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Abstract. This paper introduces the synchrosqueezed curvelet transform as an optimal tool
for two-dimensional mode decomposition of wavefronts or banded wave-like components. The syn-
chrosqueezed curvelet transform consists of a generalized curvelet transform with application depen-
dent geometric scaling parameters, and a synchrosqueezing technique for a sharpened phase space
representation. In the case of a superposition of banded wave-like components with well-separated
wave-vectors, it is proved that the synchrosqueezed curvelet transform is capable of recognizing
each component and precisely estimating local wave-vectors. A discrete analogue of the continuous
transform and several clustering models for decomposition are proposed in detail. Some numeri-
cal examples with synthetic and real data are provided to demonstrate the above properties of the
proposed transform.
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1. Introduction. In various applications [2, 12, 23, 24, 25, 26, 28, 30, 34], one
is faced with a signal which is a superposition of several components (perhaps non-
linear and nonstationary). The frequency or wave-vector of each component is local-
ized in the time-frequency or phase space representation. A natural question would
be whether it is possible to separate them according to their localized representa-
tions and estimate their local frequencies or wave-vectors. Classical time-frequency
or phase space analysis provides several powerful tools for representing and analyz-
ing complex signals. All of these tools essentially fall into two categories: linear or
quadratic. As discussed in [9], linear methods have simple and efficient algorithms
for forward and inverse transforms, but the resolution is unavoidably limited by the
Heisenberg uncertainty principle. Although quadratic methods provide high resolu-
tion, the corresponding reconstruction methods are less straightforward and signif-
icantly more costly. Furthermore, nonphysical interference between components is
more pronounced.

By introducing the synchrosqueezing technique, Daubechies and Maes proposed
the synchrosqueezed wavelet transform in [10] and demonstrated that an important
class of signals under the assumption of well-separated frequencies could be precisely
decomposed. Synchrosqueezing is a reallocation method [1, 6, 7, 10] aiming at a
sharpened time-frequency representation by reassigning values of the original repre-
sentation. Though it has been shown to provide good results for one-dimemsional
(1D) signals, even with a substantial amount of noise, in higher dimensional space the
application of the synchrosqueezed wavelet transform is limited. It cannot distinguish

*Received by the editors October 4, 2013; accepted for publication (in revised form) April 3, 2014;

published electronically June 19, 2014.
http://www.siam.org/journals/sima/46-3/93991.html

TDepartment of Mathematics, Stanford University, Stanford, CA 94305 (haizhao@math.stanford.
edu). This author was partially supported by NSF grant CDI-1027952.

fDepartment of Mathematics and ICME, Stanford University, Stanford, CA 94305-2125 (lexing@
math.stanford.edu). This author was partially supported by NSF grants CAREER DMS-0846501,
DMS-1027952, and CDI-1027952.

2052

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.


http://www.siam.org/journals/sima/46-3/93991.html
mailto:haizhao@math.stanford.edu
mailto:haizhao@math.stanford.edu
mailto:lexing@math.stanford.edu
mailto:lexing@math.stanford.edu

Downloaded 06/27/14 to 128.12.246.16. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SYNCHROSQUEEZED CURVELET TRANSFORM 2053

250 250] 250,
200 200 200

150] . . 150 OO 150] f/

P,
o
P
o
P,
o

-200 -100 'g) 100 200 h —-200 -100 é) 100 200 -200 -100 pO 100 200
1 1 1

Fic. 1. Comparison of localized supports of continuous wavelets (left), wave packets (middle),
and curvelets (right) in the Fourier domain. Two dots in each plot show the support of the Fourier
transforms of the superposition of two plane waves €2 % and €279 with the same wave-number
(Ip] = lq|) but different wave-vectors (p # q).

two components sharing the same wave-number but having different wave-vectors,
because of the isotropic character of the high dimensional wavelet transform. In fact,
this is a common phenomenon in many applications of high frequency wave propa-
gation. To specify this problem, let us consider a simple superposition of two plane
waves €27 % and €2™® with the same wave-number (|p| = |g|) but different wave-
vectors (p # ¢). In the Fourier domain, the gray region in Figure 1 (left) shows the
support of one continuous wavelet. The wavelet cannot distinguish these two plane
waves in the sense that the gray region has to cover two dots p and ¢ simultaneously,
or has to exclude them simultaneously.

To overcome this inherent limitation of the synchrosqueezed wavelet transform
in high dimensional space, the synchrosqueezed wave packet transform (SSWPT)
was developed in [33], inspired by the localized support of wave packets in the Fourier
domain. The finer supports result in the better resolution for wave-number separation
and, more importantly, the anisotropic supports contribute to the angular separation
of wave-vectors. As shown in Figure 1 (middle), in the Fourier domain, the supports
of e2™P% and e2™9'® are in the supports of two different wave packets, as long as p and
q are well-separated. Yang and Ying [33] proved that SSWPT could identify different
nonlinear and nonstationary high frequency wave-like components with different wave-
vectors in high dimensional space in a general case, even with severe noise.

In some applications such as wave field separation problems [28, 30] and ground
roll removal problems [2, 12, 34] in geophysics, it is required to separate overlap-
ping wavefronts or banded wave-like components. In this case, the boundary of these
components gives rise to many nonzero coefficients of wave packet transform, which
results in unexpected interferential synchrosqueezed energy distribution (see Figure 2
top-right). This would dramatically reduce the accuracy of local wave-vector estima-
tion, because the locations of nonzero energy provide estimation of local wave-vectors.
As shown in Figure 2 (top-right), there exists misleading local wave-vector estimates
at the location where the signal is negligible. Even if at the location where the signal
is relevant, the relative error is still unacceptable. To solve this problem, an empirical
idea is that good basis elements in the synchrosqueezed transform should look like the
components, i.e., they should appear in a needle-like shape. An optimal solution is
curvelets. The curvelet transform is anisotropic (as shown in Figure 1 right) and is de-
signed for optimally representing curved edges [4, 29] and banded wavefronts [3]. This
motivates the design of the synchrosqueezed curvelet transform (SSCT) as an optimal
tool to estimate local wave-vectors of wavefronts or banded wave-like components in
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FIG. 2. Top-left: A banded deformed plane wave, f(z) =e (/N2 27iNO(@)  yhere N =
135 and ¢(z) = x1 + (1 — z2) + 0.1sin(27x1) + 0.1sin(27(1 — x2)). Top-right: Number of nonzero
discrete synchrosqueezed energy of SSWPT at each grid point of space domain. Bottom-left: Relative
error between the mean local wave-vector estimate (defined in [33]) and the exact local wave-vector
using SSWPT. Bottom-right: Relative error between the mean local wave-vector estimate and the
exact local wave-vector using SSCT.

this paper. The estimate of local wave-vectors provided by SSCT is much better than
that by SSWPT, as shown in Figure 2 (bottom). As a particular interest in theory,
we will explore the limit of the bandwidth of these banded wave-like components that
can be analyzed by the SSCT.

1.1. SSCT. Below is a brief introduction to the general curvelet transform with
a radial scaling parameter ¢ < 1 and an angular scaling parameter s € (%, t). Similar
to the discussion in [33], it is crucial to assume + < s <t < 1, so as to obtain accurate
estimates of local wave-vectors for reasonable large wavenumbers. It is proved in the
next section that s < ¢t guarantees precise estimates in the case of banded wave-like
components. Here is some notation for the general curvelet transform:
1. The scaling matrix

where a is the distance from the center of one curvelet to the origin of Fourier
domain.
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2. The rotation angle # and rotation matrix

Ry — ( cosf) —sinf )
sinf  cosf '

3. The unit vector eg = (cosf,sinf)”
transpose.

4. 60, represents the argument of given vector a.

5. w(z) of x € R? denotes the mother curvelet, which is in the Schwartz class
and has a nonnegative, radial, real-valued, smooth Fourier transform w(¢)
with support equal to the unit ball B1(0) in the Fourier domain. The mother
curvelet is required to obey the admissibility condition: 30 < ¢; < ¢ < 0
such that

27 [eS)
c1 < / / a” ) |GAT R, (E —a-ep))Padadh < co
0 1

of rotation angle # and T denotes a

for any [¢] > 1.
With the notation above, we are ready to define a family of curvelets through scaling,
modulation, and translation as follows, controlled by the geometric parameter s and
t.

DEFINITION 1.1. For 3 < s < t < 1, define wap,(§) = W(A; 'Ry (€ —a-
69))6_2”b'5a_i25 as a general curvelet in the Fourier domain. Equivalently, in the
space domain, the corresponding general curvelet is

waeb(x) _ / ’L/L}(AglR;l(f —a- 69))6—2ﬂib-§€2ﬂi§~ra—
R2

t+s

2d€

tts ~ —27ib- . iz .
a2 / w(y)e 27ib-(Ro Aqy+a 69)627T'LI (RoAay+a eg)dy
R2

= T (A, Ry e — b)),

In such a way, a family of curvelets {waep(z),a € [1,00),0 € [0,27),b € R?} is
constructed.

