. A Cartesian butterfly algorithm

is applied to evaluate the FIO over each corona. Many drawbacks of the original butterfly algo-

rithm based on a polar-Cartesian transform in [22] can be avoided. The new multiscale butterfly

algorithm has a quasilinear operation complexity with a smaller prefactor, while it keeps the same

linear memory complexity. This algorithm can be extended to other integral operators that have a

complementary low-rank kernel K(x, ξ) or K(x, ξ) is complementary low-rank away from ξ = 0.



Chapter 10

One-Dimensional Butterfly

Factorization

10.1 Introduction

10.1.1 Complementary Low-Rank Matrices and Butterfly Algorithm

This chapter is concerned with one-dimensional complementary low-rank matrices. For such a

matrix, the rows are typically indexed by a set of points, say X, and the columns by another set of

points, say Ω. Both X and Ω are often point sets in R1. Associated with X and Ω are two trees TX

and TΩ, respectively and both trees are assumed to have the same depth L = O(logN), with the

top level being level 0 and the bottom one being level L. Recall that such a matrix K of size N ×N
is said to satisfy the complementary low-rank property if for any level `, any node A in TX at level

`, and any node B in TΩ at level L− `, the submatrix KA,B , obtained by restricting K to the rows

indexed by the points in A and the columns indexed by the points in B, is numerically low-rank,

i.e., for a given precision ε there exists a low-rank approximation of KA,B with the 2-norm error

bounded by ε and the rank bounded polynomially in logN and log(1/ε). In many applications, one

can even show that the rank is only bounded polynomially in log(1/ε) and is independent of N .

While it is straightforward to generalize the concept of the complementary low-rank property to a

matrix with different row and column dimensions, the following discussion is restricted to the square

matrices for simplicity.

A simple yet important example is the Fourier matrix K of size N ×N , where

X = Ω = {0, . . . , N − 1},

K = (exp(2πıjk/N))0≤j,k<N .

201
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Figure 10.1: Trees of the row and column indices. Left: TX for the row indices X. Right: TΩ for
the column indices Ω. The interaction between A ∈ TX and B ∈ TΩ starts at the root of TX and
the leaves of TΩ.

Here the trees TX and TΩ are generated by bisecting the sets X and Ω recursively. Both trees have

the same depth L = log2N . For each pair of nodes A ∈ TX and B ∈ TΩ with A at level ` and B

at level L − `, the numerical rank of the submatrix KA,B for a fixed precision ε is bounded by a

number that is independent of N and scales linearly with respect to log(1/ε) [138].
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Figure 10.2: Hierarchical decomposition of the row and column indices of a 16 × 16 matrix. The
trees TX and TΩ have roots containing 16 column and row indices and leaves containing a single
column and row index. The rectangles above indicate the submatrices satisfying the complementary
low-rank property.

For complementary low-rank matrices, the matrix-vector multiplication can be carried out effi-

ciently via the butterfly algorithm, which was initially proposed in [132] and later extended in [138].

For a general matrix K of this type, the butterfly algorithm consists of two stages: the off-line stage

and the on-line stage. In the off-line stage, it conducts simultaneously a top down traversal of TX

and a bottom up traversal of TΩ (see Figure 10.1 for an interpretation of data flows) to recursively

compress all complementary low-rank submatrices (see Figure 10.2 for an example of necessary sub-

matrices). This typically takes O(N2) operations [138, 146] for a general complementary low-rank

matrix K. In the on-line stage, the butterfly algorithm then evaluates u = Kg for a given input

vector g ∈ CN in O(N logN) operations. While the on-line application cost is essentially linear,

the O(N2) off-line precomputation cost appears to be a major bottleneck for many calculations.

For certain complementary low-rank matrices, such as the ones obtained from the Fourier integral

operators (FIOs) [22, 119, 141], the sparse Fourier transforms [188], and the numerical solutions of
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acoustic wave equations [53], the off-line precomputation cost can be reduced to nearly linear or even

totally eliminated. However, in all these cases, the reduction heavily relies on strong assumptions on

the analytic properties of the kernel function of K. When such detailed information is not available,

we are then forced to fall back on the O(N2) off-line precomputation algorithm.

10.1.2 Motivations and Significance

A natural question is whether it is still possible to reduce the cost of the precomputation stage if

the analytic properties of the kernel are not accessible. The following two cases are quite common

in applications:

1. Only black-box routines for computing Kg and K∗g in O(N logN) operations are given.

2. Only a black-box routine for evaluating any entry of the matrix K in O(1) operations is given.

To answer this question, this chapter introduces the butterfly factorization, which represents

K as a product of L+ 3 sparse matrices:

K ≈ ULGL−1 · · ·GhMh(Hh)∗ · · · (HL−1)∗(V L)∗, (10.1)

where the depth L = O(logN) of TX and TΩ is assumed to be even, h = L/2 is a middle level index,

and all factors are sparse matrices with O(N) nonzero entries. This is joint work with Yingzhou Li,

Eileen R. Martin, Kenneth L. Ho and Lexing Ying in [117].

The construction of the butterfly factorization proceeds as follows in two stages. The first stage

is to construction a preliminary middle level factorization that is associated with the middle level of

TX and TΩ

K ≈ UhMh(V h)∗, (10.2)

where Uh and V h are block diagonal matrices and Mh is a weighted permutation matrix. In the

first case, this is achieved by applying K to a set of O(N1/2) structured random vectors and then

applying the randomized singular value decomposition (SVD) to the result. This typically costs

O(N3/2 logN) operations. In the second case, (10.2) is built via the randomized sampling method

proposed in [66, 181] for computing approximate SVDs. This randomized sampling needs to make

the assumption that the columns and rows of middle level blocks of K to be incoherent with respect

to the delta functions and it typically takes only O(N3/2) operations in practice.

Once the middle level factorization (10.2) is available, the second stage is a sequence of truncated

SVDs that further factorize each of Uh and V h into a sequence of sparse matrices, resulting in the

final factorization (10.1). The operation count of this stage is O(N3/2) and the total memory

complexity for constructing butterfly factorization is O(N3/2).

When the butterfly factorization (10.1) is constructed, the cost of applying K to a given vector

g ∈ CN is O(N logN) because (10.1) is a sequence of O(logN) sparse matrices, each with O(N)
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non-zero entries. Although we shall limit our discussion to one-dimensional problems in this chapter,

the proposed butterfly factorization, along with its construction algorithm, can be easily generalized

to higher dimensions.

This work is motivated by problems that require repeated applications of a butterfly algorithm.

In several applications, such as inverse scattering [157, 186] and fast spherical harmonic transform

(SHT) [158], the butterfly algorithm is called repeatedly either in an iterative process of minimizing

some regularized objective function or to a large set of different input vectors. Therefore, it be-

comes important to reduce the constant prefactor of the butterfly algorithm to save actual runtime.

For example in [22], Chebyshev interpolation is applied to recover low-rank structures of subma-

trices with a sufficiently large number of interpolation points. The recovered rank is far from the

optimum. Hence, the prefactor of the corresponding butterfly algorithm in [22] is large. The but-

terfly factorization can further compress this butterfly algorithm to obtain nearly optimal low-rank

approximations resulting in a much smaller prefactor, as will be shown in the numerical results.

Therefore, it is more efficient to construct the butterfly factorization using this butterfly algorithm

and then apply the butterfly factorization repeatedly. In this sense, the butterfly factorization can

be viewed as a compression of certain butterfly algorithms.

Another important application is the computation of a composition of several FIOs. A direct

method to construct the composition takes O(N3) operations, while the butterfly factorization

provides a data-sparse representation of this composition in O(N3/2 logN) operations, once the fast

algorithm for applying each FIO is available. After the construction, the application of the butterfly

factorization is independent of the number of FIOs in the composition, which is significant when the

number of FIOs is large.

Recently, there has also been a sequence of papers on recovering a structured matrix via applying

it to (structured) random vectors. For example, the randomized SVD algorithms [83, 120, 169]

recover a low-rank approximation to an unknown matrix when it is numerically low-rank. The

work in [130] constructs a sparse representation for an unknown HSS matrix. More recently, [122]

considers the more general problem of constructing a sparse representation of an unknown H-matrix.

To our best knowledge, the present work is the first to address such matrix recovery problem if the

unknown matrix satisfies the complementary low-rank property.

10.1.3 Content

The rest of this chapter is organized as follows. Section 10.2 briefly reviews some basic tools that

shall be used repeatedly in Sections 10.3. Section 10.3 describes in detail the butterfly factorization

and its construction algorithm. In Section 10.4, numerical examples are provided to demonstrate the

efficiency of the proposed algorithms. Finally, Section 10.5 lists several directions for future work.
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10.2 Preliminaries

For a matrix Z ∈ Cm×n, we define a rank-r approximate singular value decomposition (SVD) of Z

as

Z ≈ U0Σ0V
∗
0 ,

where U0 ∈ Cm×r is unitary, Σ0 ∈ Rr×r is diagonal, and V0 ∈ Cn×r is unitary. A straightforward

method to obtain the optimal rank-r approximation of Z is to compute its truncated SVD, where

U0 is the matrix with the first r left singular vectors, Σ0 is a diagonal matrix with the first r singular

values in decreasing order, and V0 is the matrix with the first r right singular vectors.

A typical computation of the truncated SVD of Z takes O(mnmin(m,n)) operations, which can

be quite expensive when m and n are large. Therefore, a lot of research has been devoted to faster

algorithms for computing approximate SVDs, especially for matrices with fast decaying singular

values. In Sections 10.2.1 and 10.2.2, we will introduce two randomized algorithms for computing

approximate SVDs for numerically low-rank matrices Z: the first one [83] is based on applying

the matrix to random vectors while the second one [66, 181] relies on sampling the matrix entries

randomly.

Once an approximate SVD Z ≈ U0Σ0V
∗
0 is computed, it can be written in several equivalent

ways, each of which is convenient for certain purposes. First, one can write

Z ≈ USV ∗,

where

U = U0Σ0, S = Σ−1
0 and V ∗ = Σ0V

∗
0 . (10.3)

This construction is analogous to the well-known CUR decomposition [127] in the sense that the

left and right factors in both factorization methods inherit similar singular values of the original

numerical low-rank matrix. Here, the middle matrix S in (10.3) can be carefully constructed to

ensure numerical stability, since the singular values in Σ0 can be computed to nearly full relative

precision.

As we shall see, sometimes it is also convenient to write the approximation as

Z ≈ UV ∗

where

U = U0 and V ∗ = Σ0V
∗
0 , (10.4)

or

U = U0Σ0 and V ∗ = V ∗0 . (10.5)
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Here, one of the factors U and V share the singular values of Z.

10.2.1 SVD via Random Matrix-Vector Multiplication

One popular approach is the randomized algorithm in [83] that reduces the cubic complexity to

O(rmn) complexity. We briefly review this following [83] for constructing a rank-r approximation

SVD Z ≈ U0Σ0V
∗
0 below.

Algorithm 10.2.1. Randomized SVD

1. Generate two tall skinny random Gaussian matrices Rcol ∈ Cn×(r+p) and Rrow ∈ Cm×(r+p),

where p = O(1) is an additive oversampling parameter that increases the approximation accu-

racy.

2. Apply the pivoted QR factorization to ZRcol and let Qcol be the matrix of the first r columns

of the Q matrix. Similarly, apply the pivoted QR factorization to Z∗Rrow and let Qrow be the

matrix of the first r columns of the Q matrix.

3. Generate a tiny middle matrix M = Q∗colZQrow and compute its rank-r truncated SVD: M ≈
UMΣMV

∗
M .

4. Let U0 = QcolUM , Σ0 = ΣM , and V ∗0 = V ∗MQ
∗
row. Then Z ≈ U0Σ0V

∗
0 .

The dominant complexity comes from the application of Z to O(r) random vectors. If fast

algorithms for applying Z are available, the quadratic complexity can be further reduced.

Once the approximate SVD of Z is ready, the equivalent forms in (10.3), (10.4), and (10.5) can

be constructed easily. Under the condition that the singular values of Z decay sufficiently rapidly,

the approximation error of the resulting rank-r is nearly optimal with an overwhelming probability.

Typically, the additive over-sampling parameter p = 5 is sufficient to obtain an accurate rank-r

approximation of Z.

For most applications, the goal is to construct a low-rank approximation up to a fixed relative

precision ε, rather than a fixed rank r. The above procedure can then be embedded into an iterative

process that starts with a relatively small r, computes a rank-r approximation, estimates the error

probabilistically, and repeats the steps with doubled rank 2r if the error is above the threshold ε

[83].

10.2.2 SVD via Random Sampling

The above algorithm relies only on the product of the matrix Z ∈ Cm×n or its transpose with given

random vectors. If one is allowed to access the individual entries of Z, the following randomized

sampling method for low-rank approximations introduced in [66, 181] can be more efficient. This
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method only visits O(r) columns and rows of Z and hence only requires O(r(m+n)) operations and

memory.

Here, we adopt the standard notation for a submatrix: given a row index set I and a column

index set J , ZI,J = Z(I, J) is the submatrix with entries from rows in I and columns in J ; we also

use “ : ” to denote the entire columns or rows of the matrix, i.e., ZI,: = Z(I, :) and Z:,J = Z(:, J).

With these handy notations, we briefly introduce the randomized sampling algorithm to construct

a rank-r approximation of Z ≈ U0Σ0V
∗
0 .

Algorithm 10.2.2. Randomized sampling for low-rank approximation

1. Let Πcol and Πrow denote the important columns and rows of Z that are used to form the

column and row bases. Initially Πcol = ∅ and Πrow = ∅.

2. Randomly sample rq rows and denote their indices by Srow. Let I = Srow ∪ Πrow. Here

q = O(1) is a multiplicative oversampling parameter. Perform a pivoted QR decomposition of

ZI,: to get

ZI,:P = QR,

where P is the resulting permutation matrix and R = (rij) is an O(r) × n upper triangular

matrix. Define the important column index set Πcol to be the first r columns picked within the

pivoted QR decomposition.

3. Randomly sample rq columns and denote their indices by Scol. Let J = Scol ∪ Πcol. Perform

a pivoted LQ decomposition of Z:,J to get

PZ:,J = LQ,

where P is the resulting permutation matrix and L = (lij) is an m × O(r) lower triangular

matrix. Define the important row index set Πrow to be the first r rows picked within the pivoted

LQ decomposition.

4. Repeat steps 2 and 3 a few times to ensure Πcol and Πrow sufficiently sample the important

columns and rows of Z.

5. Apply the pivoted QR factorization to Z:,Πcol and let Qcol be the matrix of the first r columns

of the Q matrix. Similarly, apply the pivoted QR factorization to Z∗Πrow,: and let Qrow be the

matrix of the first r columns of the Q matrix.

6. We seek a middle matrix M such that Z ≈ QcolMQ∗row. To solve this problem efficiently,

we approximately reduce it to a least-squares problem of a smaller size. Let Scol and Srow be

the index sets of a few extra randomly sampled columns and rows. Let J = Πcol ∪ Scol and
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I = Πrow ∪ Srow. A simple least-squares solution to the problem

min
M
‖ZI,J − (Qcol)I,:M(Q∗row):,J‖

gives M = (Qcol)
†
I,:ZI,J(Q∗row)†:,J , where (·)† stands for the pseudo-inverse.

7. Compute an SVD M ≈ UMΣMV
∗
M . Then the low-rank approximation of Z ≈ U0S0V

∗
0 is given

by

U0 = QcolUM , Σ0 = ΣM , V ∗0 = V ∗MQ
∗
row. (10.6)

We have not been able to quantify the error and success probability rigorously for this procedure

at this point. On the other hand, when the columns and rows of K are incoherent with respect

to “delta functions” (i.e., vectors that have only one significantly larger entry), this procedure

works well in our numerical experiments. Here, a vector u is said to be incoherent with respect

to a vector v if µ = |uT v|/(‖u‖2 ‖v‖2) is small. In the typical implementation, the multiplicative

oversampling parameter q is equal to 3 and Steps 2 and 3 are iterated no more than three times.

These parameters are empirically sufficient to achieve accurate low-rank approximations and are

used throughout numerical examples in Section 10.4.

As we mentioned above, for most applications the goal is to construct a low-rank approximation

up to a fixed relative error ε, rather than a fixed rank. This process can also be embedded into an

iterative process to achieve the desired accuracy.

10.3 Butterfly Factorization

This section presents the butterfly factorization algorithm for a matrix K ∈ CN×N . For simplicity

let X = Ω = {1, . . . , N}. The trees TX and TΩ are complete binary trees with L = log2N − O(1)

levels. We assume that L is an even integer and the number of points in each leaf node of TX and

TΩ is bounded by a uniform constant.

At each level `, ` = 0, . . . , L, we denote the ith node at level ` in TX as A`i for i = 0, 1, . . . , 2`− 1

and the jth node at level L − ` in TΩ as BL−`j for j = 0, 1, . . . , 2L−` − 1. These nodes naturally

partition K into O(N) submatrices KA`i ,B
L−`
j

. For simplicity, we write K`
i,j := KA`i ,B

L−`
j

, where

the superscript is used to indicate the level (in TX). The butterfly factorization utilizes rank-r

approximations of all submatrices K`
i,j with r = O(1).

