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Abstract. The least squares method with deep neural networks as function parametrization has been applied
to solve certain high-dimensional partial differential equations (PDEs) successfully; however, its convergence is slow
and might not be guaranteed even within a simple class of PDEs. To improve the convergence of the network-based
least squares model, we introduce a novel self-paced learning framework, SelectNet, which quantifies the difficulty
of training samples, treats samples equally in the early stage of training , and slowly explores more challenging
samples, e.g., samples with larger residual errors, mimicking the human cognitive process for more efficient learning.
In particular, a selection network and the PDE solution network are trained simultaneously; the selection network
adaptively weighting the training samples of the solution network achieving the goal of self-paced learning. Numerical
examples indicate that the proposed SelectNet model outperforms existing models on the convergence speed and the
convergence robustness, especially for low-regularity solutions.
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1. Introduction. High-dimensional partial differential equations (PDEs) are important
tools in physical, financial, and biological models [41, 20, 66, 22, 63]. However, developing numerical
methods for high-dimensional PDEs has been challenging due to the curse of dimensionality in the
discretization of the problem. For example, in traditional methods such as finite difference methods
and finite element methods, O(Nd) degree of freedom is required for a d-dimensional problem if
we set N grid points or basis functions in each direction to achieve O( 1

N ) accuracy. Even if
d becomes moderately large, the exponential growth Nd in the dimension d makes traditional
methods immediately computationally intractable.

Recent research of the approximation theory of deep neural networks (DNNs) shows that deep
network approximation is a powerful tool for mesh-free function parametrization. The research on
the approximation theory of neural networks traces back to the pioneering work [9, 26, 1] on the
universal approximation of shallow networks with sigmoid activation functions. The recent research
focus was on the approximation rate of DNNs for various function spaces in terms of the number
of network parameters showing that deep networks are more powerful than shallow networks in
approximation efficiency. For example, smooth functions [46, 44, 64, 18, 49, 62, 16, 15, 17], piecewise
smooth functions [53], band-limited functions [51], continuous functions [65, 57, 56]. The reader
is referred to [56] for the explicit characterization of the approximation error for networks with an
arbitrary width and depth.
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In particular, deep network approximation can lessen or overcome the curse of dimensionality
under certain circumstances, making it an attractive tool for solving high-dimensional problems.
For functions admitting an integral representation with a one-dimensional integral kernel, no curse
of dimensionality in the approximation rate can be shown via establishing the connection of network
approximation with the Monte Carlo sampling or equivalently the law of large numbers [1, 16, 15,
17, 51]. Based on the Kolmogorov-Arnold superposition theorem, for general continuous functions,
[47, 24] showed that three-layer neural networks with advanced activation functions can avoid the
curse of dimensionality and the total number of parameters required is only O(d); [50] proves that
deep ReLU network approximation can lessen the curse of dimensionality, if target functions are
restricted to a space related to the constructive proof of the Kolmogorov-Arnold superposition
theorem in [4]. If the approximation error is only concerned on a low-dimensional manifold, there
is no curse of dimensionality for deep network approximation in terms of the approximation error
[7, 5, 56]. Finally, there is also extensive research showing that deep network approximation can
overcome the curse of dimensionality when they are applied to approximation certain PDE solutions,
e.g. [27, 29].

As an efficient function parametrization tool, neural networks have been applied to solve PDEs
via various approaches. Early work in [40] applies neural networks to approximate PDE solutions
defined on grid points. Later in [11, 38], DNNs are employed to approximate solutions in the
whole domain, and PDEs are solved by minimizing the discrete residual error in the L2-norm at
prescribed collocation points. DNNs coupled with boundary governing terms by design can satisfy
boundary conditions [48]. Nevertheless, designing boundary governing terms is usually difficult for
complex geometry. Another approach to enforcing boundary conditions is to add boundary errors
to the loss function as a penalized term and minimize it as well as the PDE residual error [23, 39].
The second technique is in the same spirit of least squares methods in finite element methods
and is more convenient in implementation. Therefore, it has been widely utilized for PDEs with
complex domains. However, network computation was usually expensive, limiting the applications
of network-based PDE solvers. Thanks to the development of GPU-based parallel computing over
the last two decades, which greatly boosts the network computation, network-based PDE solvers
were revisited recently and have become a popular tool, especially for high-dimensional problems
[13, 19, 25, 34, 60, 3, 67, 42, 2, 30, 28, 6, 55, 43]. Nevertheless, most network-based PDE solvers
suffer from robustness issues: their convergence is slow and might not be guaranteed even within a
simple class of PDEs.

To ease the issue above, we introduce a novel self-paced learning framework, SelectNet, to
adaptively choose training samples in the least squares model. Self-paced learning [36] is a recently
raised learning technique that can choose a part of the training samples for actual training over
time. Specifically, for a training data set with n samplings, self-paced learning uses a vector
v ∈ {0, 1}n to indicate whether each training sample should be included in the current training
stage. The philosophy of self-paced learning is to simulate human beings’ learning style, which
tends to learn easier aspects of a learning task first and deal with more complicated samples
later. Based on self-paced learning, a novel technique for selected sampling is put forward, which
uses a selection neural network instead of the 0-1 selection vector v. Hence, it learns to avoid
redundant training information and speeds up the convergence of learning outcomes. This idea
is further improved in [31] by introducing a DNN to select training data for image classification.
Among similar works, a state-of-the-art algorithm named SelectNet is proposed in [45] for image
classification, especially for imbalanced data problems. Based on the observation that samples near
the singularity of the PDE solution are rare compared to samples from the regular part, we extend
the SelectNet [45] to network-based least squares models, especially for PDE solutions with certain
irregularity. As we shall see later, numerical results show that the proposed model is competitive
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with the traditional (basic) least squares model for analytic solutions, and it outperforms others
for low-regularity solutions, in the aspect of the convergence speed. It is worth noting that our
proposed SelectNet model is essentially tuning the weights of training points to realize the adaptive
sampling. Another approach is to change the distribution of training points, such as the residual-
based adaptive refinement method [33].

The organization of this paper is as follows. In Section 2, we introduce the least squares methods
and formulate the corresponding optimization model. In Section 3, we present the SelectNet model
in detail. In Section 4, we put forward the error estimates of the basic and SelectNet models. In
Section 5, we discuss the network implementation in the proposed model. In Section 6, we present
ample numerical experiments for various equations to validate our model. We conclude with some
remarks in the final section.