By definition, the Fourier transform wgg,(£) has an ellipse-like support {¢ :
|A7YR, (€ — a - eg)| < 1} centered at a - ey with a major radius a’ and a minor
radius a®. It is natural to require @ > 1 in order to keep the consideration regarding
the shape of curvelets valid. Meanwhile, wqgp(x) is centered in space at b with an
essential support of length O(a™*) and width O(a™*). By this appropriate construc-
tion, each curvelet is scaled to have the same L? norm with the mother curvelet w(z).
Notice that if s = % and t = 1, these functions would be qualitatively similar to
standard two-dimensional (2D) curvelets. When s = ¢, these functions would become
general wave packets in [33]. As s = ¢ approaching 1 or %, they are getting close to
wavelets or wave atoms [11], respectively.

Similar to the classical curvelet transform, the general curvelet transform is de-
fined to be the inner product of a given signal and each curvelet as follows.

DEFINITION 1.2. The general curvelet transform of a function f(x) is a function

W (a,8,b) = (waom, ) = / Won (@) f (2)de

R2

= (@) = [ vanl® e

fora €[l,00), 8 €0,27), b € R
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If the Fourier transform f(&) vanishes for [£] < 1, one can check the following L2
norms equivalence up to a uniform constant factor following the proof of Theorem 1
in [5], i.e.,

01/|f(a:)|2dx < /|Wf(a,0,b)|2adad0db§ 02/|f(a:)|2d:c.

Below is a simple example to show how the synchrosqueezing technique estimates
local wave-vectors. Let us consider a plane wave function
f(l’) — 046271-1'NB~957
where a and 8 are nonzero constants of order O(1) and N is a sufficiently large
constant. The general curvelet transform of f(x) is

Wf (a7 97 b) _ / anﬂiNﬁ-zasT“w(AaRgl ({E _ b))e—Qﬂ'ia(m—b)-ee dx
R2

st A, -1 o1t
—a 2 Oé/ 82771Nﬁ (b+RgA, y)w(y)e 2mia yldy
R2

=a 7 ae®™NPVG(AT TR, Wa - e — NB))).
Notice that w(€) is compactly supported in the unit ball, and Wy (a,6,b) is able
to provide a preliminary estimate of the local wave-vector N3, since the nonzero
Wy(a,0,b) is located in the regime

A 'Ry (a-eg — NB)| < 1.

This implies that, for each b, W (a, 6,b) has a support of length O(|NA3|*) and width
O(|Ng|*) around the wave-vector N in the variable ¢ and 6. Nevertheless, the
resolution of this estimate is too low. Further observation tells us that the oscillation
of Wy(a,8,b) in the b variable in fact uncovers N3 by

VyWy(a,0,b) = ZWiNﬁa_%aez’”Nﬁ'b@(A;le_l(a ~eg — Np))
= (ZWin(a, 0, b))Nﬁ,

where Vj, = (9p,,0,)7 denotes a partial derivative operator in the variable b. This
motivates the definition of the local wave-vector estimation for a general function f(x)
as follows.

DEFINITION 1.3. The local wave-vector estimation of a function f(z) at (a,0,b)
is
Vb Wf (a, 0, b)
2miWy(a, ,b)

fora € [1,00), 0 € [0,2m), b € R? such that Wy(a,0,b) # 0.

It is remarkable that v (a,6,b) estimates the local wave-vectors independently of
the amplitude o or the position b. Hence, if the coefficients with the same vy are real-
located together, then there would be a sharpened phase space representation of f(x),
a clear picture of nonzero energy concentrating around local wave-vectors. Mathe-
matically speaking, the synchrosqueezed energy distribution is defined as follows.

DEFINITION 1.4. Given f(x), Wys(a,0,b), and v¢(a,0,b), the synchrosqueezed
energy distribution T¢(v,b) is

(1) v¢(a,0,b) =

(2) T¢(v,b) = /|Wf(a,9,b)|25(3%vf(a,6‘,b) — v)adadf

for v e R?, b€ R2.
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Here § denotes the Dirac delta function and Rvy(a,6,b) means the real part of
a complex number vy(a,,b). For f(z) with Fourier transform vanishing for |¢] < 1,
the norm equivalence

/Tf(v,b)dvdb = / |W(a,0,b)>adadddb = | f||3

holds as a consequence of the L? norm equivalence between Wy (a, 0,b) and f(z).
Equipped with the definitions above, let us consider now a general function of the
form

f(z) = e~ (@@)=0)/0% o (1) 2miNG(x)

with a smooth amplitude «(z), a smooth phase ¢(x), a banded parameter o = O(N ")
(n < t), and a sufficiently large N. It will be shown that the general curvelet transform
Wy(a,0,b) for each b is essentially supported in the following set:

(3) {(a,0) : |A; Ry (a - eg — NV@(b))| < 1}

In the meantime, vy (a, 8, b) is an accurate estimation of the local wave-vector NV¢ in-
dependent of @ and #, which implies that the essential support of the synchrosqueezed
energy distribution 7% (v,b) in v is concentrating around NV¢ at each location.

1.2. Mode decomposition. In the previous subsection, the property of the
SSCT, that it concentrates the energy of a banded wave-like component around its
wave-vectors, has been informally discussed. In what follows, the procedure of the
mode decomposition after synchrosqueezing will be presented. For simplicity, let

f(x) — e*(¢1(m)*c1)2/ofal(fv)eZm‘NM(w) + 67(‘1)2(1)*62)2/03 o (x)e%riN(bg(ac)

with smooth amplitudes «;(x) and as(z), banded parameters o1 and oy of order
O(N™") (n < t), and smooth phases N¢1(z) and N¢o(x) for a sufficiently large N.
Let us assume that at each position the local wave-vectors NV¢y(z) and NV¢s(z)
are sufficiently large and well-separated from each other.
The decomposition relies on four steps, summarized below:
1. By (3), the essential supports of Wy, (a,6,b) and Wy, (a,0,b) are contained in
the sets

P ={(a,0,b) : |A; 'Ry (a-eg — NV1 ()] < 1},
Py ={(a,0,b) : |[A; 'Ry (a-eg — NV (b)) < 1}.

Because both [NV¢1(b)] and |[NV¢a(b)| are large, and NV ¢y (x) and NVa(b)
are sufficiently well-separated, these two sets are essentially disjoint. Hence,
the essential support of Wy(a,,b) is separated into two essentially disjoint
sets, each of which corresponds to one component in f(x).

2. The separation in step 1 implies that for each b

v¢(a,0,b) = vy (a,0,b) ~ NV¢; in Py
and
vi(a,0,b) = vy, (a,0,b) = NV¢s in Ps.

Though vy (a, 8, b) is defined wherever Wy (a, 8, b) # 0, it is only relevant when
|[W¢(a,8,b)| is above a significant level, as will be shown in Theorem 2.3, (5).
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Hence, it is sufficient to compute vs(a, 6, b) in these disjoint essential supports
P, and P, to estimate local wave-vectors of each component.

3. The separation in step 2 shows that T(v,b) is essentially concentrating
around two well-separated 2D surfaces

S1 = {(N|V$1(b)], 0v¢,1),b) : b € R*}
and
Sz = {(N[Vd2(b)],0vp,), ) : b € R?}.

Hence, the essential support of T¢(v,b) separates into two well disjoint sets
U1 and Ug.

4. Notice that T¢(v,b) = T, (v,b) in Uy and, respectively, T¢(v,b) = T, (v,b)
in Us. Once U; and Us are identified by some clustering technique, each
component of f(x) can be recovered by

filz) = / Wagr ()W (a, 0, b)dadfdb,
%’Uf (a,@,b)GUl

fao(x) = / Wapn ()W (a, 0, b)dadfdb,
%’Uf (a,@,b)GUz

where the set of functions {wagp(),a € [1,00),0 € [0,27),b € R?} is the dual

frame of {waes(z),a € [1,00),0 € [0,27),b € R?}.
The synchrosqueezing steps 2 and 3 are indispensable, because they improve the reso-
lution of original results significantly so that clustering is possible for decomposition.
In step 4, the reconstruction is based on the Calderon-type reconstruction formula for
the reason that curvelet transforms, unlike wavelet transforms in [9], do not have a
reconstruction formula that integrates their coefficients over the scale parameter with
a proper weight. In effect, numerical examples in [9] are based on the Calderon-type
reconstruction formula, since it works more robustly in noisy cases.

1.3. Related work. There is another interesting line of work for mode decom-
position, which is the empirical mode decomposition (EMD) initiated and refined by
Huang et al. in [20, 21]. Starting from the most oscillatory mode, the EMD method
decomposes a signal into a collection of intrinsic mode functions and estimates in-
stantaneous frequencies via the Hilbert transform. However, the dependence on local
extrema limits its applications in noisy cases. To address the robustness problem,
some variants were proposed in [18, 31]. Following the idea of EMD, there are two
existing methods for high dimensional mode decomposition. The first is based on
high dimensional interpolation [26, 27, 23, 24] and the second applies a 1D decom-
position to each dimension and then combines the results with a proper combination
strategy [19, 25, 32]. In spite of their considerable success, these existing methods in
this research line are not suitable to separate two modes with similar wave-numbers
but different wave-vectors due to the lack of an anisotropic angular separation, as
illustrated in detail in [33].