The butterfly factorization of K is built in two stages. In the first stage, we compute a rank-r

approximations of each submatrix Kh
i,j at the level ` = h = L/2 and then organize them into an

initial factorization:

K ≈ UhMh(V h)∗,

where Uh and V h are block diagonal matrices and Mh is a weighted permutation matrix. This is
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referred as the middle level factorization and is described in detail in Section 10.3.1.

In the second stage, we recursively factorize U ` ≈ U `+1G` and (V `)∗ ≈ (H`)∗(V `+1)∗ for ` =

h, h + 1, . . . , L − 1, since U ` and (V `)∗ inherit the complementary low-rank property from K, i.e.,

the low-rank property of U ` comes from the low-rank property of K`
i,j and the low-rank property

of V ` results from the one of KL−`
i,j . After this recursive factorization, one reaches at the butterfly

factorization of K

K ≈ ULGL−1 · · ·GhMh(Hh)∗ · · · (HL−1)∗(V L)∗, (10.7)

where all factors are sparse matrices with O(N) nonzero entries. We refer to this stage as the

recursive factorization and it is discussed in detail in Section 10.3.2.

10.3.1 Middle Level Factorization

The first step of the middle level factorization is to compute a rank-r approximation to every Kh
i,j .

Recall that we consider one of the following two cases.

1. Only black-box routines for computing Kg and K∗g in O(N logN) operations are given.

2. Only a black-box routine for evaluating any entry of the matrix K in O(1) operations is given.

The actual computation of this step proceeds differently depending on which case is under consid-

eration. Through the discussion, m = 2h = O(N1/2) is the number of nodes in the middle level

h = L/2 and we assume without loss of generality that N/m is an integer.

• In the first case, the rank-r approximation of each Kh
i,j is constructed with the SVD algorithm

via random matrix-vector multiplication in Section 10.2.1. This requires us to apply Kh
i,j and

its adjoint to random Gaussian matrices of size (N/m)× (r + p), where r is the desired rank

and p is an oversampling parameter. In order to take advantage of the fast algorithm for

multiplying K, we construct a matrix C of size N ×m(r+ p). C is partitioned into an m×m
blocks with each block Cij for i, j = 0, 1, . . . ,m− 1 of size (N/m)× (r + p). In additional, C

is block-diagonal and its diagonal blocks are random Gaussian matrices. This is equivalent to

applying each Kh
i,j to the same random Gaussian matrix Cjj for all i. We then use the fast

algorithm to apply K to each column of C and store the results. Similarly, we form another

random block diagonal matrix R similar to C and use the fast algorithm of applying K∗ to

R. This is equivalent to applying each (Kh
i,j)
∗ to an (N/m)× (r+ p) Gaussian random matrix

Rii for all j = 0, 1, . . . ,m− 1. With Kh
i,jCjj and (Kh

i,j)
∗Rii ready, we can compute the rank-r

approximate SVD of Kh
i,j following the procedure described in Section 10.2.1.

• In the second case, it is assumed that an arbitrary entry of K can be calculated in O(1)

operations. We simply apply the SVD algorithm via random sampling in Section 10.2.2 to

each Kh
i,j to construct a rank-r approximate SVD.
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In either case, once the approximate SVD of Kh
i,j is ready, it is transformed in the form

Kh
i,j ≈ Uhi,jShi,j(V hj,i)∗

following (10.3). We would like to emphasize that the columns of Uhi,j and V hj,i are scaled with the

singular values of the approximate SVD so that they keep track of the importance of these columns

in approximating Kh
i,j .

After calculating the approximate rank-r factorization of each Kh
i,j , we assemble these factors

into three block matrices Uh, Mh and V h as follows:

K ≈


Uh0,0S

h
0,0(V h0,0)∗ Uh0,1S

h
0,1(V h1,0)∗ · · · Uh0,m−1S

h
0,m−1(V hm−1,0)∗

Uh1,0S
h
1,0(V h0,1)∗ Uh1,1S

h
1,1(V h1,1)∗ Uh1,m−1S

h
1,m−1(V hm−1,1)∗

...
. . .

Uhm−1,0S
h
m−1,0(V h0,m−1)∗ Uhm−1,1S

h
m−1,1(V h1,m−1)∗ Uhm−1,m−1S

h
m−1,m−1(V hm−1,m−1)∗



=


Uh0

Uh1
. . .

Uhm−1




Mh

0,0 Mh
0,1 · · · Mh

0,m−1

Mh
1,0 Mh

1,1 Mh
1,m−1

...
. . .

Mh
m−1,0 Mh

m−1,1 Mh
m−1,m−1




V h0

V h1
. . .

V hm−1


∗

=UhMh(V h)∗,

(10.8)

where

Uhi =
(
Uhi,0 Uhi,1 · · · Uhi,m−1

)
∈ C(N/m)×mr, V hj =

(
V hj,0 V hj,1 · · · V hj,m−1

)
∈ C(N/m)×mr,

(10.9)

and Mh ∈ C(m2r)×(m2r) is a weighted permutation matrix. Each submatrix Mh
i,j is itself an m×m

block matrix with block size r×r where all blocks are zero except that the (j, i) block is equal to the

diagonal matrix Shi,j . It is obvious that there are only O(N) nonzero entries in Mh. See Figure 10.3

for an example of a middle level factorization of a 64× 64 matrix with r = 1.

10.3.2 Recursive Factorization

In this section, we will recursively factorize

U ` ≈ U `+1G` (10.10)

for ` = h, h+ 1, . . . , L− 1 and

(V `)∗ ≈ (H`)∗(V `+1)∗ (10.11)
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



≈













Figure 10.3: The middle level factorization of a 64 × 64 complementary low-rank matrix K ≈
U3M3(V 3)∗ assuming r = 1. Grey blocks indicate nonzero blocks. U3 and V 3 are block-diagonal
matrices with 8 blocks. The diagonal blocks of U3 and V 3 are assembled according to Equation
(10.9) as indicated by black rectangles. M3 is a 8 × 8 block matrix with each block M3

i,j itself an
8× 8 block matrix containing diagonal weights matrix on the (j, i) block.

for ` = h, h+ 1, . . . , L− 1. After these recursive factorizations, we can obtain the following butterfly

factorization by substituting these factorizations into (10.8):

K ≈ ULGL−1 · · ·GhMh(Hh)∗ · · · (HL−1)∗(V L)∗. (10.12)

Recursive factorization of Uh

Each factorization at level ` in (10.10) results from the low-rank property of K`
i,j for ` ≥ L/2. When

` = h, recall that

Uh =


Uh0

Uh1
. . .

Uhm−1


and

Uhi =
(
Uhi,0 Uhi,1 · · · Uhi,m−1

)
with each Uhi,j ∈ C(N/m)×r. We split Uhi and each Uhi,j into halves by row, i.e.,

Uhi =

Uh,ti

Uh,bi

 and Uhi,j =

Uh,ti,j

Uh,bi,j

 ,

where the superscript t denotes the top half and b denotes the bottom half of a matrix. Then we

have

Uhi =

Uh,ti,0 Uh,ti,1 . . . Uh,ti,m−1

Uh,bi,0 Uh,bi,1 . . . Uh,bi,m−1

 . (10.13)
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Notice that, for each i = 0, 1, . . . ,m− 1 and j = 0, 1, . . . ,m/2− 1, the columns of(
Uh,ti,2j Uh,ti,2j+1

)
and

(
Uh,bi,2j Uh,bi,2j+1

)
(10.14)

in (10.13) are in the column space of Kh+1
2i,j and Kh+1

2i+1,j , respectively. By the complementary low-

rank property of the matrix K, Kh+1
2i,j and Kh+1

2i+1,j are numerical low-rank. Hence
(
Uh,ti,2jU

h,t
i,2j+1

)
and

(
Uh,bi,2jU

h,b
i,2j+1

)
are numerically low-rank matrices in C(N/2m)×2r. Compute their rank-r approx-

imations by the standard truncated SVD, transform it into the form of (10.5) and denote them

as (
Uh,ti,2j Uh,ti,2j+1

)
≈ Uh+1

2i,j G
h
2i,j and

(
Uh,bi,2j Uh,bi,2j+1

)
≈ Uh+1

2i+1,jG
h
2i+1,j (10.15)

for i = 0, 1, . . . ,m− 1 and j = 0, 1, . . . ,m/2− 1. The matrices in (10.15) can be assembled into two

new sparse matrices, such that

Uh ≈ Uh+1Gh =


Uh+1

0

Uh+1
1

. . .

Uh+1
2m−1




Gh0

Gh1
. . .

Ghm−1

 ,

where

Uh+1
i =

(
Uh+1
i,0 Uh+1

i,1 · · · Uh+1
i,m/2−1

)
for i = 0, 1, . . . , 2m− 1, and

Ghi =



Gh2i,0

Gh2i,1
. . .

Gh2i,m/2−1

Gh2i+1,0

Gh2i+1,1

. . .

Gh2i+1,m/2−1


for i = 0, 1, . . . ,m− 1.

Since there are O(1) nonzero entries in each Ghi,j and there are O(N) such submatrices, there

are only O(N) nonzero entries in Gh. See Figure 10.4 top for an example of the factorization

Uh ≈ Uh+1Gh for the left factor Uh with L = 6, h = 3 and r = 1 in Figure 10.3.

Similarly, for any ` between h and L − 1, we can factorize U ` ≈ U `+1G`, because the columns



CHAPTER 10. ONE-DIMENSIONAL BUTTERFLY FACTORIZATION 213





≈





=






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Figure 10.4: The recursive factorization of U3 in Figure 10.3. Gray factors are matrices inheriting the
low-rank property of the butterfly matrix. Top: left matrix: U3 with each diagonal block partitioned
into smaller blocks according to Equation (10.13) as indicated by black rectangles; middle-left matrix:
low-rank approximations of submatrices in U3 given by Equation (10.15); middle right matrix: U4;
right matrix: G3. Bottom: U4 in the first row is further factorized into U4 ≈ U5G4, giving
U3 ≈ U5G4G3.
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)
are in the column space of the numerically low-rank matrices
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2i,j and K`+1

2i+1,j , respectively. Computing the rank-r approximations via the standard truncated

SVD and transforming them into the form of (10.5) give(
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2i,j and
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)
≈ U `+1

2i+1,jG
`
2i+1,j (10.16)

for i = 0, 1, . . . , 2` − 1 and j = 0, 1, . . . , 2L−`−1 − 1. After assembling these factorizations together,

we obtain

U ` ≈ U `+1G` =


U `+1

0

U `+1
1

. . .

U `+1
2`+1−1
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. . .
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 ,

where

U `+1
i =

(
U `+1
i,0 U `+1

i,1 · · · U `+1
i,2L−`−1−1

)
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for i = 0, 1, . . . , 2`+1 − 1, and

G`i =



G`2i,0

G`2i,1
. . .

G`2i,2L−`−1−1

G`2i+1,0

G`2i+1,1

. . .

G`2i+1,2L−`−1−1


for i = 0, 1, . . . , 2` − 1.

After L− h steps of recursive factorizations

U ` ≈ U `+1G`

for ` = h, h+ 1, . . . , L− 1, we obtain the recursive factorization of Uh as

Uh ≈ ULGL−1 · · ·Gh. (10.17)

See Figure 10.4 bottom for an example of a recursive factorization for the left factor Uh with L = 6,

h = 3 and r = 1 in Figure 10.3.

Similar to the analysis of Gh, it is also easy to check that there are only O(N) nonzero entries

in each G` in (10.17). Since there are O(N) diagonal blocks in UL and each block contains O(1)

entries, there is O(N) nonzero entries in UL.

Recursive factorization of V h

The recursive factorization of V h is similar to the one of Uh. In each step of the factorization

(V `)∗ ≈ (H`)∗(V `+1)∗,

we take advantage of the low-rank property of the row space of KL−`−1
i,2j and KL−`−1

i,2j+1 to obtain

rank-r approximations. Applying the exact same procedure of Section 10.3.2 now to V ` leads to the

recursive factorization V h ≈ V LHL−1 · · ·Hh, or equivalently

(V h)∗ ≈ (Hh)∗ · · · (HL−1)∗(V L)∗, (10.18)
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with all factors containing only O(N) nonzero entries. See Figure 10.5 for an example of a recursive

factorization (V h)∗ ≈ (Hh)∗ · · · (HL−2)∗(V L−1)∗ for the left factor V h with L = 6, h = 3 and r = 1

in Figure 10.3.
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Figure 10.5: The recursive factorization (V 3)∗ ≈ (H3)∗(H4)∗(V 5)∗ of (V 3)∗ in Figure 10.3.

Given the recursive factorization of Uh and (V h)∗ in (10.17) and (10.18), we reach the butterfly

factorization

K ≈ ULGL−1 · · ·GhMh(Hh)∗ · · · (HL−1)∗(V L)∗, (10.19)

where all factors are sparse matrices with O(N) nonzero entries. For a given input vector g ∈ CN ,

the O(N2) matrix-vector multiplication u = Kg can be approximated by a sequence of O(logN)

sparse matrix-vector multiplications given by the butterfly factorization.

10.3.3 Complexity Analysis

The complexity analysis of the construction of a butterfly factorization naturally consists of two

parts: the middle level factorization and the recursive factorization.

The complexity of the middle level factorization depends on which one of the cases is under

consideration.

• For the first case, the approximate SVDs are determined by the application of K and K∗ to

Gaussian random matrices in CN×N1/2(r+p) and the rank-r approximations of Kh
ij for each

(i, j) pair. Assume that each matrix-vector multiplication by K or K∗ via the given black-box

routines requires O(CK(N)) operations (which is at least O(N)). Then the dominant cost is

due to applying K and K∗ O(N1/2) times, which yields an overall computational complexity

of O(CK(N)N1/2).

• In the second case, the approximate SVDs are computed via random sampling for each Kh
ij of

the O(N) pairs (i, j). The complexity of performing randomized sampling for each such block

is O(N1/2). Hence, the overall computational complexity is O(N3/2).

In the recursive factorization, U ` at level ` consists of O(2`) diagonal blocks of size O(N/2`) ×
O(N/2`). In each diagonal block, there are O(N/2`) factorizations in (10.16). Since the operation
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complexity of performing one factorization in (10.16) is O(N/2`), it takes O(N2/2`) operations to

factorize U `. Summing up the operations at all levels gives the total complexity for recursively

factorizing Uh:
L−1∑
`=h

O(N2/2`) = O(N3/2). (10.20)

Similarly, the operation complexity for recursively compressing V h is also O(N3/2).

The memory peak of the butterfly factorization occurs in the middle level factorization since we

have to store the initial factorization in (10.8). There are O(N3/2) nonzero entries in Uh and V h,

and O(N) in Mh. Hence, the total memory complexity is O(N3/2). The total operation complexity

for constructing the butterfly factorization is summarized in Table 10.1.

Randomized
SVD

Randomized
sampling

Factorization
Complexity

Middle level
factorization

O(CK(N)N1/2) O(N3/2)

Recursive
factorization

O(N3/2)

Total O(CK(N)N1/2) O(N3/2)

Memory
Complexity

O(N3/2) O(N logN)

Application
Complexity

O(N logN)

Table 10.1: Computational complexity and memory complexity of the butterfly factorization.
CK(N) is the operation complexity of one application of K or K∗. In most of the cases encountered,
CK(N) = O(N logN).

It is worth pointing out that the memory complexity can be reduced to O(N logN), when we

apply the randomized sampling method to construct each block in the initial factorization in (10.8)

separately. Instead of factorizing Uh and V h at the end of the middle level factorization, we can

factorize the left and right factors Uhi and V hi in (10.8) on the fly to avoid storing all factors in

(10.8). For a fixed i, we generate Uhi from Kh
ij for all j, and recursively factorize Uhi . The memory

cost is O(N) for storing Uhi and O(N1/2 logN) for storing the sparse matrices after its recursive

factorization. Repeating this process for i = 1, . . . , N1/2 gives the complete factorization of Uh. The

factorization of V h is conducted similarly. The total memory complexity is O(N logN).

The operation and memory complexity for the application of the butterfly factorization are

governed by the number of nonzero entries in the factorization: O(N logN).
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10.4 Numerical Results

This section presents three numerical examples to demonstrate the effectiveness of the algorithms

proposed above. The first example is an FIO in [22] and the second example is a special function

transform in [138]. Both examples provide an explicit kernel function that becomes a one-dimensional

complementary low-rank matrix after discretization. This allows us to apply the butterfly factoriza-

tion construction algorithm with random sampling. The computational complexity and the memory

cost are O(N3/2) and O(N logN) in this case.

The third example is a composition of two FIOs for which an explicit kernel function of their

composition is not available. Since we can apply either the butterfly algorithm in [22] or the butterfly

factorization to evaluate these FIOs one by one, a fast algorithm for computing the composition is

available. We apply the butterfly factorization construction algorithm with random matrix-vector

multiplication to this example which requires O(N3/2 logN) operations and O(N3/2) memory cost.

Our implementation is in MATLAB. The numerical results were obtained on a server computer

with a 2.0 GHz CPU. The additive oversampling parameter is p = 5 and the multiplicative over-

sampling parameter is q = 3.

Let {ud(x), x ∈ X} and {ua(x), x ∈ X} denote the results given by the direct matrix-vector

multiplication and the butterfly factorization. The accuracy of applying the butterfly factorization

algorithm is estimated by the following relative error

εa =

√√√√∑
x∈S |ua(x)− ud(x)|2∑

x∈S |ud(x)|2
, (10.21)

where S is a point set of size 256 randomly sampled from X.