2. Least Squares Methods for PDEs. In this work, we aim at solving the following
(initial) boundary value problems, giving a bounded domain Ω ⊂ Rd:

• elliptic equations

Dxu(x) = f(x), in Ω,

Bxu(x) = g0(x), on ∂Ω;
(2.1)

• parabolic equations

∂u(x, t)

∂t
−Dxu(x, t) = f(x, t), in Ω× (0, T ),

Bxu(x, t) = g0(x, t), on ∂Ω× (0, T ),

u(x, 0) = h0(x), in Ω;

(2.2)

• hyperbolic equations

∂2u(x, t)

∂t2
−Dxu(x, t) = f(x, t), in Ω× (0, T ),

Bxu(x, t) = g0(x, t), on ∂Ω× (0, T ),

u(x, 0) = h0(x),
∂u(x, 0)

∂t
= h1(x) in Ω;

(2.3)

where u is the solution function; f , g0, h0, h1 are given data functions; Dx is a spatial differential
operator concerning the derivatives of x; Bx is a boundary operator specifying a Dirichlet, Neumann
or Robin boundary condition.

In this method, the temporal variable t will be regarded as an extra spatial coordinate, and it
will not be dealt with differently from x. For simplicity, the PDEs in (2.1)-(2.3) are unified in the
following form

Du(x) = f(x), in Q,

Bu(x) = g(x), in Γ,
(2.4)

where x includes the spatial variable x and possibly the temporal variable t; Du = f represents
a generic PDE; Bu = g represents the governing conditions including the boundary condition and
possibly the initial condition; Q and Γ are the corresponding domains of the equations.

Now we seek a neural network u(x; θ) approximating the solution u(x) of the PDE (2.4). Note
the residual errors for the PDE and the governing conditions can be written by

(2.5) RQ(u(x; θ)) := Du(x; θ)− f(x), RΓ(u(x; θ)) := Bu(x; θ)− g(x).
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One can solve the PDE by searching for the optimal parameters of the network that minimize
these residual errors, i.e.

(2.6) min
θ
‖RQ(u(x; θ))‖2Q + λ‖RΓ(u(x; θ))‖2Γ,

where ‖ · ‖∗ is usually the L2-norm and λ is a parameter for weighting the sum, e.g.,

(2.7) min
θ

Ex∈Q
[
|Du(x; θ)− f(x)|2

]
+ λEx∈Γ

[
|Bu(x; θ)− g(x)|2

]
.

3. SelectNet Model. The network-based least squares model has been applied to solve
certain high-dimensional PDEs successfully. However, its convergence is slow and might not be
guaranteed. To ease this issue, we introduce a novel self-paced learning framework, SelectNet, to
adaptively choose training samples in the least squares model. The basic philosophy is to mimic the
human cognitive process for more efficient learning: learning first from easier examples and slowly
exploring more complicated ones. The proposed model is related to selected sampling [8, 32], an
important tool of deep learning for computer science applications. Nevertheless, the effectiveness
of selected sampling in scientific computing has not been fully explored yet.

In particular, a selection network φs(x; θs) (subscript s for “selection”) and the PDE solution
network u(x; θ) are trained simultaneously; the selection network adaptively weighting the training
samples of the solution network achieving the goal of self-paced learning. φs(x; θs) is a “mentor”
helping to decide whether a sample x is important enough to train the “student” network u(x; θ).
The “mentor” could avoid redundant training information and help to speed up the convergence.
This idea is originally from self-paced learning [37] and is further improved in [31] by introducing
a DNN to select training data for image classification. Among similar works, a state-of-the-art
algorithm named SelectNet was proposed in [45] for image classification, especially for imbalanced
data problem. Based on the observation that samples near the singularity of the PDE solution are
rare compared to samples from the regular part, we extend the SelectNet [45] to network-based
least squares models, especially for PDE solutions with certain irregularity.

Originally in image classification, for a training data set D = {(xi, yi))}ni=1, self-paced learning
uses a vector v ∈ {0, 1}n to indicate whether or not each training sample should be included in the
current training stage (vi = 1 if the ith sample is included in the current iteration). The overall
target function including v is

(3.1) minθ,v∈{0,1}n
n∑
i=1

viL(yi, φ(xi; θ))− λ
n∑
i=1

vi,

where L(yi, φ(xi; θ)) denotes the loss function of a DNN φ(xi; θ) for classifying a sample xi to yi.
When this model is relaxed to v ∈ [0, 1]n and the alternative convex search is applied to solve the
relaxed optimization, a straightforward derivation easily reveals a rule for the optimal value for

each entry v
(t)
i in the t-th iteration as

(3.2) v
(t)
i = 1, if L(yi, φ(xi; θ

(t))) < λ, and v
(t)
i = 0, otherwise.

A sample with a smaller loss than the threshold λ is treated as an “easy” sample and will be selected
in training. Let us assume that the variables v and θ are trained alternatively. When computing
θ(t+1) with a fixed v(t), the classifier is trained only on the selected “easy” samples. When computing
v(t+1) with a fixed θ(t+1), the vector v help to adjust the training samples to be used in computing
θ(t+2). It was shown by extensive numerical experiments that this mechanism helps to reduce the
generalization error for image classification when the training data distribution is usually different
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from the test data distribution [37]. In [31, 45], a selection network φs(x; θs) ∈ [0, 1] is trained to
select training samples instead of using the binary vector v with the following loss function:

(3.3) minθ,θs

n∑
i=1

φs(xi; θs)L(yi, φ(xi; θ))− λ
n∑
i=1

φs(xi; θs).

The introduction of the selection network has mainly three advantages. First, it changes the discrete
optimization problem in (3.1) to a continuous optimization problem in (3.3) that is much easier to
solve. Besides, the selection network with values in [0, 1] can more adaptive adjust the weights to
each sample. Finally, the number of parameters in the selection network can be much smaller than
the size of v, since usually a small selection network is good enough to decide weights roughly.

