Downloaded 06/27/14 to 128.12.246.16. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. IMAGING SCIENCES (©) 2013 Society for Industrial and Applied Mathematics
Vol. 6, No. 4, pp. 1979-2009

Synchrosqueezed Wave Packet Transform for 2D Mode Decomposition*

Haizhao Yang' and Lexing Ying?

Abstract. This paper introduces the synchrosqueezed wave packet transform as a method for analyzing two-
dimensional images. This transform is a combination of wave packet transforms of a certain geo-
metric scaling, a reallocation technique for sharpening phase space representations, and clustering
algorithms for modal decomposition. For a function that is a superposition of several wave-like
components with a highly oscillatory pattern satisfying certain separation conditions, we prove that
the synchrosqueezed wave packet transform identifies these components and estimates their local
wavevectors. A discrete version of this transform is discussed in detail, and numerical results are
given to demonstrate the properties of the proposed transform.
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1. Introduction. In many applications, a typical time signal can be viewed as a super-
position of several simple components, each of which is localized in time-frequency (or phase
space) representation and exhibits well-defined, often nonstationary, instantaneous frequency
[18]. An important task in analyzing these signals is to identify these simple components and
estimate their instantaneous frequencies. Time-frequency analysis provides a wide range of
tools for this task. Most of these tools fall into two categories: linear and quadratic methods,
each of which has its own strengths and weaknesses. The linear methods are typically efficient
and easy to reconstruct but provide poor resolution. The quadratic methods, on the other
hand, provide better resolution but suffer from higher computational cost, a more difficult
reconstruction process, and nonphysical interference between multiple components. Among
the approaches proposed to remedy this problem, the reallocation (or reassignment) meth-
ods [1, 7, 8, 11] can be viewed as standard linear methods, followed by reassigning values of
the time-frequency representation based upon their local oscillation. One such method is the
synchrosqueezed wavelet transform, which was proposed in [11] and given rigorous justifica-
tion for an important class of signals (superpositions of approximate sinusoidal waves with
well-separated frequencies at each location) in [10].

An obvious question, which is motivated by various applications [26, 28], is whether the
synchrosqueezing idea can be extended to two-dimensional (2D) images. For example, in
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seismic imaging analysis, different local wavevectors correspond to different seismic events,
which typically link to different geological features. A naive attempt would simply combine the
2D wavelet transform with the synchrosqueezing approach. The resulting synchrosqueezed 2D
wavelet transform would be capable of separating components that have different wavevectors
at each location, just as the 1D transform does for 1D signals. However, in many situations this
is not enough, since a typical 2D image can have components whose wavevectors have the same
magnitude but point in different directions, as shown in Figure 1(left). In fact, images from
many applications related to high-frequency wave propagation have this feature. In order
to distinguish these modes, we propose the synchrosqueezed wave packet transform, which
combines the synchrosqueezing idea with wave packets of an appropriate geometric scaling.
The key feature is that these wave packets have finer and, more importantly, directional
support in the 2D Fourier domain, which allows anisotropic angular separation in the Fourier
domain, i.e., distinguishing components oscillating in different directions, as shown in Figure
1(right). As far as we know, the synchrosqueezed wave packet transform is the first method
to date equipped with this ability.

-500 0 500
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Figure 1. Comparison of the resolutions of continuous wavelets (left) and continuous wave packets (right) in
the Fourier domain. Consider the superposition of two plane waves e*™P® and e*™'%* with the same frequency
(Ip| = lqg|) but different wavevectors (p # q). The two dots in each plot show the support of the Fourier
transforms of these two plane waves. Left: The gray region stands for the support of a continuous wavelet.
Since the isotropic support of each wavelet either covers or misses both points p and q, the wavelet transform is
not able to distinguish these two plane waves. Right: Each gray region represents the support of a wave packet.
As long as p and q are well separated, they are in the support of two different wave packets. Hence these two
plane waves can be distinguished from each other by the wave packet transform.

1.1. Synchrosqueezed wave packet transform. In what follows, we introduce the syn-
chrosqueezed wave packet transform, alongside several simple motivating examples. Let w(z)
for z € R? be the mother wave packet, which is used to define all wave packets through scaling,
modulation, and translation. Suppose that w(x) is in the Schwartz class, and that the Fourier
transform w(¢) is a radial, real-valued, nonnegative, smooth function with support equal to
the unit ball B1(0) in the Fourier domain. Based on w(z), we can define a family of wave
packets through scaling, modulation, and translation as follows, controlled by a geometric
parameter s.
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Definition 1.1.  Given the mother wave packet w(zx) and the parameter s € (1/2,1), the
family of wave packets {wyp(z) : p,b € R?, |p| > 1} is defined as

wyp(@) = [p[*w(|p|*(z — b)) =0

9

or, equivalently, in the Fourier domain, as
Wy (€) = |p| =2 2™ S (Ip| > (€ — p))-

It is essential for our purposes that s is between 1/2 and 1. As we shall see, the upper bound
s < 1 enables the wave packets to detect oscillations in different directions, while the lower
bound s > 1/2 makes the support of the wave packets sufficiently small for local wavevector
estimation. It is clear from the definition that the Fourier transform wy;(§) is supported in
Byps(p), a ball centered at p with radius [p|*. On the other hand, wy(z) is centered in space
at b with an essential support of width O(|p|=*). Further, {wy(z) : p,b € R%, |p| > 1} are all
appropriately scaled to have the same L? norm with the mother wave packet w(z). Notice
that if s were equal to 1, these functions would be qualitatively similar to the standard 2D
wavelets. On the other hand, if s were equal to 1/2, we would obtain the wave atoms defined
in [12].

In this definition, we require |p| > 1. The reason is that, when |p| < 1, the above
consideration regarding the shape of the wave packets is no longer valid. However, since we
are mostly concerned with the high frequencies as the signals of interest here are oscillatory,
the case |p| < 1 is essentially irrelevant.

Equipped with this family of wave packets, we can define the wave packet transform as
follows.

Definition 1.2.  The wave packet transform of a function f(x) is a function

(11) Wi (p,b) = (wph, f) = / W (@) f ()
= (wpp, f) = | Wp(&) f(€)de¢

for p,b € R% |p| > 1. )
If the Fourier transform f(¢) vanishes for |¢| < 1, it is easy to check that the L? norms of
We(p,b) and f(x) are equivalent, up to a uniform constant factor; i.e.,

(12) [ Wi oPasas < [ 15t
As a simple example, let us consider the wave packet transform for a plane wave function
f(l‘) _ ae27riNB'x,

where v and 3 are nonzero constants of order O(1) and N is a sufficiently large constant. The
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local wavevector is N, and applying the wave packet transform to f(z) gives
Wf(p’ b) = / ae?m’Nﬁ.x |p|5w(|p|8(x o b))e—27rz'(ac—b)-1udgj
R2

= |p|—3a /R2 eQWiNﬁv(b+|p|*5y)w(y)e_2ﬂ.i‘p‘fsp'ydy

= [p|=*ae®™ N0 ([p[ = (N — p)).