Example 1. Our first example is to evaluate a one-dimensional FIO of the following form:

u(x) =

∫
R
e2πıΦ(x,ξ)f̂(ξ)dξ, (10.22)

where f̂ is the Fourier transform of f , and Φ(x, ξ) is a phase function given by

Φ(x, ξ) = x · ξ + c(x)|ξ|, c(x) = (2 + sin(2πx))/8. (10.23)

The discretization of (10.22) is

u(xi) =
∑
ξj

e2πıΦ(xi,ξj)f̂(ξj), i, j = 1, 2, . . . , N, (10.24)



CHAPTER 10. ONE-DIMENSIONAL BUTTERFLY FACTORIZATION 218

where {xi} and {ξj} are uniformly distributed points in [0, 1) and [−N/2, N/2) following

xi = (i− 1)/N and ξj = j − 1−N/2. (10.25)

(10.24) can be represented in a matrix form as u = Kg, where ui = u(xi), Kij = e2πıΦ(xi,ξj) and

gj = f̂(ξj). The matrix K satisfies the complementary low-rank property as proved in [22, 119].

The explicit kernel function of K allows us to use the construction algorithm with random sampling.

Table 10.2 summarizes the results of this example for different grid sizes N and truncation ranks r.

N, r εa TFactor(min) Td(sec) Ta(sec) Td/Ta

1024,4 2.49e-05 2.92e-01 2.30e-01 3.01e-02 7.65e+00
4096,4 4.69e-05 1.62e+00 2.64e+00 4.16e-02 6.35e+01

16384,4 5.77e-05 1.22e+01 2.28e+01 1.84e-01 1.24e+02
65536,4 6.46e-05 8.10e+01 2.16e+02 1.02e+00 2.12e+02

262144,4 7.13e-05 4.24e+02 3.34e+03 4.75e+00 7.04e+02

1024,6 1.57e-08 1.81e-01 1.84e-01 1.20e-02 1.54e+01
4096,6 3.64e-08 1.55e+00 2.56e+00 6.42e-02 3.98e+01

16384,6 6.40e-08 1.25e+01 2.43e+01 3.01e-01 8.08e+01
65536,6 6.53e-08 9.04e+01 2.04e+02 1.77e+00 1.15e+02

262144,6 6.85e-08 5.45e+02 3.68e+03 8.62e+00 4.27e+02

1024,8 5.48e-12 1.83e-01 1.78e-01 1.63e-02 1.09e+01
4096,8 1.05e-11 1.98e+00 2.71e+00 8.72e-02 3.11e+01

16384,8 2.09e-11 1.41e+01 3.34e+01 5.28e-01 6.33e+01
65536,8 2.62e-11 1.17e+02 2.10e+02 2.71e+00 7.75e+01

262144,8 4.13e-11 6.50e+02 3.67e+03 1.52e+01 2.42e+02

Table 10.2: Numerical results for the FIO given in (10.24). N is the size of the matrix; r is
the fixed rank in the low-rank approximations; TFactor is the factorization time of the butterfly
factorization; Td is the running time of the direct evaluation; Ta is the application time of the
butterfly factorization; Td/Ta is the speedup factor.

Example 2. Next, we provide an example of a special function transform. This example can be

further applied to accelerate the Fourier-Bessel transform that is important in many real applications.

Following the standard notation, we denote the Hankel function of the first kind of order m by H
(1)
m .

When m is an integer, H
(1)
m has a singularity at the origin and a branch cut along the negative real

axis. We are interested in evaluating the sum of Hankel functions over different orders,

u(xi) =

N∑
j=1

H
(1)
j−1(xi)gj , i = 1, 2, . . . , N, (10.26)
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which is analogous to expansion in orthogonal polynomials. The points xi are defined via the

formula,

xi = N +
2π

3
(i− 1) (10.27)

which are bounded away from zero. It is demonstrated in [138] that (10.26) can be represented via

u = Kg where K satisfies the complementary low-rank property, ui = u(xi) and Kij = H
(1)
j−1(xi).

The entries of matrix K can be calculated efficiently and the construction algorithm with random

sampling is applied to accelerate the evaluation of the sum (10.26). Table 10.3 summarizes the

results of this example for different grid sizes N and truncation ranks r.

N, r εa TFactor(min) Td(sec) Ta(sec) Td/Ta

1024,4 2.35e-06 8.78e-01 8.30e-01 1.06e-02 7.86e+01
4096,4 5.66e-06 5.02e+00 5.30e+00 2.83e-02 1.87e+02

16384,4 6.86e-06 3.04e+01 5.51e+01 1.16e-01 4.76e+02
65536,4 7.04e-06 2.01e+02 7.59e+02 6.38e-01 1.19e+03

1024,6 2.02e-08 4.31e-01 7.99e-01 9.69e-03 8.25e+01
4096,6 4.47e-08 6.61e+00 5.41e+00 4.52e-02 1.20e+02

16384,6 5.95e-08 4.19e+01 5.62e+01 1.61e-01 3.48e+02
65536,6 7.86e-08 2.76e+02 7.60e+02 1.01e+00 7.49e+02

Table 10.3: Numerical results with the matrix given by (10.26).

Example 3. We provide another example of a special function transform that is related to the

spherical harmonic transform (SHT). The SHT is an analogue of the Fourier transform for functions

defined on the two-dimensional surface of the unit sphere in R3. Similar to the Fourier series expan-

sion that represents a function on a unit interval with the eigenfunctions of the Laplacian operator,

the spherical harmonic expansion represents a function on a unit sphere with the eigenfunctions of

the Laplacian operator on the sphere. For a band-limited function f on the surface of the sphere,

its spherical harmonic expansion is

f(θ, ψ) =

2N−1∑
k=0

k∑
m=−k

αmk P̄
|m|
k (cos θ)eimψ, (10.28)

where θ ∈ (0, π) and ψ ∈ (0, 2π). A standard discretization is to let

−1 < cos θ0 < cos θ1 < · · · < cos θ2N−1 < 1

be the Gauss-Legendre quadrature nodes of degree 2N , i.e.,

P̄ 0
2N (cos θk) = 0,
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and let

ψj =
2π(j + 1

2 )

4N − 1

be equispaced on (0, 2π). We can rewrite (10.28) into

f(θ, ψ) =

2N−1∑
m=−2N+1

eimψ
2N−1∑
k=|m|

αmk P̄
|m|
k (cos θ) =

2N−1∑
m=−2N+1

eimψg(m, θ), (10.29)

where

g(m, θ) :=

2N−1∑
k=|m|

αmk P̄
|m|
k (cos θ). (10.30)

Since we can apply the fast Fourier transform and its inverse to compute the transformation between

g(m, θ) and f(θ, ψ) in (10.29), the main computational issue is the transformation between {αmk }
and g(m, θ) in (10.30).

In [158], it has been shown numerically that P̄
|m|
k (cos θ) is complementary low-rank in variables k

and θ for a fixed m. The author in [158] proposed a butterfly algorithm that applies the interpolative

decomposition [33, 80] to evaluate the transformation in (10.30) in O(N logN) operations for a fixed

m. However, the precomputation of this algorithm is O(N2).

We apply the butterfly factorization in this chapter to design another O(N logN) algorithm for

the transformation in (10.30). The precomputation of the our method is O(N1.5) once the matrices

P̄
|m|
k (cos θ) is given. For the transform from {αmk } to g(m, θ), we compute the butterfly factorization

P̄
|m|
k (cos θ) ≈ Um,LGm,L−1 · · ·Gm,hMm,h(Hm,h)∗ · · · (Hm,L−1)∗(V m,L)∗. (10.31)

By the fact that P̄
|m|
k (x) are orthogonal polynomials, the columns in the matrix P̄

|m|
k (cos θ) (a

column can be considered as a function of θ) are orthogonal. Hence, the inverse of P̄
|m|
k (cos θ) is

just a product of its transpose and a diagonal weight matrix. This leads to an O(N logN) algorithm

from g(m, θ) to {αmk }.
Table 10.4 summarizes the results of the butterfly factorization of P̄ 0

k (cos θ) for computing g(0, θ)

from a given Gaussian random vector {α0
k} for different degrees N and truncation ranks r.

N, r εa TFactor(min) Td(sec) Ta(sec) Td/Ta

256,4 2.24e-12 2.72e-02 5.13e-03 9.65e-04 5.34e+00
512,4 1.44e-10 7.64e-02 1.63e-02 2.45e-03 6.65e+00

1024,4 3.09e-10 1.70e-01 6.46e-02 6.30e-03 1.03e+01

256,6 1.52e-13 1.84e-02 4.76e-03 8.34e-04 5.71e+00
512,6 3.46e-13 4.16e-02 1.97e-02 2.62e-03 7.52e+00

1024,6 8.16e-12 1.50e-01 6.42e-02 6.07e-03 1.06e+01

Table 10.4: Numerical results with the matrix given by P̄ 0
k (cos θ).
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From Table 10.2, 10.3 and 10.4, we note that the accuracy of the butterfly factorization is well

controlled by the max rank r. For a fixed rank r, the accuracy is almost independent of N . In

practical applications, one can set the desired ε ahead and increase the truncation rank r until the

relative error reaches ε.

The tables for Example 1, 2 and 3 also provide numerical evidence for the asymptotic com-

plexity of the proposed algorithms. The construction algorithm based on random sampling is of

computational complexity O(N3/2). When we quadruple the problem size, the running time of

the construction sextuples and is better than we expect. The reason is that in the random sam-

pling method, the computation of a middle matrix requires pseudo-inverses of r× r matrices whose

complexity is O(r3) with a large prefactor. Hence, when N is not large, the running time will be

dominated by the O(r3N) computation of middle matrices. The numbers also show that the appli-

cation complexity of the butterfly factorization is O(N logN) with a prefactor much smaller than

the butterfly algorithm with Chebyshev interpolation [22]. In example 1, when the relative error

is ε ≈ 10−5, the butterfly factorization truncates the low-rank submatrices with rank 4 whereas

the butterfly algorithm with Chebyshev interpolation uses 9 Chebyshev grid points. The speedup

factors are 200 on average.

Example 4. In this example, we consider a composition of two FIOs, which is the discretization

of the following operator

u(x) =

∫
R
e2πıΦ2(x,η)

∫
R
e−2πıyη

∫
R
e2πıΦ1(y,ξ)f̂(ξ)dξdydη. (10.32)

For simplicity, we consider the same phase function Φ1 = Φ2 = Φ as given by (10.23). By the

discussion of Example 1 for one FIO, we know the discrete analog of the composition (10.32) can be

represented as

u = KFKFf =: KFKg, with g = Ff,

where F is the standard Fourier transform in matrix form, K is the same matrix as in Example

1, ui = u(xi), and gj = f̂(ξj). Under mild assumptions as discussed in [88], the composition of

two FIOs is an FIO. Hence, the new kernel matrix K̃ = KFK again satisfies the complementary

low-rank property, though typically with slightly increased ranks.

Notice that it is not reasonable to compute the matrix K̃ directly. However, we have the fast

Fourier transform (FFT) to apply F and the butterfly factorization that we have built for K in

Example 1 to apply K. Therefore, the construction algorithm with random matrix-vector multipli-

cation is applied to factorize K̃.

Since the direct evaluation of each ui takes O(N2) operations, the exact solution {udi }i∈S for a

selected set S is unfeasible for large N . We apply the butterfly factorization of K and the FFT

to evaluate {ui}i∈S as an approximation to the exact solution {udi }i∈S . These approximations
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are compared to the results {uai }i∈S that are given by applying the butterfly factorization of K̃.

Table 10.5 summarizes the results of this example for different grid sizes N and truncation ranks r.

N, r εa TFactor(min) Td(sec) Ta(sec) Td/Ta

1024,4 1.40e-02 3.26e-01 3.64e-01 4.74e-03 7.69e+01
4096,4 1.96e-02 4.20e+00 6.59e+00 2.52e-02 2.62e+02

16384,4 2.34e-02 4.65e+01 3.75e+01 1.15e-01 3.25e+02
65536,4 2.18e-02 4.33e+02 3.73e+02 6.79e-01 5.49e+02

1024,8 6.62e-05 3.65e-01 3.64e-01 8.25e-03 4.42e+01
4096,8 8.67e-05 4.94e+00 6.59e+00 5.99e-02 1.10e+02

16384,8 1.43e-04 6.23e+01 3.75e+01 3.47e-01 1.08e+02
65536,8 1.51e-04 6.91e+02 3.73e+02 1.76e+00 2.12e+02

1024,12 1.64e-08 4.79e-01 3.64e-01 1.48e-02 2.46e+01
4096,12 1.05e-07 6.35e+00 6.59e+00 1.12e-01 5.88e+01

16384,12 2.55e-07 7.58e+01 3.75e+01 7.64e-01 4.91e+01
65536,12 2.69e-07 7.63e+02 3.73e+02 4.39e+00 8.49e+01

Table 10.5: Numerical results for the composition of two FIOs.

Table 10.5 shows the numerical results of the butterfly factorization of K̃. The accuracy improves

as we increase the truncation rank r. Comparing Table 10.5 with Table 10.2, we notice that, for

a fixed accuracy, the rank used in the butterfly factorization of the composition of FIOs should

be larger than the rank used in a single FIO butterfly factorization. This is expected since the

composition is in general more complicated than the individual FIOs. TFactor grows on average by

a factor of ten when we quadruple the problem size. This agrees with the estimated O(N3/2 logN)

computational complexity for constructing the butterfly factorization. The column Ta shows that

the empirical application time of our factorization is close to the estimated complexity O(N logN).

10.5 Conclusion

This chapter introduces the one-dimensional butterfly factorization as a data-sparse approximation of

one-dimensional complementary low-rank matrices. More precisely, it represents such anN×N dense

matrix as a product of O(logN) sparse matrices. The factorization can be built efficiently if either

a fast algorithm for applying the matrix and its adjoint is available or an explicit expression for the

entries of the matrix is given. The butterfly factorization gives rise to highly efficient matrix-vector

multiplications with O(N logN) operation and memory complexity. The butterfly factorization is

also useful when an existing butterfly algorithm is repeatedly applied, because the application of the

butterfly factorization is significantly faster than pre-existing butterfly algorithms.



Chapter 11

Multi-Dimensional Butterfly

Factorization

11.1 Introduction

In Chapter 10, we have introduced a one-dimensional butterfly factorization for efficient kernel

evaluation of the form,

u(x) =
∑
ξ∈Ω

K(x, ξ)g(ξ), x ∈ X, (11.1)

where K(x, ξ) is a kernel function that satisfies a complementary low-rank property, and X,Ω are

point sets in R1. This chapter introduces a multi-dimensional butterfly factorization for point sets

X and Ω ⊂ Rd with d ≥ 2 to accelerate the evaluation of (11.1). This is joint work with Yingzhou Li

and Lexing Ying in [118]. The concept of the complementary low-rank property in one-dimensional

space can be extended to multi-dimensional spaces. With no loss of generality, we assume the points

in X and Ω are uniformly distributed with N points in each dimension. Let TX and TΩ be two

d-dimensional dyadic trees associated with domains X and Ω, respectively. They have the same

depth L = O(logN) with X and Ω as roots on the zero level. A kernel K(x, ξ) (or its matrix

representation) satisfies the complementary low-rank property if for any level ` = 0, 1, . . . , L, any

node A ∈ TX on the `-th level and any node B ∈ TΩ on the (L − `)-th level, the submatrix

KA,B = {K(xi, ξj)}xi∈A,ξj∈B is numerically low-rank with rank bounded by a uniform constant

independent of N . A well-known example is the (nonuniform) Fourier transform. As a discrete

analogue, we say a matrix K is complementary low-rank if it is the matrix representation of a

complementary low-rank kernel K(x, ξ). The multi-dimensional butterfly factorization factorizes K

into

K ≈ ULGL−1 · · ·GL/2ML/2
(
HL/2

)∗
· · ·
(
HL−1

)∗ (
V L
)∗
, (11.2)

223
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where the depth L is assumed to be an even number and all factors are sparse matrices with O(Nd)

non-zero entries. Here the superscript of a matrix denotes the level of the factor other than the

power of a matrix. After factorization, it only takes O(Nd logN) memory and operation complexity

to store and apply K.

In general, a multi-dimensional kernel K(x, ξ) coming from real applications may not satisfy the

complementary low-rank property in the whole domain X × Ω, but the property is true locally in

X × Ω. For example, a multi-dimensional kernel K(x, ξ) coming from a Fourier integral operator

(FIO) [21, 22, 119] would have irregularity at ξ = 0. The FIO kernel K(x, ξ) is complementary

low-rank in a subdomain X×Ωj ⊂ X×Ω with ξ = 0 away from Ωj . There are mainly two methods

to deal with this irregularity at ξ = 0. One idea is to apply a well-designed polar transformation

mapping the domain X × Ω into a new domain X × P such that ξ = 0 is mapped to the boundary

of P . After this transformation, the new kernel function defined on X×P would be complementary

low-rank. Another idea is to partition the whole domain X × Ω into a sequence of subdomains

X ×Ωj such that K(x, ξ) is complementary low-rank in each subdomain. The corresponding kernel

matrix K can be represented as a sequence of a few butterfly factorizations

KX,Ωj ≈ U j,LjGj,Lj−1 · · ·Gj,
Lj
2 M j,

Lj
2

(
Hj,

Lj
2

)∗
· · ·
(
Hj,Lj−1

)∗ (
V j,Lj

)∗
, (11.3)

and the total number of nonzero entries in the above factorizations is O(Nd logN). Hence, this

factorization admits O(Nd logN) memory and operation complexity to store and apply the matrix

K as well. Since the domain partition is application-dependent, we would focus on the FIO kernel

as an illustration of the multi-dimensional butterfly factorization with irregularity.

