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Sparse Grids


• “Right Space” - the solution can be approximated well by sparse combinations of 
basis functions


Low-Rank Tensor Methods 


• “Right Space” - the solution can be approximated by a sum of products of lower-
dimensional functions


Neural Network Methods 


• “Right Space” - the implicit function space learned by the network during training

Modeling & Computing in the Right Space



Modeling & Computing in the Right Space

New Paradigm for New Investigation, Method, and Application 


  New Space        



The space of language: Example 1. math expression and description

Modeling & Computing in the Right Space



The space of language: Example 2. Algorithm, Flowchart, and code language

Modeling & Computing in the Right Space



Modeling & Computing in the Space of Natural Language

Two Complementary Approaches:


Symbolic learning (Finite Expression 
Method)


Large language model (LLM)


Applications:


Search for a solution


Search for a mathematical model


Search for a computational algorithm


Search for executable code


…

Question:


How to model and compute in the space of natural language?




Symbolic learning (Finite Expression Method)


Large language model (LLM) for modeling and computing assistant



Finite Expression Method (FEX) Methodology

Motivating Problem:


A structured high-dimensional Poisson equation 


                                                                      


     with a solution  of low complexity , i.e.,  operators in this expression


Idea:


Find an explicit expression that approximates the solution of a PDE


Function space with finite expressions


• Mathematical expressions: a combination of symbols with rules to form a valid function, e.g., 


• -finite expression: a mathematical expression with at most  operators


• Function space in FEX:  as the set of -finite expressions with 

−Δu = f  for x ∈ Ω, u = g for x ∈ ∂Ω
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Liang and Y. arXiv:2206.10121


https://arxiv.org/abs/2206.10121


Finite Expression Method (FEX) Theory

Advantages in Real Analysis: “No” curse of dimensionality in approximation


Theorem (Liang and Y. 2022) Suppose the function space  is  generated with operators including  
``+", ``-", `` ", ``/",  `` ", ``sin(x)", and `` ". Let . For any      in the Holder 
function class  and , there exists a k-finite expression  in  such that
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Liang and Y. arXiv:2206.10121


https://arxiv.org/abs/2206.10121


Finite Expression Method (FEX) Practice

Advantages in Practice: 


• Leverage the power of descriptive structures of problems 


Question: 


• How to do computation with description? 


Answers: 


• Reinforcement learning


• In-context learning


• Bayesian approach



Finite Expression Method for Solving PDEs
Least square based FEX


• e.g.,            and        


• A mathematical expression  to approximate the PDE solution via


                                                       


• Or numerically





Question: how to solve this combinatorial optimization problem? Reinforcement learning

𝒟(u) = f in Ω ℬ(u) = g on ∂Ω

u*

u* = arg min
u∈𝕊k

ℒ(u) := arg min
u∈𝕊k

∥𝒟u − f∥2
2 + λ∥ℬu − g∥2

2
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Liang and Y. arXiv:2206.10121


https://arxiv.org/abs/2206.10121


Numerical Comparison

NN method:

•  Neural networks with a ReLU -activation function

• ResNet with depth 7 and width 50


FEX method:

• Depth 3 binary tree

• Binary set 

• Unary set 


The right space: solutions with simple descriptive structures

2

𝔹 = { + , − , × }
𝕌 = {0,1,Id, ( ⋅ )2, ( ⋅ )3, ( ⋅ )4, exp, sin, cos}

Liang and Y. arXiv:2206.10121


https://arxiv.org/abs/2206.10121


Liang and Y. arXiv:2206.10121


https://arxiv.org/abs/2206.10121


FEX for Partial Integral Differential Equations
Hardwick, Liang, Y., arxiv:2410.00835

∂u
∂t

+ b ⋅ ∇u +
1
2

Tr(σσTH(u)) + Au + f = 0

u(T, ⋅ ) = g( ⋅ )

Au(t, x) = ∫ℝn

(u(t, x + G(x, z)) − u(t, x) − G(x, z) ⋅ ∇u(t, x))ν(dz)

G(x, z) ∈ ℝd × ℝd → ℝd , and ν is a Levy measure associated with a Poisson random measure. 



Committor Function for Rare Events

β−1Δq + ∇V ⋅ ∇q = 0  for x ∉ A ∪ B
q(x) = 0  for x ∈ A
q(x) = 1  for x ∈ B .

where  is temperature and   is the probability 


for starting from , visiting B before visiting A.

