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Abstract

Synchrosqueezed transforms are non-linear processes for a sharpened time-frequency
representation of wave-like components. They are efficient tools for identifying and ana-
lyzing wave-like components from their superposition. This paper is concerned with the
statistical properties of compactly supported synchrosqueezed transforms for wave-like
components embedded in a generalized Gaussian random process in multidimensional
spaces. Guided by the theoretical analysis of these properties, new numerical imple-
mentations are proposed to reduce the noise fluctuations of these transforms on noisy
data. A MATLAB package SynLab together with several heavily noisy examples is
provided to support these theoretical claims.

Keywords. Wave-like components, instantaneous (local) properties, synchrosqueezed
transforms, noise robustness, generalized Gaussian random process.
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1 Introduction

Non-linear and non-stationary wave-like signals (also termed as chirp signals in 1D) are
ubiquitous in science and engineering, e.g., clinical data [43, 44], seismic data [20, 23, 34],
climate data [36, 45], astronomical data [8, 12], materials science [33, 50], and art inves-
tigation [49]. Analyzing instantaneous properties (e.g., instantaneous frequencies, instan-
taneous amplitudes and instantaneous phases [6, 32]) or local properties (concepts for 2D
signals similar to “instantaneous” in 1D) of signals has been an important topic for over
two decades. In many applications [16, 24, 41, 42, 51, 52], these signals can be modeled as a
superposition of several wave-like components with slowly varying amplitudes, frequencies
or wave vectors, contaminated by noise. For example, a complex signal

f(x) =
K∑
k=1

αk(x)e2πiNkφk(x) + e(x), (1)

where αk(x) is the instantaneous (local) amplitude, Nkφk(x) is the instantaneous (local)
phase, Nkφ

′
k(x) is the instantaneous frequency (or Nk∇φk(x) as the local wave vector), and

e(x) is a noisy perturbation term.
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A powerful tool for analyzing signal (1) is the synchrosqueezed transform (SST) consist-
ing of a linear time-frequency analysis tool and a synchrosqueezing technique. It belongs
to more generally time-frequency reassignment techniques [3, 9, 10, 17] (see also [4] for a
recent review). The SST was initialized in [17] and further analyzed in [16] for the 1D
wavelet transform. Suppose Wf (ξ, x) is the wavelet transform of a 1D wave-like compo-
nent f(x) = α(x)e2πiNφ(x). The wavelet time-frequency representation has a wide support
spreading around the instantaneous frequency curve (Nφ′(x), x). It was proved that the

instantaneous frequency information function vf (ξ, x) =
∂xWf (ξ,x)
2πiWf (ξ,x)

is able to approximate

Nφ′(x). Hence, the synchrosqueezing technique shifts the value of Wf (ξ, x) from (ξ, x) to
(vf (ξ, x), x), generating a sharpened time-frequency representation Tf (v, x) with a support
concentrating around the curve (Nφ′(x), x). The localization of the new representation not
only improves the resolution of the original spectral analysis due to the uncertainty principle
but also make it easier to decompose the superposition in (1) into individual components.

A variety of SSTs have been proposed after the 1D synchrosqueezed wavelet transform
(SSWT) in [17], e.g., the synchrosqueezed short time Fourier transform (SSSTFT) in [37],
the synchrosqueezed wave packet transform (SSWPT) in [48, 51], the synchrosqueezed
curvelet transform (SSCT) in [52] and the 2D monogenic synchrosqueezed wavelet transform
in [15]. Rigorous analysis has proved that these transforms can accurately decompose a
class of superpositions of wave-like components and estimate their instantaneous (local)
properties if the given signal is noiseless. To improve the synchrosqueezing operator in
the presence of strongly non-linear instantaneous frequencies, some further methods have
been proposed in [5, 26, 28] based on an extra investigation of the higher order derivatives
of the phase of a wave-like component. All these SSTs are compactly supported in the
frequency domain to ensure accurate estimations. To better analyze signals with a trend in
real-time computation, a recent paper [14] proposes a new synchrosqueezing method based
on carefully designed wavelets with sufficient vanishing moments and a minimum support
in the time domain. However, mathematical analysis on the accuracy of this compactly
supported SSWT is still under development. This paper addresses this problem in the
framework of the SSWPT that includes the SSWT as a special case.

