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SUMMARY

This extended abstract explores the problem of reconstructing
3D µCT samples by filling in ”gaps” between parallel 2D µCT
of isotropic rock samples, which reduce technical cost of per-
forming full 3D scans of 3D rock samples. We propose a novel
inpainting technique which exploits the isotropic property of
such 3D rocks by considering 2D µCT from a different per-
spective from the given 2D scans. We then employ state of the
art invert GAN and AE techniques to produce good inpainting
results to reconstruct the 3D sample from the concatenation
of inpainted 2D samples. Empirical evidence is presented to
show how our proposed method can produce accurate 2D in-
painting samples.

INTRODUCTION

Digital Rock Physics (DRP) is a rapidly developing technol-
ogy that enables comprehensive analysis of rock properties and
pore-scale physical processes governing them. Compared to
laboratory measurements and conventional rock physics mod-
els, DRP is able to achieve more, faster and cheaper character-
ization of rock properties (Andrä et al., 2013; Saxena et al.,
2019). One crucial issue with DRP is that performing mi-
cro computed tomography (µCT) on rock samples is expen-
sive and time-consuming. Generative networks like Genera-
tive Adversarial Networks (GANs) (Goodfellow et al., 2014)
and Auto-Encoders (AEs) have seen increasing popularity in
solving many 3D µCT related analysis problems (Bordignon
et al., 2019; Varfolomeev et al., 2019; Wang et al., 2019, 2020).
In this abstract, we propose a novel 2D to 3D reconstruction
method for isotropic rocks based on generative networks to re-
duce imaging costs. In particular, we work on the novel prob-
lem of generating ”gaps” between parallel 2D scans of the dig-
ital rock image, allowing us to interpolate the structure of the
rock samples for the layers between the available samples. Our
method also has the potential to provide multiple 3D digital
rock realizations with similar micro-structural properties.

To our understanding, limited work is done on addressing this
problem using DNNs. A particular issue is the need for large
amount of 3D rock samples for training. We approach the is-
sue via an inpainting perspective on 2D µCT scans. Due to
the isotropic property in digital rock images, the missing lay-
ers along the available samples, when viewed from another
perspective, can be seen as missing gaps to be inpainted over.
After inpainting, we can then revert back to the perspective of
the available samples, and perform smoothing to produce the
missing layers of the 3D sample. Together, the results are con-
catenated from the other perspective to recover the 3D scan of
the digital rock image. A visualization can be seen in Figure 1.
For the choice of GAN and AE used in our model, we consider
recent methods involving inverting of GANs (Creswell, 2016;

Lipton, 2017; Bau et al., 2019; Lei et al., 2019) to handle the
inpainting problem. We propose a Generative Encoding (GE)
method to solve the invert GAN problem, which we elaborate
on the method in the subsequent sections. The reason and con-
tributions for our work are listed below as follows:

1. We break down original reconstruction of 3D digital
rock images to a composition of 2D image problems.
Due to the difficulty in obtaining enough 3D digital
rock images, our method which uses 2D images instead
will make preparation of training data simpler.

2. Our method exploits the isotropic property of digital
rock images, by considering the problem as an inpaint-
ing problem in another axis. On one hand, this al-
lows us to augment training data to train our generative
networks using 2D rock images from any orientation,
while on the other hand, the model works on recon-
structing the 3D samples regardless of orientation.

3. Our proposed method separates the training of inpaint-
ing problem and the generation of rock samples by
training the respective tools, AEs and GANs respec-
tively, separately. We argue that this allows each model
to focus on perfecting their tasks, rather than mixing
the training objectives and training concurrently like in
existing architectures which merge AE and GAN, like
VAEGAN, AEGAN.

THEORY

In this section, we discuss key properties of rock samples and
GANs which leads to our proposed method.