Similar to the one-dimensional butterfly factorization, the multi-dimensional butterfly factoriza-

tion can be constructed in two ways:

(i) A black-box routine for computing Kg and K∗g in O(Nd logN) operations is given;

(ii) A black-box routine for evaluating any entry of K in O(1) operations is given.

We will first introduce the multi-dimensional butterfly factorization when the kernel K(x, ξ) is

complementary low-rank in the whole domain X × Ω. In the case of point irregularity at ξ = 0 for

FIO kernels, we presents two kinds of factorizations: one is based on transforming X × Ω to a new

domain X × P via a polar-Cartesian transformation; another one is based on a multiscale partition

of X × Ω in a Cartesian grid. We denote these algorithms as polar butterfly factorization (PBF),

and multiscale butterfly factorization (MBF), respectively. The idea of PBF and MBF comes from

the polar butterfly algorithm in [22] and the multiscale butterfly algorithm in [119] or Chapter 9.

PBF and MBF are essentially matrix representations of these fast algorithms.

For simplicity, we will introduce the multi-dimensional butterfly factorizations for d = 2. The
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butterfly factorization can be constructed in a similar way for d > 2. We also assume that

X =
{
x =

(n1

N
,
n2

N

)
, 0 ≤ n1, n2 < N with n1, n2 ∈ Z

}
(11.4)

in a unit square and defines

Ω =

{
ξ = (n1, n2),−N

2
≤ n1, n2 <

N

2
with n1, n2 ∈ Z

}
. (11.5)

11.2 Preliminaries

Let us briefly review the ideas of fast low-rank approximations that we have used in Chapter 10, the

polar butterfly algorithm in [22] and multiscale butterfly algorithm in [119] and Chapter 9.

11.2.1 Randomized Low-Rank Factorization

For a matrix Z ∈ Cm×n, its rank-r approximation in 2-norm can be computed via the truncated

singular value decomposition (SVD),

Z ≈ U0Σ0V
∗
0 , (11.6)

where U0 ∈ Cm×r and V0 ∈ Cn×r are unitary matrices, Σ0 ∈ Rr×r is a diagonal matrix with the

first r singular values of Z in decreasing order.

Once the rank-r SVD, Z ≈ U0Σ0V
∗
0 , is available, we have three different ways to assign singular

values to obtain a rank-r approximation of Z:

Z ≈ USV ∗, U = U0Σ0, S = Σ−1
0 , and V ∗ = Σ0V

∗
0 , (11.7)

or Z ≈ UV ∗, U = U0Σ0, and V ∗ = V ∗0 , (11.8)

or Z ≈ UV ∗, U = U0, and V ∗ = Σ0V
∗
0 , (11.9)

each of which results in particular benefit in the butterfly factorization.

As discussed in Section 10.2, the rank-r SVD can be constructed via either the randomized SVD

in [84] or the randomized sampling algorithm in [67, 181]. If we denote the application complexity

of Z and its adjoint as O(C(m,n)), then the construction complexity of the rank-r SVD via the ran-

domized SVD is O(C(m,n)r+ max(m,n)r2), while the construction complexity via the randomized

sampling algorithm is O(max(m,n)r2).
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11.2.2 Polar Butterfly Algorithm

The polar butterfly algorithm is initially designed for multi-dimensional Fourier integral operators

u(x) =
∑
ξ∈Ω

e2πıΦ(x,ξ)g(ξ), x ∈ X, (11.10)

where the phase function Φ(x, ξ) is assumed to be smooth in (x, ξ) for ξ 6= 0, and obeys an homo-

geneity condition of degree 1 in ξ, namely, Φ(x, λξ) = λΦ(x, ξ) for all λ > 0.

Due to the fact that the phase function Φ(x, ξ) might be singular at ξ = 0, the derivative of

Φ(x, ξ) near ξ = 0 may not be bounded. The numerical rank of the kernel e2πıΦ(x,ξ) in a domain

containing ξ = 0 can be very large. Hence, K(x, ξ) = e2πıΦ(x,ξ) does not satisfy the complementary

low-rank property over the entire domain X × Ω. In [22], the authors introduce a polar coordinate

transform on Ω:

ξ = (ξ1, ξ2) =

√
2

2
Np1e

2πıp2 , e2πıp2 = (cos 2πp2, sin 2πp2), (11.11)

for ξ ∈ Ω and p = (p1, p2) ∈ [0, 1]2. In the rest of this chapter, points in a polar coordinate are

denoted by p, and the set of all points p transformed from Ω is denoted by P . Accordingly, we can

introduce a new phase function Ψ(x, p) in variables x and p satisfying

Ψ(x, p) =
1

N
Φ(x, ξ) =

√
2

2
Φ(x, e2πıp2)p1, (11.12)

where the last equality comes from the fact that Φ(x, ξ) is homogeneous of degree 1 in ξ. After

the polar transform, the new phase function Ψ(x, p) is smooth in the whole domain X × P . Hence,

e2πıNΨ(x,p) satisfies the complementary low-rank property almost over the whole domain X×P and

the matrix representation of the new kernel e2πıNΨ(x,p) in X × P is complementary low-rank.

Recall that X×P ⊂ [0, 1]2× [0, 1]2. By dyadic partition of [0, 1]2, we can construct two quadtrees

TX and TP of depth L = O(logN) associated with X and P , respectively. The following theorem is

rephrased from Theorem 3.1 in [22]. It supports the complementary low-rank property of e2πıNΨ(x,p)

as observed above. We denote f . g if f ≤ Cg for some constant C independent of N and a given

small ε.

Theorem 11.2.1. Suppose A is a node in TX on level ` and B is a node in TP on level L− `. Let

cA and cB be the center of A and B, respectively. Given an FIO kernel function e2πıNΨ(x,p), there

exist ε0 > 0 and N0 > 0 such that for any ε ≤ ε0 and N ≥ N0, there exist rε pairs of functions

{αA,Bt (x), βA,Bt (p)}1≤t≤rε satisfying that∣∣∣∣∣e2πıNΨ(x,p) − e−2πıNΨ(cA,cB)
rε∑
t=1

e2πıNΨ(x,cB)αA,Bt (x)βA,Bt (p)e2πıNΨ(cA,p)

∣∣∣∣∣ ≤ ε,
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for x ∈ A and p ∈ B with rε . log4(1/ε).

The polar butterfly algorithm in [22] applies the butterfly algorithm detailed in Section 9.2 to

evaluate an FIO via a summation in the form

u(x) =
∑
p∈P

e2πıNΨ(x,p)g(p), x ∈ X. (11.13)

It simultaneously traverses in TX level by level from the root X to leaves, and traverses in TP from

leaves to the root P . At each step of the traverse, suppose we are on level ` in TX and on level

L − ` in TP , the algorithm constructs the low-rank approximation of e2πıNΨ(x,p) for each pair of

A × B ∈ TX × TP on the current level. The approximation functions {αA,Bt (x), βA,Bt (p)}1≤t≤rε
are constructed via efficient Lagrange interpolation on the Chebyshev grid similar to the method

described in Section 9.4.1.

The polar butterfly algorithm is highly efficient. It evaluates (11.13) with O(N2 logN) operation

complexity and O(N2) memory complexity. However, it is not suitable for the problem addressed

in this chapter when the kernel function is not available explicitly.

11.2.3 Multiscale Butterfly Algorithm

The multiscale butterfly algorithm in [119] has been introduced in Chapter 9. We briefly recall its

theory and ideas here. The key idea of the multiscale butterfly algorithm is to hierarchically partition

the domain Ω into subdomains excluding the singular point ξ = 0. This multiscale partition is

illustrated in Figure 11.1. The FIO kernel e2πıΦ(x,ξ) satisfies the complementary low-rank property

when it is restricted in each subdomain X×Ωj . This is supported by the following theorem rephrased

from Theorem 9.3.1 in Chapter 9. Recall that dist(B, 0) = minξ∈B ‖ξ − 0‖ is the distance between

the square B and the origin ξ = 0 in Ω.

Ω1 Ω2

· · ·

· · · ΩlogN−s Ωd

Figure 11.1: This figure shows the domain partition of Ω. Each subdomain Ωj , j = 1, . . . , logN − s,
is a corona and Ωd is a small square domain near the origin.
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Theorem 11.2.2. Given an FIO kernel function e2πıΦ(x,p), there exist a constant N0 > 0 and a

small constant ε0 such that the following statement holds. Let A and B be two squares in X and Ω

centered at cA and cB with length wA and wB, respectively. Suppose wAwB ≤ 1 and dist(B, 0) ≥ N
4 .

For any positive ε ≤ ε0 and N ≥ N0, there exist rε pairs of functions {αA,Bt (x), βA,Bt (p)}1≤t≤rε
satisfying that∣∣∣∣∣e2πıΦ(x,ξ) − e−2πıΦ(cA,cB)

rε∑
t=1

e2πıΦ(x,cB)αA,Bt (x)βA,Bt (ξ)e2πıΦ(cA,ξ)

∣∣∣∣∣ ≤ ε,
for x ∈ A and ξ ∈ B with rε . log4(1/ε).

According to the low-rank property in Theorem 11.2.2, the multiscale butterfly algorithm rewrites

(11.10) as a multiscale summation,

u(x) =
∑
ξ∈Ωd

e2πıΦ(x,ξ)g(ξ) +
∑
j

∑
ξ∈Ωj

e2πıΦ(x,ξ)g(ξ), (11.14)

where

Ωj = {(ξ1, ξ2) :
N

2j+2
< max(|ξ1|, |ξ2|) ≤

N

2j+1
} ∩ Ω, (11.15)

for j = 0, 1, . . . , log2N − s, s is a small constant, and Ωd = Ω \ ∪jΩj . Equation (11.15) is a corona

decomposition of Ω, where each Ωj is a corona and Ωd is a disk at the center containing O(1) points.

For each j, the multiscale butterfly algorithm evaluates uj(x) =
∑
ξ∈Ωj

e2πıΦ(x,ξ)g(ξ) via the

Cartesian butterfly algorithm with Lagrange interpolation on Chebyshev grid points detailed in

Section 9.4. The summation ud(x) =
∑
ξ∈Ωd

e2πıΦ(x,ξ)g(ξ) is directly computed in O(N) operations.

Finally, u(x) is a simple summation

u(x) = ud(x) +
∑
j

uj(x), x ∈ X. (11.16)

The multiscale butterfly algorithm enjoys O(N2 logN) operation complexity and O(N2) memory

complexity as analyzed in Section 9.4. However, it is still not suitable for the problem addressed in

this chapter when the kernel function is not available explicitly.

11.3 Multi-Dimensional Butterfly Factorization

This section presents the multidimensional butterfly factorization for a kernel K(x, ξ) that satisfies

the complementary low-rank property in X × Ω. Recall that TX and TΩ are complete quadtrees

with L = O(logN) levels. Without loss of generality, we assume L is an even integer.

We basically adopt the notation introduced in Chapter 10 for one-dimensional butterfly factor-

izations, but adapt them to high dimensional problems in this chapter by using vector indices in a
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bold front. On the `-th level of a quadtree, ` = 0, 1, . . . , L, we denote the ith node of TX as A`i

for i = (i1, i2), and i1, i2 = 0, 1, . . . , 2` − 1. At each level `, these 4` different vector indices can

be ordered in a special zigzag way as i0, i1, . . . , i4`−1 as illustrated in Figure 11.2. If we introduce

four vectors e0 = (0, 0), e1 = (0, 1), e2 = (1, 0) and e3 = (1, 1), then a domain A`i at level ` has

four child domains A`+1
2i+et

for t = 0, . . . , 3. The ordered numbers plotted in Figure 11.2 for ` = 2

(left) and 3 (right) illustrate the relation of indices and their orders at different levels. In what

follows, we sometimes use vector indices rather than its ordered scalar equivalent for the purpose of

convenience. Similarly, on level L − ` of TΩ, the jth node is denoted as BL−`j for j = (j1, j2) and

j1, j2 = 0, 1, . . . , 2L−` − 1. The kernel matrix K is naturally partitioned into O(N2) submatrices

{KA`i,B
L−`
j
}i,j . For simplicity, we write K`

i,j = KA`i,B
L−`
j

where the superscript ` denotes the level in

TX . Based on the complementary low-rank property, every submatrix K`
i,j is numerically low-rank

with a rank bounded by r independent of N .

0 1 4 5

2 3 6 7

8 9 12 13

10 11 14 15

 i
1

 i
2

0 1 4 5 16 17 20 21

2 3 6 7 18 19 22 23

8 9 12 13 24 25 28 29

10 11 14 15 26 27 30 31

32 33 36 37 48 49 52 53

34 35 38 39 50 51 54 55

40 41 44 45 56 57 60 61

42 43 46 47 58 59 62 63

 j
1

 j
2

Subdomains A2
i in TX Subdomains B3

j in TΩ

Figure 11.2: Two examples of ordering vector indices i and j. Left: At level 2, the domain X is
divided into 4× 4 subdomains A2

i with i = (i1, i2) for i1, i2 = 0, . . . , 3. These 16 vector indices can
be ordered in a special zigzag way as i0, i1, . . . , i15. For each i = (i1, i2), its order is plotted at
position (i1, i2) in the left figure. Right: At level 3, the domain Ω is divided into 8× 8 subdomains
B3

j with j = (j1, j2) for j1, j2 = 0, . . . , 7. These 64 different vector indices j can be ordered similarly.

The two-dimensional butterfly factorization consists of two stages. In the first stage, we factorize

Kh
i,j ≈ Uhi,jS

h
i,j

(
V hj,i

)∗
for all i and j at level ` = h = L/2 using fast low-rank factorizations and

(11.7). These factorizations can be assembled into three sparse matrices, Uh, Mh and V h such that

K ≈ UhMh(V h)∗. (11.17)

This stage is referred as middle level factorization described in Section 11.3.1. In the second stage,

we recursively factorize the left and right factors, Uh and V h since their submatrices Uhi,j and V hj,i

have a special low-rank property as discussed later. After the recursive factorization, we assemble
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all factors into sparse matrices and get an approximate factorization of K,

K ≈ ULGL−1 · · ·GhMh
(
Hh
)∗ · · · (HL−1

)∗ (
V L
)∗
, (11.18)

where all sparse matrices have O(N2) non-zero entries. This stage is referred as recursive factoriza-

tion discussed in Section 11.3.2.

11.3.1 Middle Level Factorization

Recall that we consider two cases as follows.

(i) A black-box routine for computing Kg and K∗g in O(N2 logN) operations is given.

(ii) A black-box routine for evaluating any entry of K in O(1) operations is given.

In case (i), we apply the randomized SVD method [84] to construct the rank-r SVD of each

Kh
i,j ∈ RN×N . This requires applying Kh

i,j and its adjoint to a Gaussian random matrix Cs ∈
CN×(r+k), where r is the numerical rank of Kh

i,j and k is an oversampling parameter (in most cases

k = 5 is sufficient). Note that only a black box routine for applying the whole matrix K and its

adjoint is available. We construct a larger random matrix C` ∈ CN2×(r+k) by padding zero rows in

Cs such that KC` will only touch the desired columns in K corresponding to the submatrix Kh
i,j .

Hence, Kh
i,jCs can be read off from the rows in KC` corresponding to Kh

i,j . A similar method gives

(Kh
i,j)∗Cs. Finally, we compute the rank-r SVD of Kh

i,j from Kh
i,jCs and

(
Kh

i,j

)∗
Cs following the

randomized SVD method in [84] for all i and j.

In the more flexible case (ii), we can accelerate the rank-r SVD of Kh
i,j via the randomized

sampling algorithm [67, 181] as what we do in the one-dimensional butterfly factorization.

In either case, we can obtain a low-rank factorization

Kh
i,j ≈ Uhi,jShi,j

(
V hj,i

)∗
(11.19)

from the rank-r SVD of Kh
i,j via (11.7). The factorization method via (11.7) scales the left and

right factors Uhi,j and V hj,i with the singular values of Kh
i,j so that Uhi,j and V hj,i keep track of the

importance of column and row spaces for further factorizations.

After computing the rank-r factorization in (11.19) for all i and j, we assemble all left factors

Uhi,j into a matrix Uh, all middle factors into a matrix Mh, and all right factors into a matrix V h

such that

K ≈ UhMh(V h)∗ (11.20)

as visualized in Figure 11.3. Let us recall that i and j are vector indices. At the middle level, there

are N different vector indices i = (i1, i2) with 0 ≤ i1 ≤ 2h − 1 and 0 ≤ i2 ≤ 2h − 1. Hence, i can

be ordered as i0, . . . , iN−1. Similarly, we have j0, . . . , jN−1. With these notations ready, we can
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explain the factors in (11.20). Here Uh is a block diagonal matrix of size N2× rN2 with N diagonal

blocks Uhi of size N × rN . The diagonal block Uhi is a stack of left factors Uhi,j for all column indices

j as follows:

Uhi =
(
Uhi,j0 Uhi,j1 · · · Uhi,jN−1

)
∈ CN×rN . (11.21)

Similarly, V h is a block diagonal matrix of size N2×rN2 with N diagonal blocks V hj of size N×rN .

