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I. INTRODUCTION

QUANTITATIVE canvas weave analysis has many ap-
plications in art investigations of paintings, including

dating, forensics, canvas rollmate identification [1]–[3]. Tra-
ditionally, canvas analysis is based on x-radiographs. Prior
to serving as a painting canvas, a piece of fabric is coated
with a priming agent; smoothing its surface makes this layer
thicker between and thinner right on top of weave threads.
These variations affect the x-ray absorption, making the weave
pattern stand out in x-ray images of the finished painting. To
characterize this pattern, it is customary to visually inspect
small areas within the x-radiograph and count the number
of horizontal and vertical weave threads; averages of these
then estimate the overall canvas weave density. The tedium
of this process typically limits its practice to just a few
sample regions of the canvas. In addition, it does not capture
more subtle information beyond weave density, such as thread
angles or variations in the weave pattern. Application of signal
processing techniques to art investigation are now increasingly
used to develop computer-assisted canvas weave analysis tools.

In their pioneering work [4], Johnson et al developed
an algorithm for canvas thread-counting based on windowed
Fourier transforms (wFT); further developments in [5], [6]
extract more information, such as thread angles and weave
patterns. Successful applications to paintings of art historical
interest include works by van Gogh [7], [8], Diego Velázquez
[9], Johannes Vermeer [10], among others [11]–[15].

A more robust and automated analysis technique was later
developed by Erdmann et al [16], based on autocorrelation and
pattern recognition algorithms, requiring less human interven-
tion (e.g., choosing proper frequency range and window size of
windowed Fourier transforms). Unlike the Fourier-space based
approach of [4], [16] uses only the real-space representation of
the canvas. Likewise, [17] also uses real-space based features
for canvas texture characterization.

We consider here a new automated analysis technique for
quantitative canvas analysis, based on the 2D synchrosqueezed
transforms recently developed in [18]–[20]. In this Fourier-
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space based method, the nonlinear synchrosqueezing pro-
cedure is applied to a phase-space representation of the
image obtained by wavepacket or curvelet transforms. Syn-
chrosqueezing has shown to be a useful tool in independent
work by some of us [18]–[22], in the general area of materials
science, medical signal analysis, and seismic imaging. Using
as a prior assumption that the signal of interest consists of a
sparse superposition of close to but not quite periodic template
functions, this mathematical tool provides sharp and robust
estimates for the locally varying instantaneous frequencies of
the signal components, by exploiting the phase information of
wFT (i.e., not only the absolute value as in previous methods).
This seemed to make it a natural candidate for canvas analysis;
as illustrated by the results we obtained, reported here, this
intuition proved to be correct. The method, as shown below,
is very robust and offers fine scale weave density and thread
angle information for the canvas. We compare our results with
those in [4]–[6], [16].

We explain our model for x-radiography images for canvas
analysis in Section II; the use and limitations of windowed
Fourier transforms are discussed in Section III-A. Section III-B
introduces the synchrosqueezed transform, with applications
to quantitative canvas analysis; section IV presents various
examples, applying our technique in art investigation.

II. MODEL OF THE CANVAS WEAVE PATTERN IN
X-RADIOGRAPHY

We denote by f the intensity of an x-radiograph of a paint-
ing; see Figure 1a for a (zoomed-in) example. Because x-rays
penetrate deeply, the image consists of several components: the
paint layer itself, primer, canvas (if the painting is on canvas or
on wood panel overlaid with canvas), possibly a wood panel (if
the painting is on wood), and sometimes extra slats (stretchers
for a painting on canvas, or a cradle for a painting on wood,
thinned and cradled according to earlier conservation practice.)
This x-ray image may be affected by noise or artifacts of the
acquisition process. We model the intensity function f as an
additive superposition of the canvas contribution, denoted by
c(x), and a remainder, denoted by p(x), that incorporates all
the other components. Our approach to quantitative canvas
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analysis relies on a simple model for the x-ray image of the
weave pattern in the “ideal” situation. Since it is produced by
the interleaving of horizontal and vertical threads in a periodic
fashion, a natural general model is

f(x) = c(x) + p(x) := a(x)S(2πNφ(x)) + p(x). (1)

In this expression, S is a periodic function on the square
[0, 2π)2, the details of which reflect the basic weave pattern of
the canvas, e.g., whether it is a plain weave or perhaps a twill
weave. This is a generalization of more specific assumptions
used in the literature – for instance, in [4] plain weave canvas
is modeled by taking for S a sum of sinusoidal functions in
the x and y directions; in [6], more general weave patterns
(in particular twill) are considered. The parameter N in (1)
gives the averaged overall weave density of the canvas (in both
directions). The function φ, which maps the image domain to
R2, is a smooth deformation representing the local warping of
the canvas; it contains information on local thread density,
local thread angles, etc. The slowly varying function a(x)
accounts for variations of the amplitude of the x-ray image
of the canvas, e.g., due to variation in illumination conditions.