Generative Networks

AE networks are made of two different network structures, the
encoder E and the decoder D. As their name suggests, E takes
as input image samples and performs a dimension reduction
to a lower dimension vector E(x;θE). On the other hand D
decodes vector z from a lower dimension space to generate an
image D(z;θD). Here, θE ,θD refers to the parameters of E,D
respectively. Composed together, the AE takes as input x, for
example image data, and attempts to learn an identity mapping
D(E(x;θE);θD) = x̂ such that x̂ ≈ x. This is done through a
joint tuning of D and E under the below optimization problem

min
θE ,θD

Ex∼pdata [d(x̂,x)]

where d is some distance function, for example L2-norm. This
structure of AE have been adapted to other variants like De-
noising AEs (Vincent et al., 2010), through augmenting the
dataset with noisy data obtained from perturbing original train-
ing data with noise, blurring, inpainting, etc, and training the
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objective to also match the noisy data with the clean origi-
nal data after passing into the AE. The dimension reduction
in AEs plays a key role to enhance the reconstruction perfor-
mance of the network, by compressing the input data into a
sparse representation which captures important features in the
original data. However, AEs penalizes pixel-wise error and
hence prefers generating smooth images which retain rough
details of the original image instead of attempting to learn fine
details.

Another stream of deep learning approaches are based on GANs
and its many variants (Radford et al., 2016; Arjovsky et al.,
2017; Berthelot et al., 2017; Zhao et al., 2017). The key idea
in GANs lies in an adversarial training scheme between two
competing neural networks, namely the generator G and dis-
criminator Di. G takes as input random noise vector z from
noise distribution pz, and outputs a synthetic sample G(z;θG).
Di takes as input synthetic and real samples x and outputs a
value Di(x;θDi) ∈ [0,1] representing the probability that the
input follows the data distribution pdata. Here, θG,θDi refers
to the parameters of G,Di respectively. G is trained to produce
samples which fool Di into thinking that the samples are real,
while Di focuses on learning to distinguish real and fake data,
which can be summarised by the below adversarial game:

min
θG

max
θDi

V (θG,θDi) = Ex∼pdata [logDi(x;θDi)]

+Ez∼pz [log(1−Di(G(z;θG);θDi))]

In application, training of the above objective and its variants
is challenging and the solution might not be stable, however
generated content are better in quality than those generated by
AEs.

Recent works have begun looking into solving invert GAN
problems. The general idea is to recover, from a generated
sample G(z), a noise vector z∗ ≈ z. This is done by solving the
following optimization problem. Given a sample image x, we
want to recover

z∗ = argmin
z
||G(z)− x||22

In summary, the model attempts to learn an inverse map G−1,
which plays the role of an ”encoder” in AE. Due to GANs be-
ing able to generated much higher quality content, the above
method is then capable of outperforming traditional AE meth-
ods which generally produces smoother images with coarse
details. In this paper, we propose using a Generative Encod-
ing (GE) framework to solve the inpainting objective, which
is adapted from the invert GAN methods. However, instead of
existing invert GAN objectives which performs the optimiza-
tion directly (Creswell, 2016; Lipton, 2017; Lei et al., 2019),
using the above objective, or augmenting with an ”encoder”
like architecture which aims to learn the inverse of a GAN
(Bau et al., 2019), we propose joining the generator from the
GAN with a separately trained encoder from an AE network,
with the below optimization framework where m=E(x∗) where
x∗ is some perturbation of image x

z∗ = argmin
z
||E(I(G(z)))−m||22 +λ‖z‖2

p

where I is a noise function on the generated sample, for e.g.,
inpainting mask. The GAN and AE is first pretrained sepa-

rately in a training phase, before merger using the above opti-
mization objective in a solving phase. The key novelty of the
GE framework lies in that the E here differs from original in-
vert GAN solutions in which it does not learn the inverse of G.
Rather, E generally learns a totally different latent space repre-
sentation compared to the one in G, and the unification process
during the solving phase learns a mapping between the two.
This way, the different objectives of the AE and GAN which
results in different emphasis on their respective spaces are fur-
ther augmented by each other - features which could be under
represented by GAN could be better represented in the latent
space of the AE. This also allows GAN, which is known to be
more unstable to train, to only train on a simpler objective of
generating real samples, while the more stable AE can help to
learn inpainting, rather than combining the whole problem into
a single network, like in many AE-GAN architectures, which
further makes GAN training difficult.