Following the same methodology of extracting modes one by one from the most
oscillatory one, Hou and Shi proposed an optimization scheme for mode decomposition
in [16, 17]. Inspired by recent developments of compressive sensing, the first paper,
[16], is based on total variations, while the second one, [17], is based on the sparse
representation in a data-driven time-frequency dictionary. The convergence of the
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Fic. 3. Detected Fourier boundaries provided by the 2D empirical curvelet transform for the
superposition f(x) in (4). Top: Results using the curvelet EWT-I approach. From left to right, we
apply the “tophat,” the “morpho,” and the “poly” boundary detection method, respectively. Bottom:
Results using the curvelet EWT-1I approach. From left to right, we apply the “tophat,” the “mor-
pho,” and the “poly” boundary detection method, respectively. Fach figure shows the 2D Fourier
power spectrum of f(x) and the detected Fourier boundaries (in blue) using a certain approach.

data-driven time-frequency analysis method under a certain sparsity assumption was
proved recently in [15]. However, the analysis of high dimensional case is still under
active research.

Recently, 1D empirical transforms were proposed in [13] with an application in
mode decomposition using adaptive time frequency representations. The idea is gen-
eralized to 2D in [14] with three main algorithms. Algorithm 1 is based on the Fourier
spectra of 1D data slices and, hence, lacks the anisotropic angular separation for the
same reason as the 2D EMD methods using 1D data slices. Algorithm 2 is based on
a 2D isotropic wavelet transform. Hence, it cannot distinguish two different modes if
they share the same wave number. Algorithm 3 generalizes some anisotropic trans-
forms, such as the ridgelet transform and the curvelet transform. However, the Fourier
boundaries detection method in this algorithm may not be robust and sometimes leads
to misleading tilings in the Fourier domain for these transforms. For example, let us
consider a superposition of two deformed plane waves given by

_ 2miN¢1(x) 27iN ¢ (z)
(4) flx)=e te ,
where

o1(z) = ¢1(21,22) = 1 + 22 + Bsin(2wz1) + Fsin(27xs),
O2(z) = Pa(z1,22) = —x1 + 2 — Bsin(27wzy) + Bsin(2mze)

with NV =100 and g = 0.1. Figure 3 shows the detected Fourier boundaries provided
by different Fourier boundaries detection methods for the example f(x) in (4). These
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detected Fourier boundaries cannot separate the supports of the wave-like components
in f(x) in the Fourier domain, which will lead to misleading decomposition results.
Hence, the 2D Empirical transforms may not be suitable to address the problems
discussed in this paper.

The rest of the paper is organized as follows. The main theoretical results of SSCT
are presented in section 2. We prove that SSCT is able to estimate the local wave-
vectors under some well-separation condition of the local wave-vectors of multiple
highly oscillatory components. In section 3, a discrete analog of SSCT and some
clustering methods in the phase space are introduced. Section 4 compares several
numerical examples on local wave-vector estimation using SSWPT and SSCT, and
provides decomposition examples with synthetic and real data to demonstrate the
proposed properties of SSCT. Finally, this article will end with some discussions in
section 5.

2. Analysis of the transform. In this section, we define a class of superposi-
tions of multiple banded components with well-separated local wave-vectors and prove
that the SSCT is able to estimate these local wave-vectors accurately. Throughout
the analysis, the scaling parameters s and t are fixed such that % <s<t<1and
n <t.

DEFINITION 2.1. For any ¢ € R, N > 0, and M > 0, a function f(x) =
e’(¢(m)’c)2/”2a(x)eszMw) s a banded intrinsic mode function of type (M,N,n) if
o> N7" a(x) and ¢(z) satisfy

alz) e C*®, Vol <M, 1/M<a<M,
p(x) € C>®, 1/M <|V¢| <M, [V <M.

The banded term e~ (®@=9°/" ig introduced to study the limit of the band-
width of these components. In the space domain, a general curvelet at the scale
a = O(N) has a width O(N?). ¢ > N" with n < t indicates that the bandwidth
o of e*(¢(w)*°)2/”2a(x)e2”N¢’(””) can be almost as narrow as the width of a general
curvelet that is sharing the same wave number O(N). If 5 tends to —oo, the banded
intrinsic mode function will become the one discussed in [33]. So, the model in this
article is more general.

DEFINITION 2.2. A function f(x) is a well-separated superposition of type (M, N,

n, K) if

flx)= ) fulz),

NE

k=1

where each fi(z) = e~ (9x@)=ei)* /9% o (2)e27iN¢k (@) s g banded intrinsic mode func-
tion of type (M, N,n) and they satisfy the separation condition: Ya € [1,00) and
V0 € [0,2m), there is at most one banded intrinsic mode function fi satisfying that

|A; R, (a-eg — NV (b))| < 1.

We denote by F(M,N,n, K) the set of all such functions.

Recall that W¢(a,0,b) is the general curvelet transform of a function f(x) with
geometric scaling parameter % < s<t<1,and vf(a,d,b) is the local wave-vector es-
timation. The following theorem is the main theoretical result for the SSCT. It studies
the dependence of N in the class of well-separated superposition of type F/(M, N, n, K)
on a accuracy parameter € in the estimate of local wave vectors provided by the SSCT.
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THEOREM 2.3. For a function f(x), which is a well-separated superposition of
some type (M, N,n,K), and any € > 0, define

) Ry ={(,0,0) : [Wy(a,0,0)| > a= % v}
and
Zsr={(a,0,b) : |A7 Ry (a - eg — NV (b)) < 1}

for 1 <k < K. For fired M, s, t, n, and €, there exists No(M,s,t,n,e) > 0 such
that for any N > No(M, s, t,n,e) and f(x) € F(M,N,n, K) the following statements
hold:

(i) {Zfr:1 <k <K} are disjoint and Ry e CUycpere Zfke-

(i) For any (a,0,b) € Ry N Zy , -

|vf(a,0,b) — NV (b)|
[NV ()|

S Ve

For simplicity, the notation O(-), <, and 2 is used when the implicit constants
may only depend on M and K. The proof of the theorem relies on several lemmas.
The following one estimates Wy(a, 6, b).

LEMMA 2.4. Suppose

N
0= {(a,@) ta € <W’ZMN> , 3k such that (s.t.) |9v¢k(b) — 0| < 00},

where Oy = arcsin((3L)1=%). Under the assumption of the theorem, the following esti-

(¥
mation of W¢(a,0,b) holds for any e, when N is larger than a constant No(M, s,t,n,¢€)
> 0:
1. If (a,0) € 0,

Wf(a, 9, b)

=a® S A®@ (A Ry a-eo — NVG(D) + Ofe)
ki 094, 1) —01<00
2. Otherwise,

s+t

Wy(a,0,b) = a7 O(e).

Proof. We only need to discuss the case when K = 1. The result for general
K is an easy extension by the linearity of general curvelet transform. Suppose f(x)
contains a single banded intrinsic mode function of type (M, N,n)

flx) = e~ (9(@)=c)?/0? a(x)e%risz(m) )

We claim that when N is large enough, the approximation of Wy(a,6,b) holds. By
the definition of general curvelet transform, it holds that

Wy(a,0,b) = f(x)asTHw(AaRg‘l(x — b))e2mialz=b)-eo gy
R2

—a ¥ o+ Ro A 'y)w(y)e 2™ iy,
R
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Step 1. We start with the proof of (ii) first.
Let h(y) = w(y)e @O+ReATY=0*/o" o (h 4 RyAT1y) and g(y) = 2n(No(b +
RyA;ly) —a'~ty;), and then we have

s+t

We(a,0,b) =a" 2

/ h(y)eig(y)dy
R2

with real smooth functions h(y) and g(y). Consider the differential operator

_1{Vg,V)
i Vgl
If |Vg| does not vanish, we have
g _ (Vg,iVge)
‘ iIvVgl? ‘

By the definition of w(y), we know h(y) is decaying rapidly at infinity. Then we can
apply integration by parts to get

he9dy = h(Le"9)dy = — . “dy.
/RQ ey / (Le®)dy /R2V (uw)e v

Hence, we need to estimate |V - (i(%glz )|. Because
hVg 1 /(Vh-Vg Vg
V- == + hV -
<2|V9|2> i < Vgl? <|Vg|2
and |h(y)| < 1, we only need to estimate |Y$;ng| and |8326gyj |Vlg\2| fori,j =1,2.

Let 2 = (21,22)7 = Ry 'Vo(b+ R A 'y), v1 = NAT R, 'V (b + ReA;y), and
vo = (a*7*,0)T, and then Vg(y) = 27(vy — v2) = 2n((Nz1 —a)a™t, Na"*zy).

Case 1. a ¢ (5,2MN).

When a > 2M N,

1—t
Vg(y)l > a'™* = MNa™" = a2 -+ (E —MN) at >

N
When a < S

So
(6) Vg(y)| 2 N

for a ¢ (7, 2MN).