Another important topic in the study of SSTs is the robustness analysis of the syn-
chrosqueezing operator, since noise is ubiquitous in real applications. A pioneer paper
[11] in this direction studied the statistical properties of the 1D spectrogram reassignment
method by calculating the probability density function of white Gaussian noise after re-
assignment. A recent paper [36] focused on the robustness analysis of the 1D SSWT for
white Gaussian noise. It estimated the probability of a good estimation of the instanta-
neous frequency provided by the instantaneous frequency information function vf (ξ, x). A
following paper [13] generalized its results to generalized stationary Gaussian process. To
support the application of SSTs to real-time problems and multidimensional problems, this
paper analyzes the statistical properties of multidimensional SSTs that can be compactly
supported in the time domain.

Turning to the robustness issue in a numerical sense, it is of interest to design an efficient
implementation of a sharpened time-frequency representation with reduced noise fluctua-
tions. The idea of multitapering, first proposed in [38] for stationary signals and further
extended in [7, 21] for non-stationary signals, attempted to improve the statistical stability
of spectral analysis by generating multiple windowed trials of the noisy signal and averaging
the spectral analysis of these trials. By combining the multitapering and time-frequency
reassignment techniques, [46] proposed the 1D multitapering time-frequency reassignment
for a sharpened time-frequency representation with reduced noise fluctuations. Since its im-
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plementation is based on Hermite functions, its efficient generalization in multidimensional
spaces is not straightforward. Guided by the theoretical analysis of the statistical proper-
ties of SSTs, this paper proposes efficient numerical implementations of multidimensional
SSTs based on highly redundant frames. Since the SST of a noiseless signal is frame-
independent, averaging the SSTs from multiple time-frequency frames is able to reduce
the noise fluctuation while keeping the localization of the synchrosqueezed time-frequency
representation.

The rest of this paper is organized as follows. In Section 2, the main theorems for
the compactly supported SSTs in multidimensional spaces and their statistical properties
are presented. In Section 3, a few algorithms and their implementations are introduced in
detail for better statistical stability of SSTs. Several numerical examples with heavy noise
are provided to demonstrate the proposed properties. We conclude this paper in Section 4.

2 Theory for synchrosqueezed transforms (SSTs)

Let us briefly introduce the basics and assumptions of compactly supported SSTs in Section
2.1 before discussing their statistical properties in Section 2.2. While the synchrosqueezing
technique can be applied to a wide range of time-frequency transforms, the discussion here
is restricted to the framework of multidimensional wave packet transforms to save space.
It is easy to extend these results to other transforms (see [47] for the example of the 2D
synchrosqueezed curvelet transform). Due to the space limitation, only the main ideas of
the proofs are presented. Readers are referred to [47] for more details.

2.1 Compactly supported SSTs

Previously, the synchrosqueezed wave packet transform (SSWPT) is built on mother wave
packets compactly supported in the frequency domain. This paper studies a wider class of
mother wave packets defined below.

Definition 2.1. An n-dimensional mother wave packet w(x) ∈ Cm(Rn) is of type (ε,m)
for some ε ≥ 0, and some non-negative integer m, if ŵ(ξ) is a real-valued function with an
essential support in the ball B1(0) centered at the origin with a radius 1 satisfying that:

|ŵ(ξ)| ≤ ε

(1 + |ξ|)m
,

for |ξ| > 1.