The self-paced idea can also be applied to the preceding least squares model for solving PDEs.
One naive way is to rewrite the optimization (2.7) as

(3.4) min
θ

1

N1

N1∑
i=1

v′i|Du(x1
i ; θ)− f(x1

i )|2 +
λ

N2

N2∑
i=1

v′′j |Bu(x2
i ; θ)− g(x2

i )|2,

where {x1
i }
N1
i=1 ⊂ Ω and {x2

i }
N2
i=1 ⊂ ∂Ω are random samples; v′i and v′′i are adaptive binary weights

denoting if the samples are selected or not in the loss. Similar adaptive sampling techniques can
be found in [52, 14]. Solving PDEs using deep learning is different from conventional supervised
learning, where sample data are fixed without the flexibility to be arbitrary in the problem domain.
The training and testing data distributions are the same, and there is no limitation for sampling
when we solve PDEs. Therefore, appropriately selecting training data and assigning weights v′ and
v′′ in each optimization iteration can better facilitate the convergence of deep learning to the true
PDE solution.

Intuitively, a good strategy is to first choose “easy” samples to quickly identify a rough PDE
solution and then use more “difficult” samples with large residual errors to refine the PDE solution.
For example, in the early stage of the training, random samples are uniformly drawn in the PDE
domain; in the latter stage of the training, we can select samples with almost the highest residual
errors for training. However, this naive selection strategy might be too greedy: large residual
errors usually occur where the PDE solution is irregular (e.g., near low regularity points), resulting
in selected training samples gathering around these “difficult” points with few samples in other
regions. Note that deep neural networks are functions globally supported in the PDE domain.
Training with samples restricted in a small area may lead to large test errors in other areas. In our
experiments, we observe that this naive selection strategy applied to (3.4) even works worse than
the basic model (2.7) (See the numerical example in Section 6.1.2).

Borrowing the idea in [31, 45], we introduce two neural networks, φ′s(x; θ′s) and φ′′s (x; θ′′s ), named
as the selection network for the PDE residual error and the boundary condition error, respectively,
to replace v′ and v′′ in (3.4). The introduction of selection networks admits three main advantages
over the naive binary weights, as discussed previously for the models in (3.1) and (3.3). According to
the discussion in the last paragraph, the selection networks φ′s(x; θ′s) and φ′′s (x; θ′′s ) should satisfy the
following requirements. 1) As weight functions, they are required to be non-negative and bounded.
2) They should not have a strong bias for weighting samples in the early stage of training. 3)
They prefer higher weights for samples with larger point-wise residual errors in the latter stage of
training.

For the first requirement, φ′s(x; θ′s) and φ′′s (x; θ′′s ) are enforced to satisfy

m0 < φ′s(x; θ′s) < M0, ∀x ∈ Q and ∀θ′s,(3.5)

m0 < φ′′s (x; θ′′s ) < M0, ∀x ∈ Γ and ∀θ′′s ,(3.6)
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where M0 > 1 > m0 ≥ 0 are prescribed constants. Note the conditions (3.5)-(3.6) hold automat-
ically if the last layer of activation functions of φ′s(x; θ′s) and φ′′s (x; θ′′s ) is bounded (e.g., using a
tanh or sigmoid activation function) and the network output is properly re-scaled and shifted as we
shall discuss later in the next section. Therefore, the corresponding weighted least squares method
is formulated by

(3.7) Ex∈Q
[
φ′s(x; θ′s)|Du(x; θ)− f(x)|2

]
+ λEx∈Γ

[
φ′′s (x; θ′′s )|Bu(x; θ)− g(x)|2

]
.

For the second requirement, when the selection networks are randomly initialized with zero bias
and random weights with a zero mean and a small variance, the selection networks are random
functions close to a constant. Therefore, the selection networks have no bias in weighting samples
in the early stage of training.

The third requirement can also be satisfied. Based on the principle that higher weights should
be added to samples with larger point-wise residual errors, we can train φ′s(x; θ′s) and φ′′s (x; θ′′s ) via

(3.8) max
θ′s,θ
′′
s

Ex∈Q
[
φ′s(x; θ′s)|Du(x; θ)− f(x)|2

]
+ λEx∈Γ

[
φ′′s (x; θ′′s )|Bu(x; θ)− g(x)|2

]
subject to the normalization conditions,

(3.9)
1

|Q|

∫
Q
φ′s(x; θ′s)dx = 1,

1

|Γ|

∫
Γ
φ′′s (x; θ′′s )dx = 1.

Note in (3.8), to achieve the maximum of the loss function, φ′s(x; θ′s) tends to take larger values where
|Du(x; θ) − f(x)| is larger, and take smaller values elsewhere. Also, φ′s(x; θ′s) will not take large
values everywhere since it is normalized by (3.9). The same mechanism is also true for φ′′s (x; θ′′s ).
In the latter stage of training, φ′s(x; θ′s) and φ′′s (x; θ′′s ) have been optimized by the maximization
problem above to choose “difficult” samples and, hence, the third requirement above is satisfied.

For simplicity, we can combine (3.8) and (3.9) as the following penalized optimization

(3.10) max
θ′s,θ
′′
s

Ex∈Q
[
φ′s(x; θ′s)|Du(x; θ)− f(x)|2

]
+ λEx∈Γ

[
φ′′s (x; θ′′s )|Bu(x; θ)− g(x)|2

]
− ε−1

[(
1

|Q|

∫
Q
φ′s(x; θ′s)dx− 1

)2

+

(
1

|Γ|

∫
Γ
φ′′s (x; θ′′s )dx− 1

)2
]
,

where ε > 0 is a small penalty constant. When φ′s(x; θ′s) and φ′′s (x; θ′′s ) are fixed, we can train the
solution network u(x; θ) by minimizing (3.10), i.e.,

(3.11) min
θ

max
θ′s,θ
′′
s

Ex∈Q
[
φ′s(x; θ′s)|Du(x; θ)− f(x)|2

]
+ λEx∈Γ

[
φ′′s (x; θ′′s )|Bu(x; θ)− g(x)|2

]
− ε−1

[(
1

|Q|

∫
Q
φ′s(x; θ′s)dx− 1

)2

+

(
1

|Γ|

∫
Γ
φ′′s (x; θ′′s )dx− 1

)2
]
,

which is the final model in the SelectNet method.
Remark 3.1. An alternate way to penalize the selection networks is to divide the residual

terms in (3.8) by the norms of the selection networks. Namely, we solve

(3.12) min
θ

max
θ′s,θ
′′
s

‖φ′s‖−1
Ω Ex∈Q

[
φ′s(x; θ′s)|Du(x; θ)− f(x)|2

]
+ λ‖φ′′s‖−1

Γ Ex∈Γ

[
φ′′s (x; θ′′s )|Bu(x; θ)− g(x)|2

]
.
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However, in practice, the results of (3.12) are sensitive to the types of norms and hyperparameters;
hence (3.12) is more challenging to obtain good numerical results than the formulation (3.11).