If a > 2M N, then |%ﬁ;gw| < Na=2° < N'=25_implying that

1
1—2s JAT2—2t __
5 N /N TON1-2(t—-s)"

‘ 0% 1
y:0y; |Vg|?
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Since |z| > 4, either |z| > fM or |z > fM holds. If a < 53, then
g 1 - Na~2%s
Qy;0y; |Vg|?| ~ (Nz1 — a)?a=2t + N2a—2523
1
(z1 — %)QNa—Q(t—S) + N22
1 1
< - - -
~ max { N1—2(t—s)’ N}
1
T NI20-9)"
In sum,
0%g 1 1
(7) T2 |~ NS
dyidy; |Vy| N
for a ¢ (&7, 2MN).

Notice that the dominant term of Vh is
—2(¢(b+ RgA ty) —¢) A1

o2 a

w(y)alb + RyA; ly)e~ GO+RA 9 =) /o™

z

2
_z—
and the other terms are of order 1. Because ¢ 2 - |f—2| <e L

V2’

1
3 .

Vh-Vg| _ 1 (A'2)-Vg n 2| (A712) - Vg 1 '
Vgl> [~ o] Vgl Vgl Nt
Recall that Vg = 2n(NA; 'z — (a*7%,0)T), and then
(A,'2)- Vg (Nzi—a)a 'z 4+ Na 23
Vg2~ (Nz —a)2a=2t + N2g—2522°
If 2120 # 0, then |T; = % and |((J>[\,Zzli‘2)a2:_t§f ~ Nzi a7~ N which
implies that |w| < LUIf = 0, then it is easy to check that |M| ~
p Vg ~ NG 2122 = Yy Vg ~
N' Hence,
. -1,y
(8) Vh-Vg < N (A %) Vg 17 < 17 n 17 < 17
NE NE N1t~ Ni-n T N1-t ~ N1t
for a ¢ (7, 2MN).

By (7) and (8), we have

o (85
/R2 R? ilVg[?

hVg 1
<|v. \Y4 <
<[7 (i )| s+ 19l <

for a ¢ (X-,2M N). So,

2M 7
Wi(a,0,b) = a= "= O(e)

when N > 77 and a ¢ (£, 2MN).

Case 2. a € (QJJ\\;,ZMN) and |9v¢(b) — 0] > 0.
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Observing that Vg(y) = 2rA; 'R,y ' (NVo(b + RyA;'y) — a - eq), we can expect
|Vg| is large when 0y 4 is far away from 6. Notice that w(y) is in the Schwartz class,

3C,, > 0 such that |w(y)| < 5;,’; for |y| > 1 and any m large enough. So

s+t

We(a,0,b) =a" 2

(/< , f(b+ReAa1y)w(y)eZ”ial_tylderO(&))'
y NE—I m

Define D = {y : |y| < e V/™} and Dy = {y : |y| < e /™ +1}. Suppose Xp(y) is
a positive and smooth function compactly supported in Dy such that Xp(y) = 1 if
y €D, [|Xpllr~ <1; then

W¢(a,6,b) = a3 <O(£) + XD(y)h(y)eig(y)dy).

Dy

If [Vg(y)| is not vanishing in D, then apply the integral by parts to get

Xthg i
VAR “dy.
@ww)ey

Xphedy = Xph(Le")dy = —/

We are going to estimate |[Vg(y)| when a € (£-,2MN) and |0g4@p) — 0] > 6o. By
Taylor expansion,

Vo(b+ RoA;'y) = Vo(b) + V2o(b*)Ro Ay,
where b* is between b and b+ Ry A, 'y. Notice that

Sin(ao)

V2607 ) Ro A, gl < a™*|V26(0) ly] S Ma~*(e~m +1) < 220

when |y| < e /™ + 1 and (an%i))l/s(afl/m +1)Y/¢ < a. The latter one holds when
N > (e=Y/m 4 1)V @58 for a € (£,2M N). So, when these conditions are satisfied,

2M
we have

Vo(b+ RoA;'y) = Vo(b) +v

with |v| < %. Recall the fact [0y ) — 0] > 0o; then it holds that

|A;1R9_1(NV¢(b + RgAgly) —a-ep)
> |NA; Ry 'V(b) — (a',0)"| = N|AZ Ry ol

N
> \/(r cosa —a)2a=2t + r2a=25 sin® o — Y sinfpa™°
N
> ra”*sinfy — oYY sinfga~°
> N Gnbea—r
= oM sinbtpa
> let
where a = fy4p) — 0 and 7 = [NV¢(b)| > L. Hence, we have
9) Vg(y)| 2 N'™*

when a € (57, 2MN), |0gs@p) — 0| = 0o, N 2 (7Y™ + 1)1/ "and y € D,
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Next, we move on to estimate |

V(XDh)~Vg
[Vgl?

9%y 1 L
| and |8yi8yj \Vg|2| for i,j = 1,2, under

the conditions that a € (A, 2MN), [Og4p) — 0 > 00, N 2 (e7/™ 4+ 1)1/ (2=8) and

oM
y € D,. First,
62 1 N —2s N172s 1
(10) J < = .
Byidy; VP | = Vg = N2~ N2
Second, as for |M|7 we only need to estimate |(A;12)'Vg| for a similar reason

[Vgl?

Vgl?

as in the last case. As we have shown,

(A,'2)-Vg  (Nzi —a)a 'z + Na=>°23

Vg2~ (Nz —a)2a=2t + N2g—2522°
AT1lz).v s s X
If 21 = 0, then |<Tv$| ~ %. If 21 # 0 and |2| 2 & then |29] 2 7.7, since
|z| > 4. Hence,
(A;12)- Vg < [Nz — a)a=*z| + |[Na=2 23|
|Vg|2 ~ N2a—2sZ§

If 21 # 0 and [2] S a’ . then

~ qt?

< INzi—al-]z| 1

~ N2q2(t=s) ;2 N

SRS U
~ Na'=%|za] N
<1
~ N

‘ (A, '2)-Vy
|Vgl|?

In sum,

‘ - |(N21 —a)a=2t21| + |[Na=2523|

Vg|?
< ([Nzi| +a)a™"|z1| + Na=?22
~ N2-2t
<1
~ N

(Az'2)-Vg| _ 1
IVg|? ~N
which implies that
V(Xph) - Vg 1
11
” S| s

By (10) and (11), we have

X
f= (e
Dy i|Vg|
XDth
<|y.[Z2R2¥J
N‘ (iIVgP
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for a € (57, 2MN), |0gs@m) — 0] = o, and N 2 (/™ 4 1)1/ (257D o,
Wi(a,0,b) = a= " O(e)
when a € (ZM,2MN) 1056y — 0 > 6o, and

szax{(s%nl +1)ﬁ,£1%1t}.

From the discussion in the two cases above, we see that

s+t

We(a,0,b) =a” 2 Ofe)
if a ¢ (£7,2MN) or |0y — 0] > 6o when
(12) szax{(sﬁl—i—l)ﬁ,g%},

where m is any fixed positive integer. Hence, the proof of (ii) when K =1 is done.
Step 2. Henceforth, we move on to prove (i), i.e., to discuss the approximation of
Wy(a,0,b), when a € (211\(4,2MN) and [Oy ) — 0] < 0p. Recall that

s+

Wy(a,0,b) = a3 ( F(b+ RoA; ' yyw(y)e 2" vidy + 0<a>) :
yeD

Our goal is to get the estimate

(13) Wy(a,0,b) =a" s+ </ £(b) 2T (NV$(b) (Ro AL y)—a Ul)dy+0(5))

for N large enough.

First, we are going to show
(14)
Wiy(a,0,b)

—a 7 (/ e e a(b + RoA; Ly w(y)e> (NobtRe A y)—a " y) gy, y O(E))
yeD

for sufficiently large N. Taylor expansion is applied again to obtain the following
three expansions:

Blb+ RoAz'y) = 6(0) + Vo(b) - (Rod;"w) + 5 (RoAL ) V20(0") (R A M),

where b* is between b and b+ Ry A, y;

—(p(b+Ro A y)—c)? /o?

e
— o (@) V() (RoA; ) +5(Ro A )TV 6 (0" ) (Re A, My) —c)? /0
(6(b)—c)? -2 —2(A—
— e 2(0)- e Ao % <V¢(b) (ReAZ'y)

(RoA7! >Tv2¢<b*><ReA;1y>),

N)I»—A
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where A € [¢(b), $(b) + V(D) - (RoeA; ' y) + 5 (ReA;y)T V(") (R A7 y)];
alb+ ReA;'y) = a(b) + Va(b™) - (ReATy),

where b** is between b and b+ Ry A 'y.
The above Taylor expansions help us to estimate the effect of phase function ¢(z)
in the Gaussian term. We claim two estimates as follows:

I :/ —0p? —2()\2— c)
yeD

o
and

e

Vo) - (RoA=y)alb+ ReAgly)w(y)‘ dy < 0()

I :/ ef(k;';)z
yeD
—2A—0¢)1 _ . _ _
%g(ReAa L)TV2o(b") (Re AL 'y)a(b + Ro A, 1y)w(y)‘dy
< O(e).
12
Because e -2 - f—l < 3 - %\/5’ we know
1 1
I < —/ ly[2a=2%dy < —a¥eTm < ¢
g yeD g

4

+
. _a M S
if a > 07 2:e” "2, which is true when

1+4

(15) N > e =0,

As for Iy, notice that |fyg4n) — 0] < 6o, and then |9R;1v¢(b)| < by. Let 6 =
939_1V¢(b) and y = (y1,y2)7, and then for a € (5+,2M N)

oM
1 _
BSS [ |Ve)- (Ra; ) dy
o yeD
M _ _
< — y—1c059+y—isin9‘dy
g yeED a a
Md 6 sinysind
< Md i cosvtcos +smwsm )
0 Jyep v€l0,2m) a a’
3
< Md L’
~ o

where d ~ e~ is the radius of D and

20 29 2 -

cos?f  sin“6 1 sin” 6 1 |sinf

L=\|——+ 5 <\ + % < max —,| ol <N
a a?s a?t a?s at as

So
Md*L Md3N—t
L < S S O(e)
(o g
if
1+%
(16) N Ze n.
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A direct result of the estimate of I} and I is (14) for

143 144
(17) N 2 max {5 t=n gz } .