PROPOSED METHOD

In this section, we describe our proposed method. For simplic-
ity, assume that our sandstone images, denoted S, are grayscale
images of size n× n× n in height, width and depth. Suppose
we then only have some of the raw scans of some of the depths
of the sandstone images, for example, along the height, width
axis, which we denote as S:,:,k for k referring to the index cor-
responding to the k-th depth sample, and denote the indexes of
all the available samples as I ⊂ {0, . . . ,n− 1}. Our objective
is to recover the full S, that is, we want to recover S:,:,k for
k ∈ {0, . . . ,n−1}\ I. Instead of directly using methods to gen-
erate the missing layers of our images, we exploit the isotropic
property in sandstone images to modify the problem into an
inpainting problem. This is done in the following way:

Observing the image from another perspective, say the width,
depth axis, we have 2D images like Si,:,: with some unknown
values along the depth axis corresponding to indexes in {0, . . . ,n−
1}\I. Our problem now becomes an inpainting problem, where
we wish to inpaint over the unknown values along the width,
depth axis. After inpainting of each layer along the width,
depth axis, we reconsider our problem back in the width, height
axis and perform smoothing techniques to merge the inpainted
layers together. Figure 1 shows a visualization of how the
sandstone images will look like from two different perspec-
tives.

Figure 1: Visualization of sandstone sample from x,y perspec-
tive and y,z perspective with the missing data

Due to the isotropic property of sandstone images, instead of
requiring 3D samples to form the training set (which are diffi-
cult to obtain sufficiently large sample sizes), we train a gen-
erative network using 2D scans regardless of orientation of the
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sandstone images. This allows for a larger pool of training
data, as well as reusability of the same model.

The inpainting process is solved using the GE framework, as
described previously. The GAN is trained to generate realistic
2D sandstone images, while the AE focuses on learning the
general coarse structure of the images, as well as inpainting
objective. The overall training process is described in the be-
low Algorithm 1.

Algorithm 1 Inpainting Method for Sandstone Images

1. Pre-train any GAN using 2D sandstone images regard-
less of orientation.

2. Pre-train any AE using both real and fake images (from
G in Step 1), augmented with inpainted images.

3. Take the generator G of GAN and the encoder E of AE
to form the generative encoder.

4. From measurement S ∈ Rn×n×n, with known 2D im-
ages along the first 2 axis, choose one of the axis,
say the second axis, and produce inpainted samples x∗i
representing the inpainted image along the second and
third axis at the i-th position of the first axis, thus giv-
ing n samples to be recovered.

5. Given a measurement m = E(x∗i ), find z∗ =
argminz ||E(I(G(z)))−m||22 + λ‖z‖2

p and return x̂i =
G(z∗). Here, I refers to the inpainted mask applied to
the generated image G(z).

6. Concatenate all the samples x̂i to form Ŝ and consider
the corresponding missing layers along the original
first and second axis, and we get the reconstructed sam-
ples for the depth.

7. Implement postprocessing methods to smooth the im-
ages.

Loss Functions and Optimization Objectives

This subsection describes the loss function and optimization
objective for the GE model. Depending on the GAN archi-
tecture used, we train the GAN based on their proposed loss
function to generate 2D sandstone images.

For the AE, which we denote the decoder as D and encoder as
E, we can divide the loss into 3 parts. In the first part, Lreal
measures the difference between the real 2D image, x and the
reconstructed 2D image, x̂ = D(E(x)) from the training data,
given by

Lreal = ||x− x̂||22
Next, L f ake measures the difference between generated images
G(z) generated from a random noise using the GAN and the
reconstructed 2D image D(E(G(z))) via

L f ake = ||G(z)−D(E(G(z)))||22

Finally, we augment the training of the AE using inpainted im-
ages, so that we can handle the inpainting problem. Suppise
we have an inpainting mask function I which masks the origi-
nal image x to I(x). In this case, I masks random strips of the

image, like in Figure 1. Then, we augment the loss of AE with
Linpaint defined by

Linpaint = ||x−D(E(I(x)))||22

Together we get the AE loss

L = Lreal +αL f ake +βLinpaint

where α,β are hyperparameters. Notice here that we do not
train the GAN with any inpainting objectives in mind, such that
the generator is focused only on producing realisting sandstone
images.