Since w(§) is compactly supported in the unit ball, for each fixed b the coefficients W (p, b)
are nonzero if p satisfies

lp— NS < |p|°.

This implies that, for each b, W(p,b) has an essential support of width O(|N3|*) around the
wavevector N3 in the p variable. The essential observation of synchrosqueezing is that the
oscillation of W(p,b) in the b variable in fact encodes the correct wavevector N3, indepen-
dently of the amplitude o or the position b. More precisely, the derivative of W(p,b) with
respect to b and Wy (p, b) satisfies the following equation:

VoW (p,b) _ 2miNpB|p|—>ae®™ N w(p|*(N S — p))

2miWs(p,0) — 2mi|p|~*ae?miNAb([p|=5(N 5 — p)) ’

for Wg(p,b) # 0.
Let us consider now a general function of the form

f(@) = a(z)e o)

with smooth amplitude a(x), smooth phase ¢(x), and sufficiently large N. As we shall see,
for each b the wave packet transform Wy (p,b) is essentially supported in the following set:

{p:p—NVo(®)| < Ipl*}-

This motivates us to define the local wavevector estimation for a general function f(x) as
follows.
Definition 1.3.  The local wavevector estimation of a function f(x) at (p,b) is

vbVVf (pv b)
(1.3) vp(p,b) = 20, (p,b)
for p,b € R? with W(p,b) # 0.

Though v¢(p,b) is defined here for any p, b with Wy (p,b) # 0, we want to emphasize that
it is relevant only when [Wy(p, b)| is above a certain threshold value. This will be made more
precise in the analysis and implementation in later sections.

Given the wavevector estimation vs(p,b), the synchrosqueezing step reallocates the in-
formation in the phase space and provides a sharpened phase space representation of f(x).
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Definition 1.4. Given f(x), W¢(p,b), and v¢(p,b), the synchrosqueezed energy distribution
T¢(v,b) is defined by

(1.4) Ty(0,8) = [ Wy D) 6Ru(p.) — o)y

for v,b € R2.

As we shall see, for f(z) = a(z)e?™N¢(®) with sufficiently smooth amplitude a(z) and
sufficiently steep phase N¢(x), we can show that for each b the estimation vy (p,b) indeed
approximates NV¢(b) independently of p as long as Wy (p,b) is nonnegligible. As a direct
consequence, for each b, the essential support of T¢(v,b) in the v variable concentrates near
NV ¢(b) (see Figure 2 for an example). In addition, we have the following property:

/Tf(v,b)dvdb :/\Wf(p, b)[>6(Rv s (p,b) — v)dvdpdb :/\Wf(p, b)|?dpdb = || f||3

from Fubini’s theorem and the norm equivalence (1.2), for any f(x) with its Fourier transform
vanishing for |¢] < 1.
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Figure 2. Synchrosqueezed wave packet transform applied to a deformed plane wave f(x) = a(m)ez"iN¢(”),

which is the first component of the signal in Example 2 in section 4. Left: The essential support of the wave
packet transform Wy(p,b) at by = 1. Right: The essential support of the synchrosqueezed energy distribution
Tt (v,b) at the same by value. W¢(p,b) has been reallocated to form a sharp phase space representation T¢(v,b).

Let us now informally discuss why the synchrosqueezed wave packet transform allows one
to identify individual pieces of a superposition of multiple components. For simplicity, let

f(z) = al(x)e27riN¢1(:c) + a2($)e27riN¢2(:c)’
with smooth amplitudes «;(x) and ay(z) and smooth phases N¢i(xz) and N¢y(x) for suf-

ficiently large N (see Figure 3(top-left)). Let us assume that at each position the local
wavevectors NV i (z) and NV¢y(z) are sufficiently large and well separated from each other
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Figure 3. Synchrosqueezed wave packet transform applied to a superposition of two deformed plane waves,
flx) = e?miNe1(2) 4 p2miNea(2) giwven in Example 2 in section 4. Top-left: The essential support of the wave
packet transform Wy (p,b) at by = 1. Top-right: The essential support of the synchrosqueezed energy distribution
T¢(v,b) at the same by value. At a fized by value, T¢(v,b) is more concentrated near two curves. In general, in
the full 4D phase space, Ty(v,b) is concentrated near two separated 2D surfaces in the 4D phase space, which
makes it easier to separate these components with clustering techniques. The second row shows the support
of two sets U1 and Uz after the clustering algorithm is applied. Each set contains the synchrosqueezed enerqgy
distribution of one deformed plane wave.

(this will be made precise later). From the above discussion, we know that for each p the wave
packet transform W(p,b) is essentially supported in two sets,

{(,b) : Ip = NV (b)] < Ip°}, {(p,b) : Ip = NVa(b)| < [pl°}-

Since both |[NV¢q(b)| and |[NV¢o(b)| are large and 1/2 < s < 1, the first set is within
distance O(|NV¢1(b)|®) from NV ¢;(b), and the second one is within distance O(|NV 2 (b)|*)
from NV ¢o(b). Since NV¢y(z) and NVea(b) are sufficiently well separated, these two sets
are essentially disjoint. Therefore,
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for p in the first set, and

for p in the second one (see Figure 3(top-right) for an example). After synchrosqueezing, the
energy distribution Tf(v,b) then essentially concentrates near two two-dimensional surfaces,
S1 = {(NV¢1(b),b) : b € R?} and Sy = {(NV¢o(b),b) : b € R?}, in the four-dimensional
phase space. Since S; and Sy are well separated, one expects the essential support of T't(v,b)
to separate into two disjoint regions U; and Uy, where Uy D S; and Us D S5 contain
the synchrosqueezed coefficients from the first mode aq(z)e2™ V1 (*) and the second mode
ag(az)e2”N $2(2) respectively. Typically, these two sets U; and Us can be identified with stan-
dard clustering algorithms (see the second row of Figure 3).
Once U; and Us are identified, we can extract individual modes with

(1.5) filz) = Wpp ()W (p, b)dpdb,

/p,b:gRUf (p7b)€U1

falz) = Wpp ()W (p, b)dpdb,

/p,b:?va (p,b)eUs

where the set of functions {w,,(x)} is a dual frame of {wp,(z)}.

1.2. Related work. Extracting individual components and estimating local wavevectors
is an essential problem in adaptive data analysis. There has been a long history behind ap-
plying linear and quadratic methods from applied harmonic analysis to this problem; this
line of research is summarized in [21], for example. The synchrosqueezing method was orig-
inally proposed for auditory signal processing in [11] and has been shown to provide good
results for 1D signals even under a substantial amount of noise. The recent work in [10]
provides an important step towards understanding synchrosqueezing on 1D mode decompo-
sition, and it is generalized to a 2D model in [9]. Since the 2D synchrosqueezed wavelet
transform in [9] uses only a 1D spectral line of the wavenumber (the length of the anisotropic
wavevector) for decomposition, it cannot distinguish two modes with the same wavenumber
but different wavevectors. Even if two modes have different but similar wavenumbers, the 2D
synchrosqueezed wavelet transform is not able to distinguish them. [29] has discussed this
phenomenon in a simplified model.