Since w ∈ Cm(Rn), the above decaying requirement is easy to satisfy. Actually, we can
further assume ŵ(ξ) is essentially supported in a ball Bd(0) with d ∈ (0, 1] to adapt signals
with close instantaneous frequencies, i.e., |ŵ(ξ)| is approximately zero outside this support
up to an ε truncation error. However, d is just a constant in later asymptotic analysis.
Hence, we omit its discussion and consider it as 1 in the analysis but implement it in the
numerical tool. Similarly to the discussion in [48, 51], we can use this mother wave packet
w(x) to define a family of n-dimensional compactly supported wave packets

wab(x) = |a|ns/2w (|a|s(x− b)) e2πi(x−b)·a,

through scaling, modulation, and translation, controlled by a geometric parameter s, for a,
b ∈ Rn. With this family of wave packets ready, we define the wave packet transform via

Wf (a, b) = 〈f, wab〉 =

∫
f(x)wab(x)dx.
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Previously in [48, 51], the synchrosqueezed wave packet transform (SSWPT) is proposed
to analyze a class of intrinsic mode type functions as defined below.

Definition 2.2. A function f(x) = α(x)e2πiNφ(x) in Rn is an intrinsic mode type function
(IMT) of type (M,N) if α(x) and φ(x) satisfy

α(x) ∈ C∞, |∇α(x)| ≤M, 1/M ≤ α(x) ≤M,

φ(x) ∈ C∞, 1/M ≤ |∇φ(x)| ≤M, |∇2φ(x)| ≤M.

It has been proved that the instantaneous frequency (or local wave vector when n > 1)

information function vf (a, b) =
∇bWf (a,b)
2πiWf (a,b)

of an IMT f(x) can approximate N∇φ(b) if

the mother wave packet w(x) is of type (0,∞) and N is sufficiently large. A careful
inspection of previous proofs shows that the approximation vf (a, b) ≈ N∇φ(b) is still
valid up to an ε relative error if the mother wave packet is of type (ε,m) for any positive
integer. See Theorem 2.2.7 in [47] for a detailed proof. Hence, if we squeeze the coefficients
Wf (a, b) together based upon the same information function vf (a, b), then we would obtain
a sharpened time-frequency representation of f(x). This motivates the definition of the
synchrosqueezed energy distribution

Tf (v, b) =

∫
Rn
|Wf (a, b)|2δ (<vf (a, b)− v) da

for v, b ∈ Rn. Here δ denotes the Dirac delta function and <vf (a, b) means the real part of
vf (a, b).

For a multi-component signal f(x) =
∑K

k=1 αk(x)e2πiNkφk(x), the synchrosqueezed en-
ergy of each component will also concentrate around each Nk∇φk(x) if these components
satisfy the well-separation condition defined below.

Definition 2.3. A function f(x) is a well-separated superposition of type (M,N,K, s) if

f(x) =
K∑
k=1

fk(x),

where each fk(x) = αk(x)e2πiNkφk(x) is an IMT of type (M,Nk) with Nk ≥ N and the phase
functions satisfy the separation condition: for any (a, b) ∈ R2n, there exists at most one fk
satisfying that

|a|−s |a−Nk∇φk(b)| ≤ 1.

We denote by F (M,N,K, s) the set of all such functions.

In real applications, this well-separation condition might not be valid for a multi-
component signal at every x. However, the SST will work wherever the well-separation
condition is satisfied locally.

The key analysis of the SSWPT is how well the information function vf (a, b) approxi-
mates the instantaneous frequencies or local wave vectors. If the approximation is accurate
enough, the synchrosqueezed energy distribution Tf (a, b) gives a sharpened time-frequency
representation of f(x). We close this section with the following theorem that summarizes
the main analysis of the n-dimensional SSWPT for a superposition of IMTs without noise
or perturbation. In what follows, when we write O (·), ., or &, the implicit constants may
depend on M , m and K. Readers are referred to Theorem 2.2.7 in [47] for the proof of
Theorem 2.4 here.
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Theorem 2.4. Suppose the n-dimensional mother wave packet is of type (ε,m), for any
fixed ε ∈ (0, 1) and any fixed integer m ≥ 0. For a function f(x), we define

Rε = {(a, b) : |Wf (a, b)| ≥ |a|−ns/2
√
ε},

Sε = {(a, b) : |Wf (a, b)| ≥
√
ε},

and
Zk = {(a, b) : |a−Nk∇φk(b)| ≤ |a|s}

for 1 ≤ k ≤ K. For fixed M , m, K, s, and ε, there exists a constant N0 (M,m,K, s, ε) '
max

{
ε
−2

2s−1 , ε
−1
1−s
}

such that for any N > N0 and f(x) ∈ F (M,N,K, s) the following

statements hold.