The diagonal block V hj is a stack of left factors V hj,i for all column indices i as follows:

V hj =
(
V hj,i0 V hj,i1 · · · V hj,iN−1

)
∈ CN×rN . (11.22)

The middle matrix Mh ∈ CrN2×rN2

serves as a weighted permutation matrix. Hence, it is a N ×N
block matrix with the (i, j)th block Mh

i,j ∈ CrN×rN being an N ×N block matrix again. Here (i, j)

means a 1× 2 vector (k1, k2) where k1 is the order of i and k2 is the order of j among other vector

indices on the same level. This ordering has been illustrated in Figure 11.2. The (j, i)th block of

Mh
i,j is equal to Shi,j and the other blocks of Mh

i,j are zero. Hence, we have K ≈ UhMh(V h)∗ (see

Figure 11.3 for an example of the middle level factorization when N = 16).

11.3.2 Recursive Factorization

In this section we will recursively factorize

U ` ≈ U `+1G` (11.23)

and

(V `)∗ ≈ (H`)∗V `+1)∗ (11.24)

for ` = h, h+1, . . . , L−1. After these recursive factorizations, we can construct the two-dimensional

butterfly factorization

K ≈ ULGL−1 · · ·GhMh
(
Hh
)∗ · · · (HL−1

)∗ (
V L
)∗

(11.25)

by substituting these recursive factorizations into (11.20).

Recursive factorization of Uh

Recall from the middle level factorization that we took advantage of the low-rank property of Kh
i,j to

obtain Uhi,j for i = (i1, i2) and j = (j1, j2), i1, i2, j1, j2 = 0, 1, . . . , 2h−1. The matrix Kh
i,j represents

the kernel function restricted in the domain Ahi × Bhj ∈ TX × TΩ. Next, we are going to use the

low-rank property of Kh+1
i,j that represents the kernel function restricted in Ah+1

i ×Bh−1
j ∈ TX ×TΩ

for i = (i1, i2), i1, i2 = 0, 1, . . . , 2h+1− 1 and j = (j1, j2), j1, j2 = 0, 1, . . . , 2h−1− 1, to construct the

factorization (11.23) for ` = h. This process consists of three steps: a splitting step equivalent to
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M2 (V 2)∗

Figure 11.3: The middle level factorization of a N2×N2 = 256×256 complementary low-rank matrix
U2M2(V 2)∗ assuming r = 1. Grey blocks indicate nonzero blocks. U2 and V 2 are block-diagonal
matrices with 16 blocks. The diagonal blocks of U2 and V 2 are assembled according to Equation
(11.21) and (11.22) as indicated by black rectangles. M2 is a 16× 16 block matrix with each block
M2

i,j itself an 16× 16 block matrix containing diagonal weight matrix on the (j, i) block.
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moving from level h to level h+ 1 in TX ; a merging step equivalent to moving from level h to level

h− 1 in TΩ; an assembling step for constructing (11.23) from small factorizations.

Let us start with the splitting step first. In the middle level factorization, we have constructed

Uh =


Uhi0

Uhi1
. . .

Uhi
4h−1


and

Uhi =
(
Uhi,j0 Uhi,j1 · · · Uhi,j

4h−1

)
∈ CN×rN

with each Uhi,j ∈ CN×r. Each node Ahi in the quadtree TX on the level h has four child nodes on

the level h+ 1. Recall that we have introduced four vectors e0 = (0, 0), e1 = (0, 1), e2 = (1, 0) and

e3 = (1, 1). Hence, these child nodes can be denoted by {Ah+1
2i+et

}t=0,1,2,3 using consistent vector

notations. Correspondingly, if we quarter Uhi and Uhi,j into four parts by row, i.e.,

Uhi =



Uh,0i

Uh,1i

Uh,2i

Uh,3i


and Uhi,j =



Uh,0i,j

Uh,1i,j

Uh,2i,j

Uh,3i,j


,

then for each t = 0, . . . , 3, we have the following relation:

Uh,ti corresponds to domain Ah+1
2i+et

× Ω (11.26)

Uh,ti,j corresponds to domain Ah+1
2i+et

×Bhj . (11.27)

Combining the above split results, we have

Uhi =



Uh,0i,j0
Uh,0i,j1

. . . Uh,0i,j
4h−1

Uh,1i,j0
Uh,1i,j1

. . . Uh,1i,j
4h−1

Uh,2i,j0
Uh,2i,j1

. . . Uh,2i,j
4h−1

Uh,3i,j0
Uh,3i,j1

. . . Uh,3i,j
4h−1


. (11.28)

This is the splitting step moving from level h to h+ 1 in TX .

Next, the merging step merges adjacent matrices Uh,ti,j to obtain low-rank matrices. Using the

notation {et}t=0,...,3 again, we note that for each i = (i1, i2), i1, i2 = 0, . . . , 2h − 1, and j = (j1, j2),
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j1, j2 = 1, . . . , 2h/2 − 1, the column space of the submatrix(
Uh,ti,2j+e0

Uh,ti,2j+e1
Uh,ti,2j+e2

Uh,ti,2j+e3

)
∈ CN/4×2r (11.29)

in (11.28) are in the column space of Kh+1
2i+et,j

by the relation (11.27). By the complementary low-

rank property of the matrix K, we know Kh+1
2i+et,j

corresponding to the kernel function restricted in

Ah+1
2i+et

×Bh−1
j is numerically low-rank. Hence, the matrix in (11.29) is a numerical low-rank matrix.

By computing its rank-r approximation using the standard truncated SVD and (11.7), we have(
Uh,ti,2j+e0

Uh,ti,2j+e1
Uh,ti,2j+e2

Uh,ti,2j+e3

)
≈ Uh+1

2i+et,j
Gh2i+et,j (11.30)

for i = (i1, i2), i1, i2 = 0, . . . , 2h − 1, and j = (j1, j2), j1, j2 = 1, . . . , 2h−1 − 1. This is the merging

step equivalent to moving from level h to level h− 1 in TΩ.

In the assembling step, we construct the factorization in (11.23) for ` = h using the small

factorizations in (11.30) as follows:

Uh ≈ Uh+1Gh =


Uh+1
i0

Uh+1
i1

. . .

Uh+1
i
4h+1−1




Ghi0

Ghi1
. . .

Ghi
4h−1

 ,

where

Uh+1
i =

(
Uh+1
i,j0

Uh+1
i,j1

· · · Uh+1
i,j

4h−1−1

)
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for i = i0, i1, . . . , i4h+1−1, and

Ghi =



Gh2i+e0,j0
Gh2i+e0,j1

. . .

Gh2i+e0,j2h−1

Gh2i+e1,j0
Gh2i+e1,j1

. . .

Gh2i+e1,j2h−1

Gh2i+e2,j0
Gh2i+e2,j1

. . .

Gh2i+e2,j2h−1

Gh2i+e3,j0
Gh2i+e3,j1

. . .

Gh2i+e3,j2h−1


for i = i0, i1, . . . , i4h−1.

Since there are O(1) nonzero entries in each Ghi,j and there are O(4h ∗ 4 ∗ 4h−1) = O(N2) such

matrices, there are only O(N2) nonzero entries in Gh.

In a similar way, we can factorize U ` ≈ U `+1G` for h < ` ≤ L− 1, because the column space of(
U `,ti,2j+e0

U `,ti,2j+e1
U `,ti,2j+e2

U `,ti,2j+e3

)
(11.31)

is in the column space of K`+1
2i+et,j

. Computing the rank-r approximations via the standard truncated

SVD and (11.9) gives(
U `,ti,2j+e0

U `,ti,2j+e1
U `,ti,2j+e2

U `,ti,2j+e3

)
≈ U `+1

2i+et,j
G`2i+et,j (11.32)

for i = i0, i1, . . . , i2`−1 and j = j0, j1, . . . , j2L−`−1−1. After assembling these factorizations together,
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we obtain

U ` ≈ U `+1G` =


U `+1
i0

U `+1
i1

. . .

U `+1
i
4`+1−1




G`i0

G`i1
. . .

G`i
4`−1

 ,

where

U `+1
i =

(
U `+1
i,j0

U `+1
i,j1

· · · U `+1
i,j

4L−`−1−1

)
for i = i0, i1, . . . , i4`+1−1, and

G`i =



G`2i+e0,j0
G`2i+e0,j1

. . .

G`2i+e0,j2L−`−1−1

G`2i+e1,j0
G`2i+e1,j1

. . .

G`2i+e1,j2L−`−1−1

G`2i+e2,j0
G`2i+e2,j1

. . .

G`2i+e2,j2L−`−1−1

G`2i+e3,j0
G`2i+e3,j1

. . .

G`2i+e3,j2L−`−1−1


for i = i0, i1, . . . , i4`−1.

After L− h steps of recursive factorizations

U ` ≈ U `+1G`

for ` = h, h+ 1, . . . , L− 1, we obtain the recursive factorization of Uh as

Uh ≈ ULGL−1 · · ·Gh. (11.33)



CHAPTER 11. MULTI-DIMENSIONAL BUTTERFLY FACTORIZATION 237

Similar to the analysis of Gh, it is also easy to check that there are only O(N2) nonzero entries

in each G` in (11.33). Since there are O(N2) diagonal blocks in UL and each block contains O(1)

entries, there is O(N2) nonzero entries in UL.

Recursive factorization of V h

The recursive factorization of V ` is similar to that of U ` for ` = h, h+ 1, . . . , L− 1. At each level `,

we benefit from the fact that
(
V `,tj,2i+e0

V `,tj,2i+e1
V `,tj,2i+e2

V `,tj,2i+e3

)
is in the row space of KL−`−1

i,2j+et

and hence is numerically low-rank. Applying the same procedure in Section 11.3.2 to V h leads to

V h ≈ V LHL−1, . . . ,Hh. (11.34)

Given the results of the middle level factorization in (11.20), recursive factorizations in (11.33)

and (11.34), we arrive at the final butterfly factorization

K ≈ ULGL−1 · · ·GhMh
(
Hh
)∗ · · · (HL−1

)∗ (
V L
)∗
, (11.35)

with all factors containing O(N2) non-zero entries.

11.3.3 Complexity Analysis

We split the complexity analysis of the construction of butterfly factorizations into two parts: the

middle level factorization and the recursive factorization.

We have different complexity in the middle level factorization depending on the following condi-

tions:

• In case (i), the dominant cost is to apply K and K∗ to Gaussian random matrices of size

O(N2 × N). Assuming that the given blackbox routine for applying K and K∗ once takes

O(CK(N)) operations, the total operation complexity is O(CK(N)N).

• In case (ii), we apply the randomized sampling algorithm to compute O(N2) submatrices of

size N × N . Since the operation complexity taken for each submatrix is O(N), the overall

complexity is O(N3).

In the recursive factorization, it takes the same operation complexity to factorize Uh and V h.

There are O(log(N)) steps to factorize Uh. At the ` step, the matrix U ` to be factorized consists of

4` diagonal blocks. There are O(N2/4`) factorizations in every diagonal block and each factorization
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takes O(N2/4`) operations. Hence, the operation complexity to factorize U ` is O(N4/4`). Summing

up all the operations in each step yields the overall operation complexity for recursively factorizing

Uh:
L−1∑
`=h

O(N4/4`) = O(N3). (11.36)

Randomized
SVD

Randomized
sampling

Factorization
Complexity

Middle level
factorization

O(CK(N)N) O(N3)

Recursive
factorization

O(N3)

Total O(CK(N)N) O(N3)

Memory
Complexity

O(N3) O(N2 logN)

Application
Complexity

O(N2 logN)

Table 11.1: Computational complexity and memory complexity of the two-dimensional butterfly
factorization. CK(N) is the operation complexity of applying K and K∗ once, e.g., CK(N) =
O(N2 logN) for the butterfly algorithms in Section 11.2.

The memory peak of the butterfly factorization is due to the middle level factorization where we

have to store the results of O(N2) factorizations of size O(N). Hence, the memory complexity for

the two-dimensional butterfly factorization is O(N3). By the same argument in [117] or in Section

10.3.3, we can lever the order of generation and recursive factorization of Uhi,j and V hj,i. If we factorize

Uhi,j and V hj,i individually instead of formulating (11.20), the memory complexity for case (ii) can

be reduced to O(N2 logN). Table 11.1 summarizes the complexity analysis for the two-dimensional

butterfly factorization.

The storage and application complexity for the butterfly factorization is the number of nonzero

entries in the final factorization, which is O(N2 logN).

So far, we have introduced the two-dimensional butterfly factorization for a complementary low-

rank kernel K(x, ξ) in the whole domain X × Ω. Although we have assumed the uniform grid in

(11.4) and (11.5), the butterfly factorization algorithm here does not rely on this grid. Actually, in

the case when a quasi-uniform point set X×Ω is given, we can still construct a butterfly factorization

for K(x, ξ) following the instruction in this section. On a fixed level `, the number of points in each

A`i ∈ TX (or B`j ∈ TΩ) might be different, but the numerical rank of K`
i,j can still be bounded by

a uniform constant r according to theorems in Section 11.2. Although we will encounter different
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sizes of small factorization, the overall complexity analysis is still true for a quasi-uniform point set

X × Ω.

11.4 Polar Butterfly Factorization

In Section 11.5, we have introduced a two-dimensional butterfly factorization for a complementary

low-rank kernelK(x, ξ) in the whole domainX×Ω. In this section, we will introduce a polar butterfly

factorization method to deal with special kernel functions K(x, ξ) = e2πıΦ(x,ξ) with irregularity at

ξ = 0 encountered in FIOs.

The polar butterfly factorization refers to the idea of the polar butterfly algorithm in Section

11.2.2 that after the polar transformation from ξ = (ξ1, ξ2) to p = (p1, p2):

ξ =

√
2

2
Np1e

2πıp2 , e2πıp2 = (cos 2πp2, sin 2πp2),

the new function

Ψ(x, p) :=
1

N
Φ(x, ξ) =

√
2

2
Φ(x, e2πıp2)p1,

is smooth in the whole domain X × P , where P = (0, 1)2. This leads to a complementary low-rank

property of e2πıNΨ(x,p) in the whole domain X × P as proved by Theorem 11.2.1. This inspires the

polar butterfly factorization is as follows:

1. Preliminary. Reformulate the problem

u(x) =
∑
ξ∈Ω

e2πıΦ(x,ξ)g(ξ), x ∈ X, (11.37)

into

u(x) =
∑
p∈P

e2πıNΨ(x,p)g(p), x ∈ X. (11.38)

2. Factorization. Apply the two-dimensional butterfly factorization to the kernel e2πıNΨ(x,p)

defined on a nonuniform point set in X × P to compute the butterfly factorization

K ≈ ULGL−1 · · ·GhMh
(
Hh
)∗ · · · (HL−1

)∗ (
V L
)∗
, (11.39)

3. Application. Transform the given data g(ξ) into g(p) on a polar grid. Multiply the factorization

above to g(p).

The polar butterfly factorization and the original butterfly factorization have the same complexity

as summarized in Table 11.1.
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11.5 Multiscale Butterfly Factorization

In this section, we will introduce another idea to address the point irregularity of K(x, ξ) = e2πıΦ(x,ξ)

at ξ = 0. Recall that the multiscale butterfly algorithm partitions the domain Ω into multiscale

subdomains as follows:

u(x) =
∑
ξ∈Ω

e2πıΦ(x,ξ)g(ξ) =
∑
ξ∈Ωd

e2πıΦ(x,ξ)g(ξ) +
∑
j

∑
ξ∈Ωj

e2πıΦ(x,ξ)g(ξ), (11.40)

where

Ωj = {(ξ1, ξ2) :
N

2j+2
< max(|ξ1|, |ξ2|) ≤

N

2j+1
} ∩ Ω, (11.41)

for j = 0, 1, . . . , log2N − s, s is a small constant, and Ωd = Ω \ ∪jΩj . Since the kernel e2πıΦ(x,ξ) is

complementary low-rank when it is restricted in X×Ωj , we can apply the two-dimensional butterfly

factorization in each subdomain. This motivates the multiscale butterfly factorization below.

1. Preliminary. Decompose domain Ω into subdomains as in (11.41). Reformulate the problem

into a multiscale summation according to (11.40):

u = Kg = KX,ΩdgΩd +
∑
j

KX,ΩjgΩj , (11.42)

where subscripts denote the domains to which the submatrices and subvectors are correspond-

ing.

2. Factorization. Let L = log2N and s be a small constant. For each j = 0, 1, . . . , L − s, apply

the two-dimensional butterfly factorization on K(x, ξ) = e2πıΦ(x,ξ) restricted in X × Ωj .