A different but related approach for component extraction is the empirical mode decom-
position (EMD) initiated and refined by Huang and coworkers [17, 18]. Given a superposition
of simple components, called intrinsic mode functions, this approach recursively extracts these
components starting from the most oscillatory. Typically, the most oscillatory component is
estimated by computing local minima and maxima and applying spline interpolation to these
extrema to estimate the envelope function. Though this method has been widely used for
real data analysis, it is rather sensitive to noise, and its mathematical analysis is still under
development. To address the problem of noise, several variants of EMD have been proposed
more recently [15, 30] and shown to improve results for data from practical applications.
However, mathematical analysis is still not a resolved problem and is currently under active
research. Following the same methodology of extracting each component one-by-one from
the most oscillatory one, Hou and Shi have developed an optimization framework for solving
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the mode decomposition problem, based on total variation [13] or sparse representation in a
data-driven dictionary of basis functions [14]. Each component extracted in the optimization
scheme belongs to the class of intrinsic mode functions defined in EMD.

In the spirit of EMD, many methods in higher-dimensional cases have been proposed
recently. They fall into two types: one is based on surface interpolation [23, 24, 19, 20], and
the other one is based on decomposition of 1D slices [16, 31]. These methods cannot distinguish
two modes with the same wavenumber but different wavevectors by lack of anisotropic angular
separation. Let us consider a simple superposition of the form

f(z) = cos(2m(x1 + x2)) + cos(2m(x1 — x2)).

Surface interpolation methods consider f(x) as one single 2D mode by definition. On the
other hand, because each 1D slice of f(x) contains two modes with the same wavenumber,
the methods based on 1D decomposition would consider the superposition as one single mode
as well. Even if the wavenumbers are different but close, the number of modes answered by
the EMD methods would still be one, as explained in [27].

Comparing these two approaches, we note that the 1D models considered in the EMD
approaches are typically more general. Nevertheless, the simpler models considered here and
in [10, 11] allow for a more thorough analysis of synchrosqueezed transforms applied to these
signals and serve as a first step for the analysis of more complicated models considered in the
EMD approach.

The rest of the paper is organized as follows. Section 2 contains the main theoretical
result of this paper. We prove that when the local wavevectors of multiple components are
well separated at each position, the synchrosqueezed wave packet transform is able to estimate
the local wavevectors. In section 3, a discrete version of the synchrosqueezed wave packet
transform is introduced in detail. Section 4 provides several numerical examples on local
wavevector estimation and mode decomposition. Finally, we conclude with some discussions
in section 5.

2. Analysis of the transform. In this section, we show that the synchrosqueezed wave
packet transform can distinguish well-separated local wavevectors for a superposition of mul-
tiple components. We start by providing precise definitions for these components and the
superposition in two dimensions, following the model used in Daubechies, Lu, and Wu [10].

Definition 2.1. A function f(x) = a(z)e>™N®) is an intrinsic mode function of type
(M, N) if a(x) and ¢(x) satisfy

az) e C*, |Vao| <M, 1/M<a<M
¢(x) € C™, 1/M < |Vo| <M, |V?¢| <M.

Definition 2.2. A function f(z) is a well-separated superposition of type (M, N, K) if

flx) =) filz)

N
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where each fi(x) = ap(x)e>™ N @) s an intrinsic mode function of type (M,N) and the

phase functions satisfy the separation condition
INVr(b) = NV (b)| = 2" (INV . (b)|* + [NV (b))

forany 1 < k,l < K. We denote by F(M,N, K) the set of all such functions.

Let us recall that W(p,b) is the wave packet transform with geometric scaling parameter
s € (1/2,1) of a function f(x) and that vs(p,b) is the local wavevector estimation. The
following theorem is our main theoretical result.

Theorem 2.3. For a function f(z) and € > 0 we define

R ={(p,b) : [W;(p,b)| > |p|~*Ve}

and
Zir ={(pb): [p— NVor(b)| < |p|°}

for 1 <k < K. For fired M and K there exists a constant eo(M,K) > 0 such that for any
e € (0,e9) there exists a constant No(M, K,s,e) > 0 such that for any N > No(M, K, s,¢)
and f(x) € F(M,N,K) the following statements hold:

(i) {Zpr:1 <k <K} are disjoint and Ry. CUy<per Zf k-

(i) For any (p,b) € RN Zyy, -

07 (P, b) — NV 1 (b)|

NVaG) SV

In what follows, when we write O(+), <, or 2, the implicit constants may depend on M
and K. The proof of the theorem relies on several lemmas. The following one estimates

Wi(p,b).
Lemma 2.4. Under the assumption of the theorem, we have
(2.1)
Wiy = [P70C) Il ¢ (7, 2MN),
e Pl (A, ar (D)™ N Oi (o]~ (p — NV(8))) + O(e) ), Il € [57, 2MN].

Proof. Let us first estimate W¢(p,b) by assuming that f(x) contains a single intrinsic
mode function of type (M, N): ‘
() = a(a)m Vo),

Using the definition of the wave packet transform, we have the following expression for
Wy (p,b):

Wf(p, b) = /a($)e27rz‘N¢(w) Ip|*w(|p|* (z — b))6—27ri(ac—b).pdgj
= /a(b+ ’p‘_sy)e2mN¢(b+\P\ﬂy) ’p‘sw(y)e_gﬂﬂprsy,pd(‘p’_sy)

- Ipl_s/a(b+ [P~ y)w(y)e N OCHT )P gy
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We claim that when NV is sufficiently large,

pI7*0(e), Pl & 337, 2M N],

(2.2) Wi(p,b) = {‘p, =5 (a(b)e2TNOO gy (|p| =5 (p — NVG(1))) + Oe)),  |p| € [y, 2MN].

First, let us consider the case |p| ¢ [Z4;,2M N]. Consider the integral

/ h(y)eig(y)d

for smooth real functions h(y) and g(y), along with the differential operator

1(Vg,V)
Vgl> -

If |Vg| does not vanish, we have

(Vg,iVge')
i|Vg|?