The solution to the inpainting problem in the solving phase of
GE can be obtained by solving the below objective

z∗ = argmin
z
||E(I(G(z))−E(x†)||22 +λ‖z‖2

2, (1)

where x† is the given inpainted image formed from the inpaint-
ing mask function I applied to an unknown target image x∗.
In this case, since we know in our objective which parts are
masked, we can ensure that the mask used on G(z) is identical
to the mask used on x∗.

EXPERIMENTS AND PRELIMINARY RESULTS

Training Details

This subsection lists the training details used to obtain our pre-
liminary results for our model.

Dataset. We use µCT images of a dry Bentheimer sandstone
outcrop (Ramstad, 2018) published on the Digital Rocks Portal
as our training and testing set. We crop images to size 256×
256 centered at the center of the dry scan sandstone images.
Next, we rescale images so that the range of values are between
[−1,1], which are the range of grayscale values used in our
choice of GAN.

GAN. We use progressive GAN (pGAN) as the choice of our
GAN model, which has high resolution results for larger image
data. pGAN is trained using the training data above and the
corresponding generator G is used in GE. The pGAN model
used is obtained from the official Github of the pGAN paper
(Karras et al., 2017).

AE. GE is tested on a deep convolutional AE.

Optimization Objective. In the solving phase, ADAM op-
timizer is used with lr=0.1 to solve 1. We initialize z using
random start of the same distribution as the input distribution
for pGAN, and conduct training for 1400 iterations.

Preliminary Results

This subsection presents our results on the feasibility of our
proposed method. We present the results for the inpainted 2D
images on the test label, which are easier to visualize than 3D
images, as the overall error of the concatenation of these 2D
images to form Ŝ is dependant on the individual errors along
each layer.
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Figure 2 displays the results for the inpainting objective for
some of the samples in the test sample. Overall, we see that
the results of the reconstruction is able to capture the general
structure of the sandstone images after inpainting. Figure 3
shows that most of the details are generated successfully after
inpainting. Through this method, we can concatenate multiple
inpainted results along a different perspective to reconstruct
the original 3D sample S as Ŝ.

However, we note that some of the finer grain details in the
original images appear ”smoothed” out during reconstruction.
We argue that this is due to the AEs which focuses on gen-
erating the general structure of the image, hence preferring
smooth images. Another aspect, which will be done as future
work, will be to explore smoothing techniques to postprocess
the concatenated 3D result Ŝ such that observing the Ŝ from
alternative perspectives still yields smooth images.

Figure 2: Results for inpainting of muCT images of Ben-
theimer sandstones showing original (with red box indicating
inpainted over region) against the reconstructed sample after
solving using the solving phase.

Figure 3: Zoom in for some of the details of inpainted areas
showing detail reconstruction after optimization.

FUTURE WORK

In the future, we intend to explore enhancements to the frame-
work, particularly in improving the AE. We observe a general
coarser output image after reconstruction of the inpainted re-
sults, which we argue is due to the AE preferring smoother
features. Take for example the third sample in Figure 3, where
fine details are ”smoothed” out by the AE. We also intend to
look into smoothing techniques to perform smoothing over the
concatenated layers. This will help ensure that the overall 3D
structure of the concatenated Ŝ is smooth from other perspec-
tives, which is a common problem observed in most recon-
struction of 3D images using 2D slices. That is, the slices ob-
tained by looking along another perspective of the 3D samples
are smooth too.

CONCLUSION

In this abstract we present the preliminary results for our pro-
posed method. We show how the method of reconstructing the
3D S from some 2D layers of S can be tackled as an inpaint-
ing objective along another perspective. We present results to
show how our proposed invert GAN based method, GE, is able
to produce good reconstructions of sandstone images along the
inpainted blocks. In this case, this leads to a success in pro-
ducing a 3D sample Ŝ from concatenating the results of the
inpainting along the chosen perspective. Future work will in-
volve improving AE structure to better avoid the removal of
grain structures, thus further improving the inpainting result
and leading to higher resolution outputs. Also, exploration on
how to smooth concatenated results along other perspectives
of Ŝ is to be done to improve overall results visually.
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