Note that each domain Ωj contains an empty block in the middle. Factorizing the kernel

e2πıΦ(x,ξ) restricted in X × Ωj is equivalent to factorizing a new kernel

K̃(x, ξ) =

e2πıΦ(x,ξ), for ξ ∈ Ωj ;

0, for ξ ∈ ∪k>jΩk
(11.43)

restricted in X × ∪k≥jΩk. Let Ω̃j = ∪k≥jΩk. We construct two quadtrees TX and TΩ̃j
by

hierarchically dyadic partition. Let X and Ω̃j be the roots of TX and TΩ̃j
(corresponding to

level 0 in the quadtrees). Let Lj = 2b(L − j)/2c, where b·c is the largest integer leas than

or equal to a given number. To make sure that TX and TΩ̃j
have the same depth, we will

partition X and Ω̃j until we reach the Ljth level.
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Applying the two-dimensional butterfly factorization using the quadtrees TX and TΩ̃j
con-

structed above gives the jth butterfly factorization below

KX,Ωj ≈ U j,LjGj,Lj−1 · · ·Gj,
Lj
2 M j,

Lj
2

(
Hj,

Lj
2

)∗
· · ·
(
Hj,Lj−1

)∗ (
V j,Lj

)∗
.

Note that K̃(x, ξ) is zero when ξ ∈ ∪k>jΩk. There are 1
4 small matrices to be factorized in the

process of butterfly factorization are zero matrices. We can simply ignore the computation for

these matrices.

Once we have computed all butterfly factorizations, then the multiscale summation in (11.42)

becomes

u = KX,ΩdgΩd +
∑
j

U j,LjGj,Lj−1 · · ·M j,
Lj
2 · · ·

(
Hj,Lj−1

)∗ (
V j,Lj

)∗
gΩj (11.44)

3. Application In practice, after computing the butterfly factorization for KX,Ωj , we only store

the nonzero submatrices of its factors. When an input vector g is given, we divide g into gΩd ,

gΩj , j = 0, . . . , L− s, and evaluate (11.44) for u.

The overall factorization and application complexity of the multiscale butterfly factorization is

the same as that of the regular butterfly factorization as summarized in Table 11.1.

In the case (i) when we have a blackbox routine for apply K and its adjoint, the middle level

factorizations of all butterfly factorization on different scale are conducted simultaneously to main-

tain CK(N)N operation complexity. In case (ii) when we can evaluate individual entries of K,

randomized sampling evaluates O(N3) entries. In the middle level factorization on the jth scale,

since the number of matrices to be factorized is O(N2/4j) and the complexity to factorize one matrix

is O(N2j), the operation complexity for the middle level factorization after multiplying Gaussian

random matrices or randomized sampling is O(N3/2j). Hence, the overall operational complexity

of the middle level factorization for the multiscale butterfly factorization is equal to the one for the

regular butterfly factorization.

In the recursive factorization on the jth scale, the one-step factorization U j,
Lj
2 ≈ U j,

Lj
2 +1Gj,

Lj
2 +1

takes O(N3/2j) operations and hence the recursive factorization U j,
Lj
2 +1 takes O(N3/2j) operations.

The recursive factorization of V j,
Lj
2 is cheaper since the matrix is smaller. Hence, it takes O(N3/2j)

operations to factorize KX,Ωj resulting in an O(N3) operation complexity for the overall recursive

factorization of all KX,Ωj .

Since there are only O(N2 logN) nonzero entries in (11.44), the application complexity of the

multiscale butterfly factorization is O(N2 logN).

The memory peak of the multiscale butterfly factorization is also in the middle level factorization.

Similar analysis shows the same memory complexity as that of the regular butterfly factorization.
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11.6 Conclusion

This chapter introduces a multi-dimensional butterfly factorization method to provide a data-sparse

approximation of multi-dimensional complementary low-rank matrices. We also provide examples

and methods to deal with some locally multi-dimensional complementary low-rank matrices (e.g.,

multi-dimensional FIO kernels). The butterfly factorization gives rise to highly efficient matrix-

vector multiplications with O(Nd logN) operation and memory complexity, where d is the number

of dimensions.



Chapter 12

Conclusions of Part II

12.1 Summary

The second part of this thesis has introduced several fast algorithms for oscillatory integral operators

in computational harmonic analysis. They can be applied to accelerate the application of Fourier

integral operators (including pseudo differential operators, the generalized Radon transform, the

nonuniform Fourier transform, etc.) and special function transforms (including the Fourier-Bessel

transform, the spherical harmonic transform, etc.). Since these operators and transforms have been

playing an important role in many engineering problems, these fast algorithms are of great interest

especially in large-scale numerical simulations.

The proposed fast algorithms fall into two types. The first type of algorithms is useful when an

oscillatory integral operator with a complementary low-rank kernel K(x, ξ) is applied for only a few

times. In this case, we can apply the multiscale butterfly algorithm. This algorithm requires linear

memory complexity and quasilinear operation complexity without precomputation to apply K(x, ξ).

The second type of algorithms is useful when the integral operator is repeatedly applied. This

type of algorithms represents the discrete analogue of K as a product of a few data-sparse matrices

with nearly optimal number of nonzero entries. Although constructing these matrix factors is more

expensive than applying the butterfly algorithm once, storing and applying K becomes optimally

fast with a small prefactor after the butterfly factorization.

12.2 Future Work

Although the application complexity of the butterfly factorization is optimal, the construction com-

plexity of the current method is far from optimal. It is interesting to see whether the construction

complexity can be reduced under a reasonably stronger condition than what we have assumed in

this thesis. Instead of designing a universal tool, one could construct a butterfly factorization for

243
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specific kernel functions with optimal complexity.

Another important direction is to compute the inverse of a complementary low-rank matrix or

its butterfly factorization efficiently. The butterfly factorization in this thesis has degenerate factors

and hence we cannot invert the original matrix K via the butterfly factorization. It is interesting

to see whether we could construct invertible butterfly factorizations. This is of great significance

because many transforms have both forward and inverse transforms via a complementary low-rank

matrix.

While the numerical results of this thesis include a couple of examples, it is important to prove the

complementary low-rank property with rigorous mathematical analysis. It is also natural to consider

other important class of transforms. A software library containing basic routines for evaluating

various transforms via the proposed algorithms is of great practical use.



Appendix A

A Long Proof of the Robustness

A.1 Proofs for the Theorems in Section 3.3

Proof of Theorem 3.3.1

Proof. We only sketch out the proof of this theorem, because its proof is similar to the proof in

Theorem 3.2.1. By the definition of 2D wave packet transform and Lemma 2.2.8 and 2.2.9, we

obtain the following two estimates:

|We(a, b)| .
√
ε1|a|−s, (A.1)

and

|∇bWe(a, b)| .
√
ε1
(
1 + |a|1−s

)
. (A.2)

If (a, b) ∈ Rδ, then Wg(a, b)| ≥ |a|−sδ and Equation (A.1) imply

|Wf (a, b)| ≥ |a|−s
√
ε. (A.3)

Hence, Sδ ⊂ Rδ ⊂ Rε, where Rε is defined in Theorem 2.2.7 and is a subset of
⋃

1≤k≤K Zk. So, (i)

is true by Theorem 2.2.7. As for (ii), since Rδ ⊂ Rε, then (a, b) ∈ Rδ ∩ Zk implies (a, b) ∈ Rε ∩ Zk
and |a| ' Nk. By Theorem 2.2.7, we have

|vf (a, b)−Nk∇φk(b)|
|Nk∇φk(b)|

.
√
ε,

245
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when N > N0. Hence,

|vg(a, b)−Nk∇φk(b)|
|Nk∇φk(b)|

≤ |vf (a, b)−Nk∇φk(b)|
|Nk∇φk(b)|

+
|vf (a, b)− vg(a, b)|
|Nk∇φk(b)|

.
√
ε+
|We(a, b)|
|Wg(a, b)|

+
|∇bWe(a, b)|
Nk|Wg(a, b)|

.
√
ε+

√
ε1
δ

.
√
ε+ εp1,

when N > N0. With a similar argument, when (a, b) ∈ Sδ ∩ Zk, we can show that

|vg(a, b)−Nk∇φk(b)|
|Nk∇φk(b)|

.

√
ε

Ns
k

+
|We(a, b)|
|Wg(a, b)|

+
|∇bWe(a, b)|
Nk|Wg(a, b)|

.

√
ε

Ns
k

+

√
ε1

asδ

.

√
ε+ εp1
Ns
k

,

when N > N0.

Proof of Theorem 3.3.2

Proof. The sketch of the proof of this theorem is similar to the proof of Theorem 3.2.2 and 3.2.3,

but much trickier. Since wab ∈ L1 ∩Cm and ∇bwab ∈ L1 ∩Cm−1×L1 ∩Cm−1, we know Wg(a, b) =

Wf (a, b) +We(a, b) and ∇bWg(a, b) = ∇bWf (a, b) +∇bWe(a, b) are Gaussian random variables. By

the properties of zero mean stationary Gaussian processes and the geometric supports of wave packets

in the frequency domain, we can still check that We(a, b) and (We(a, b), ∂b1We(a, b), ∂b2We(a, b)) have

nearly zero pseudo-covariance matrices. Hence, they are nearly circularly symmetric. We also divide

the proof into two steps.

Step 1: We prove the case when the mother wave packet is of type (0,m).

In this case, We(a, b) and (We(a, b), ∂b1We(a, b), ∂b2We(a, b)) are circularly symmetric. The vari-

ance of We(a, b) is
∫
R2 |ŵ(ξ)|2ê (|a|sξ + a) dξ, which is denoted by σ2. Suppose that Ξ = (Ξ1,Ξ2)

T
is

a real random vector with a joint probability density function h(ξ) = σ−2|ŵ(ξ)|2ê (|a|sξ + a), then



APPENDIX A. A LONG PROOF OF THE ROBUSTNESS 247

the covariance matrix of (We(a, b), ∂b1We(a, b), ∂b2We(a, b)) is σ2V , where V is the matrix below:


1 −2πiE [|a|sΞ1 + a1] −2πiE [|a|sΞ2 + a2]

2πiE [|a|sΞ1 + a1] 4π2E
[
(|a|sΞ1 + a1)

2
]

4π2E [(|a|sΞ1 + a1) (|a|sΞ2 + a2)]

2πiE [|a|sΞ2 + a2] 4π2E [(|a|sΞ1 + a1) (|a|sΞ2 + a2)] 4π2E
[
(|a|sΞ2 + a2)

2
]

 .

The distributions of We(a, b) and (We(a, b), ∂b1We(a, b), ∂b2We(a, b)) are described by the probability

density functions

e−σ
−2|z1|2

πσ−2

and
e−σ

−2z∗V −1z

π3σ6 detV
,

where z = (z1, z2, z3)
T

. Part (i) is true by previous theorems. To prove Part (ii) to (v), we need to

define the following events

G1 =
{
|We(a, b)| < |a|−sM1/(2+2q)

a

}
,

G2 =
{
|We(a, b)| < M1/(2+2q)

a

}
,

G3 =
{
|∇bWe(a, b)| < M1/(2+2q)

a

(
1 + |a|1−s

)}
,

Hk =

{
|vg(a, b)−Nk∇bφk(b)|

|Nkφ′k(b)|
.
√
ε+Mp/(1+q)

a

}
,

and

Jk =

{
|vg(a, b)−Nk∇bφk(b)|

|Nkφ′k(b)|
. N−sk

(√
ε+Mp/(1+q)

a

)}
,

for 1 ≤ k ≤ K. Next, we are going to estimate the probability P (G1), P (G2), P (G1 ∩G3),

P (G2 ∩G3), P (Hk) and P (Jk). By the calculations above, we have

P (G1) =

∫
|z1|<|a|−sM1/(2+2q)

a

e−σ
−2|z1|2

πσ−2
dz1 = 1− e−|a|

−2sσ−2M1/(1+q)
a ≥ 1− e−|a|

−2sM−q/(1+q)a ,

and similarly

P (G2) =

∫
|z1|<M1/(2+2q)

a

e−σ
−2|z1|2

πσ−2
dz1 ≥ 1− e−M

−q/(1+q)
a .

We are now ready to conclude (ii) and (iii). If (a, b) ∈ Rδa , then

|We(a, b) +Wf (a, b)| ≥ |a|−s
(
M (1/2−p)/(1+q)
a +

√
ε
)
. (A.4)
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If (a, b) /∈
⋃

1≤k≤K Zk, then by Lemma 2.2.9,

|Wf (a, b)| ≤ |a|−sε. (A.5)

|We(a, b)| ≥ |a|−sM1/(2+2q)
a follows from Equation (A.4) and (A.5). Hence,

P

(a, b) /∈
⋃

1≤k≤K

Zk

 ≤ P (|We(a, b)| ≥ |a|−sM1/(2+2q)
a

)
= 1− P (G1) .

This means that if (a, b) ∈ Rδa , then (a, b) ∈
⋃

1≤k≤K Zk with a probability at least P (G1) ≥
1 − e−|a|−2sM−q/(1+q)a = 1 − e−O(N−2s

k M−q/(1+q)a ), since |a| ' Nk if (a, b) ∈ Zk. So, (ii) is true. A

similar argument applied to (a, b) ∈ Sδa shows that (a, b) ∈
⋃

1≤k≤K Zk with a probability at least

P (G2) = 1− e−O(M−q/(1+q)a ). Hence, (iii) is proved.

Because V is invertible and self-adjoint, there exist a unitary matrix U and a diagonal matrix

D such that V −1 = U∗DU . For z ∈ C3, let z′ = Uz. Introduce notations δ1 = |a|−sM1/(2+3q)
a ,

δ2 = M
1/(2+3q)
a , δ3 =

(
1 + |a|1−s

)
M

1/(2+3q)
a , d1 = min{ δ1√

2
, δ32 }, and d2 = min{ δ2√

2
, δ32 }. Similar to

the proof in Theorem 3.2.2 and 3.2.3, by a simple property of high dimensional polydisk, we have

P (G1 ∩G3) =

∫
{|z1|<δ1,|z2|2+|z3|2<δ23}

e−σ
−2z∗V −1z

π3σ6 detV
dz1dz2dz3

≥
∫
{|z1|<δ1,|z2|< δ3√

2
,|z3|< δ3√

2
}

e−σ
−2z∗V −1z

π3σ6 detV
dz1dz2dz3

=

∫
{{|z1|<δ1,|z2|< δ3√

2
,|z3|< δ3√

2
}

e−M
−1
a (D11|z′1|

2+D22|z′2|
2+D33|z′3|

2)

π3σ6 detV
dz′1dz

′
2dz
′
3

≥
∫
{|z′1|<d1,|z′2|<d1,|z′3|<d1}

e−M
−1
a (D11|z′1|

2+D22|z′2|
2+D33|z′3|

2)

π3σ6 detV
dz′1dz

′
2dz
′
3

=

(
1− e−

D11d
2
1

σ2

)(
1− e−

D22d
2
1

σ2

)(
1− e−

D33d
2
1

σ2

)
,

and similarly

P (G2 ∩G3) =

∫
{|z1|<δ2,|z2|2+|z3|2<δ23}

e−σ
−2z∗V −1z

π3σ6 detV
dz1dz2dz3

≥
(

1− e−
D11d

2
2

σ2

)(
1− e−

D22d
2
2

σ2

)(
1− e−

D33d
2
2

σ2

)
.

Next, we are going to estimate the asymptotic behavior of D11, D22 and D33 as |a| increases. This

relies on the estimates of D11D22D33, D11 +D22 +D33 and D−1
11 +D−1

22 +D−1
33 as follows. Careful
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algebraic calculation shows that

detV

16π4
= E

[
(|a|sΞ1 + a1)

2
]
E
[
(|a|sΞ2 + a2)

2
]
− E2 [(|a|sΞ1 + a1) (|a|sΞ2 + a2)]

+2E [|a|sΞ1 + a1]E [|a|sΞ2 + a2]E [(|a|sΞ1 + a1) (|a|sΞ2 + a2)]

−E2 [|a|sΞ2 + a2]E
[
(|a|sΞ1 + a1)

2
]
− E2 [|a|sΞ1 + a1]E

[
(|a|sΞ2 + a2)

2
]

= E
[
(|a|sΞ1)

2
]
E
[
(|a|sΞ2)

2
]
− E2 [(|a|sΞ1) (|a|sΞ2)]

+2E [|a|sΞ1]E [|a|sΞ2]E [(|a|sΞ1) (|a|sΞ2)]

−E2 [|a|sΞ2]E
[
(|a|sΞ1)

2
]
− E2 [|a|sΞ1]E

[
(|a|sΞ2)

2
]

= |a|4s
(
E
[
Ξ2

1

]
E
[
Ξ2

2

]
− E2 [Ξ1Ξ2] + 2E [Ξ1]E [Ξ2]E [Ξ1Ξ2]

−E2 [Ξ2]E
[
Ξ2

1

]
− E2 [Ξ1]E

[
Ξ2

2

] )
. |a|4s.

Hence,

D11D22D33 = det
(
V −1

)
& |a|−4s. (A.6)

Similarly, we know

trace
(
V −1

)
=

1

detV

(
16π4E

[
(|a|sΞ1 + a1)

2
]
E
[
(|a|sΞ2 + a2)

2
]

−16π4E2 [(|a|sΞ1 + a1) (|a|sΞ2 + a2)] + 4π2E
[
(|a|sΞ2 + a2)

2
]

−4π2E2 [(|a|sΞ1 + a1)] + 4π2E
[
(|a|sΞ1 + a1)

2
]
− 4π2E2 [(|a|sΞ1 + a1)]

)
' 1

detV

(
E
[
(|a|sΞ1 + a1)

2
]
E
[
(|a|sΞ2 + a2)

2
]
− E2 [(|a|sΞ1 + a1) (|a|sΞ2 + a2)]

)
' |a|2+2s

detV
.