Second, we need to show
(18)

W (a,0,) — e (/ - <¢<122_c)2 a(b)w(y)€27ri(Nqb(b+R9A;ly)_al—tyl)dy N O(s)),
yeD

which relies on the analysis of the effect of ¢(x) on «a(x) as follows. Since a €

(337, 2MN),
ICIOETE -
I :/ e 7 |Va- (ReA; 'y)w(y)| dy
yeD
S [ 1Ay
yeD
Sa fem
< O(e)
holds when

1+
N > e =

~

3

Then we derive (18) by the estimate of I3 and (14) for N 2 e~ .=
Finally, we should estimate the nonlinear effect of ¢(x) on the oscillatory pattern
and show (13) for sufficiently large N. If

4

_1+7n
N Z e 71,

then

I, = / ‘e27ri(N¢>(b)+NV¢(b)-(RgA(jly)fal_tyl)
yeD

: ‘e'm'%<R9A;1y>Tv2¢<ReA;1y> _ 1‘ dy

< / IN(Ro A7) T20( Ry A7 )| dy
yeD

S Na™*|y|dy
yeD

< Na 25w

< 0(e)

holds by the fact that [e™ — 1| < |z| and a € (557,2M N). Then, by (18) and I, we
have

Wi(a,0,b) = o= (f(b) / . w(y)e?™ VOO (oAt =aT ) gy 0<s>)
ye

=a % <f (b) / w(y)emi VA VOO gy o(s))
R

—q % (f(b)@(Aalel(a ~eg — NVo(b))) + 0(6))
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for a € (7, 2MN) and [Oy 44y — 0] < 0o if

m

(19) N Z max {5 =0 g Tmn e o, Tl

1+3 144 1+2 1+4 }

where m is any fixed positive integer.
By (12) and (19), the requirement for N is

1 1 —1 714—% 1+% 1+% 1+%
N 2z No=maxq (e™ 4 1)%—¢ Tt g =0 g Z-n, g & g %=1 o,

where m is any fixed positive integer. Hence, this completes the proof of (i) when
K=1.

In sum, we have proved this lemma when K = 1. The conclusion is also true for
general K by the linearity of general curvelet transform. d

To prove Theorem 2.3, we need one more lemma which estimates V,Wy(a,8,b).

LEMMA 2.5.  Under the assumption of the theorem, there exists a constant
No(M, s,t,m,e) > 0 such that if N > No(M,s,t,n,¢e), then we have

Vbe(a, 0, b)

—aF 2wV Y VaAO)E (A, R e - NVH) + OG)

k: [0, ) —01<b0

when

N
(&,0) e = {(a,@) a e <m,2MN> ,dk s.t. ‘9V¢k(b) —9‘ < 00} .

Proof. The proof is similar to the one of Lemma 2.4. We only need to discuss the
case K = 1, and the case K > 1 holds by the linearity of general curvelet transform.
Suppose

(d(x)=c)? )
fl@)=e"a a(z)e? N,

and we have

Vbe (a, 9, b)

s+t

= [ f()a
RQ

<(—R9Aa)Vw(AaR;1(x —b))
+ 27Tia€9w(AaR9_1(x - b))) e 2mia(z—b)-ep 1.

= flb+ RgAgly)a_% ((—RgAa)Vw(y) + 2772'@6911)@)) e~2mia' "1 gy
R2

s+t

=a % <f<b> /R ((=RoAq)Vo(y) + 2miacguw(y))

672m‘((a1_t70)T,NAglR;1v¢(b))»ydy + 0(6))

— g <2mzvv¢(b)f(b)@ (AR (a0 = NV(D) + 0(5)>
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for a € (£, 2MN) and |0y — 0] < 6o if N satisfies the condition in Lemma 2.4.

Therefore, if f has K components, we know

Vbe(a, 9, b)

— > 2miNVeO)iB)@ (A Ry a-eo — NV(D)) + O(e)
ki 1096, v —01<b0

for (a,6) € Q and N is larger than the same constant Ny in Lemma 2.4. O

With the above two lemmas proved, it is enough to prove Theorem 2.3.

Proof. We shall start from (i). {Z;; : 1 < k < K} are disjoint as soon as f(x)
is a superposition of well-separated components. Let (a,0,b) € Ry .. By Lemma 2.4,
(a,0) € Q. So, we have

Wf(a, 0, b)

—a T Z fu®)@ (A, 'Ry M (a-eg — NV¢i(b)) 4+ O(e)

k: 10w, () —01<00
Therefore, 3k such that @w(A; 'R, " (a-eg— NV¢y(b))) # 0. By the definition of Z ,

we see that (a,0,b) € Zy . Hence, Ry, C UK | Z¢ .
To show (ii), notice that (a,8,b) € Ry .U Zf, and then

Wi(a,0,b) =a > (fk(b)zﬁ (A;'Ry ' (a-eg — NV(b))) + O(a))

and
Vbe (a, 9, b)

g @mwk(b)fk(b)@ (4. Ry (a-eg — NV(b))) + O@) :

Let g = fx(b)@(A; R, (a - eg — NV¢(b))), and then

NVou(blg +O(e)

vy(a,0,b) = 9100

Since [Wy(a,6,b)| > a~ "%/ for (a,0,b) € Ry, 9| = vz So

lvg(a,6,b) — NV oy (b)] < O(e)

NV )] N‘g+0<s> Sve D

The assumptions % < s <t<1landmn <t are essential to the proof. However,
we have not arrived at a clear opinion on the optimal values of these parameters.
The difference t — s allows us to construct directional needle-like curvelets in order to
approximate banded wave-like components or wavefronts and capture the oscillatory
behavior better. When ¢ and n approach 1, and s gets close to %, we can expect that
the SSCT can separate banded components of width approximately O(N 1) if N is
large enough. On the other hand, the lower bound s > 1/2 ensures that the support
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of each curvelet is sufficiently small in space so that the second order properties of
the phase function (such as the curvature of wavefronts) do not affect the estimate of
local wave-vectors. The upper bound ¢ < 1 guarantees sufficient resolution to detect
different components with large wavenumbers.

In Theorem 2.3, although the lower bound of N could be optimized, N is required
to be sufficiently large so that the local wave-vector can be precisely captured by
synchrosqueezing. In other words, for a fixed f(z) of a type F(M, N, n, K), there is a
lower bound on the accuracy parameter e. On the other hand, the local wave-vector
is not well defined for a low frequency component. In fact, in the presence of such
a component, each high oscillatory component is still squeezed into a well-separated
sharpened representation in the high frequency part of Fourier domain. Therefore, the
low frequency component would be identified precisely by subtracting high frequency
components.

3. Implementation of the transform. In this section, we describe the dis-
crete SSCT and the mode decomposition in detail. Subsection 1.2 has discussed the
key ideas of mode decomposition by SSCT. Let us describe the whole framework
now. Suppose f(z) is a superposition of several well-separated components; the mode
decomposition by SSCT consists of the following steps:

(i) Apply the general curvelet transform to obtain Wy(a,#,b) and the gradient

Vbe(a, 9, b).
(if) Compute the local wave-vector estimate vs(a, 8, b) and concentrate the energy
around it to get Ty (v, b).

(iii) Separate the essential supports of the concentrated phase space energy dis-

tribution Tt (v, b) into several components by clustering techniques.

(iv) Restrict Wy(a,0,b) to each resulting component and reconstruct correspond-

ing intrinsic mode functions using the dual frame.
We first introduce a discrete implementation of the general curvelet transform in sec-
tion 3.1 for steps (i) and (iv). Clustering methods will be discussed later in section 3.2.
The full discrete algorithm will then be summarized in section 3.3.

3.1. Discrete general curvelet transforms. For simplicity, we consider func-
tions that are periodic over the unit square [0,1)? in two dimensions. If it is not the
case, the functions will be periodized by multiplying a smooth decaying function near
the boundary of [0,1)2. Let

X = {(nl/L,ng/L) :0<ny,ne, < Lyny,ng € Z}

be the L x L spatial grid at which these functions are sampled. The corresponding
L x L Fourier grid is

E= {(51762) : _L/2 S 51762 < L/2vgla€2 € Z}

For a function f(z) € £2(X), the discrete forward Fourier transform is defined by

Flo) =1 3 e )

reX

For a function g(¢) € ¢%(Z), the discrete inverse Fourier transform is

g(r) = 1 30T (6),

£e=
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Fi1G. 4. Left: Sampled point set P in Fourier domain for an image of size 512 x 512. Each
point represents the center of the support of a window function. The window function centered at
the origin is supported on a disk and is not indicated in this picture. The size of finest scale is set
to be small (e.g., 16) in order to save memory. Right: An example of fan-shaped window function

Y9a,0 (6) .