Although the introduction of SelectNet is motivated by self-paced learning in image classifica-
tion, surprisingly, SelectNet can also be understood via conventional mathematical analysis. The
square root of the non-negative selection networks can also be understood as the test function in
the weak form of conventional PDE solvers. In the SelectNet, we apply the idea of test functions to
both the PDE and the boundary condition, e.g., hoping to identify u(x; θ) ensuring the following
two equalities for all non-negative test functions:(√

φ′s(x; θ′s),Du(x; θ)
)
Q

=
(√

φ′s(x; θ′s), f(x)
)
Q

with (·, ·)Q as the inner product of L2(Q) and(√
φ′′s (x; θ′′s ),Bu(x; θ)

)
Γ

=
(√

φ′′s (x; θ′′s ), g(x)
)

Γ

with (·, ·)Γ as the inner product of L2(Γ). Conventional methods apply test functions for the PDE
only and the test functions are not necessarily non-negative. In the SelectNet, the integration by
part is not applied so as to let the test function play a role of weighting, while conventional methods
use the integration by part to weaken the regularity requirement of the PDE solution. Only a single
test function is used in SelectNet with a maximum requirement to guarantee that the solution of the
min-max problem is the solution of the original problem (see Theorem 4.1 later), while conventional
methods use sufficiently many test functions that can form a set of basis functions in the discrete
test function space. The idea of using test functions in deep learning was also used in [67], where
the test function was used in a weak form with integration by part. The idea of using a min-max
optimization problem instead of the minimization problem to solve PDEs has been studied for many
decades, e.g. [21]. Maximizing over all possible test functions can obtain the best test function that
amplifies the residual error the most, which can better help the minimization problem to identify
the PDE solution. When an optimization algorithm is applied to solve the min-max problem, the
optimization dynamic consists of a solution dynamic that converges to the PDE solution and a test
dynamic that provide a sequence of test functions to characterize the error of the numerical solution
at each iteration. The training dynamic of the selection network in SelectNet approximates the
test function dynamic, and the training dynamic of the solution network in SelectNet approximate
the solution dynamic.

4. Error estimates. In this section, theoretical analysis are presented to show the so-
lution errors of the basic and SelectNet models are bounded by the loss function (mean square
of the residual). Specifically, we will take the elliptic PDE with Neumann boundary condition as
an example. The conclusion can be generalized for other well-posed PDEs by similar argument.
Consider

(4.1)

{
−∆u+ cu = f, in Ω,
∂u
∂n = g, on ∂Ω,

where Ω is an open subset of Rd whose boundary ∂Ω is C1 smooth; f ∈ L2(Ω), g ∈ L2(∂Ω),
c(x) ≥ σ > 0 is a given function in L2(Ω).

Theorem 4.1. Suppose the problem (4.1) admits a unique solution u∗ in C1(Ω). Also, suppose
the variational optimization problem

(4.2) min
u∈N

J(u) := min
u∈N

∫
Ω
| −∆u+ cu− f |2dx+ λ

∫
∂Ω
|∂u
∂n
− g|2dx,
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has an admissible set N ⊂ C2(Ω) containing a feasible solution ub ∈ N satisfying

(4.3) J(ub) < δ,

then

(4.4) ‖ub − u∗‖H1(Ω) ≤ cmax(1, σ−1) max(1, λ−
1
2 )δ

1
2 ,

where c > 0 is a constant only depending on d and Ω. Furthermore, let S ′ be a subset of {φ ∈
C(Ω) : φ > 0} which contains φ(x) ≡ 1 for all x ∈ Ω; let S ′′ be a subset of {φ ∈ C(∂Ω) : φ > 0}
which contains φ(x) ≡ 1 for all x ∈ ∂Ω. Suppose the variational optimization problem

(4.5) min
u∈N

JS′,S′′(u) := min
u∈N

max
φ′∈S′,φ′′∈S′′

∫
Ω
φ′| −∆u+ cu− f |2dx+ λ

∫
∂Ω
φ′′|∂u

∂n
− g|2dx

− ε−1

[(
1

|Ω|

∫
Ω
φ′dx− 1

)2

+

(
1

|∂Ω|

∫
∂Ω
φ′′dx− 1

)2
]
,

has a feasible solution us ∈ N satisfying

(4.6) JS′,S′′(us) < δ,

then

(4.7) ‖us − u∗‖H1(Ω) ≤ cmax(1, σ−1) max(1, λ−
1
2 )δ

1
2 .

Proof. Let vb := ub − u∗. Starting from the identity

(4.8) −∆vb + cvb = −∆ub + cub − f,

we multiply vb to both sides of (4.8) and integrate over Ω. Since vb ∈ C1(Ω), by integration by
parts it follows

(4.9) ‖∇vb‖2L2(Ω) + σ‖vb‖2L2(Ω) ≤
∫

Ω
(−∆ub + cub − f)vbdx+

∫
∂Ω
vb
∂vb

∂n
dx.

Hence, by the Cauchy-Schwarz inequality,

(4.10) min(1, σ)‖vb‖2H1(Ω) ≤ ‖ −∆ub + cub − f‖L2(Ω) · ‖vb‖L2(Ω)

+ ‖vb‖L2(∂Ω) · ‖
∂ub

∂n
− g‖L2(∂Ω).

By the trace theorem, ‖vb‖L2(∂Ω) ≤ c′‖vb‖H1(Ω) for some c′ > 0 only depending on d and Ω. Then
we have

(4.11) min(1, σ)‖vb‖2H1(Ω)

≤ ‖vb‖H1(Ω)

(
‖ −∆ub + cub − f‖L2(Ω) + c′‖∂ub

∂n
− g‖L2(∂Ω)

)
≤ c′′‖vb‖H1(Ω)

(
‖ −∆ub + cub − f‖2L2(Ω) + ‖∂ub

∂n
− g‖2L2(∂Ω)

) 1
2

,
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with c′′ =
√

2 max(1, c′). Finally, by the hypothesis (4.3), (4.4) directly follows from (4.11).

Moreover, by taking φ′ ≡ 1, φ′′ ≡ 1 we directly have

(4.12)

∫
Ω
| −∆u+ cu− f |2dx+ λ

∫
∂Ω
|∂u
∂n
− g|2dx ≤ JS′,S′′(us) < δ.