Therefore,

D11 +D22 +D33 = trace(V −1) ' |a|
2+2s

detV
. (A.7)

Note that

trace(V ) = 1 + 4π2E
[
(|a|sΞ1 + a1)

2
]

+ 4π2E
[
(|a|sΞ2 + a2)

2
]
' |a|2,

then

D−1
11 +D−1

22 +D−1
33 ' |a|2. (A.8)
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Equation (A.6), (A.7) and (A.8) imply D11 & |a|2−2s, D22 ' |a|−2s and D33 ' |a|−2. Therefore,

P (G1 ∩G3) ≥
(

1− e−
D11d

2
1

σ2

)(
1− e−

D22d
2
1

σ2

)(
1− e−

D33d
2
1

σ2

)
'

(
1− e−O(|a|2−4sM−q/(1+q)a )

)(
1− e−O(|a|−4sM−q/(1+q)a )

)(
1− e−O(|a|−2s−2M−q/(1+q)a )

)
.

A similar argument leads to

P (G2 ∩G3) ≥
(

1− e−
D11d

2
2

σ2

)(
1− e−

D22d
2
2

σ2

)(
1− e−

D33d
2
2

σ2

)
'

(
1− e−O(|a|2−2sM−q/(1+q)a )

)(
1− e−O(|a|−2sM−q/(1+q)a )

)(
1− e−O(|a|−2M−q/(1+q)a )

)
.

By Theorem 3.3.1, if (a, b) ∈ Rδa ∩ Zk for some k, then

P (Hk) ≥ P (Hk|G1 ∩G3)P (G1 ∩G3) = P (G1 ∩G3) .

Note that |a| ' Nk when (a, b) ∈ Zk, then

P (Hk) ≥
(

1− e−O(N2−4s
k M−q/(1+q)a )

)(
1− e−O(N−4s

k M−q/(1+q)a )
)(

1− e−O(N−2s−2
k M−q/(1+q)a )

)
.

Similarly, if (a, b) ∈ Sδ ∩ Zk for some k, then

P (Jk) ≥
(

1− e−O(N2−2s
k M−q/(1+q)a )

)(
1− e−O(N−2s

k M−q/(1+q)a )
)(

1− e−O(N−2
k M−q/(1+q)a )

)
.

These arguments prove (iv) and (v).

Step 2: we prove the case for a mother wave packet of type (ε,m) such that

m ≥ max

{
2(1 + s)

1− s
,

2

1− s
+ 4

}
.

Larger m keeps our approximation errors sufficiently small.

Now We(a, b) and (We(a, b), ∂b1We(a, b), ∂b2We(a, b)) have nearly zero Pseudo-covariance matri-

ces and they are nearly circularly symmetric. Suppose they have covariance matrices C1 and C2,

pseudo-covariance matrices P1 and P2, respectively. We can still check that they have zero mean

and C1 = σ2 and C2 = σ2V , where V is defined in the first step. By the definition of the 2D mother

wave packet of type (ε,m) and the same process in the proof of Theorem 3.2.2 and 3.2.3, we can

obtain a almost similar result:

1. The covariance matrix of (We(a, b),W
∗
e (a, b)) is

V1 =

(
C1 P1

P ∗1 C∗1

)
,
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and the distribution of We(a, b) is described by

e−
1
2 (z∗1 ,z1)V −1

1 (z1,z
∗
1 )T

π
√

detV1

,

which is well approximated by

e
−
C1|z1|

2−Re(P∗1 z21)
C2
1−P1P

∗
1

π
√
C2

1 − P1P ∗1
=
e−σ

−2|z1|2

πσ2

(
1 +O

(
ε|z1|2

σ2|a|m(1−s)

))
.

2. The covariance matrix of (We(a, b), ∂bWe(a, b),W
∗
e (a, b), ∂bW

∗
e (a, b)) is

V2 =

(
C2 P2

P ∗2 C∗2

)
,

and its distribution is described by the joint probability density

e−
1
2 (z∗1 ,z

∗
2 ,z
∗
3 ,z1,z2,z3)V −1

2 (z1,z2,z3,z
∗
1 ,z
∗
2 ,z
∗
3 )T

π3
√

detV2

,

which is well approximated by

e−σ
−2z∗V −1ze−

1
2 (z∗1 ,z

∗
2 ,z
∗
3 ,z1,z2,z3)Pε(z1,z2,z3,z

∗
1 ,z
∗
2 ,z
∗
3 )T

π3σ6

√
(detV )2 +O

(
ε

|a|m−2−(m+6)s

) ,

where Pε is a matrix with 2-norm bounded by O
(

ε
σ2|a|(m−4)(1−s)

)
.

The only different result is the determinant error bound O
(

ε
|a|m−2−(m+6)s)

)
. Since the matrix V here

has positive eigenvalues bounded above by O(|a|2), O(|a|2s) and O(|a|2(s−1)), then C2 has positive

eigenvalues bounded above by O(σ2|a|2), O(σ2|a|2s) and O(σ2|a|2(s−1)). Because every entry in P2

is bounded by O
(

σ2ε
|a|m(1−s)

)
, then determinant error bound comes from

O

(
|a|2|a|2|a|2s|a|2s|a|2(s−1) ε

|a|(m−4)(1−s)

)
= O

(
ε

|a|m−2−(m+6)s

)
.

By the same argument in the first step, we can show that there exist a diagonal matrix D =

diag{D11, D22, D33} and a unitary matrix U such that V −1 = U∗DU . Furthermore, D11 & |a|2(1−s),

D22 ' |a|−2s, and D33 ' |a|−2. Part (i) is still true by previous theorems. To conclude Part (ii) to

(v), we still need to estimate the probability of those events defined in the first step, i.e., P (G1),
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P (G2), P (G1 ∩G3), P (G2 ∩G3), P (Hk) and P (Jk). By the calculations above, we have

P (G1) =

∫
|z1|<|a|−sM1/(2+2q)

a

e−
1
2 (z∗1 ,z1)V −1

1 (z1,z
∗
1 )T

π
√

detV1

dz1

=

∫
|z1|<|a|−sM1/(2+2q)

a

e−σ
−2|z1|2

πσ2

(
1 +O

(
ε|z1|2

σ2am(1−s)

))
dz1

= 1− e−|a|
−2sM−q/(1+q)a +O

(
ε

|a|m(1−s)

)
,

and similarly

P (G2) = 1− e−M
−q/(1+q)
a +O

(
ε

|a|m(1−s)

)
.

Hence, we can conclude (ii) and (iii) follows the same proof in the first step. Next, we look at

the last two parts of this theorem.

Recall that we have defined a transform z′ = Uz and introduced notations δ1 = |a|−sM1/(2+3q)
a ,

δ2 = M
1/(2+3q)
a , δ3 =

(
1 + |a|1−s

)
M

1/(2+3q)
a , d1 = min{ δ1√

2
, δ32 }, and d2 = min{ δ2√

2
, δ32 } in the first

step. Let

g(z) = −1

2
(z∗1 , z

∗
2 , z
∗
3 , z1, z2, z3)Pε(z1, z2, z3, z

∗
1 , z
∗
2 , z
∗
3)T ,

and

g̃(z′) = g(U∗z′).
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Using the same notations and a similar argument, we have

P (G1 ∩G3)

=

∫
{|z1|<δ1,|z2|2+|z3|2<δ23}

e−
1
2 (z∗1 ,z

∗
2 ,z
∗
3 ,z1,z2,z3)V −1

2 (z1,z2,z3,z
∗
1 ,z
∗
2 ,z
∗
3 )T

π3
√

detV2

dz1dz2dz3

≥
∫
{|z1|<δ1,|z2|< δ3√

2
,|z3|< δ3√

2
}

e−σ
−2z∗V −1zeg(z)

π3σ6

√
(detV )2 +O

(
ε

|a|m−2−(m+6)s

)dz1dz2dz3

=

∫
{{|z1|<δ1,|z2|< δ3√

2
,|z3|< δ3√

2
}

e−M
−1
a (D11|z′1|

2+D22|z′2|
2+D33|z′3|

2)eg̃(z
′)

π3σ6 detV
dz′1dz

′
2dz
′
3 +O

(
ε

|a|m−2−(m+2)s)

)

≥
∫
{|z′1|<d1,|z′2|<d1,|z′3|<d1}

e−M
−1
a (D11|z′1|

2+D22|z′2|
2+D33|z′3|

2)eg̃(z
′)

π3σ6 detV
dz′1dz

′
2dz
′
3 +O

(
ε

|a|m−2−(m+2)s)

)

=

∫
{|z′1|<d1,|z′2|<d1,|z′3|<d1}

e−M
−1
a (D11|z′1|

2+D22|z′2|
2+D33|z′3|

2)
(
eg̃(z

′) − 1
)

π3σ6 detV
dz′1dz

′
2dz
′
3

+

∫
{|z′1|<d1,|z′2|<d1,|z′3|<d1}

e−M
−1
a (D11|z′1|

2+D22|z′2|
2+D33|z′3|

2)

π3σ6 detV
dz′1dz

′
2dz
′
3 +O

(
ε

|a|m−2−(m+2)s)

)
=

(
1− e−

D11d
2
1

σ2

)(
1− e−

D22d
2
1

σ2

)(
1− e−

D33d
2
1

σ2

)
+O

(
ε

|a|(m−4)(1−s)−2

)
+O

(
ε

|a|m−2−(m+2)s)

)
,

and similarly

P (G2 ∩G3)

=

∫
{|z1|<δ2,|z2|2+|z3|2<δ23}

e−
1
2 (z∗1 ,z

∗
2 ,z
∗
3 ,z1,z2,z3)V −1

2 (z1,z2,z3,z
∗
1 ,z
∗
2 ,z
∗
3 )T

π3
√

detV2

dz1dz2dz3

≥
(

1− e−
D11d

2
2

σ2

)(
1− e−

D22d
2
2

σ2

)(
1− e−

D33d
2
2

σ2

)
+O

(
ε

|a|(m−4)(1−s)−2

)
+O

(
ε

|a|m−2−(m+2)s)

)
.

The rest of the proof is exactly the same as the one in the first step and consequently we know this

theorem is also true for a mother wave packets of type (ε,m) with m ≥ max
{

2(1+s)
1−s , 2

1−s + 4
}

.

A.2 Proofs for the Theorems in Section 3.4

Proof of Theorem 3.4.3

Proof. The proof of this theorem is nearly identical to the proof of Theorem 3.3.1. By the definition of

2D generalized curvelet transform and Lemma 2.3.8 and 2.3.9, we know the following two estimates:

|We(a, θ, b)| .
√
ε1a
− s+t2 , (A.9)
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and

|∇bWe(a, θ, b)| .
√
ε1

(
a
t−s
2 + a1− s+t2

)
. (A.10)

If (a, θ, b) ∈ Rδ, then Wg(a, θ, b)| ≥ a−
s+t
2 δ. Together with Equation (A.1), we have

|Wf (a, θ, b)| ≥ a−
s+t
2
√
ε. (A.11)

Hence, Sδ ⊂ Rδ ⊂ Rε, where Rε is defined in Theorem 2.3.7 and is a subset of
⋃

1≤k≤K Zk. So, (i) is

true by Theorem 2.3.7. As for (ii), since Rδ ⊂ Rε, then (a, θ, b) ∈ Rδ ∩Zk implies (a, θ, b) ∈ Rε ∩Zk
and a ' Nk. By Theorem 2.3.7, we have

|vf (a, θ, b)−Nk∇φk(b)|
|Nk∇φk(b)|

.
√
ε,

when N > N0. Hence,

|vg(a, θ, b)−Nk∇φk(b)|
|Nk∇φk(b)|

≤ |vf (a, θ, b)−Nk∇φk(b)|
|Nk∇φk(b)|

+
|vf (a, θ, b)− vg(a, θ, b)|

|Nk∇φk(b)|

.
√
ε+
|We(a, θ, b)|
|Wg(a, θ, b)|

+
|∇bWe(a, θ, b)|
Nk|Wg(a, θ, b)|

.
√
ε+

√
ε1
δ

+

√
ε1
(
a−(s+t)/2 + a1−(s+t)/2

)
δNka−(s+t)/2

.
√
ε+ εp1,

when N > N0. With a similar argument, when (a, θ, b) ∈ Sδ ∩ Zk, we can show that

|vg(a, θ, b)−Nk∇φk(b)|
|Nk∇φk(b)|

.

√
ε

N
(s+t)/2
k

+
|We(a, θ, b)|
|Wg(a, θ, b)|

+
|∇bWe(a, θ, b)|
Nk|Wg(a, θ, b)|

.

√
ε

N
(s+t)/2
k

+

√
ε1

a(s+t)/2δ
+

√
ε1
(
a−(s+t)/2 + a1−(s+t)/2

)
δNk

.

√
ε+ εp1

N
(s+t)/2
k

,

when N > N0. Hence, (iii) is true.
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Proof of Theorem 3.4.4

Proof. The proof of this theorem is similar to the proof of Theorem 3.3.2, but notations are much

heavier. Some new notations are introduced to simplify the statement:

1. Let Taθj denote the jth element of RθAaξ + a · uθ.

2. Let n = (n1, n2)
T

= (a cos θ, a sin θ)
T

.

3. Let σ2 =
∫
R2 |ŵ(ξ)|2ê (RθAaξ + a · uθ) dξ and Ξ = (Ξ1,Ξ2)

T
be a random vector with a joint

probability density function σ−2|ŵ(ξ)|2ê (RθAaξ + a · uθ).

4. Let

g1(Ξ, n) = at−1Ξ1n1 − as−1Ξ2n2,

g2(Ξ, n) = at−1Ξ1n2 − as−1Ξ2n1,

and

g(Ξ, n) = (g1 (Ξ, n) , g2 (Ξ, n))
T
.

5. Let g̃1(Ξ) = atΞ1, g̃2(Ξ) = asΞ2, and g̃(Ξ) = (g̃1(Ξ), g̃2(Ξ))
T

.

We would also prove the case for a mother curvelet of type (0,m) first. The proof for a mother

curvelet is of type (ε,m) in the second step is similar, but need to deal with nearly circularly

symmetric Gaussian variable. The main difficulty is to estimate the asymptotic behavior of the

eigenvalues of the covariance matrices, which will be address in Step 1. The trick to deal with nearly

circularly symmetric Gaussian variable is exactly the same as used in Theorem 3.3.2. Hence, we

only sketch out Step 2.

Step 1:

Since waθb ∈ L1∩Cm and ∇bwaθb ∈ L1∩Cm−1×L1∩Cm−1, we know Wg(a, θ, b) = Wf (a, θ, b)+

We(a, θ, b) and ∇bWg(a, θ, b) = ∇bWf (a, θ, b) + ∇bWe(a, θ, b) are Gaussian random variables. By

the properties of zero mean stationary Gaussian processes and the geometric supports of curvelets in

the frequency domain, we know We(a, θ, b) and (We(a, θ, b), ∂b1We(a, θ, b), ∂b2We(a, θ, b)) have zero

pseudo-covariance matrices. Furthermore, the variance of We(a, θ, b) is σ2 and the covariance matrix

of

(We(a, θ, b), ∂b1We(a, θ, b), ∂b2We(a, θ, b))

is σ2V , where V is an invertible and self-adjoint matrix given below:
1 −2πiE [g1 (Ξ, n) + n1] −2πiE [g2 (Ξ, n) + n2]

2πiE [g1 (Ξ, n) + n1] 4π2E
[
(g1 (Ξ, n) + n1)

2
]

4π2E [(g1 (Ξ, n) + n1) (g2 (Ξ, n) + n2)]

2πiE [g2 (Ξ, n) + n2] 4π2E [(g1 (Ξ, n) + n1) (g2 (Ξ, n) + n2)] 4π2E
[
(g2 (Ξ, n) + n2)

2
]

 .
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Hence, We(a, θ, b) and (We(a, θ, b), ∂b1We(a, θ, b), ∂b2We(a, θ, b)) are circularly symmetric and their

distributions are described by the probability density functions

e−σ
−2|z1|2

πσ−2

and
e−σ

−2z∗V −1z

π3σ6 detV
,

where z = (z1, z2, z3)
T

. Part (i) is true by previous theorems. To prove Part (ii) to (v), we need to

define the following events

G1 = {|We(a, θ, b)| < a−(s+t)/2M1/(2+2q)
a ,

G2 = {|We(a, θ, b)| < M1/(2+2q)
a ,

G3 = {|∇bWe(a, θ, b)| < M1/(2+2q)
a

(
a(t−s)/2 + a1−(s+t)/2

)
},

Hk =

{
|vg(a, θ, b)−Nk∇bφk(b)|

|Nk∇bφk(b)|
.
√
ε+Mp/(1+q)

a

}
,

and

Jk =

{
|vg(a, θ, b)−Nk∇bφk(b)|

|Nk∇bφk(b)|
. N

−(s+t)/2
k

(√
ε+Mp/(1+q)

a

)}
,

for 1 ≤ k ≤ K. Next, we are going to estimate the probability P (G1), P (G2), P (G1 ∩G3),

P (G2 ∩G3), P (Hk) and P (Jk). By the calculations above, we have

P (G1) =

∫
|z1|<a−(s+t)/2M

1/(2+2q)
a

e−σ
−2|z1|2

πσ−2
dz1 ≥ 1− e−a

−(s+t)M−q/(1+q)a ,

and similarly

P (G2) =

∫
|z1|<M1/(2+2q)

a

e−σ
−2|z1|2

πσ−2
dz1 ≥ 1− e−M

−q/(1+q)
a .