In both transforms, the factor 1/L ensures that these discrete transforms are isometric
between (5(X) and (2(Z).

In order to design a discrete curvelet transform, we need to specify how to dec-
imate the Fourier domain (a,#) and the position space b. Let us first consider the
Fourier domain (a, ). In the continuous setting, the Fourier transform wgg;(¢) for a
fixed (a, @) value have the profile

s+t

(20) a” T WA Ry (€ —a-ep)),

modulo complex modulation. In the discrete setting, we sample the Fourier domain
[—L/2,L/2)? with a set of points P (Figure 4 left) and associate with each (a,6) € P a
window function g, ¢(€) (Figure 4 right) that behaves qualitatively as w(A; 'R, ' (¢ —
a-eg)). More precisely, gq,0(§) is required to satisfy the following conditions:
® gq0(&) is nonnegative and centered at a - ep with a compact fan-shaped sup-
port of length O(a?) and width O(a®), which is approximately a directional
elliptical support {£: |[A7'R, (€ —a-ep)| < 1}.
® guo(RopAuT + a - eg) is a sufficiently smooth function of 7, thus making the
discrete curvelets decay rapidly in the spatial domain.
e Oy < [|gao(RoAaT + a - eg)?dr < Cy for positive constants C; and Cs,
independent of (a,8).
e In addition, for any & € [~L/2,L/2)% 33, g cp |9a,0()> = 1.
We follow the discretization and construction of frames in [4] to specify the set P
and window functions, and refer to [3] for detail implementation. The difference here
is that we do not restrict angular scaling parameter to s = % and radial scaling
parameter to t = 1. This allows us to adaptively adjust the size of tiles according to
data structure. In the construction of the tiling in this article, the scaling parameters
s and t remain constant as the scale changes.
The decimation of the position space b is much easier; we simply discretize it with
an Lp X Lp uniform grid as follows:

B = {(nl/LB,ng/LB) :0<ny,ne < Lp,ni,ng € Z}
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The only requirement is that Lp is large enough so that a sampling grid of size
Lp x Lp can cover the supports of all window functions.

For each fixed (a,0) € P and b € B, the discrete curvelet, still denoted by wqgp ()
without causing much confusion, is defined through its Fourier transform as

_ 1 o
Wagp(§) = L_e 8 béga,e(f)

for £ € = with L, = a’s. Applying the discrete inverse Fourier transform provides
its spatial description

2mi(x— b)f
wa@b L L Z 9(5)

£eE

For a function f(x) defined on x € X, the discrete curvelet transform is a map from
l5(X) to lo(P x B), defined by

(21) Wf (a7 97 b) = <wa9b7 f> <wa9b7 Z eZﬂ—Zb 5 f(&)
@ eeE
We can introduce an inner product on the space l2(P x B) as follows: for any two
functions g(a,0,b) and h(a,6,b),
(g.hy=" > g(a,0,b)h(a,0,b).
(a,0)eP,beB

The following result shows that {wagp : (a,0,b) € P x B} forms a tight frame when
equipped with this inner product.
PROPOSITION 3.1. For any function f(z) for x € X, we have

S W@, b)? (La/Ls)* = || £
(a,0)EP,bEB

Proof. From the definition of the curvelet transform, we have

~

> Wb (L/Le) =[S e @) (La/Le)’

(a,0)€P,bEB (a,0)eP,beB |gc2 @

> Y las©F©)|

(a,0)eP EEE

= If©PF. O

£eE
For a function h(a,0,b) in lo(P x B), the transpose of the curvelet transform is
given by
(22) Wi(z) =Y h(a,0,b)waes(z) (La/Ls)*.
(a,0)eP,beB

The next result shows that this transpose operator allows us to reconstruct f(z),x €
X from its curvelet transform Wy (a,6,b), (a,0,b) € P x B.
PROPOSITION 3.2. For any function f(z) with x € X,

fl@y= > Wa,0,b)waes(z) (La/Lp)".

(a,0)€P,beB
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Proof. Let us consider the Fourier transform of the right-hand side. It is equal to

~

> S e o mF | e g00(€) (La/ L)

(a,0)eP,beB \nEE @

=2 Z%(ZeZ”b‘"—@ga,e(n)ﬂn)) a0(€)

(a,0)eP \NEE beB
= 3 (9a0(6))2F(6) = F(©),
(a,0)eP

where the second step uses the fact that in the n sum only the term with 1 = ¢ yields
a nonzero contribution. o

Let us now turn to the discrete approximation of V,Wy(a,6,b). From the con-
tinuous definition 1.2, we have

~

ViWy(a,6,b) = Vi(@aoy, f) = (~2mi&@aon(€), F(£)).
Therefore, we define the discrete gradient VW (a,0,b) in a similar way,

o~

(23) Vil (a,0.0) = 30 -2mige g, (O E).

cez @

The above definitions give rise to fast algorithms for computing the forward gen-
eral curvelet transform, its transpose, and the discrete gradient operator. All three
algorithms heavily rely on the fast Fourier transform. The detailed implementation of
these fast algorithms has been discussed in [33]. The computational cost of all three
algorithms is O(L?log L + L?>~*~'L% log L) with Lp large enough so that a grid of
size Lp X Lp can cover the supports of all window functions. If we choose Lp to be
of the same order as L, the complexity of these algorithms is O(L?*T*~%log L).

3.2. Clustering in the phase space. In the proof of Theorem 2.3, the radial
separation and angular separation conditions play an important role in describing the
well-separated condition. Therefore, the polar coordinate is used to quantify distance
in the Fourier domain, which motivates the following clustering method used in the
numerical examples of this article. Before introducing the algorithm, some notation
is defined below.

1. We associate any point p in the four-dimensional (4D) phase space with
(xp,ap,bp), where z,, is the projection of p in the 2D spatial domain and
(apcos by, apsinby) is the projection of p in the 2D Fourier domain.

2. We say that (p, ¢) is a pair of adjacent points with parameters (dy, 6o, Rp) if

o |zp —z4| < do,
¢ |a:l7 - aq| < Ry,
o min{|0, — 04,27 — |8, — 64|} < 0.

By the definitions above, after fixing parameters dy, 0y, and Ry, we can construct
an undirected graph G, in which the nodes are the points to be clustered and two
nodes are connected if their corresponding points are a pair of adjacent points with
parameters (do, 00, Ro). Identifying clusters in the 4D phase space is equivalent to
identifying all connected components in the graph G. This is a traditional research
topic in graph theory and computer science. It is straightforward to compute these
components in linear time (in terms of the numbers of the nodes and edges of G)
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using either the breadth-first search, which is applied in this paper, or the depth-first
search (refer to Chapter IV in [8]).

The cost of computation and memory of these two searching algorithms is ex-
tremely high. Suppose the size of given data f(z) is L x L and there are K com-
ponents with wavenumbers of O(L). By Theorem 2.3, each synchrosqueezed energy
distribution T, (v,b) is surrounding its 2D wave-vector surface within a distance of
O(L+/€). Hence, the total number of nonzero grid points in the 4D phase space s.t.
Tt(v,b) > 6 is of order KL%, which is an impractical number for clustering. To
reduce the cost, we should apply similar clustering methods first in the 2D Fourier
domain at each location, which results in O(K) clusters at each location. Afterward,
a clustering method is applied to the point set of reduced size of O(K L?) in 4D phase
space. In the case of a very large L, a space efficient algorithm, the iterative deepening
depth-first search algorithm [22], may be a good alternative.

3.3. Description of the full algorithm. With the fast discrete synchrosqueezed
transforms and clustering algorithms available, we now go through the steps of the
SSCT.

For a given function f(z) defined on = € X, we apply fast algorithms to com-
pute W(a,0,b) and Vi Wy (a,8,b). Then the local wave-vector estimate vs(a,d,b) is
computed by

Vbe (a, 9, b)
2miWy(a, ,b)

for (a,0) € P,b € B with W(a,0,b) # 0 (indeed, |W(a,0,b)| > /€ in the numerical
implementation).

The energy resulting in Rvy (a, 8, b) should be stacked up to obtain Tt (Rvs(a, 0,b),
b). To realize this step, a two-dimensional Cartesian grid of step size A is generated
to discretize the Fourier domain of T¢(v,b) in variable v as follows:

V= {(nlA,ngA) My, Ny € Z}

ve(a,d,b) =

At each v = (n1A,neA) € V, we associate a cell D, centered at v

1 1 1 1
Dv: |:<TL1—§> A, <n1+§) A) X |:<TL2—§> A, <n2+§> A)
Then T (v,b) is estimated by

Ty(v,b) = > Wi (a,0,b) (La/Lp)*
(a,0,b):Rv¢(a,0,b)eD,

Suppose that f(x) is a superposition of K well-separated banded intrinsic mode
functions:

K
F@) =3 fula) = 3 e @@= ok o () 2miN o ®),
= k

k=1 =1

In the discrete implementation, we choose a threshold parameter § > 0 and define the
set S to be

{(v,b) :v e V,be B, Tf(v,b) > 6}.