(i) {Zk : 1 ≤ k ≤ K} are disjoint and Sε ⊂ Rε ⊂
⋃

1≤k≤K Zk;

(ii) For any (a, b) ∈ Rε ∩ Zk,

|vf (a, b)−Nk∇φk(b)|
|Nk∇φk(b)|

.
√
ε;

(iii) For any (a, b) ∈ Sε ∩ Zk,

|vf (a, b)−Nk∇φk(b)|
|Nk∇φk(b)|

. N
−ns/2
k

√
ε.

2.2 Statistical Properties of SSTs

Similarly to the noiseless case, we will analyze how well the information function vf (a, b)
approximates instantaneous frequencies or local wave vectors in the case when a super-
position of IMTs is contaminated by random noise. To simplify the discussion, we will
sketch out the proofs in the one-dimensional case and refer the readers to [47] for higher
dimensional cases.

Let us start with a simple case in which the superposition is perturbed slightly by a
contaminant, Theorem 2.5 below shows that the information function vf (a, b) can approx-
imate instantaneous frequencies with a reasonable error determined by the magnitude of
the perturbation.

Theorem 2.5. Suppose the mother wave packet is of type (ε,m), for any fixed ε ∈ (0, 1)
and any fixed integer m ≥ 0. Suppose g(x) = f(x)+e(x), where e(x) ∈ L∞ is a small error

term that satisfies ‖e‖L∞ ≤
√
ε1 for some ε1 > 0. For any p ∈

(
0, 12
]
, let δ =

√
ε + ε

1
2
−p

1 .
Define

Rδ = {(a, b) : |Wg(a, b)| ≥ |a|−s/2δ},

Sδ = {(a, b) : |Wg(a, b)| ≥ δ},

and
Zk = {(a, b) : |a−Nkφ

′
k(b)| ≤ |a|s}

for 1 ≤ k ≤ K. For fixed M , m, K, s, and ε, there exists a constant N0 (M,m,K, s, ε) '
max

{
ε
−1

2s−1 , ε
−1
1−s
}

such that for any N > N0 (M,m,K, s, ε) and f(x) ∈ F (M,N,K, s) the

following statements hold.
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(i) {Zk : 1 ≤ k ≤ K} are disjoint and Sδ ⊂ Rδ ⊂
⋃

1≤k≤K Zk;

(ii) For any (a, b) ∈ Rδ ∩ Zk,

|vg(a, b)−Nkφ
′
k(b)|

|Nkφ
′
k(b)|

.
√
ε+ εp1;

(iii) For any (a, b) ∈ Sδ ∩ Zk,

|vg(a, b)−Nkφ
′
k(b)|

|Nkφ
′
k(b)|

.

√
ε+ εp1

N
s/2
k

.

We introduce the parameter p to clarify the relation among the perturbation level,
the threshold and the accuracy for better understanding the influence of perturbation or
noise. For the same purpose, a parameter q will be introduced in the coming theorems.
If the threshold δ is larger, e.g., δ ≥

√
ε1
ε , the relative estimate errors in (ii) and (iii)

are bounded by
√
ε and

√
ε

N
s/2
k

, respectively. Similarly, one can show that the information

function computed from the wave packet coefficient with a larger magnitude can better
approximate the instantaneous frequency.

Below is a sketch of the proof of Theorem 2.5. See the proof of Theorem 3.2.1 in [47]
for a detailed proof.