The same estimate for ‖us − u∗‖H1(Ω) can be obtained by similar argument.

By using the triangle inequality, we can conclude the solutions of the basic and SelectNet models
are equivalent as long as the loss functions are minimized sufficiently. As an immediate result, we
have the following corollary.

Corollary 4.2. Under the hypothesis of Theorem 4.1, we have

(4.13) ‖ub − us‖H1(Ω) ≤ cmax(1, σ−1) max(1, λ−
1
2 )δ

1
2 .

5. Network Implementation.

5.1. Network Architecture. The proposed framework is independent of the choice of
DNNs. Advanced network design may improve the accuracy and convergence of the proposed
framework, which would be interesting for future work.

In this paper, feedforward neural networks will be repeatedly applied. Let φ(x; θ) denote such
a network with an input x and parameters θ, then it is defined recursively as follows:

x0 = x,

xl+1 = σ(W lxl + bl), l = 0, 1, · · · , L− 1,

φ(x; θ) = W LxL + bL,

(5.1)

where σ is an application-dependent nonlinear activation function, and θ consists of all the weights
and biases {W l, bl}Ll=0 satisfying

W 0 ∈ Rm×d, W L ∈ R1×m, bL ∈ R,
W l ∈ Rm×m, for l = 1, · · · , L− 1,

bl ∈ Rm×1, for l = 0, · · · , L− 1.

(5.2)

The number m is called the width of the network and L is called the depth.

For simplicity, we deploy the feedforward neural network with the activation function σ(x) =
sin(x) as the solution network that approximates the solution of the PDE. As for the selection
network introduced in Section 3, since it is required to be bounded in [m0,M0], it can be defined
via

(5.3) φs(x; θ) = (M0 −m0)σs(φ̂(x; θ)) +m0,

where σs(x) = 1/(1 + exp(−x)) is the sigmoidal function, and φ̂ is a generic network, e.g. a
feedforward neural network with the ReLU activation σ(x) = max{0,x}.

5.2. Special Network for Dirichlet Boundary Conditions. In the case of homoge-
neous Dirichlet boundary conditions, it is worth mentioning a special network design that satisfies
the boundary condition automatically as discussed in [38, 3].
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Let us focus on the boundary value problem to introduce this special network structure. It is
straightforward to generalize this idea to the case of an initial boundary value problem and we omit
this discussion. Assume a homogeneous Dirichlet boundary condition

(5.4) u(x) = 0, on ∂Ω,

then a solution network automatically satisfying the condition above can be constructed by

(5.5) u(x; θ) = h(x)û(x; θ),

where û is a generic network as in (5.1), and h is a specifically chosen function such as h = 0 on Γ.

For example, if Ω is a d-dimensional unit ball, then u(x; θ) can take the form

(5.6) u(x; θ) = (|x|2 − 1)û(x; θ).

For another example, if Ω is the d-dimensional cube [−1, 1]d, then u(x; θ) can take the form

(5.7) u(x; θ) =
d∏
i=1

(x2
i − 1)û(x; θ).

Since the boundary condition Bu = 0 is always fulfilled, it suffices to solve the min-max problem

(5.8) min
θ

max
θ′s

Ex∈Q
[
φ′s(x; θ′s)|Du(x; θ)− f(x)|2

]
− ε−1

(
1

|Q|

∫
Q
φ′s(x; θ′s)dx− 1

)2

to identify the best solution network u(x; θ).

5.3. Derivatives of Networks. Note that the evaluation of the optimization problem in
(3.11) involves the derivative of the network u(x; θ) in terms of x. When the activation function
of the network is differentiable, the network is differentiable and the derivative in terms of x can
be evaluated efficiently via the back-propagation algorithm. Note that the network we adopt in
this paper is not differentiable. Hence, finite difference method will be utilized to estimate the
derivative of networks. For example, for the elliptic operator Du := ∇ · (a(x)∇u), Du(x; θ) can be
estimated by the second-order central difference formula

(5.9) Du(x; θ) ≈ 1

h2

d∑
i=1

a(x +
1

2
hei)(u(x + hei, θ)− u(x; θ))

− a(x− 1

2
hei)(u(x; θ)− u(x− hei, θ)),

up to an error of O(dh2). In the experiments (Section 6), we take h = 10−4 for all examples with
d up to 100. Hence the truncation errors are up to O(10−6), which are overwhelmed by the final
errors (at least O(10−4)). This implies the truncation errors from finite difference can be ignored
in practice.

Indeed, one can also use the automatic differentiation in TensorFlow or Pytorch based on the
explicit formula of networks to evaluate the derivatives in the practical implementation, which
brings no truncation errors. However, the computational cost of this approach is high when a
second order (or higher) derivative is computed. Hence we choose finite difference method for
derivative computation in this paper.
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5.4. Network Training. Once networks have been set up, the rest is to train the networks
to solve the min-max problem in (3.11). The stochastic gradient descent (SGD) method or its
variants (e.g., Adam [35]) is an efficient tool to solve this problem numerically. Although the
convergence of SGD for the min-max problem is still an active research topic [54, 10, 61], empirical
success shows that SGD can provide a good approximate solution.

Before completing the algorithm description of SelectNet, let us introduce the key setup of
SGD and summarize it in Algorithm 1 below. In each training iteration, we first set uniformly
distributed training points {x1

i }
N1
i=1 ⊂ Q and {x2

i }
N2
i=1 ⊂ Γ , and define the empirical loss of these

training points as

(5.10) J(θ, θs) =
1

N1

N1∑
i=1

φ′s(x
1
i ; θ
′
s)|Du(x1

i , θ)− f(x1
i )|2

+
λ

N2

N2∑
i=1

φ′′s (x2
i ; θ
′′
s )|Bu(x2

i , θ)− g(x2
i )|2

− ε−1

( 1

N1

N1∑
i=1

φ′s(x
1
i ; θ
′
s)− 1

)2

+

(
1

N2

N2∑
i=1

φ′′s (x2
i ; θ
′′
s )− 1

)2
 ,

where θs := [θ′s, θ
′′
s ]. Next, θs can be updated by the gradient ascent via

(5.11) θs ← θs + τs∇θsJ,

and θ can be updated by the gradient descent via

(5.12) θ ← θ − τ∇θJ,

with step sizes τs and τ . Note that training points are randomly renewed in each iteration. In fact,
for the same set of training points in each iteration, the updates (5.11) and (5.12) can be performed
n1 and n2 times, respectively.