We are now ready to conclude (ii) and (iii). If (a, θ, b) ∈ Rδa , then

|We(a, θ, b) +Wf (a, θ, b)| ≥ a−(s+t)/2
(
M (1/2−p)/(1+q)
a +

√
ε
)
. (A.12)

If (a, θ, b) /∈
⋃

1≤k≤K Zk, then by Lemma 2.3.9,

|Wf (a, θ, b)| ≤ a−(s+t)/2ε. (A.13)
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Equation (A.12) and (A.13) lead to |We(a, θ, b)| ≥ a−(s+t)/2M
1/(2+2q)
a . Hence,

P

(a, θ, b) /∈
⋃

1≤k≤K

Zk

 ≤ P (|We(a, θ, b)| ≥ a−(s+t)/2M1/(2+2q)
a

)
= 1− P (G1) .

This means that if (a, θ, b) ∈ Rδa , then (a, θ, b) ∈
⋃

1≤k≤K Zk with a probability at least P (G1) ≥

1 − e−a−(s+t)M−q/(1+q)a = 1 − e−O
(
N
−(s+t)
k M−q/(1+q)a

)
, since a ' Nk if (a, θ, b) ∈ Zk. So, (ii) is true.

A similar argument applied to (a, θ, b) ∈ Sδa shows that (a, θ, b) ∈
⋃

1≤k≤K Zk with a probability at

least P (G2) ≥ 1− e−M−q/(1+q)a . Hence, (iii) is proved.

Because V is invertible and self-adjoint, there exist a unitary matrix U and a diagonal matrix

D such that V −1 = U∗DU . For z ∈ C3, let z′ = Uz. Introduce notations δ1 = a−(s+t)/2M
1/(2+2q)
a ,

δ2 = M
1/(2+2q)
a , δ3 =

(
a(t−s)/2 + a1−(s+t)/2

)
M

1/(2+2q)
a , d1 = min{ δ1√

2
, δ32 }, and d2 = min{ δ2√

2
, δ32 }.

Similar to the proof in Theorem 3.3.2, by a simple property of high dimensional polydisk, we have

P (G1 ∩G3) =

∫
{|z1|<δ1,|z2|2+|z3|2<δ23}

e−σ
−2z∗V −1z

π3σ6 detV
dz1dz2dz3

≥
(

1− e−
D11d

2
1

σ2

)(
1− e−

D22d
2
1

σ2

)(
1− e−

D33d
2
1

σ2

)
,

and similarly

P (G2 ∩G3) =

∫
{|z1|<δ2,|z2|2+|z3|2<δ23}

e−σ
−2z∗V −1z

π3σ6 detV
dz1dz2dz3

≥
(

1− e−
D11d

2
2

σ2

)(
1− e−

D22d
2
2

σ2

)(
1− e−

D33d
2
2

σ2

)
.

Next, we are going to estimate the asymptotic behavior of D11, D22 and D33 as a increases. This

relies on the estimates of D11D22D33, D11 +D22 +D33 and D−1
11 +D−1

22 +D−1
33 as follows. Careful
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algebraic calculation shows that

detV

16π4
= E

[
(g1 (Ξ, n) + n1)

2
]
E
[
(g2 (Ξ, n) + n2)

2
]
− E2 [(g1 (Ξ, n) + n1) (g2 (Ξ, n) + n2)]

+2E [g1 (Ξ, n) + n1]E [g2 (Ξ, n) + n2]E [(g1 (Ξ, n) + n1) (g2 (Ξ, n) + n2)]

−E2 [g2 (Ξ, n) + n2]E
[
(g1 (Ξ, n) + n1)

2
]
− E2 [g1 (Ξ, n) + n1]E

[
(g2 (Ξ, n) + n2)

2
]

= E
[
(g1 (Ξ, n))

2
]
E
[
(g2 (Ξ, n))

2
]
− E2 [(g1 (Ξ, n)) (g2 (Ξ, n))]

+2E [g1 (Ξ, n)]E [g2 (Ξ, n)]E [(g1 (Ξ, n)) (g2 (Ξ, n))]

−E2 [g2 (Ξ, n)]E
[
(g1 (Ξ, n))

2
]
− E2 [g1 (Ξ, n)]E

[
(g2 (Ξ, n))

2
]

= E
[
(g̃1(Ξ))

2
]
E
[
(g̃2(Ξ))

2
]
− E2 [(g̃1(Ξ)) (g̃2(Ξ))]

+2E [g̃1(Ξ)]E [g̃2(Ξ)]E [(g̃1(Ξ)) (g̃2(Ξ))]

−E2 [g̃2(Ξ)]E
[
(g̃1(Ξ))

2
]
− E2 [g̃1(Ξ)]E

[
(g̃2(Ξ))

2
]

= a2(s+t)
(
E
[
Ξ2

1

]
E
[
Ξ2

2

]
− E2 [Ξ1Ξ2] + 2E [Ξ1]E [Ξ2]E [Ξ1Ξ2]

−E2 [Ξ2]E
[
Ξ2

1

]
− E2 [Ξ1]E

[
Ξ2

2

] )
. a2(s+t)

Hence,

D11D22D33 = det
(
V −1

)
& a−2(s+t). (A.14)

Similarly, we know

trace
(
V −1

)
=

1

detV

(
16π4E

[
(g1 (Ξ, n) + n1)

2
]
E
[
(g2 (Ξ, n) + n2)

2
]

−16π4E2 [(g1 (Ξ, n) + n1) (g2 (Ξ, n) + n2)] + 4π2E
[
(g2 (Ξ, n) + n2)

2
]

−4π2E2 [(g1 (Ξ, n) + n1)] + 4π2E
[
(g1 (Ξ, n) + n1)

2
]
− 4π2E2 [(g1 (Ξ, n) + n1)]

)
' 1

detV

(
E
[
(g1 (Ξ, n) + n1)

2
]
E
[
(g2 (Ξ, n) + n2)

2
]
− E2 [(g1 (Ξ, n) + n1) (g2 (Ξ, n) + n2)]

)
' a2+2s

detV
.

Therefore,

D11 +D22 +D33 = trace(V −1) ' a2+2s

detV
. (A.15)

Note that

trace(V ) = 1 + 4π2E
[
(g1 (Ξ, n) + n1)

2
]

+ 4π2E
[
(g2 (Ξ, n) + n2)

2
]
' a2,
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then

D−1
11 +D−1

22 +D−1
33 ' a2. (A.16)

Equation (A.14), (A.15) and (A.16) imply D11 & a2−2t, D22 ' a−2s and D33 ' a−2. Therefore,

P (G1 ∩G3)

≥
(

1− e−
D11d

2
1

σ2

)(
1− e−

D22d
2
1

σ2

)(
1− e−

D33d
2
1

σ2

)
=

(
1− e−O(a2−s−3tM−q/(1+q)a )

)(
1− e−O(a−3s−tM−q/(1+q)a )

)(
1− e−O(a−s−t−2M−q/(1+q)a )

)
.

A similar argument leads to

P (G2 ∩G3)

≥
(

1− e−
D11d

2
2

σ2

)(
1− e−

D22d
2
2

σ2

)(
1− e−

D33d
2
2

σ2

)
=

(
1− e−O(a2−2tM−q/(1+q)a )

)(
1− e−O(a−2sM−q/(1+q)a )

)(
1− e−O(a−2M−q/(1+q)a )

)
.

By Theorem 3.4.3, if (a, θ, b) ∈ Rδa ∩ Zk for some k, then

P (Hk) ≥ P (Hk|G1 ∩G3)P (G1 ∩G3) = P (G1 ∩G3) .

Note that a ' Nk when (a, θ, b) ∈ Zk, then

P (Hk) ≥
(

1− e−O(a2−s−3tM−q/(1+q)a )
)(

1− e−O(a−3s−tM−q/(1+q)a )
)(

1− e−O(a−s−t−2M−q/(1+q)a )
)

=
(

1− e−O(N2−s−3t
k M−q/(1+q)a )

)(
1− e−O(N−3s−t

k M−q/(1+q)a )
)(

1− e−O(N−s−t−2
k M−q/(1+q)a )

)
.

Similarly, if (a, θ, b) ∈ Sδa ∩ Zk for some k, then

P (Jk) ≥ P (G2 ∩G3) ≥
(

1− e−O(N2−2t
k M−q/(1+q)a )

)(
1− e−O(N−2s

k M−q/(1+q)a )
)(

1− e−O(N−2
k M−q/(1+q)a )

)
.

These arguments prove (iv) and (v).

Step 2: we now prove the case for a mother curvelet of type (ε,m) such that

m ≥ max

{
2(1 + s)

1− t
,

2

1− t
+ 4

}
.

Sufficiently large m keeps our approximation errors small enough.
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NowWe(a, θ, b) and (We(a, θ, b), ∂b1We(a, θ, b), ∂b2We(a, θ, b)) have nearly zero Pseudo-covariance

matrices and are nearly circularly symmetric. Assume We(a, θ, b) and

(We(a, θ, b), ∂b1We(a, θ, b), ∂b2We(a, θ, b))

have covariance matrices C1 and C2, pseudo-covariance matrices P1 and P2, respectively. We can

still check that they have zero mean and C1 = σ2 and C2 = σ2V , where V is defined in the first

step. By the definition of the 2D mother wave packet of type (ε,m) and the same process in the

proof of Theorem 3.2.2 and 3.2.3, we can obtain a almost similar result:

1. The covariance matrix of (We(a, θ, b),W
∗
e (a, θ, b)) is

V1 =

(
C1 P1

P ∗1 C∗1

)
,

and the distribution of We(a, θ, b) is described by

e−
1
2 (z∗1 ,z1)V −1

1 (z1,z
∗
1 )T

π
√

detV1

,

which is well approximated by

e
−
C1|z1|

2−Re(P∗1 z21)
C2
1−P1P

∗
1

π
√
C2

1 − P1P ∗1
=
e−σ

−2|z1|2

πσ2

(
1 +O

(
ε|z1|2

σ2am(1−t)

))
.

2. The covariance matrix of (We(a, θ, b), ∂bWe(a, θ, b),W
∗
e (a, θ, b), ∂bW

∗
e (a, θ, b)) is

V2 =

(
C2 P2

P ∗2 C∗2

)
,

and its distribution is described by the joint probability density

e−
1
2 (z∗1 ,z

∗
2 ,z
∗
3 ,z1,z2,z3)V −1

2 (z1,z2,z3,z
∗
1 ,z
∗
2 ,z
∗
3 )T

π3
√

detV2

,

which is well approximated by

e−σ
−2z∗V −1ze−

1
2 (z∗1 ,z

∗
2 ,z
∗
3 ,z1,z2,z3)Pε(z1,z2,z3,z

∗
1 ,z
∗
2 ,z
∗
3 )T

π3σ6
√

(detV )2 +O
(

ε
am−2−(m+2)t−4s

) ,

where Pε is a matrix with 2-norm bounded by O
(

ε
σ2a(m−4)(1−t)

)
.
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Different to Theorem 3.3.2, here we have two scaling parameters t and s with s < t. To understand

those error bounds above intuitively, we could say that s is shrinking the support of a wave packet

in the frequency domain in the angular direction to make it a curvelet and hence to increase the

probability of a good estimate, as we have seen that smaller parameters resulting in better robustness.

Hence, Most of the error bound above is determined by t, the larger one.

Since the matrix V here has positive eigenvalues bounded above by O(a2), O(a2s) and O(a2(t−1)),

then C2 has positive eigenvalues bounded above by O(σ2a2), O(σ2a2s) and O(σ2a2(t−1)). Because

every entry in P2 is bounded by O
(

σ2ε
am(1−t)

)
, then determinant error bound comes from

O
(
a2a2a2sa2sa2(t−1) ε

a(m−4)(1−t)

)
= O

( ε

am−2−(m+2)4−4s

)
.

By the same argument in the first step, we can show that there exist a diagonal matrix D =

diag{D11, D22, D33} and a unitary matrix U such that V −1 = U∗DU . Furthermore, D11 & a2(1−t),

D22 ' a−2s, D33 ' a−2. Part (i) is still true by previous theorems. To conclude Part (ii) to (v), we

still need to estimate the probability of those events defined in the first step, i.e., P (G1), P (G2),

P (G1 ∩G3), P (G2 ∩G3), P (Hk) and P (Jk). By the calculations above, we have

P (G1) =

∫
|z1|<a−(s+t)/2M

1/(2+2q)
a

e−
1
2 (z∗1 ,z1)V −1

1 (z1,z
∗
1 )T

π
√

detV1

dz1

=

∫
|z1|<a−(s+t)/2M

1/(2+2q)
a

e−σ
−2|z1|2

πσ2

(
1 +O

(
ε|z1|2

σ2am(1−t)

))
dz1

= 1− e−a
−(s+t)M−q/(1+q)a +O

( ε

am(1−t)

)
,

and similarly

P (G2) = 1− e−M
−q/(1+q)
a +O

( ε

am(1−t)

)
.

Hence, we can conclude (ii) and (iii) follows the same proof in the first step. Next, we look at

the last two parts of this theorem.

Recall that we have defined a transform z′ = Uz and introduced notations δ1 = a−(s+t)/2M
1/(2+2q)
a ,

δ2 = M
1/(2+2q)
a , δ3 =

(
a(t−s)/2 + a1−(s+t)/2

)
M

1/(2+2q)
a , d1 = min{ δ1√

2
, δ32 }, and d2 = min{ δ2√

2
, δ32 } in

the first step. Let

g(z) = −1

2
(z∗1 , z

∗
2 , z
∗
3 , z1, z2, z3)Pε(z1, z2, z3, z

∗
1 , z
∗
2 , z
∗
3)T ,

and

g̃(z′) = g(U∗z′).
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Using the same notations and a similar argument, we have

P (G1 ∩G3)

=

∫
{|z1|<δ1,|z2|2+|z3|2<δ23}

e−
1
2 (z∗1 ,z

∗
2 ,z
∗
3 ,z1,z2,z3)V −1

2 (z1,z2,z3,z
∗
1 ,z
∗
2 ,z
∗
3 )T

π3
√

detV2

dz1dz2dz3

≥
∫
{|z1|<δ1,|z2|< δ3√

2
,|z3|< δ3√

2
}

e−σ
−2z∗V −1zeg(z)

π3σ6
√

(detV )2 +O
(

ε
am−2−(m+2)t−4s

)dz1dz2dz3

=

∫
{{|z1|<δ1,|z2|< δ3√

2
,|z3|< δ3√

2
}

e−M
−1
a (D11|z′1|

2+D22|z′2|
2+D33|z′3|

2)eg̃(z
′)

π3σ6 detV
dz′1dz

′
2dz
′
3 +O

( ε

am−2−mt−2s

)
≥

∫
{|z′1|<d1,|z′2|<d1,|z′3|<d1}

e−M
−1
a (D11|z′1|

2+D22|z′2|
2+D33|z′3|

2)eg̃(z
′)

π3σ6 detV
dz′1dz

′
2dz
′
3 +O

( ε

am−2−mt−2s

)

=

∫
{|z′1|<d1,|z′2|<d1,|z′3|<d1}

e−M
−1
a (D11|z′1|

2+D22|z′2|
2+D33|z′3|

2)
(
eg̃(z

′) − 1
)

π3σ6 detV
dz′1dz

′
2dz
′
3

+

∫
{|z′1|<d1,|z′2|<d1,|z′3|<d1}

e−M
−1
a (D11|z′1|

2+D22|z′2|
2+D33|z′3|

2)

π3σ6 detV
dz′1dz

′
2dz
′
3 +O

( ε

am−2−mt−2s

)
=

(
1− e−

D11d
2
1

σ2

)(
1− e−

D22d
2
1

σ2

)(
1− e−

D33d
2
1

σ2

)
+O

( ε

a(m−4)(1−t)−2

)
+O

( ε

am−2−mt−2s

)
,

and similarly

P (G2 ∩G3)

=

∫
{|z1|<δ2,|z2|2+|z3|2<δ23}

e−
1
2 (z∗1 ,z

∗
2 ,z
∗
3 ,z1,z2,z3)V −1

2 (z1,z2,z3,z
∗
1 ,z
∗
2 ,z
∗
3 )T

π3
√

detV2

dz1dz2dz3

≥
(

1− e−
D11d

2
2

σ2

)(
1− e−

D22d
2
2

σ2

)(
1− e−

D33d
2
2

σ2

)
+O

( ε

a(m−4)(1−t)−2

)
+O

( ε

am−2−mt−2s

)
.

The rest of the proof is exactly the same as the one in the first step and consequently we

know this theorem is also true for a mother wave packets of type (ε,m) with m larger than

max
{

2(1+s)
1−t , 2

1−t + 4
}

.
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