Proof. We only need to discuss the case when a > 0. By the definition of the wave packet
transform, we have

|We(a, b)| .
√
ε1a
−s/2 and |∂bWe(a, b)| .

√
ε1

(
a1−s/2 + as/2

)
. (2)

If (a, b) ∈ Rδ, then |Wg(a, b)| ≥ a−s/2δ. Together with Equation (2), it holds that

|Wg(a, b)| ≥ |Wf (a, b)| − |We(a, b)| ≥ a−s/2 (δ −
√
ε1) ≥ a−s/2

√
ε. (3)

Hence, Sδ ⊂ Rδ ⊂ Rε, where Rε is defined in Theorem 2.4 and is a subset of
⋃

1≤k≤K Zk.
So, (i) is true by Theorem 2.4.

Since Rδ ⊂ Rε, (a, b) ∈ Rδ ∩ Zk implies (a, b) ∈ Rε ∩ Zk. Hence, by Theorem 2.4, it
holds that

|vf (a, b)−Nkφ
′
k(b)|

|Nkφ
′
k(b)|

.
√
ε, (4)

when N is larger than a constant N0 (M,m,K, s, ε) ' max
{
ε
−1

2s−1 , ε
−1
1−s
}

. Notice that

(a, b) ∈ Zk implies a ' Nk. Hence, by Equation (2) to (4),

|vg(a, b)−Nkφ
′
k(b)|

|Nkφ
′
k(b)|

≤
|vf (a, b)−Nkφ

′
k(b)|

|Nkφ
′
k(b)|

+
| ∂bWf (a,b)
2πiWf (a,b)

− ∂bWg(a,b)
2πiWg(a,b)

|
|Nkφ

′
k(b)|

≤
√
ε+ εp1,

when N > N0. Hence, (ii) is proved. The proof of (iii) is similar.

Next, we will discuss the case when the contamination e is a random perturbation.
[22, 25, 27, 35, 39] are referred to for basic facts about generalized random fields and
complex Gaussian processes. To warm up, we start with additive white Gaussian process
in Theorem 2.6 and extend it to a generalized zero mean stationary Gaussian process in
Theorem 2.7. We assume that e has an explicit power spectral function denoted by ê(ξ).
‖ · ‖ represents the L2 norm and 〈·, ·〉 is the standard inner product.
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Theorem 2.6. Suppose the mother wave packet is of type (ε,m), for any fixed ε ∈ (0, 1)
and any fixed integer m ≥ 2

1−s + 4. Suppose g(x) = f(x) + e, where e is zero mean white

Gaussian process with a variance ε1+q1 for some q > 0 and some ε1 > 0. For any p ∈
(
0, 12
]
,

let δ =
√
ε+ ε

1
2
−p

1 . Define

Rδ = {(a, b) : |Wg(a, b)| ≥ a−s/2δ},

Sδ = {(a, b) : |Wg(a, b)| ≥ δ},

and
Zk = {(a, b) : |a−Nkφ

′
k(b)| ≤ as}

for 1 ≤ k ≤ K. For fixed M , m, K, s, and ε, there exists a constant N0 (M,m,K, s, ε) '
max

{
ε
−1

2s−1 , ε
−1
1−s
}

such that for any N > N0 (M,m,K, s, ε) and f(x) ∈ F (M,N,K, s) the

following statements hold.

(i) {Zk : 1 ≤ k ≤ K} are disjoint.

(ii) If (a, b) ∈ Rδ, then (a, b) ∈
⋃

1≤k≤K Zk with a probability at least

1− e−O(N−sk ε−q1 ) +O

(
ε

N
m(1−s)
k

)
.

(iii) If (a, b) ∈ Sδ, then (a, b) ∈
⋃

1≤k≤K Zk with a probability at least

1− e−ε
−q
1 ‖w‖−2

+O

(
ε

N
m(1−s)
k

)
.