6. Numerical Experiments. In this section, the proposed SelectNet model is tested on
several PDE examples, including elliptic/parabolic and linear/nonlinear high-dimensional problems.
Other network-based methods are also implemented for comparison. For all methods, we choose the
feedforward architecture with activation σ(x) = max(x3, 0) for the solution network. Additionally,
for SelectNet, we choose feedforward architecture with ReLU activation for the selection network.
AdamGrad [12] is employed to solve the optimization problems, with learning rates

(6.1) τ (k)
s = 10−4,

for the selection network, and

(6.2) τ (k) = 10−3−3j/1000, if n(j) < k ≤ n(j+1), ∀j = 0, · · · , 1000,

for the solution network, where 0 = n(0) < · · · < n(1000) = n are equidistant segments of total
iterations. Other parameters used in the model and algorithm are listed in Table 6.1. Unless
otherwise specified, in all examples, we set N1 = 10000, N2 = 10000, n = 20000, n1 = 1, λ = 1,
m = 100, L = 3 for all methods and set n2 = 1, ε = 0.001, ms = 20, Ls = 3, m0 = 0.8, M0 = 5
especially for SelectNet.



12 SELECTNET FOR SOLVING HIGH-DIMENSIONAL PDES

Algorithm 1 The Least Squares Model with SelectNet

Require: the PDE (2.4)
Ensure: the parameters θ in the solution network u(x; θ)

Set parameters n, n1, n2 for iterations and parameters N1, N2 for sample sizes
Initialize u(x; θ0,0) and φs(x; θ0,0

s )
for k = 1, · · · , n do

Generate uniformly distributed sampling points
{x1

i }
N1
i=1 ⊂ Q and {x2

i }
N2
i=1 ⊂ Γ

for j = 1, · · · , n1 do

Update θk−1,j
s ← θk−1,j−1

s + τ
(k)
s ∇θsJ(θk−1,j−1

s , θk−1,0)
end for
θk,0s ← θk−1,n1

s

for j = 1, · · · , n2 do
Update θk−1,j ← θk−1,j−1 − τ (k)∇θJ(θk,0s , θk−1,j−1)

end for
θk,0 ← θk−1,n2

if Stopping criteria is satisfied then
Return θ = θk,0

end if
end for

d the dimension of the problem

m the width of each layer in the solution network

ms the width of each layer in the selection network

L the depth of the solution network

Ls the depth of the selection network

M0 the upper bound of the selection network

m0 the lower bound of the selection network

n number of iterations in the optimization

n1 number of updates of the selection network in each iteration

n2 number of updates of the solution network in each iteration

N1 number of training points inside the domain in each iteration

N2 number of training points on the domain boundary in each iteration

ε penalty parameter to uniform the selection network

λ summation weight of the boundary least squares

Table 6.1: Parameters in the model and algorithm.

We take the (relative) `2 error at uniformly distributed testing points {xi} ⊂ Q̃ as the metric
to evaluate the accuracy, which is formulated by

(6.3) e`2(θ) :=


∑
i
|u(xi; θ)− u(xi)|2∑

i
|u(xi)|2


1
2

.

Here Q̃ ⊂ Q is the domain for error evaluation. In all examples, we choose 10000 testing points for
error evaluation.
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Basic SelectNet DRM WAN

Mean of Errors µ 7.588× 10−3 3.288× 10−4 8.681× 10−4 2.177× 10−3

Standard Deviation σ 1.080× 10−3 7.821× 10−5 1.072× 10−4 8.002× 10−4

Coefficient of Variation σ/µ 14.2% 23.8% 12.4% 36.8%

Table 6.2: Means and standard deviations of the `2 errors obtained within 600 seconds by various
methods in the comparative example. (totally 50 trials for each method)

6.1. Comparative Experiment. In the first experiment, we compare the proposed Se-
lectNet model with other network-based methods on the following 2-D Poisson equation,

−∆u = 1, in Ω := (−1, 1)× (−1, 1),

u = 0, on ∂Ω,
(6.4)

with a solution expressed by the series

(6.5) u(x1, x2) = −64

π4

∞∑
n,m=1
n,m odd

(−1)
n+m

2
cos(nπx12 )cos(mπx22 )

nm(n2 +m2)
.

As a classic testing example for PDE methods, the problem (6.4) is well-known for the low-regularity
of its solution at the four corners of Ω. In this experiment, both the interior training points and
testing points are chosen uniformly in the domain, and the boundary training points are chosen
uniformly on the boundary. Since the numerical results are influenced by the randomness of the
network initialization and the stochastic training process, we implement each method for 50 times
with different seeds and compute the mean and standard deviation of the final errors.

6.1.1. Comparison with Recent Methods. We implement the basic least squares
model, SelectNet model, and recently raised methods: deep Ritz method (DRM) [19] and weak
adversarial networks (WAN) [67] under the same setting, and compare their convergence speed.
All methods are implemented for 600 seconds, with learning rates given in (6.2) for the first 10000
iterations and 10−6 for the subsequent iterations. The means and standard deviations of the final
`2 errors of 50 trials are listed in Table 6.2. For each method. We select 10 of the 50 trials to
present their error curves with respect to the computing time in Figure 6.1. It is observed in the
first 50 seconds SelectNet has the fastest error decay, and in the end, SelectNet obtains the smallest
errors. We also note that for each method, the error deviations are much smaller than the error
means, showing the numerical stability with respect to the stochasticity of algorithms.

Across different trials, the selection networks of the SelectNet model evolve in a nearly identical
manner. From all trials, we take one to show the surfaces of the selection network at the initial
stage and the 2000th, 5000th, 10000th iterations (see Figure 6.2). We can clearly find that high
peaks appear at the four corners over time where the solution is less regular, while other region
preserves to be low and constant. This distribution will improve the convergence at the corners
that are “difficult” to deal with.