After synchrosqueezing, T¢(v,b) is essentially supported in the phase space near K
“discrete” surfaces {(N¢x(b),b),b € B}. Hence, under the separation condition given
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by Theorem 2.3, S will have K well-separated clusters Uy, ..., Uk, and they would
be identified by the clustering method in the last subsection.

Once we discover Uy, ..., Uk, we can define Wy, (a,8,b) by restricting Wy (a, 0, b)
to the set {(a,8,b) : Rvs(a,d,b) € Uy}. Then, we can recover each intrinsic mode
function efficiently using the fast algorithm discussed to compute

felm) = > W(a,0,b)waes(z) (La/Lp)*.

(a,0)eP,beEB

4. Numerical results. In this section, we start with error analysis of local wave-
vector estimation using SSCT and compare it with SSWPT. Afterward, some mode
decomposition examples of synthetic and real data will be presented to illustrate the
efficiency of proposed SSCT. For all the synthetic examples in this section, the size L
of the Cartesian grid X of the discrete algorithm is 512, the threshold value e = 104
for Wy(a,8,b). The scaling parameters of SSCT are t = 1 — % and s = % + %, as an
appropriate balance as discussed previously. In the meantime, we chose t = s = % + %
to construct discrete synchrosqueezed wave packet transform for a reasonable com-
parison. In all the decomposition problems, section 3.2 with application dependent
parameters is applied, and it provides desired solutions. We will only present relevant
recovered components to save space.

4.1. Instantaneous wave-vector estimation. In Theorem 2.3, we have seen
that the estimate vy (a,6,b) approximates the local wave-vector at b if [Wy(a,0,b)| >

a3 V€. Since a > 1, as we discussed after the Definition 1.1, it is useful to consider a
simple and universal threshold criteria |Wy(a,6,b)| > /e, which amounts to a smaller
region of the essential support of Wy (a,6,b). In such a region, though vs(a,6,b)
provides an accurate estimate of the local wave-vector at each b, it is more rational to
average them up to obtain a unique local wave-vector estimate for each fixed b. By
the definition of synchrosqueezed energy distribution, T (Rvy(a, 6,b),b) truly reflects
a natural weight of v¢(a,8,b) in variables a and 6. Hence, we define the mean local
wave-vector estimate at b to be

E(aﬂ) |Tf(mvf (CL, 0, b)v b)|11f (Cl, 0, b)
E(a,e) |Tf (%Uf (a’7 97 b)a b)'
In the presence of noise, a threshold & proportional to noise level is set up for

Tt (Rvs(a,d,b),b) to uncover the dominant estimate. Correspondingly, we define the
thresholded mean local waveform estimate as

 Y(aoyesm) | Tr(Rup(a, 0,),b)|v(a,6,b)
2 (@oyeasm) | Lr(Rvp(a,0,0),b)| ’

where Q5(b) = {(a,0) : [T(Rvs(a,0,b),0)] > 6}. In a noiseless case, v} (b) = v}n’o(b).
Using this estimate, we can define the relative error Rs(b) between v?"é (b) and the
exact local wave-vector NV¢(b) as

vy (b) =

v (b)

0 (h) = NV6(b)]
B 0) = = Xsm)

Ezample 1. We test the accuracy for a noise free deformed plane wave f(z) =
a(z)e?mN@) with a(r) = 1, ¢(z) = ¢(x1,22) = o1 + (1 — 22) + 0.1sin(2721) +
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Fia. 5. Left: A deformed plane wave propagating in the full space with zoomed-in data indicated
by a rectangle. Middle: Relative error Ro(b) of local wave-vector estimation using SSCT. Right:
Relative error Ro(b) of local wave-vector estimation given by SSWPT.

1

0.9)
0.8

Fic. 6. Left: A banded deformed plane wave. The zoomed-in data comes from the small
rectangle. Middle: Relative error Ro(b) of local wave-vector estimation using SSCT. Right: Relative
error Ro(b) of local wave-vector estimation given by SSWPT.

0.1sin(27(1 — x2)), and N = 135 (see Figure 5 left). It is a special case in Defini-
tion 2.1 with banded parameter ¢ = co. The relative error Ry(b) of SSCT shown in
Figure 5 (middle) is of order 1072, which agrees with Theorem 2.3 that the relative
approximation error is of order O(y/¢). The SSWPT and the SSCT share the same
accuracy in this case, shown by Figure 5 middle and right.

We compare the efficiency of SSCT and SSWPT in a noiseless case of a banded
deformed plane wave f(z) = e*(‘ﬁ(m)*c)z/‘ﬂa(x)ez’”Nd’(””) with the same parameters
in the last example and two more parameters ¢ = 0.7 and o = %5. As we discussed
at the beginning of this subsection, v¢(a, 8, b) is only computed in the relevant region
W (a,0,b)] > \/e. So, the relative error will be set to be zero at the position b
such that [Wy(a,0,b)| < /e V(a,0). The numerical result in Figure 6 matches well
with our theoretical prediction, showing that SSCT estimates local wave-vectors of
this banded wave-like component within a relative error of order O(y/€). However,
SSWPT fails the truth, as we discussed in the section of introduction.

To quantitatively demonstrate the robustness against noise, we provide a series
of tests of the above banded deformed plane wave with increasing noise levels. As
usual, the noise level is described by the signal-to-noise ratio (SNR) defined by

Varf)

o2

Suppose n(z) is an isotropic complex Gaussian random noise with zero mean. We
consider the noisy data

(24) f(z) = e~ (@@=0)/0% o (3)2WING(@) |y ()
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TABLE 1
Mazimum relative error of Rs(b) with different SNR.

SNR ) 3 0] —3 ~6
5 3 35 1] 45 5
[R5(®)]e~ || 0.03 | 0.03 | 0.04 | 0.05 | 0.065

with the same parameters as in previous noiseless banded example. Table 1 summa-
rizes the results. The first row shows different noise levels, and the second row records
the threshold ¢ for T¢(a,6,b). We observe that a proper threshold § can successfully
reduce the influence of noise and keeps the local wave-vector estimate accurate and
stable. A further study of the behavior of the synchrosqueezing operator on noise is
currently ongoing, and we leave the discussion of thresholding to our future work.

4.2. Intrinsic mode decomposition for synthetic data.

Ezxample 2. In many applications, it is desired to extract each component from a
superposition. To show that our algorithm may provide a solution, we present some
numerical examples of mode decomposition for highly oscillatory synthetic seismic
data in noiseless and noisy cases (see Figure 7 top). Figure 7 shows the results of
the application of our algorithm described in section 3.3. On the left is a noiseless
example, and the example on the right has some noise (SNR is —3.07 dB). Each mode
of given data is accurately recovered in the noiseless case. In the noisy case, different
modes with different propagation characters are completely separated. Each recovered
mode practically reflects the curvature of corresponding mode in the original data,
though there is some energy loss due to threshold § to remove noise.

Ezample 3. In some other applications, one component might be disrupted (e.g.,
randomly shifted in this example), and it is required to remove such component and
recover others. Here we randomly shift the first mode in Example 2 in the vertical
direction and apply our algorithm to recover the second mode. The numerical results
summarized in Figure 8 show the capability of our algorithm to solve such a problem
with or without noise. In this problem, the disrupted component can be considered
as noise with high energy, i.e., this is a problem with very small SNR. It is even more
problematic that random shifting may create some texture similar to the mode to
be recovered in some region. Fortunately, the synchrosqueezed representation is so
concentrated that the resolution is still good enough to separate the mode from such
similar texture by appropriately thresholding Tt (a, 6, b).

The left example in Figure 8 shows the result of noiseless data. The recovered
mode looks almost the same as the one recovered in noiseless Example 2 (Figure 7
bottom left), except there is some energy loss due to thresholding. It is of interest
to add some background noise to see how well our algorithm is performing. Figure
8, right, shows the result of noisy case. SNR is —0.90 if we consider the energy of
disrupted component as part of data energy. The result (see Figure 8 bottom right)
is almost identical to the recovered mode in Figure 7, bottom left.

4.3. Intrinsic mode decomposition for real data. So far, the experiments
shown are idealized, e.g., the boundary of each component is clear and smooth, and
the amplitudes of each component are of the same level. In this subsection, we apply
the SSCT to real seismic data and illustrate its good performance in a complicated
circumstance.

Ezxample 4. This is real seismic data with four main components and a band
of energy loss near the bottom. The centered component is overlapping with others.
Components in the bottom left and bottom right corners have irregular boundaries
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Fia. 7. Example 2. Left: Mode decomposition without noise. Right: Mode decomposition with
noise (SNR = —3.07). Top: A superposition of two components. Second row: The first recovered
relevant mode. Third row: The second recovered relevant mode.

and not well aligned textures. The component on top has obviously weaker energy
than others. These characters cause large difficulty in identifying all these components
accurately. As shown in Figure 9, the main textures and oscillatory patterns are
recognized and recovered by our algorithm, though there is some loss of energy on the
boundary of each component caused by thresholding.