(iv) If (a, b) ∈ Rδ ∩ Zk for some k, then

|vg(a, b)−Nkφ
′
k(b)|

|Nkφ
′
k(b)|

.
√
ε+ εp1

is true with a probability at least(
1− e−O(N2−3s

k ε−q1 )
)(

1− e−O(N−s−2
k ε−q1 )

)
+O

(
ε

N
(m−4)(1−s)−2
k

)
.

(v) If (a, b) ∈ Sδ ∩ Zk, then

|vg(a, b)−Nkφ
′
k(b)|

|Nkφ
′
k(b)|

.

√
ε+ εp1

N
s/2
k

is true with a probability at least(
1− e−O(N2−2s

k ε−q1 )
)(

1− e−O(N−2
k ε−q1 )

)
+O

(
ε

N
(m−4)(1−s)−2
k

)
.

We only sketch the proof of the above theorem. See the proof of Theorem 3.2.2 in [47]
for a long proof.
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Proof. Step 1: we prove this theorem when the mother wave packet is of type (0,m) first,
i.e., compactly supported in the frequency domain.

Since wab and ∂bwab are in L1 ∩ Cm−1, We(a, b) and ∂bWe(a, b) are Gaussian variables.
Hence, Wg(a, b) = Wf (a, b) + We(a, b) and ∂bWg(a, b) = ∂bWf (a, b) + ∂bWe(a, b) can be
understood as Gaussian variables. Furthermore, We(a, b) and (We(a, b), ∂bWe(a, b)) are
circularly symmetric Gaussian variables by checking that their pseudo-covariance matrices
are zero. Therefore, the distribution of We(a, b) is determined by its variance

e−ε
−(1+q)
1 |z1|2‖w‖−2

πε1+q1 ‖w‖2
.

If we define

V =

(
‖ŵ‖2 〈ŵab, 2πiξŵab〉

〈2πiξŵab, ŵab〉 〈2πiξŵab, 2πiξŵab〉

)
,

then ε1+q1 V is the covariance matrix of (We(a, b), ∂bWe(a, b)) and its distribution is described
by the joint probability density

e−ε
−(1+q)
1 z∗V −1z

π2ε
2(1+q)
1 detV

,

where z = (z1, z2)
T , T and ∗ denote the transpose operator and conjugate transpose oper-

ator. V is an invertible and self-adjoint matrix, since We(a, b) and ∂bWe(a, b) are linearly
independent. Hence, there exist a diagonal matrix D and a unitary matrix U such that
V −1 = U∗DU .

Part (i) is true by previous theorems. Define the following events

G1 =
{
|We(a, b)| < a−s/2

√
ε1

}
,

G2 = {|We(a, b)| <
√
ε1} ,

G3 =
{
|∂bWe(a, b)| <

√
ε1

(
a1−s/2 + as/2

)}
,

Hk =

{
|vg(a, b)−Nkφ

′
k(b)|

|Nkφ
′
k(b)|

.
√
ε+ εp1

}
,

and

Jk =

{
|vg(a, b)−Nkφ

′
k(b)|

|Nkφ
′
k(b)|

.

√
ε+ εp1

N
s/2
k

}
,

for 1 ≤ k ≤ K. To conclude Part (ii) to (v), we need to estimate the probability P (G1),
P (G2), P (G1 ∩G3), P (G2 ∩G3), P (Hk) and P (Jk). Algebraic calculations show that

P (G1) = 1− e−a−sε
−q
1 ‖w‖−2

and P (G2) = 1− e−ε
−q
1 ‖w‖−2

.

We are ready to summarize and conclude (ii) and (iii). If (a, b) ∈ Rδ, then

|We(a, b) +Wf (a, b)| ≥ a−s/2
(
ε
1/2−p
1 +

√
ε
)
. (5)

If (a, b) /∈
⋃

1≤k≤K Zk, then

|Wf (a, b)| ≤ a−s/2ε. (6)
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Equation (5) and (6) lead to |We(a, b)| ≥ a−s/2
√
ε1. Hence,

P

(a, b) /∈
⋃

1≤k≤K
Zk

 ≤ P (|We(a, b)| ≥ a−s/2
√
ε1

)
= 1− P (G1) .