In some cases, the x-ray image fails to show canvas infor-
mation in portions of the painting (e.g. when the paint layer
dominates); the model (1) is then not uniformly valid. Because
our analysis uses spatially localized information (analyzing the
image patch by patch), this affects our results only locally: in
those (small) portions of the image we have no good estimates
for the canvas parameters. For simplicity, this exposition
assumes that (1) is valid for the whole image.

We rewrite c by representing the weave pattern function S,
periodic on [0, 2π)2, in terms of its Fourier series,

c(x) =
∑
n∈Z2

a(x)Ŝ(n)e2πiNn·φ(x). (2)

This is a superposition of smoothly warped plane-waves with
local wave vectors N∇(n · φ(x)). The idea of our analysis
is to extract the function φ by exploiting that the Fourier
coefficients {Ŝ(n)} are dominated by a few leading terms.

III. FOURIER-SPACE BASED CANVAS ANALYSIS

A. Windowed Fourier transform

Because a and φ vary slowly with x, we can use Taylor
expansions to approximate the function for x near x0 as

c(x) ≈
∑
n∈Z2

a(x0)Ŝ(n)e
2πiNn·φ(x0)e2πiN(x−x0)·∇x(n·φ)(x0).

(3)
The right hand side of (3) is a superposition of complex
exponentials with frequencies w = (w1, w2), with

wl =

2∑
l′=1

nl′(∂lφl′)(x0);

these would stand out in a Fourier transform as peaks in the
2-dim Fourier spectrum. Since the approximation is accurate
only near x0, we also use a windowed Fourier transform with

envelope given by, e.g., a Gaussian centered at x0 with width
σ. We have then

W (x0, k) :=
1

2πσ2

∫∫
e−2πik(x−x0)e−(x−x0)

2/2σ2

c(x) d2x

≈
∑
n∈Z2

a(x0)Ŝ(n)e
2πiNnφ(x0)e−2π

2σ2[k−N∇x(n·φ)(x0)]
2

.

(4)

Instead of being sharply peaked, the spectrum of the win-
dowed Fourier transform is thus “spread out” around the
N∇x(n · φ)(x0) – a manifestation of the well-known uncer-
tainty principle in signal processing, with a trade-off w.r.t. the
parameter σ: a larger σ reduces the “spreading” at the price
of a larger error in the approximation (3), since the Gaussian
is then correspondingly wider in the real space.

The method of [4], [6] uses the local maxima of the
amplitude of the windowed Fourier transform to estimate the
location of {N∇(n · φ(x0))} for a selection of positions
x0 of the x-ray image (local swatches are used instead of
the Gaussian envelope, but the spirit is the same). For ideal
signals, (4) shows that the maxima of the amplitude |W (x0, ·)|
identify the dominating wave vectors in Fourier-space, which
are then used to extract information, including weave density
and thread angles. Thread density is estimated by the length
of the wave vectors; the weave orientation is determined
by the angles. This back-of-the-envelope calculation is fairly
precise when N is much larger than 1, resulting in a small
O(N−1) error in the Taylor expansions and stationary phase
approximations. In terms of the canvas, N � 1 means that the
inverse of the average thread density must be much smaller
than the length scale of the variation of the canvas texture,
which is typically on the scale of the size of the painting.
This is essentially a high-frequency assumption, ensuring that
stationary phase approximations can be applied in the time-
frequency analysis. Details can be found in standard references
of time-frequency analysis, e.g., the book [23].

In more complicated scenarios, in particular, when the x-ray
signal corresponding to the canvas is heavily “contaminated”
by the other parts of the painting, it is desirable to have
more robust and refined analysis tools at hand than locating
local maxima of the Fourier spectrum. The synchrosqueezed
transforms are nonlinear time-frequency analysis tools devel-
oped for this purpose, in different (1D and 2D) applications
which suggests they could be suitable for canvas analysis
in challenging situations. A comparison of the two methods
is shown in Figure 1 and will be explained below. For the
sake of completeness, we note that in our implementation, we
use curvelets (more or less corresponding to a non-isotropic
Gaussian window, with axes-lengths adapted to the frequencies
of the oscillating component) rather than windowed Fourier
transforms with isotropic Gaussian windows, to which we have
restricted ourselves in this exposition. The synchrosqueezing
operation has similar effects in both cases; the curvelet imple-
mentation, while more complicated to explain in a nutshell,
has the advantage of being governed by only two parameters,
which set the spatial redundancy and the angular resolution.
Setting these is well understood (see [24]); in addition the
result is stable under small perturbations in these parameters.
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B. Synchrosqueezed transforms