6.1.2. Comparison with Binary Weighting. To verify that SelectNet is advantageous
over other weighting strategies, we also implement the binary weighting method. Namely, in the
basic least squares method, we select p (0 < p < 1) training points having larger residuals to be
weighted with wL > 1, and let the other points be weighted with wS < 1. Specifically, we solve the
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Fig. 6.1: `2 errors v.s. computing time in the comparative example (Red: SelectNet model; Blue:
the basic model; green: DRM; yellow: WAN. 10 selected curves for each method).
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Fig. 6.2: The evolution of the selection network over time in the comparative example.

problem (6.4) by

(6.6) min
θ

1

N1

∑
x∈L1

wL| −∆u(x; θ)− 1|2 +
∑
x∈S1

wS| −∆u(x; θ)− 1|2


+
λ

N2

∑
x∈L2

wL|u(x; θ)|2 +
∑
x∈S2

wS|u(x; θ)|2
 ,

where {L1,S1} is a partition of {x1
i }
N1
i=1 satisfying |L1| = pN1, |S1| = (1−p)N1, |−∆u(x′; θ)−1| ≥

| − ∆u(x′′; θ) − 1| for any x′ ∈ L1 and x′′ ∈ S1; {L2,S2} is a partition of {x2
i }
N2
i=1 satisfying

|L2| = pN2, |S2| = (1 − p)N2, |u(x′; θ)| ≥ |u(x′′; θ)| for any x′ ∈ L2 and x′′ ∈ S2. The binary
weights are chosen subject to the following normalization condition

(6.7) wLp+ wS(1− p) = 1, wLp+ wS(1− p) = 1.

As with the preceding tests, we implement the weighting model (6.6) with various combinations
of parameters for 600 seconds. The means and deviations of the final `2 errors are listed in Table
6.3. It shows the best combination obtains the mean error 7.375 × 10−3, which is slightly better
than the original basic model and much worse than the SelectNet model.

6.2. High-dimensional Examples. In the second experiment, we will implement the
basic and SelectNet models in a series of high-dimensional examples (d ≥ 10) to reflect the advantage
of using SelectNet. Note from the preceding comparative experiment that SelectNet can obtain
much smaller error means than the basic model, which overwhelms the error deviations. Therefore,
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p = 20%

wL/wS 2 4 8

Mean of Errors µ 8.104× 10−3 8.649× 10−3 9.260× 10−3

Standard Deviation σ 8.384× 10−4 1.131× 10−3 1.205× 10−3

Coefficient of Variation σ/µ 10.3% 13.1% 13.0%

p = 50%

wL/wS 2 4 8

Mean of Errors µ 7.395× 10−3 7.612× 10−3 7.506× 10−3

Standard Deviation σ 1.080× 10−3 1.168× 10−3 1.113× 10−3

Coefficient of Variation σ/µ 14.6% 15.3% 14.8%

p = 80%

wL/wS 2 4 8

Mean of Errors µ 7.426× 10−3 7.375× 10−3 7.512× 10−3

Standard Deviation σ 9.502× 10−4 1.023× 10−3 1.077× 10−3

Coefficient of Variation σ/µ 12.8% 13.9% 14.3%

Table 6.3: Means and standard deviations of the `2 errors obtained within 600 seconds by binary
weighting in the comparative example. (totally 50 trials for each combination)

considering the long time spent in high-dimensional problems, we only implement both models for
once in each case to present the results in the paper.

Since in high-dimensional cases, most of the random points following a uniform distribution are
near the boundary, we take an annularly uniform strategy instead of uniform sampling. Specifically,
for a high-dimensional unit circle, we divide it into Na annuli {k/Na < |x| < (k+ 1)/Na}Na−1

k=0 and
generates N1/Na samples uniformly in each annulus. In the following experiments, we choose
Na = 10. This sampling strategy is applied in generating interior training points and testing
points. For generating boundary training points, we still use uniform sampling.

6.2.1. Elliptic Equations with Low-Regularity Solutions. First, let us consider the
nonlinear elliptic equation inside a bounded domain

−∇ · (a(x)∇u) + |∇u|2 = f(x), in Ω := {x : |x| < 1},
u = g(x), on ∂Ω,

(6.8)

with a(x) = 1 + 1
2 |x|

2. In this case, we specify the exact solution by

(6.9) u(x) = sin(
π

2
(1− |x|)2.5),

whose first derivative is singular at the origin and the third derivative is singular on the boundary.
Note the problem is nonlinear if µ 6= 0. We solve the high-dimensional nonlinear problem for
d = 10, 20 and 100. The errors obtained by the basic and SelectNet models with 20000 iterations
are listed in Table 6.4. Since the basic model costs less time for one iteration, we also list the
errors obtained by SelectNet with the same computing time as the basic model for comparison.
The curves of error decay versus iterations are shown in Fig. 6.3. From these results, it is observed
both models are effective on the nonlinear elliptic problem of all dimensions, but SelectNet has a
clearly better performance than the basic model: its accuracy is one-digit better than the basic
model. Besides, we present in Fig. 6.4 the following surfaces at (x1, x2)-slice
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Dimension SelectNet SelectNet∗ Basic

d = 10 7.944× 10−4 8.089× 10−4 3.193× 10−3

d = 20 9.584× 10−4 1.241× 10−3 1.707× 10−2

d = 100 9.257× 10−3 1.004× 10−2 1.862× 10−1

Table 6.4: `2 errors obtained by various models in the nonlinear elliptic example. (“SelectNet”
and “Basic” denote the final errors obtained by SelectNet and basic models with 20000 iterations;
“SelectNet∗” denotes the error obtained by SelectNet model with the same computing time as 20000
iterations of basic model, the same below)
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(c) d = 100

Fig. 6.3: `2 errors v.s. iterations in the nonlinear elliptic example (Red: SelectNet model; Blue: the
basic model).

• the numerical solution: u(x1, x2, 0, · · · , 0; θ)
• the modulus of the numerical residual error: |Du(x1, x2, 0, · · · , 0; θ)− f(x1, x2, 0, · · · , 0)|
• the selection network: φ′s(x1, x2, 0, · · · , 0; θ′s)

for the 20-dimensional case. It shows that the residual error accumulates near the origin due
to its low regularity. On the other hand, the selection network attains its peak at the origin,
implying that training points are highly weighted near the origin where the residual error is mainly
distributed. Note that the selection network is not supported locally near the low-regularity point,
which means that the selection network will not make the training of the solution network focus
on the low-regularity point only.

6.2.2. Linear Parabolic Equations. In this example, SelectNet is tested on the following
initial boundary value problem of the linear parabolic equation

∂tu(x, t)−∇x · (a(x)∇xu(x, t)) = f(x, t), in Q := Ω× (0, 1),

u(x, t) = g(x), on ∂Ω× (0, 1),

u(x, 0) = h(x), in Ω,

(6.10)

where a(x) = 1 + 1
2 |x| and Ω := {x : |x| < 1}. The exact solution is set by

(6.11) u(x, t) = exp(|x|
√

1− t).