This means that if (a, b) ∈ Rδ, then (a, b) ∈
⋃

1≤k≤K Zk with a probability at least P (G1) =

1− e−a−sε
−q
1 ‖w‖−2

= 1− e−O(N−sk ε−q1 ), since a ' Nk if (a, b) ∈ Zk. So, (ii) is true. A similar
argument applied to (a, b) ∈ Sδ shows that (a, b) ∈

⋃
1≤k≤K Zk with a probability at least

P (G2) = 1− e−ε
−q
1 ‖w‖−2

. Hence, (iii) is proved.
Recall that V −1 = U∗DU . By the change of variables z′ = Uz, we can show that

P (G1 ∩G3) ≥

1− e
−D11d

2
1

ε
1+q
1

1− e
−D22d

2
1

ε
1+q
1

 ,

and

P (G2 ∩G3) ≥

1− e
−D11d

2
2

ε
1+q
1

1− e
−D22d

2
2

ε
1+q
1

 .

We can further estimate that D11 ' a2(1−s) and D22 ' a−2. Therefore,

P (G1 ∩G3) ≥
(

1− e−O(a2−3sε−q1 )
)(

1− e−O(a−s−2ε−q1 )
)
,

and
P (G2 ∩G3) ≥

(
1− e−O(a2−2sε−q1 )

)(
1− e−O(a−2ε−q1 )

)
.

By Theorem 2.5, if (a, b) ∈ Rδ ∩ Zk for some k, then

P (Hk) ≥ P (Hk|G1 ∩G3)P (G1 ∩G3) = P (G1 ∩G3) ≥
(

1− e−O(a2−3sε−q1 )
)(

1− e−O(a−s−2ε−q1 )
)
.

Note that a ' Nk when a ∈ Zk, then

P (Hk) ≥
(

1− e−O(N2−3s
k ε−q1 )

)(
1− e−O(N−s−2

k ε−q1 )
)
.

Similarly, if (a, b) ∈ Sδ ∩ Zk for some k, then

P (Jk) ≥ P (Jk|G2 ∩G3)P (G2 ∩G3) = P (G2 ∩G3) ≥
(

1− e−O(N2−2s
k ε−q1 )

)(
1− e−O(N−2

k ε−q1 )
)
.

These arguments prove (iv) and (v).
Step 2: we go on to prove this theorem when the mother wave packet is of type (ε,m)

with m ≥ 2
1−s + 4. We would like to emphasize that the requirement is crucial to the

following asymptotic analysis and it keeps the error caused by the non-compact support of
ŵ reasonably small.

The sketch of the proof is similar to the first step, but We(a, b) and (We(a, b), ∂bWe(a, b))
are Gaussian variables not circularly symmetric. Suppose they have covariance matrices C1

and C2, pseudo-covariance matrices P1 and P2, respectively. We can still check that they
have zero mean, C1 = ε1+q1 ‖w‖2 and C2 = ε1+q1 V , where V is defined in the first step. By the
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definition of the mother wave packet of type (ε,m), the magnitude of every entry in P1 and

P2 is bounded by O

(
ε1+q1 ε

am(1−s)

)
. Notice that the covariance matrix of (We(a, b),W

∗
e (a, b)) is

V1 =

(
C1 P1

P ∗1 C∗1

)
.

By Equation (27) in [27] and the Taylor expansion, the distribution of We(a, b) is described
by the following distribution

e−
1
2
(z∗1 ,z1)V

−1
1 (z1,z∗1 )

T

π
√

detV1
=
e−ε

−(1+q)
1 |z1|2‖w‖−2

πε1+q1 ‖w‖2

(
1 +O

(
ε|z1|2

ε1+q1 am(1−s)

))
.