The synchrosqueezed transforms, or more generally time-
frequency reassignment techniques (see e.g., the recent review
[25]), were introduced to deal with the “loss of resolution”
due to the uncertainty principle. Originally introduced in [26]
for auditory signals, using a nonlinear squeezing of the
time-frequency representation to gain sharpness of the time-
frequency representation, the 1D synchrosqueezed wavelet
transform was revisited and analyzed in [27]. For the applica-
tion to canvas analysis, we rely on 2D extensions of the syn-
chrosqueezing transforms based on wavepacket and curvelet
transforms [18], [19]. This 2D synchrosqueezing transform
(2DST) has been applied to atomic-resolution crystal image
analysis in [20]; the present algorithm for canvas analysis is
adapted from [20], where the 2DST proved to be an excellent
tool to capture and quantify deviations from a perfect lattice
structure, very similar to the aims of canvas analysis. Rigorous
robustness analysis of the synchrosqueezed transforms in [24]
supports their application to canvas analysis where data is
usually noisy and contains contaminants.

The crucial observation is that the phase of the complex
function W (x, k), obtained from the windowed Fourier trans-
form (4) contains information on the local frequency (i.e., the
instantaneous frequency) of the signal. Indeed, for (x, k) such
that k is close to N∇x(n · φ), we have

wf (x, k) :=
1

2π
=
(
∇x lnW (x, k)

)
= N∇x(n ·φ)(x)+o(N),

(5)
where =(z) stands for the imaginary part of the complex num-
ber z. Motivated by this heuristic, the synchrosqueezed win-
dowed Fourier transform “squeezes” the time-frequency spec-
trum by reassigning the amplitude at (x, k) to (x,wf (x, k))
as

T (x, ξ) :=

∫∫
|W (x, k)|2δ(ξ − wf (x, k)) d2k. (6)

This significantly enhances the sharpness of the time-
frequency representation, leading to an estimate of the local
frequency of the signal, that is more accurate as well as more
robust, as we illustrate below. This gives a sharpened energy
distribution on phase space:

T (x, ξ) ≈
∑
n∈Z2

|a(x)|2
∣∣Ŝ(n)∣∣2δ(ξ −N∇(n · φ(x))), (7)

in the sense of distributions. See [18]–[20] for more details,
as well as an analysis of the method. The peaks of the
synchrosqueezed spectrum T then provide estimates of the
N∇(n · φ(x)), determining local measurement of both the
thread count and the angle. Figure 1 illustrates the resulting
spectrum of the 2DST, compared with the wFT for a sample
x-ray image from a canvas. The reassignment carried out in
(6), taking into account the local oscillation of the phase of a
highly redundant wFT rather than the maximum energy of the
wFT to reduce the influence of noise, results in a much more
concentrated spatial frequency portrait. As illustrated by the
behavior of the estimates when extra noise is added, this leads
to increased robustness for the estimates of the dominating
wave vectors, which determine the thread count and angle. The

performance and the robustness of the 2DST are supported by
rigorous mathematical analysis in [24].

IV. APPLICATIONS TO ART INVESTIGATIONS

Let us now present some results of quantitative canvas anal-
ysis using 2DST. The algorithm is implemented in Matlab.
The codes are open source and available as SynLab at
https://github.com/HaizhaoYang/SynLab.

The first example (Fig. 2a) is the painting F205 by van
Gogh, the x-ray image of which is publicly available as part of
the RKD dataset [28] provided by the Netherlands Institute for
Art History; this was one of the first examples analyzed using
the method based on the windowed Fourier transform; see [4,
Figure 4] and also [6, Figure 6]. In Figure 3, the thread count
and thread angle estimates are shown for horizontal and ver-
tical threads. Comparing with the previous results in [4], [6],
we observe that the general characteristics of the canvas agree
quite well. For example, [6] reports average thread counts of
13.3 threads/cm (horizontal) and 16.0 threads/cm (vertical),
while our method obtains 13.24 threads/cm (horizontal) and
15.92 threads/cm (vertical). Compared to the earlier results,
the current analysis gives a more detailed spatial variation of
the thread counts. In particular, it captures the oscillation of
the thread count on a much finer scale. We don’t know whether
such fine details will have applications beyond the canvas
characterization already achieved by less detailed methods,
but it is interesting that they can be captured by an automatic
method. Note that visual inspection confirms the presence of
these fine details.