Note u is at most C0 smooth at t = 1 and |x| = 0. In the SelectNet model, time-discretization
schemes are not utilized. Instead, we regard t as an extra spatial variable of the problem. Hence the
problem domain Ω × (0, 1) is an analog of a hypercylinder, and the “boundary” value is specified
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Fig. 6.4: The (x1, x2)-surfaces of the numerical solution, the modulus of residual errors and selection
network by SelectNet (d=20) in the nonlinear elliptic example.

Dimension SelectNet SelectNet∗ Basic

d = 10 1.490× 10−2 1.502× 10−2 3.531× 10−2

d = 20 2.990× 10−2 3.000× 10−2 8.748× 10−2

d = 100 6.302× 10−2 6.268× 10−2 1.357× 10−1

Table 6.5: `2 errors obtained by various models in the linear parabolic example.

in the bottom Ω× {t = 0} and the side ∂Ω× (0, 1). This example is tested for d = 10, 20 and 100,
by evaluating the relative `2 error in Ω × (0, 1). The errors of the basic and SelectNet models are
listed in Table 6.5. It is clearly shown SelectNet still obtains smaller errors than the basic model
with the same number of iterations or computing time. In Fig. 6.5 the curves of error decay are
presented, and in Fig. 6.6 the (t, x1)-surfaces of the numerical solution, the modulus of the residual
errors and selection network for d = 20 are displayed, from that we can observe the residual error
is mainly distributed near the singular point x = 0 and the terminal slice t = 1. Accordingly, the
selection network takes its maximum in this region.

6.2.3. Allen-Cahn Equation. In this example, we test SelectNet model on the following
100-dimensional Allen-Cahn equation

∂tu(x, t)−∆xu(x, t)− u(x, t) + u3(x, t) = f(x, t), in Q := Ω× (0, 1),

u(x, t) = g(x), on ∂Ω× (0, 1),

u(x, 0) = h(x), in Ω,

(6.12)

where a(x) = 1+ 1
2 |x| and Ω := {x : |x| < 1}. Note the Allen-Cahn equation is a nonlinear parabolic

equation. The exact solution is set as

(6.13) u(x, t) = e−t sin(
π

2
(1− |x|)2.5).

The errors obtained by SelectNet model and the basic model with 20000 iterations are 6.358×10−3

and 3.347 × 10−2, respectively. And the SelectNet error obtained with the same computing time
as the basic model is 6.218× 10−3. The error curves versus iterations are shown in Fig. 6.7. It can
be seen in the figure the error curve of the SelectNet decays faster to lower levels than the basic
model. Moreover, the (t, x1)-surface of the numerical solution, the modulus of residual errors and
selection network are shown in Fig. 6.8, from that we can observe the selection network takes its
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Fig. 6.5: `2 errors v.s. iterations in the linear parabolic example (Red: SelectNet model; Blue: the
basic model).
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Fig. 6.6: The (t, x1)-surfaces of the numerical solution, the modulus of residual errors and selection
network by SelectNet (d=20) in the linear parabolic example.

maximum near the singular point x = 0 and the initial slice t = 0, where the highest residual error
is located.

6.2.4. Hyperbolic Equations. In the last example, we test SelectNet by solving the
initial boundary value problem of the hyperbolic (wave) equation, which is given by

∂2u(x, t)

∂t2
−∆xu(x, t) = f(x, t), in Ω× (0, 1),

u(x, t) = g0(x, t), on ∂Ω× (0, 1),

u(x, 0) = h0(x),
∂u(x, 0)

∂t
= h1(x) in Ω,

(6.14)

with Ω := {x : |x| < 1} and exact solution is set by

(6.15) u(x, t) =
(
exp(t2)− 1

)
sin(

π

2
(1− |x|)2.5).

Same as in preceding examples, we solve the problem of d = 10, 20 and 100 and compute the
relative `2 errors of the basic and SelectNet models. The obtained errors are listed in Table 6.6,
which demonstrates the SelectNet still converges faster than the basic model (especially when d is
higher), obtaining smaller errors. Also, we display the curves of error decay in Fig. 6.9, and the
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Fig. 6.7: `2 errors v.s. iterations in the Allen-Cahn example (Red: SelectNet model; Blue: the basic
model).
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Fig. 6.8: The (t, x1)-surfaces of the numerical solution, the modulus of residual errors and selection
network by SelectNet in the Allen-Cahn example.

(t, x1)-surfaces of the numerical results when d = 20 in Fig. 6.10. The results in the examples of
parabolic and hyperbolic equations imply our proposed model works successfully for time-dependent
problems.

7. Conclusion. In this work, we improve the network-based least squares models on
generic PDEs by introducing a selection network for selected sampling in the optimization process.
The objective is to place higher weights on the sampling points having larger point-wise residual
errors, and correspondingly we propose the SelectNet model that is a min-max optimization. In the
implementation, both the solution and selection functions are approximated by feedforward neural
networks, which are trained alternatively in the algorithm. The proposed SelectNet framework can
solve high-dimensional PDEs that are intractable by traditional PDE solvers.

In the numerical examples, it is demonstrated the proposed SelectNet model works effectively for
elliptic, parabolic, and hyperbolic equations, even if in the case of nonlinear equations. Furthermore,
numerical results show that the proposed model outperforms the basic least squares model. In
the problems with low-regularity solutions, SelectNet will focus on the region with larger errors
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Dimension SelectNet SelectNet∗ Basic

d = 10 1.671× 10−2 1.701× 10−2 5.200× 10−2

d = 20 3.281× 10−2 3.292× 10−2 9.665× 10−2

d = 100 6.319× 10−2 6.351× 10−2 3.089× 10−1

Table 6.6: Final `2 errors obtained by various models in the hyperbolic example.
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Fig. 6.9: `2 errors v.s. iterations in the hyperbolic example (Red: SelectNet model; Blue: the basic
model).

automatically, finally improving the speed of convergence.

In this paper, we apply neural networks with piecewise polynomial functions as activation
functions. If the floor, ReLU, Sign, and exponential functions are used as activation functions, [58,
59] showed that deep network approximation has no curse of dimensionality in the approximation
error for Hölder continuous functions. But unfortunately, efficient numerical algorithms for these
networks are still not available yet. It is interesting to explore the application of these networks to
approximate the solutions of high-dimensional PDEs in the weak sense as future work.
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