β q(x)

x

Song, Cameron, Yang arXiv:2306.12268, SISC, 2025



Difficulty 

• dimension  number of atoms∝

Physical Structure 

• Low-dimensional structure: a small number of collective variables

Machine Learning 

• Identify a low-dimensional structure


• High-dimension  low-dimension→

Committor Function for Rare Events
Song, Cameron, Yang arXiv:2306.12268, SISC, 2025



V(x) = (x12 − 1)2

collective variable

+ 0.3
d

∑
i=2

x2
i

Example: Double-Well potential

A = {x ∈ ℝd ∣ x1 ≤ − 1}, B = {x ∈ ℝd ∣ x1 ≥ 1}with

d2f (x1)
dx2

1
− 4x1 (x2

1 − 1)
df (x1)

dx1
= 0, f(−1) = 0, f(1) = 1

The ground truth solution is

Committor Function for Rare Events
Song, Cameron, Yang arXiv:2306.12268, SISC, 2025

q(x) = f(x1)

where  solves a 1D BVP: f(x1)



Eqn 1: α1,1x1 + … + α1,10x10 + β1

Eqn 2: α2,1 tanh(x1) + … + α2,10 tanh(x10) + β2

𝒥(x) = α3 tanh(Eqn 1 + Eqn 2) + β3

FEX identifies the following representation

α3 = 0.5, β3 = 0.5where

FEX discovers  and high-dimensional  low-dimension
q(x) = f(x1) →

Committor Function for Rare Events

Eqn 1
Eqn 2

Song, Cameron, Yang arXiv:2306.12268, SISC, 2025



2D Burgers equation with periodic boundary conditions on :














(x, y, t) ∈ [0,2π]2 × [0,10]
∂u
∂t

= − u
∂u
∂x

− v
∂u
∂y

+ ν(
∂2u
∂x2

+
∂2u
∂y2

)

∂v
∂t

= − u
∂v
∂x

− v
∂v
∂y

+ ν(
∂2v
∂x2

+
∂2v
∂y2

)

u(x, y,0) = u0(x, y)

v(x, y,0) = v0(x, y)

ν = 0.1

FEX for Learning Physical Laws



Unraveling Symbolic Structures in FEX with LLMs
Bhatnagar, Liang, Patel, Y., arXiv:2503.09986

PDE 1, Boundary Condition 1 Solution 1 and its expression

…

PDE , Boundary Condition sk Solution  and its expressionk

LLM

New problem ?

… …

Methodology: Fine-tune LLM & in-context learning

Advantages: faster convergence & higher accuracy



Unraveling Symbolic Structures in FEX with LLMs
Bhatnagar, Liang, Patel, Y., arXiv:2503.09986

Operator information preserved in solution from condition


Theorem   in  and  on . Reasonable smoothness for  and .  , 
 such that


• 


•  only has operators , and those in , , and 


• #ops (#ops   #ops  ) 


Results generalize to time-dependent problems.

−Δu = f Ω u = g ∂Ω f g ∀δ ∈ (0,1)
∃ū : ℝd → ℝ

∥u − ū∥L2(Ω) ≤ δ

ū +, × , ( ⋅ )2 f g dist(x, ∂Ω)

(ū) = ( f ) + (g) × poly(
1
δ

)



Unraveling Symbolic Structures in FEX with LLMs
Bhatnagar, Liang, Patel, Y., arXiv:2503.09986



Bayesian Symbolic Learning
Huang, Wen, Adusumilli, Choudhary, Y., arXiv:2503.09592

Scientific

Paper

Domain

Specific


Expressions

Domain Specific Priors

• Pr( | Parent)

• Pr( | Parent, siblings)

• Formulation rules

⋅
⋅

Optimization

• Better samples

• Faster convergence

• Eliminate artifacts

Parent

Sibling SiblingSibling

Fill in Operators



Bayesian Symbolic Learning
Huang, Wen, Adusumilli, Choudhary, Y., arXiv:2503.09592



Symbolic learning (Finite Expression Method)


Large language model (LLM) for modeling and computing assistant


• Example: automatic optimization modeling, solving, and testing



Overview and New Features of OptimAI



LLM Agents for Modeling & Computing from Natural Language
OptimAI: Thind, Sun, Liang, Y., arXiv:2504.16918



LLM Agents for Modeling & Computing from Natural Language
OptimAI: Thind, Sun, Liang, Y., arXiv:2504.16918



LLM Agents for Modeling & Computing from Natural Language
OptimAI: Thind, Sun, Liang, Y., arXiv:2504.16918



LLM Agents for Modeling & Computing from Natural Language
OptimAI: Thind, Sun, Liang, Y., arXiv:2504.16918

Traveling salesman problem (TSP), job shop scheduling problem (JSP), and set covering problem.



LLM Agents for Modeling & Computing from Natural Language
OptimAI: Thind, Sun, Liang, Y., arXiv:2504.16918



LLM Agents for Modeling & Computing from Natural Language
OptimAI: Thind, Sun, Liang, Y., arXiv:2504.16918

Table 6: Ablation study of OptimAI design.



Take Home Messages

• Modeling and Computing in the language space 


• Descriptive structures ease challenges and form a right space


• Language space admits automatic big search