We next consider a painting of Vermeer, Woman in Blue
Reading a Letter (L17), the x-ray image of which is also
available as part of the RKD dataset [28]. The canvas analysis
for Vermeer’s paintings is considerably more challenging than
that of van Gogh’s [10]. This can be understood by direct
comparison of the x-ray images in Figures 2b and 2a. The
stretchers and nails significantly perturb the x-ray image for
the Vermeer. The results are shown in Figures 4 and 5.
Although the thread count and angle estimate are affected
by artifacts in the x-ray image, they still provide a detailed
characterization of the canvas weave. This is justified by the
result in Figure 5, which shows a zoom-in for the x-ray image
and the vertical thread angle map. It is observed that the
algorithm captures (and quantifies) detailed deviations in the
vertical thread angle recognizable by visual inspection. Despite
the challenges, the 2DST-based canvas analysis performs quite
well on the Vermeer example.

To test the algorithm on a different type of canvas weave,
we applied it to the x-ray image of Albert P. Ryder’s The
Pasture, a painting on twill canvas. Figure 6 shows the result
for a portion of the canvas. The twill canvas pattern is clear on
the zoomed-in x-ray image. The method is still able to capture
fine scale features of the canvas; the admittedly higher number
of artifacts is due to the increased difficulty to “read” a twill
vs. a standard weave pattern, as well as a weaker canvas signal
on the x-ray.

For our final example, we apply the 2DST-based canvas
analysis to The Peruzzi Altarpiece by Giotto di Bondone and
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(a) A sample swatch of x-ray image (b) Spectra of wFT and 2DST (c) Swatch with added noise (d) Spectra of wFT and 2DST

Fig. 1. (a) A sample swatch of an x-ray image, in which canvas is clearly visible (in most places) despite the paint layers on top of the canvas; (b) The
spectrum of the windowed Fourier transform (wFT) (top) and 2DST (bottom) at one location. Local maxima (circled in red) indicate the wave vector estimates;
the insets show the intensity profile on a cross section (dashed line) through two maxima; (c) The same swatch as in (a) with noise added (such that the
noise level is visually comparable to the real data example in Figure 8) to test for robustness; (d) The wFT and 2DST spectra again at the same location,
illustrating the more robust nature of the 2DST estimate (due to its taking into account phase information of the wFT in a neighborhood of the peaks of the
absolute value of the wFT as well as the peak values). For comparison, the positions of the red circles are the same as in (b). The peaks are displaced in
wFT due to noise, while the result of 2DST is not affected.

(a) x-ray image, van Gogh’s F205 (b) x-ray image, Vermeer’s L17

Fig. 2. (a) X-ray image of van Gogh’s painting Portrait of an Old Man
with Beard, 1885, Van Gogh Museum, Amsterdam (F205); (b) X-ray image
of Vermeer’s painting Woman in Blue Reading a Letter, 1663-64, Rijksmu-
seum Amsterdam, Amsterdam (L17). X-ray images provided by Professor
C. Richard Johnson through the RKD dataset [28].

his assistants. The altarpiece is in the collection of the North
Carolina Museum of Art; see Figure 7 for the altarpiece as well
as the x-ray images used in the analysis. This is a painting on
wood panel, but the ground of traditional white gesso was
applied over a coarsely woven fabric interlayer glued to a
poplar panel. We carried out a canvas analysis on the fabric
interlayer, likely a hand woven linen cloth. The results of a
canvas analysis based on the synchrosqueezed transform are
shown in Figure 9. This example is much more challenging
than the previous ones, since the x-ray intensity contributed
by the canvas is much weaker because the ground does not
contain lead; see e.g., Figure 8, a detail of the x-ray image of
the Christ panel. The canvas is barely visible, in sharp contrast
to the x-ray images in, e.g., Figures 1a or 5. All panels except
the central Christ panel are cradled; the wood texture of these
cradles interferes with the canvas pattern on the x-ray image,
introducing an additional difficulty. This difficulty is reflected
in our results: e.g., the vertical thread count for the central
panel has much fewer artifacts than those of the other panels
(see Figure 9). [In future work, we will explore carrying out
a canvas analysis after signal-processing-based virtual cradle
removal – see [29].]
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Fig. 3. The canvas analysis results of van Gogh’s F205 using the syn-
chrosqueezed transform: (a) and (b): thread count map of the horizontal and
vertical threads; (c) and (d): the estimated thread angle. Compare with [6,
Figure 6].