Le' = = ¢'9

Assuming that h(y) decays sufficiently quickly at infinity, we perform integration by parts r
times to get

/ he'dy = / h(L"e")dy = / ((L*)"h)e"dy,
where L* is the adjoint of L. In the current setting, Wy(p,b) = |p|=* [ h(y)e W dy with
hy) = ab+[p|"*y)w(y), g(y) =2r(No(b + |p|~°y) — p| "y - p),

where h(y) clearly decays rapidly at infinity since w(y) is in the Schwartz class. In order to
understand the impact of L and L*, we need to bound the norm of

Va(y) = 2m (NVé(b+ [p| ") —p) Ip~*
from below when |p| & [7, 2MN]. If |p| < A=, then
Vgl Z (INV| = [pl)p|™* Z INVglp|~*/2 2 N'7.
If |p| > 2M N, then
Vgl Z (Ip| = INVODIp[™* Z |pl - Ipl /2 Z (b))~ 2 N1 72

Hence |Vg| > N'=¢ if |p| ¢ [2]]\(4,2MN] Since |Vg| # 0 and each L* contributes a factor of
order 1/|Vy|,

‘/ )dy‘ <N (1- S)T

When N > ¢~ 1/((1=5)7) e obtain
/ ei9<y><<L*>’“h><y>dy\ Se

Using the fact that Wy (p,b) = [p|™* [ h(y)e9W) dy, we have [W;(p,b)| < |p|~*c.
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Second, let us address the case |p| € [%, 2M N]. We want to approximate W(p,b) with

P~ a(b)e™ No@ iy (|p| =5 (p — NV(b))) -

Since w(y) is in the Schwartz class, we can assume that |w(y)| < E‘%

m with C,, for |y| > 1. Therefore, the integration over |y| > e~ /™ yields a contribution of at
most order O(e). We can then estimate

for some sufficient large

(Wy(p,b)| = [p[™* (/ a(b + [p|*y)w(y)em NPT =P ) gy 0(5)> ’
ly[Se=t/m

A Taylor expansion of a(z) and ¢(x) shows that
a(b+[p[y) = a(b) + Va (') - [p| "y

and
B0+ Ipl~*y) = 6(0) + V6(8) - (") + 3 (] ~*9)' T*6(0") ol "),

where in each case b* is a point between b and b+ |p|%y. We want to drop the last term from

the above formulas without introducing a relative error larger than O(¢). We begin with the
estimate

/|< y IVa - p| Syw(y)|dy S e,
y|lSe=

which holds if e=2/™|Va - |p|~%y| < e, which is true when [p|=% < &!+3/m. Since |p| €
[%, 2M N], the above holds if

(2.3) N > g~ (+3/m)/s
We also need

/ la(b)w(y)e2 N FNVEO)[pl = y=lpl*y-p)| . ’e2ﬂiN/2(|p|*Sy)tV2¢(\p\*Sy) — 1|dy < e.
Jylet/m N
Since |e® — 1] < |z, the above inequality is equivalent to
/ o a(byw(y)e*m NOOENVOOH Py P |20 N /21| =) Vb (1| y)ldy S e,
y N€7 m

which is true if =2/ N (|p|~*y)'V2¢(|p|~*y) < &, which in turn holds if N|p|=2*|y|> < e'+2/m.
Because |y| < e~m and lp| € [&7,2M N], the above inequality is valid when

(24) N > o= (Ht/m)/@2s-1),
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In summary, for N larger than the maximum of the right-hand sides of (2.3) and (2.4), if
lp| € [7,2M N], then we have

= |pl™* (ab)e?™ i (Jp] = (p — NVH(8)) +O(c) )

where the third line uses the fact that the integration of w(y) outside the set {y : [y| < e 1/}
is again of order O(g).

Now let us return to the general case, where f(x) is a superposition of K well-separated
intrinsic mode components:

. ($)e27riN¢k (z) ’

=
&
I
ol
I MN
A
=
~—~
2
S~—
I
=
I MN
N

as in Definition 2.2. By linearity of the wave packet transform and (2.2), we find
(2.5)

W = 7706 1l ¢ 7, 2MN],
PP 0l (S ar @m0 (=0 — NV&(1) +0()), ol € [y, 2MN)

The next lemma estimates V,Wy(p, b) when |p| € [£;, 2M N, i.e., the case where W (p, b)
is nonnegligible.
Lemma 2.5. Under the assumption of the theorem, we have

K
(2.6) VoWy(p,b) = 2miN|p| ™ (Z Vi (b)ar ()™ N i (|p| = (p — NV (b)) + O(E))
k=1

when |p| € [£>,2M N].
Proof. The proof is similar to that of Lemma 2.4. Assume that f(x) contains a single
intrinsic mode function, i.e.,

Fla) = o) N
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then
VeWi(p,b) = | a(@)e?™N@) p|* (Vw(|p|*(x — b)) (—|p|*) + 2mipw(|p|* (z — b)) e 2" @0 Pdy

alb + |p|~*y) 2T NOCHIY = (T (y) (—[p]*) + 2mipuw(y)) =210 Pdy

I
T

= [ a(b+ |p|~5y)e2mNOFPIT) [ =T (y) (~|p|*)e 2P v P gy

2

Fe

" / b+ [p| )P p S 2mipuw (y)e 2T VP dy,
R2

Forming a Taylor expansion and following the same argument as in the proof of Lemma 2.4

gives the following approximation for |p| € [%, 2M NJ:

VoW (p,) = (=2rilp| (0 — NV()a(b)e™ O is(jp|*(p — NV6(b))) + O(e))
+ 2milp|~p (a(B)e N0 (jp| = (p = NV6(8)) + O(e) )

= 2miN|p|~* (Vo0)a(b)e™ i (p|~*(p — NV6(b)) + O(e))

For f(z) = Yor, fu(@) = Sor | a(2)e2™N9k(*) | taking the sum over K terms gives
K .
VW (p,b) = 2miN|p|~* (Z (Vor®)ar(a)e™ o Ohi(|p| = (p — NV1(8))) ) + 0<e>>
k=1

for |p| € [, 2M N]. [ |
We are now ready to prove the theorem.
Proof. Let us first consider (i). Suppose there exists (p,b) € Z7, N Z5; with k # . Then

lp = NVor()| < pl*, |p—NV(b)| < pl,

which implies
Ipl < [pI” + [INV@r(b)], |pl < |pl® + [NV (D).

Since s < 1, we have
Ip| < 2NV (b)| and [p| < 2[NVey(b)]

if N satisfies
(2.7) N > M2Y/(1=9),
Therefore,

INV@r(b) = NV (b)| < [p— NVor(b)| + |p — NV (b)|
<2[p)” <2-2°(INVp(b)]” + [NV (0)]),

which contradicts the separation assumption. Thus, all Z¢ ), are disjoint.
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Let (p,b) be a point in Ry, = {(p,b) : [W¢(p,b)| > |p|™°ve}. Now let us define
No(M, K, s,) be the maximum of the right-hand sides of (2.3), (2.4), and (2.7). From the

above lemma, we see that, for e sufficiently small, if N > No(M, K, s,¢) and |p| € [5h;,2M N7,

we have

Wy (p,b) = [p|* (Z g ()™ N OV (|p| 5 (p — NV (b)) + 0(6)) :

Therefore, there exists k between 1 and K such that @ (|p|=*(p — NV¢g(b))) is nonzero. From
the definition of (&), we see that this implies (p,b) € Zs . Hence Ry, C Uszl Zf k-
To show (ii), let us recall that v¢(p,b) is defined as

vy (p,b) = 2miW 1 (p, b)

for We(p,b) # 0. If (p,b) € Rp.N Zgy, then
Wi(p.) = o~ (@)™ O (jp| = (p = NV (b)) + O(e) )
and
VoW (p,b) = 2miN ||~ (Ve (B)ar (b)e*™ O (p| = (p — NV1(b)) + O())
as the other terms drop out since {Z; .} are disjoint. Hence