5. Discussion. This paper has proposed the SSCT as an optimal tool to ana-
lyze a superposition of high dimensional banded wave-like components. It serves as
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Fi1c. 8. Ezample 3. Left: Mode identification without noise. Right: Mode identification with
noise (SNR = —0.90). Top: A superposition of two components, one of which is disrupted by random
shifting and needs to be removed. Second row: The recovered relevant mode.

the first example of adapting the synchrosqueezed transforms, by changing their geo-
metric scaling parameters, to a superposition of components with specific structures.
This framework has significant advantages over existing methods for 2D mode decom-
positions: it comes with a clean and solid theoretical analysis, and it can analyze and
decompose a wide class of superpositions in many applications where related methods
may not be well suited.

An appealing research direction is to study other types of data structures and
other types of superpositions. In [33] and this article, the data is assumed to be a
superposition of wave-like components. In more general circumstances, the oscillatory
pattern should not be restricted to wave functions.

Another promising direction would be the robustness study and the optimization
scheme for 2D mode decomposition. For one thing, hard thresholding can cause
some energy loss while reducing the noise. It is important to study the behavior of
the synchrosqueezing operator on noise and its thresholding strategies. For another
thing, in other cases, some parts of the data are missing or have extremely weak
energy. It is expected that an optimization scheme could estimate a clear structure
of each component, even if there is missing data or severe noise.

Like the SSWPT, the current approach can be easily extended to 3D or higher
dimensions. This direction should be relevant for applications.
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Fi1c. 9. Ezample 4. Top: Real seismic data. Middle and bottom: Relevant recovered modes.

Acknowledgments. H. Y. and L. Y. thank Jianfeng Lu, Jerome Gilles, and
Giang Tran for discussions, and Sergey Fomel and Jingwei Hu for providing seismic

application.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/27/14 to 128.12.246.16. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

2082 HAIZHAO YANG AND LEXING YING

(1]

2]
[3]
[4]
[5]

[6]

[7]

(8]

[10]

REFERENCES

F. AUGER AND P. FLANDRIN, Improving the readability of time-frequency and time-scale repre-
sentations by the reassignment method, IEEE Trans. Signal Process., 43 (1995), pp. 1068—
1089.

M. BROWN AND R. CLAPP, (¢, z) domain, pattern-based ground roll removal, in Proceedings of
the SEG Annual Meeting, Calgary, Alberta, Canada, 2000.

E. CaNDES, L. DEMANET, D. DONOHO, AND L. YING, Fast discrete curvelet transforms, Mul-
tiscale Model. Simul., 5 (2006), pp. 861-899.

E. J. CANDES AND D. L. DONOHO, New tight frames of curvelets and optimal representations of
objects with piecewise C? singularities, Comm. Pure Appl. Math., 57 (2004), pp. 219-266.

E. J. CanDpES AND D. L. DoNoHO, Continuous curvelet transform. II. Discretization and
frames, Appl. Comput. Harmon. Anal., 19 (2005), pp. 198-222.

E. CHASSANDE-MOTTIN, F. AUGER, AND P. FLANDRIN, Time-frequency/time-scale reassign-
ment, in Wavelets and Signal Processing, Appl. Numer. Harmon. Anal., Birkh&duser Boston,
Boston, MA, 2003, pp. 233-267.

E. CHASSANDE-MOTTIN, I. DAUBECHIES, F. AUGER, AND P. FLANDRIN, Differential reassign-
ment, IEEE Signal Process. Lett., 4 (1997), pp. 293-294.

T. H. CorMEN, C. STEIN, R. L. RIVEST, AND C. E. LEISERSON, Introduction to Algorithms,
2nd ed., McGraw-Hill Higher Education, New York, 2001.

I. DAUBECHIES, J. LU, AND H.-T. Wu, Synchrosqueezed wavelet transforms: An empirical mode
decomposition-like tool, Appl. Comput. Harmon. Anal., 30 (2011), pp. 243-261.

1. DAUBECHIES AND S. MAES, A nonlinear squeezing of the continuous wavelet transform based
on auditory nerve models, in Wavelets in Medicine and Biology, CRC Press, Boca Raton,
FL, 1996, pp. 527-546.

L. DEMANET AND L. YING, Wave atoms and sparsity of oscillatory patterns, Appl. Comput.
Harmon. Anal., 23 (2007), pp. 368-387.

S. FOMEL, Applications of plane-wave destruction filters, Geophysics, 67 (2002), pp. 1946-1960.

J. GILLES, Empirical wavelet transform, IEEE Trans. Signal Process., 61 (2013), pp. 3999-4010.

J. GILLES, G. TRAN, AND S. OSHER, 2D empirical transforms. Wavelets, ridgelets and curvelets
revisited, SIAM J. Imaging Sci., 7 (2014), pp. 157-186.

T. Hou, Z. Sui, AND P. TavALLALI, Convergence of a data-driven time-frequency analysis
method, preprint, arXiv:1303.7048, 2013.

T. Y. Hou AND Z. SHI, Adaptive data analysis via sparse time-frequency representation, Adv.
Adapt. Data Anal., 3 (2011), pp. 1-28.

T. Y. Hou AND Z. SHI, Data-driven time-frequency analysis, Appl. Comput. Harmon. Anal.,
35 (2013), pp. 284-308.

T. Y. Hou, M. P. YAN, AND Z. WU, A variant of the EMD method for multi-scale data, Adv.
Adapt. Data Anal., 1 (2009), pp. 483-516.

N. E. HuaNG, Computer Implemented Empirical Mode Decomposition Apparatus, Method and
Article of Manufacture for Two-Dimensional Signals, US Patent 6,311,130 B1, 2001.

N. E. HuANG, Z. SHEN, S. R. Long, M. C. Wu, H. H. SHIH, Q. ZHENG, N.-C. YEN, C. C.
TunG, AND H. H. Liu, The empirical mode decomposition and the Hilbert spectrum for
nonlinear and non-stationary time series analysis, R. Soc. Lond. Proc. Ser. A Math. Phys.
Eng. Sci., 454 (1998), pp. 903-995.

N. E. HuaNGg, Z. Wu, S. R. Long, K. C. ArRNOLD, X. CHEN, AND K. BLANK, On instantaneous
frequency, Adv. Adapt. Data Anal., 1 (2009), pp. 177-229.

R. E. KORF, Depth-first iterative deepening: An optimal admissible tree search, Artificial In-
telligence, 27 (1985), pp. 97-109.

A. LINDERHED, Variable sampling of the empirical mode decomposition of two-dimensional
signals, Int. J. Wavelets Multresolut. Inf. Process, 3 (2005), pp. 435-452.

A. LINDERHED, Image empirical mode decomposition: A new tool for image processing, Adv.
Adapt. Data Anal., 1 (2009), pp. 265-294.

S. R. LoNG, Applications of HHT in image analysis, Hilbert—Huang Transform and Its Ap-
plications, N. E. Huang and S. S. P. Shen, eds., World Scientific, River Edge, NJ, 2005,
pp- 289-306.

J. C. NUNEs, Y. BOUAOUNE, E. DELECHELLE, O. NIANG, AND P. BUNEL, Image analysis by
bidimensional empirical mode decomposition, Image Vision Comput., 21 (2003), pp. 1019-
1026.

J. C. NUNEs, O. Ni1aNG, Y. BOUAOUNE, E. DELECHELLE, AND P. BUNEL, Bidimensional em-
pirical mode decomposition modified for texture analysis, Image Anal. Proc., 2749 (2003),
pp. 171-177.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 06/27/14 to 128.12.246.16. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

28]
[29]
[30]
31]
32]
[33]

[34]

SYNCHROSQUEEZED CURVELET TRANSFORM 2083

S. RicawaLski, K. Roy-CHOWDHURY, AND J. C. MONDT, Multi-component wavefield separation
applied to high-resolution surface seismic data, J. Appl. Geophys., 46 (2001), pp. 101-114.

J.-L. STARCK, E. J. CANDES, AND D. L. DONOHO, The curvelet transform for image denoising,
IEEE Trans. Image Process., 11 (2002), pp. 670-684.

M. VAN DER BAAN, PP/PS wavefield separation by independent component analysis, Geophys.
J. Int., 166 (2006), pp. 339-348.

Z. Wu AND N. E. HUANG, Ensemble empirical mode decomposition: A noise-assisted data
analysis method, Adv. Adapt. Data Anal., 1 (2009), pp. 1-41.

Z. Wu, N. E. HuanG, AND X. CHEN, The multi-dimensional ensemble empirical mode decom-
position method, Adv. Adapt. Data Anal., 1 (2009), pp. 339-372.

H. YANG AND L. YING, Synchrosqueezed wave packet transform for 2D mode decomposition,
SIAM J. Imaging Sci., 6 (2013), pp. 1979-2009.

C. YARHAM, U. BOENIGER, AND F. HERRMANN, Curvelet based ground roll removal, in Pro-
ceedings of the 2006 SEG Annual Meeting, New Orleans, LA, 2006.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