One interesting ongoing art investigation debate concerning
this altarpiece is the relative position of the panels of John
the Baptist and Francis of Assisi. While the order shown in
Figure 7, with Francis in the right-most position, and the
Baptist second from right, is the most commonly accepted
[30], there have been alternative arguments that the Francis
panel should be instead placed next to the central panel.
Typically the grain of the wood as seen in x-rays can be used
to set the relative position of panels in an altarpiece painted on
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Fig. 4. Canvas analysis results of Vermeer’s L17 using the synchrosqueezed
transform: (a) and (b) are thread count map of the horizontal and vertical
threads; (c) and (d) show the estimated thread angle. Average thread density is
14.407 threads/cm (horizontal) and 14.817 threads/cm (vertical). The boxed
region of the vertical thread angle map (panel (d)) is shown, enlarged, in
Figure 5; it is part of a striking anomaly in the vertical angle pattern in this
canvas, lining up along one vertical traversing the whole canvas.

(a) X-ray image (zoomed-in) (b) Vertical thread angle (zoomed-in)

Fig. 5. Details of the x-ray image and the corresponding vertical thread
angle map for Vermeer’s L17, highlighting two examples (boxed regions) of
noticeable fine scale variation of the vertical thread angle, readily recognizable
also by visual inspection of the corresponding zones in the x-ray image.

(a) X-ray image (b) X-ray image (zoomed-in)
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Fig. 6. (a) X-ray image of Albert P. Ryder’s The Pasture, 1880-85, North
Carolina Museum of Art, Raleigh. (b) is an enlargement of the red-boxed
region, with clearly recognizable twill canvas weave. (c) and (d) show the
thread count maps corresponding to the zoomed-in region shown in (b). Note
the much higher thread counts than for plain weave canvas, typical for the
finer threads used in twill weave. The bottom-right insets of (b), (c) and (d)
show the further zoom-in of the green-boxed region for visual inspection.
The horizontal thread count matches the changes observed in the x-ray image
quite well.

a single plank of wood, but because the cradle pattern obscures
an accurate reading of the x-rays of the Baptist and Francis
this proposed alternative orientation can not be discounted.
We wondered what ordering (if any) would be suggested by
the canvas analysis. Under the assumption that the pieces of
canvas are cut off consecutively from one larger piece of
cloth, we investigated which arrangement provides the best
matching. One plausible arrangement of the canvas is shown
in Figure 10. Our analysis suggests that the canvas of the
central panel should be rotated for 90 degrees clockwise to
match with the other panels. (The larger height of the central
panel, possibly exceeding the width of the cloth roll, may have
necessitated this.) Moreover, a better matching is achieved if
the canvas of the panel of the Baptist is flipped horizontally (in
other words, flipped front to back). Given our results, it seems
unlikely that the Francis-panel canvas would fit best to the left
of the Baptist-panel canvas. A better, more precise result will
be possible after virtual cradle removal. Of course, even a more
thorough canvas roll arrangement would not be conclusive
evidence for the relative position of the panels themselves;
but combined with other elements in a more exhaustive study,
it can play a significant role.

V. CONCLUSION

We apply 2D synchrosqueezed transforms to quantita-
tive canvas weave analysis for art investigations. The syn-
chrosqueezed transforms offer a sharpened phase-space rep-
resentation of the x-ray image of the paintings, which yields
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Fig. 7. Giotto di Bondone and assistants, The Peruzzi Altarpiece, ca. 1310-15, North Carolina Museum of Art, Raleigh. The panels from left to right are
John the Evangelist, the Virgin Mary, Christ in Majesty, John the Baptist, and Francis of Assisi. The resolution of the x-ray image used in the analysis is 300
DPI. The vertical and (less obvious) horizontal stripes on the x-ray images in all panels except the central panel of Christ are caused by cradling. Each x-ray
image is a mosaic of 4 x-ray films, leading to visible boundaries of the different pieces (thin horizontal and vertical lines) on the x-ray image.

Fig. 8. A zoomed-in x-ray image of the central panel in The Peruzzi
Altarpiece. The canvas texture is barely visible, even though the image is
scaled such that the thread density is comparable with that of the zoomed-in
x-ray in Figure 5.

fine scale characterization of thread count and thread angle of
the canvas. We demonstrated the effectiveness of the method
on art works by van Gogh, Vermeer, and Ryder. The tool is
applied to The Peruzzi Altarpiece by Giotto and his assistants,
to provide insight into the issue of panel arrangement.
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