1ot — VIO (D) ((pi = (p— NV6(8) + O(e)
e (ax(b)ez i NacOi ([p[—=(p — NVr(0) + 0()

Let us denote the term ay,(b)e>™ N O (|p|=(p — NV ¢y (b)) by g. Then

NV¢i(b) (g + O(e))
g+0() '

Since |Wy(p,b)| > |p|~%y/€ for (p,b) € Ry., |g| Z /€, and therefore

\wmw—wvmwﬂ<‘0@>
NVaO  ~ g+ 06

The assumption s € (1/2,1) is essential to the proof. The upper bound s < 1 enables the
wave packets to detect oscillations in different directions. The lower bound s > 1/2 ensures
that the support of the wave packets is sufficiently small in space so that the second order
properties of the phase function (such as the curvature of the wave front) do not affect the
synchrosqueezing estimate of the local wavevectors. As shown in (2.3), (2.4), and (2.7), the
constant Ny(M, K, s,¢) in Theorem 2.3 goes to infinity when s approaches either 1 or %
Therefore, in practice, s should be chosen to be well separated from both 1/2 and 1.

In [10], the authors show that, for synchrosqueezed wavelet transform, each intrinsic mode

function or component can be reconstructed from the synchrosqueezed coefficients by making

vy (p,b) =

Svee =
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use of a reconstruction formula that integrates the continuous wavelet coefficient over the scale
parameter with an appropriate weight. They also prove an error bound on the reconstructed
intrinsic mode functions. In the current setting, however, we are not aware of a similar
reconstruction formula for the wave packet. Therefore, our reconstruction step is based on a
Calderon-type reconstruction formula for the wave packets, as illustrated in (1.5). A similar
approach based on the Calderon reconstruction formula for the wavelets is in fact used in the
numerical examples of [10], as it is more robust in the noisy case. However, we have not been
able to derive a rigorous error bound for this Calderon-type reconstruction formula for the
wave packets at this point.

Since we require IV to be sufficiently large in Theorem 2.3, a function defined in Definition
2.2 is a superposition of highly oscillatory components. It is easy to extend Theorem 2.3 to
the case where we have different levels of oscillation, i.e., we have different N large enough.
In practical applications, a function might also contain a low-frequency component. For such
a low-frequency component, the local wavevector is not well-defined, as it is impossible to
perform a phase-amplitude decomposition as is given in Definition 2.1 for a low-frequency
signal. Thus Theorem 2.3 does not apply to such a superposition. However, in practice, we
observe that the synchrosqueezing step can still separate the support of different components
quite well: typically the support of high-frequency components is squeezed into regions Zy ,
while the support of the low frequency component remains at the low-frequency part of the
Fourier domain. Therefore, by applying the reconstruction formula to the coefficients of the
low-frequency component, one is still able to identify the low-frequency component quite
accurately, even though one cannot estimate its local wavevector.

3. Implementation of the transform. In this section, we describe in detail the discrete
synchrosqueezed wave packet transform. Let us first recall the continuous setting. For a given
superposition f(x) of several well-separated components, the synchrosqueezed wave packet
transform consists of the following steps:

(i) Apply the wave packet transform to obtain Wy (p,b) and the gradient VW (p,b).
(ii) Compute the approximate local wavevector v¢(p, b) and perform synchrosqueezing to get
Tg(v,b).
(iii) Use a clustering algorithm to identify the support of the new phase space representation
T¢(v,b) of different intrinsic mode functions.
(iv) Reconstruct each intrinsic mode function using the dual frame.
In order to realize these steps in the discrete setting, we first introduce a discrete implemen-
tation of the wave packet transform in section 3.1. The full discrete algorithm will then be
discussed in section 3.2.

3.1. Discrete wave packet transform. For simplicity, we consider functions that are
periodic over the unit square [0,1)? in two dimensions. Let

X = {(nl/L,’l’Lg/L) :0< ny,ne < L, ni,ng € Z}

be the L x L spatial grid at which these functions are sampled. The corresponding L x L
Fourier grid is

E={(&,&): —L/2<&,6 < L/2, &,&% € Z}.
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Figure 4. The sample set P. FEach star represents a point p in P. FEach p is associated with a window
function g,(§) in the frequency domain.

For a function f(z) € £2(X), the discrete forward Fourier transform is defined by

fe) =7 3 e )

zeX

while the discrete inverse Fourier transform of g(¢) € (2(Z) is

() = 7 3 (c).

e

In both transforms, the factor 1/L ensures that these discrete transforms are isometries be-
tween f2(X) and /2(E).

In order to design a discrete wave packet transform, we need to specify how to decimate
the momentum space and the position space. Let us first consider the momentum space. In
the continuous setting, the Fourier transform wy,(§) of the wave packets for a fixed p value
has the profile

3.1) P~ @ (lp[~* (€ = p)),

modulo complex modulation. In the discrete setting, we sample the Fourier domain [~L/2, L/2]?
with a set of points P (as shown in Figure 4) and associate with each p € P a window function
gp(&) that behaves qualitatively as w(|p|~*(¢ —p)). More precisely, g,(£) is required to satisfy
the following conditions:

e g,(&) is nonnegative and centered at p with a compact support of width L, = O(|p|®);

e g,(|p|°T + p) is a sufficiently smooth function of 7, so that the discrete wave packets

decay rapidly in the spatial domain;
e C1 < [|gp(lpl°*T + p)|?dr < Cs for constants Cy,Cy > 0 which are independent of p;
e in addition, for any & € [-L/2,L/2)?, > pep lgp(&)? = 1.
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One possible way to specify the set P and the functions {g,(§),p € P} is to follow the
constructions of the the wave atom frame in [12] or the Gaussian wave packets of [25]. In
both constructions, the parabolic scaling s = 1/2 is used in order to represent the oscillatory
patterns efficiently. However, in the current setting, the proposed wave packet transform
requires s € (1/2,1), and hence one needs to increase the support of g,(£) accordingly. We
refer to [12, 25] for more detailed discussions. The above conditions for g,(§), p € P, also
impose a constraint on the sampling density of the set P. In the frequency plane, the set P
becomes dense near the origin and sparser for large £. A straightforward calculation shows
that the total number of samples in P is of order O(L?*~2%).

The decimation of the position space is much easier; we simply discretize it with an Lgx Lp
uniform grid as follows:

B = {(nl/LB,ng/LB) :0<ny,ne < Lp,ni,ng € Z}

As we shall see, the only requirement is that Lp > maxp,ecp L, so that the discrete wave
packets can form a frame.

For each fixed p € P and b € B the discrete wave packet, still denoted by wp(z) without
causing much confusion, is defined through its Fourier transform as

Ta(€) = Lipe—zﬂbfgp@)

for £ € Z. Since gp(§) is centered at p and has a support of width L, = O(|p|®), this function
fits into the scaling of wave packets. Applying the discrete inverse Fourier transform provides
its spatial description,

1 mi(x—b)-
£eE

For a function f(x) defined on x € X, the discrete wave packet transform is a map from #5(X)
to (P x B), defined by

(32)  Wip,b) = (wp, f) = (Wi, f) = / TOF (€ = = 3" g, ) f(©).

Pee=
We can introduce an inner product on the space l5(P x B) as follows: for any two functions
9(p,b) and h(p,b),
(g.h) = > g(p.b)h(p,b)(Ly/Lp)*.
peP,beEB

The following result shows that {w, (p,b) € P x B} forms a tight frame when equipped with
this inner product.
Proposition 3.1.  For any function f(x) for x € X we have

Y Wi, 0)P(Ly/Lp)* = |I£113-

peP,beEB
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Proof. From the definition of the wave packet transform, we have
2

S Wt = Y | et efe| (L)
F\, p/ LB I3 9p Lp

pePbeB pePbeB |ce= P
2
= X A0
pepPbeB |eez B
~ 2
=33 |w©f©)
peP &€=
=Y lfer. =
=

For a function h(p,b) in l5(P x B), the transpose of the wave packet transform is given
by

(3.3) Wi(x) = Y h(p,b)wp(z)(Ly/Lp)>.
peP,beEB

The next result shows that this transpose operator allows us to reconstruct f(z), x € X, from
its wave packet transform Wy(p,b), (p,b) € P x B.
Proposition 3.2. For any function f(x) with x € X,

flay="> " Wip,bwp(x)(Ly/Lp)*.

pePbEB

Proof. Let us consider the Fourier transform of the right-hand side. It is equal to

2
S (S et amim | e g6 (12
L L Lp

peEPbEB \neZ P P
=2 (> Liz (Z ™10 g, (n) f (n)) ()
peP \nez B \eeB
= (9(9)*F(€) = f(9),
peP

where the second step uses the fact that in the n sum only the term with n = £ yields a
nonzero contribution. |

Let us now turn to the discrete approximation of VyWy(p,b). From the continuous defi-
nition (1.1), we have

A

VW (p,b) = Vi(wyp, f) = (—2mi€wp (), f(€)).
Therefore, we define the discrete gradient V,Wy(p, b) in a similar way:

(3.4) VlWy(p,b) = 3 - 2miee? ™ g, () f(6).

cez= P
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The above definitions give rise to fast algorithms for computing the forward wave packet
transform, its transpose, and the discrete gradient operator. All three algorithms heavily rely
on the fast Fourier transform (FFT). For the forward transform, writing (3.2) as

L 1 ; 2
Wf(p, b) = L—f : E Z ezﬂlbfgp(g)f(g)
e=

suggests the following algorithm.
Algorithm 3.3. Forward transform from f(x) to Wy (p,b):

. Compute f(€) with & € 2 from f(x) with x € X using an L x L forward FFT.
. for each p € P do

Form gp(&) f(§) on the support of g,(&).

Wrap the result modulo Ly onto the domain [—Lp/2, L /2)?.

Apply an Ly x Lp inverse FET to the wrapped result.

Multiply the result by Lp/Ly, to get W¢(p,b) for all b € B.
end for

A A A

The transpose operator (3.3) can be written equivalently in the Fourier domain as

~ . 2 .
UAGENSY h(p,b%pe—?“bfgp(f) <f—;> =Z<Z ﬁh(z),b)f—ge—?’”bf) gp(€),

pEPbEB peP \beB

which suggests the following algorithm for the transpose operator.
Algorithm 3.4.  Transpose operator from h(p,b) to Wi (x):
: for each p € P do
Multiply h(p,b) for each b€ B by L,/Lp.
Apply an L X L forward FFT to the product.
Unwrap the result modulo Lp onto the support of gp(§).
Multiply the unwrapped data with g,(&) and add the product to get f(f)
end for
. Compute f(z) with x € X from f(€) with & € E using an L x L inverse FFT.

To implement the discrete gradient operator, we rewrite (3.4) as

A R A e

L : .
Vs, b) = 72 | 7 et omit, (€) ()
p cexs B

This suggests the following algorithm.

Algorithm 3.5, Discrete gradient operator from f(x) to grad, Wy(p,b):
. Compute f(€) with & € 2 from f(x) with x € X using an L x L forward FFT.
: for each p € P do

Form 2mi€g,(€)f(€) on the support of g,(€).
Wrap the result modulo L onto the domain [—Lp/2,Lp/2)?.

Apply an Lp x Lp inverse FFT to each component of the wrapped result.

AR
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6:  Multiply the result by Lg/L, to get VyW(p,b) for allb e B.
7. end for
As we mentioned earlier, the conditions on {g,(¢),p € P} imply that there are O(L*(1=*))
samples in set P. A straightforward calculation shows that the computational cost of all three
algorithms is O(L?log L + L?1=9) L% log L) with Ly > maxyep L, = O(L?). If we choose
Lp to be of the same order as L?, the complexity of these algorithms is O(L?log L), which is
the cost of an FFT on an L x L Cartesian grid.

3.2. Description of the full algorithm. With the discrete transforms and their fast algo-
rithms available, we now go through the steps of the synchrosqueezed wave packet transform.
For a given function f(x) defined on « € X, we apply Algorithm 3.3 to compute Wy(p,b)
and Algorithm 3.5 to compute VW (p,b). The approximate local wavevector v¢(p,b) is then

estimated by

Uf(]% )= W

for p € P,b € B with W¢(p,b) # 0. In view of Theorem 2.3, a threshold [Wy(p,b)| > |p|™*\/e
(p > 1) is necessary. Following Theorem 2.3, we define a discrete set Ry, with

Rye={(p.b) :p € P,b € B,|Wy(p,b)| > |p| "V},

and vs(p,b) provides an approximate estimate for the local wavevector only for (p,b) € Ry..
To specify the synchrosqueezed energy distribution T¢(v,b), we first place in the Fourier
domain a 2D Cartesian grid of stepsize A:

V= {(nlA,ngA) tn1,ng € Z}

At each v = (n1A,neA) € V, we associate a cell D, centered at v,

o[- )3) <) o))

Then the discrete synchrosqueezed energy distribution is defined as

T = S WP (Ly/Ls)
(p,b)ERy :Rvf(p,b)eDy

It is straightforward to check that

S Tywb)= Y (Wi, b)P(Ly/Le)* < |I£]5,

veV,beB (p,b)ERy -

where the last inequality comes from Proposition 3.1 and the fact that Ry, is a subset of
P x B.
Suppose that f(z) is a superposition of K well-separated intrinsic mode functions:

K K
f(:E) — Z fk(ﬂf) — Zak(fﬂ)€2mN¢k(x)‘
k=1 k=1
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From the previous discussion we know that, for each b € B, v¢(p,b) points approximately to
one of NV¢(b), depending on p. Therefore, after synchrosqueezing, T¢(v,b) is essentially
supported in the phase space near the K “discrete” surfaces {(N¢x(b),b),b € B}. The next
step is to decompose the essential support of Ty(v,b) into K clusters, one for each intrinsic
mode function, through a spectral clustering method. We make use of the algorithm proposed
in [22]. For a fixed set S of n points {s1,...,s,} in R' and an integer K, this method partitions
these points into K clusters as follows.
Algorithm 3.6. General spectral clustering on set S = s1,..., 8,
1: Construct the matriz A = (vj);; € R™™ with distance function o;; = exp(—|s; — s;]?/0?)
if i # j, and a;; = 0 Vi. Here o is an input parameter.
2: Let D be a diagonal matriz such that D;; = 2?21 a;j;, and define the Laplacian-type matrix
L=D2AD"s.
3: Choose the K largest orthogonal eigenvectors of L, say v1,...,vx, and stack them hori-

zontally to get the matriz V = [vy,vs, ... ,vk] € R™E. The entries of V are denoted by
'Uij-

4: Define the matriz M = (m;j) with mi; = vij /(3 fu?j)l/z, which means normalizing the
rows of V.

5. Consider each row of M as a point in R, and then partition these n points into K
clusters with the K-means algorithm.
6: If row 1 of M is assigned to cluster j, then assign the original point s; to cluster j.

In the current setting, we choose a threshold parameter 1 > 0, define the set S to be
{(v,0) :v e V,be B, Ty(v,b) >},

and apply the above algorithm to S. The resulting clusters are defined to be Uq,...,Uk. In
many cases, the number of components K is not known a priori and needs to be discovered
from the function T(v,b). To do that, we use the set of nonnegligible entries for each b, i.e.,
{v € V,T¢(v,b) > n}, to decide the local number of clusters and take the maximum number
of all b € B to be the cluster number K.

In the final step, we recover each intrinsic mode function by computing

fi(@) = > Wy (p, b)wys(x)(Lp/Lp)*.

(]Lb)éR'Uf(p,b)eUk

This step can be carried out efficiently by restricting Wy (p,b) to the set {(p,b) : Rvs(p,b) €
Ui} and applying Algorithm 3.4 to the restriction for each k.

4. Numerical results. This section presents several numerical examples to illustrate the
proposed synchrosqueezed wave packet transforms. Throughout all examples, the threshold
value ¢ is 1074, and the size L of the Cartesian grid X of the discrete algorithm is 512. In
the implementation of the discrete wave packet transforms, the scaling parameter s is equal
to 2/3, which is a good balance as discussed previously. All these examples are implemented
using a PC with Intel Xeon(R), CPU E5-1620, 3.60 GHz.
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Figure 5. Ezample 1. Relative error R(b) of local wavevector estimation.

4.1. Local wavevector extraction. We first test the accuracy of the estimated local
wavevector vr(p,b). Let f(x) be a deformed plane wave:

f(w) = ala)emiVow,

Theorem 2.3 shows that, for each fixed point b in space, the estimate v¢(p,b) approximates
the local wavevector at b for any p that satisfies the condition |Wy(p,b)] > |p|™°ve. In
the discrete setting, since L, = O(|p|®) > 1, the corresponding threshold criterion becomes
|[W¢(p,b)Lp| > +/e. Though vy (p, b) for any such p provides an estimate of the local wavevector
at b, it is more useful to combine them together to obtain a unique local wavevector estimate
for each fixed b. More precisely, we define the mean local wavevector estimate at b to be

>, Wi (D, b)Pvs(p, b)
> Wil 0))2 7
where the sum in p is taken over all p that satisfy |Wy(p,b)L,| > y/e. Using this estimate,

we can define the (discrete) relative error R(b) between v?’(b) and the exact local frequency

NV ¢(b) as

v (b) =

iy = PO~ NV60)
INV(D)]

Ezample 1. We perform the above test on a deformed plane wave f(x) with a(z) = 1,
o(z) = ¢(z1,22) = o1 + x2 + Bsin(27wzy) + Bsin(2wzy) with = 0.1, and N = 135. The
relative error R(b) shown in Figure 5 is of order 1072, which agrees with Theorem 2.3 in that
the relative approximation error is O(y/¢).

4.2. Intrinsic mode decomposition.
Ezample 2. Here f(x) is a sum of two deformed plane waves:

f(l‘) _ e27riN¢>1(x) + eZwiNd)g(x)’
o1(x) = ¢1(x1,22) = 1 + 22 + Bsin(27ay) + Ssin(2mxs),
¢2(x) = do(w1,22) = —x1 + 22 — Bsin(27x1) + Bsin(2mas),
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with N =135 and 8 = 0.1. The algorithm described in section 3.2 is applied to f(x) to extract
these two components. Figure 6 summarizes the results of this test. The first row shows the
superposition f(z) (left) and the synchrosqueezed energy distribution Tt (v, b) with b; fixed at
1 (right). For a fixed by value, Tt (v, b) concentrates near two curves. More generally, in phase
space, T¢(v,b) concentrates near two 2D surfaces. The second row shows the two sets U; and
U, after the clustering steps. Finally, the third row plots the two reconstructed components.
The proposed synchrosqueezed wave packet transform is also robust to noise. To demon-
strate this, let f(z) be the superposition of two deformed plane waves and a noise term,

(4‘1) f(l‘) _ e27riN¢1(:c) + e27riN¢2(:c) —I—n(x),

where n(x) is an isotropic complex Gaussian random noise with zero mean and variance o2,
In order to reduce the influence of noise, we set up a threshold parameter § ~ Co?, where
C'is an application-dependent constant, and keep only the values of T (v, b) that are greater
than J to get the essential support of synchrosqueezed energy distribution. We use the signal-
to-noise ratio (SNR) and peak signal-to-noise ratio (PSNR) to quantitatively demonstrate the

robustness against noise. Here the SNR is defined by

SNR[dB] = 10log <Va_12rf>
0\ 0

Let f; stand for the ith reconstructed mode. The corresponding PSNR; is defined by

PSNR;[dB 101 MAX2i
ildB] = ?og < MSE; >

where
MAXfi = Imax |fl($)|

and -
MSEZ' — Hfz sz”2‘

In this test, we set SNR to be 3, 0, and —3. Table 1 summarizes the PSNR values for the
two reconstructed modes in each case. Figure 7 demonstrates the result of the synchrosqueezed
wave packet transform in more detail. The first column of images shows the essential support
of T¢(v,b) for by = 1 in each case. We observe that the supports of Tf(v,b) are almost
identical to those of the noiseless case, except for a little energy loss caused by noise. This
demonstrates that the proposed method is robust to noise in estimating local wavevectors.
The second column of images shows the second reconstructed mode of (4.1) in each case.
These images are almost very close to the original one, with only some energy loss caused by
noise. This shows that the proposed method is robust to noise in reconstructing individual
mode functions.

In the analysis, we have assumed so far that each component of the superposition covers
the whole domain. In many real applications, one or more components of the superposition
might be incomplete and cover only part of the domain. The analysis of this general case is
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Figure 6. Exzample 2. Mode decomposition without noise. Top-left: A superposition of two deformed
plane waves with the inset showing a zoomed-in view of the highlighted rectangle. Top-right: Synchrosqueezed
energy distribution Ty(v,b) at by = 1. Second row: The support of T¢(v,b) is clustered into two subsets. Third
row: The two reconstructed components. The run time of mode decomposition by synchrosqueezed wave packet
transform is 263 seconds.
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Figure 7. Mode decomposition with noise. Top row: SNR = 3. Middle row: SNR = 0. Bottom row: SNR =
—3. First column: The essential support of T(v,b) for by = 1. Second column: The second reconstructed mode
with the insets showing a zoomed-in view of the highlighted rectangles. The run time of the example with
SNR = 0 is 265 seconds, which is almost the same as in noiseless case.
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Table 1
SNR and PSNR for each mode.

SNR o0 3 0 -3
PSNR;: || 54.19 | 24.86 | 22.87 | 18.78
PSNRy || 54.13 | 24.79 | 23.02 | 18.67

more complicated due to the boundary of these incomplete components. On the other hand,
one expects that the synchrosqueezed energy distribution 7% (v,b) should still be supported
near several 2D surfaces in the phase space, though some of them might be incomplete. In this
example, we show that the synchrosqueezed wave packet transform still works quite well under
this more general setting. Here we choose f(x) to be the superposition of two components,
one of which is incomplete:

f(ﬂj‘) _ X(x) . e27riNd>1(w) + e27riNd>2(x)’
o1(z) = ¢1(z1,22) = — (21 + Bsin(2wz1)) + (22 + Bsin(2ng)),
p2(x) = pa(z1,2) = (1 + Bsin(2mz1)) — (x2 + B sin(2mag)),

where N = 135, 3 = 0.1, and x(z) is an indicator function of an ellipse in [0,1)2. Figure 8
summarizes the results of this example. The first row shows the superposition f(z) without
noise. The second row plots the two reconstructed components. We note that the boundary
of the second incomplete component is accurately captured by the proposed method.

Ezample 3. In the analysis, we have assumed that different intrinsic mode functions have
well-separated local wavevectors at each point. Real data, however, may have multiple com-
ponents that exhibit nearby or even identical local wavevectors at certain points. Though
Theorem 2.3 does not apply to this setting any more, this example shows that often the
synchrosqueezed wave packet can still identify the local wavevectors robustly. Let f(x) be a
superposition of two deformed plane waves given by

f(x) = 2miNG1(@) 4 2miNea(z)

¢1()
P2(x)

with N = 135 and 8 = 0.1. In this example, the wavevectors of two modes are the same
when z1 = x9 = %”. We apply the synchrosqueezed wave packet transform to noiseless and
noisy data and summarize the results in Figure 9. We observe that the synchrosqueezed wave
packet transform continues to estimate the local wavevector accurately without coarsening
the supports.

Ezample 4. We provide an example coming from a solution of the Helmholtz equation in
a layered medium to show the performance of the synchrosqueezed wave packet transform
on seismic wavefield decomposition. This example comes from a seismic inversion simulation
provided by Sergey B. Fomel and Siwei Li at the Bureau of Economic Geology in the University
of Texas at Austin.

In this example, the seismic source is near the top-left corner of the image, and the wave
propagates downward. When the wave reaches the interface of the layered media, part of the

d1(x1,m9) = 21 + 9 + Bsin(2mxy) + Bsin(2wxs),
¢o(x1,m9) = —x1 + w9 — Bos(2mry) + B cos(2ms),
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Figure 8. Ezample 3. Mode decomposition with incomplete component. Top: A superposition of a complete
deformed plane wave and an incomplete one. Second row: the two reconstructed components. The sharp cutoff
boundary of the second incomplete component is clearly shown. In each plot, the inset is a zoomed-in view of
the highlighted rectangle.

wave continues propagating downward while the rest gets reflected (Figure 10(top)). Figure
10(bottom) shows the two components obtained from applying the synchrosqueezed wave
packet transform to this image. The first component contains the downward propagating
mode both above and below the interface of the layered media, while the second component
contains the upward reflected mode only above the interface.

5. Discussion. The method proposed here is an initial step in mode decomposition for
higher-dimensional signals. This is the first method to date that is designed to distinguish
two modes with the same frequency but different directions. Several possible directions for
future research are listed below.

The synchrosqueezed wave packet transform has a geometric scaling parameter s, which
is between 1/2 and 1. Theorem 2.3 shows that the constant Ny(M, K, s,£) goes to infinity
as s approaches either 1/2 or 1. Therefore, in practice, s should be well separated from both
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Figure 9. Ezxample 3. Synchrosqueezed wave packet transform on noiseless or noisy data with crossover

wavevectors. Top-left: The exact local wavevectors at by = %’r. Top-right: Essential support of Ty(p,b) for the

noiseless data at by = %". Bottom: The essential support of Tt (p,b) for the noisy data with SNR = 3 (left)

- _ 37
and —3 (right) at by = S

values. A natural question is what the optimal choice for s is, i.e., what value of s minimizes
the value No(M, K, s,e). Clearly, the answer depends on the data through the parameters
M and K. The analysis used in the proof of Theorem 2.3 is far from providing an answer to
this question. In practice, it is probably more relevant to develop an adaptive algorithm that
adjusts the parameter s for a given image.

As we mentioned earlier, the case s = 1/2 is the wave atom construction proposed in [12].
Wave atoms provide better angular resolution as the support of wave atoms in the Fourier
domain is more refined. However, as we pointed out, the synchrosqueezing step is no longer
valid for local wavevector estimation, as the wave atoms are large enough in space to see the
second order effects of the phase function. One natural question is whether it is possible to
generalize or modify the synchrosqueezing idea so that it will work for the wave atom case.

Another closely related set of analyzing functions is the curvelet frame [2, 4]. Curvelets
have been shown to be the optimal tool for representing images that are smooth except for
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Figure 10. Top: Synthetic seismic wavefield propagating through a layered media equation. Bottom: The
two extracted components naturally correspond to the downward propagating wave (left) and the upward reflected
wave (Tight).

at isolated curvilinear discontinuities [3, 4, 5, 6]. The current approach can be extended to
curvelets as long as the parabolic scaling case s = 1/2 can be addressed. A potential advantage
of a synchrosqueezed curvelet transform is that it should be able to optimally identify isolated
wavefronts, as opposed to the extended wave fields used in the current paper.

So far we have assumed that the local wavevectors of the different intrinsic mode functions
are well separated at each point. Clearly this assumption may not hold in practice, as many
images might have multiple nearby wavevectors at isolated points or curves. It would be useful
to find more robust clustering algorithms to address such situations.

The current approach can be easily extended to three or higher numbers of dimensions.
This direction should be relevant for applications, such as seismic imaging.

Acknowledgments. The authors thank Jianfeng Lu and Hau-Tieng Wu for discussion,
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on the manuscript.
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