By the same argument, the covariance matrix of (We(a, b), ∂bWe(a, b),W
∗
e (a, b), ∂bW

∗
e (a, b))

is

V2 =

(
C2 P2

P ∗2 C∗2

)
.

Let z = (z1, z2)
T . Then the distribution of (We(a, b), ∂bWe(a, b)) is described by the joint

probability density

e−
1
2
(z∗1 ,z

∗
2 ,z1,z2)V

−1
2 (z1,z2,z∗1 ,z

∗
2 )
T

π2
√

detV2
. (7)

Notice that C2 = ε1+p1 V and V has eigenvalues of order a2 and a2(s−1). Hence, C2 has

eigenvalues of order ε1+p1 a2 and ε1+p1 a2(s−1). Recall that the magnitude of every entry in P2

is bounded by O

(
ε1+q1 ε

am(1−s)

)
. This means that V2 is nearly dominated by diagonal blocks C2

and C∗2 . Basic spectral theory for linear transforms shows that

V −12 =

(
C−12

(C∗2 )−1

)
+ Pε,

where Pε is a matrix with 2-norm bounded by O
(
ε
−(1+q)
1 εa(m−4)(s−1)

)
. m−6
m−4 ≥ s is crucial

to the above spectral analysis. Since every entry of P2 is bounded by O

(
ε1+q1 ε

am(1−s)

)
,

detV2 = (detC2)
2 +O

(
ε
4(1+q)
1 ε

am−2−(m+2)s

)
,

where the residual comes from the entry bound and the eigenvalues of C2. Hence (7) is
actually

e−ε
−(1+q)
1 z∗V −1ze−

1
2
(z∗1 ,z

∗
2 ,z1,z2)Pε(z1,z2,z

∗
1 ,z
∗
2 )
T

π2ε
2(1+q)
1

√
(detV )2 +O

(
ε

am−2−(m+2)s)

) .

By the same argument in the first step, we can show that there exist a diagonal matrix
D = diag{a2(1−s), a−2} and a unitary matrix U such that V −1 = U∗DU . Part (i) is
still true by previous theorems. To conclude Part (ii) to (v), we still need to estimate
the probability of those events defined in the first step, i.e., P (G1), P (G2), P (G1 ∩G3),
P (G2 ∩G3), P (Hk) and P (Jk). By the estimations above, one can show that

P (G1) = 1− e−a−sε
−q
1 ‖w‖−2

+O
( ε

am(1−s)

)
,
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and

P (G2) = 1− e−ε
−q
1 ‖w‖−2

+O
( ε

am(1−s)

)
.

Hence, we can conclude (ii) and (iii) follows the same proof in the first step. Next, we
look at the last two part of this theorem.

Let us introduce notations δ1 = a−s/2
√
ε1, δ2 =

√
ε1, δ3 =

(
a1−s/2 + as/2

)√
ε1, d1 =

min{ δ1√
2
, δ3√

2
}, and d2 = min{ δ2√

2
, δ3√

2
}. By previous estimations, we have

P (G1 ∩G3)

=

∫
{|z1|<δ1,|z2|<δ3}

e−
1
2
(z∗1 ,z

∗
2 ,z1,z2)V

−1
2 (z1,z2,z∗1 ,z

∗
2 )
T

π2
√

detV2
dz1dz2

=

∫
{|z1|<δ1,|z2|<δ3}

e−ε
−(1+q)
1 z∗V −1ze−

1
2
(z∗1 ,z

∗
2 ,z1,z2)Pε(z1,z2,z

∗
1 ,z
∗
2 )
T

π2ε
2(1+q)
1

√
(detV )2 +O

(
ε

am−2−(m+2)s)

) dz1dz2. (8)

Since
detV√

(detV )2 +O
(

ε
am−2−(m+2)s)

) = 1 +O
( ε

a(m−2)(1−s))

)
, (9)

we can drop out the term O
(

ε
am−2−(m+2)s)

)
in (8), which would generate an absolute error

no more than O
(

ε
a(m−2)(1−s))

)
in the estimate of P (G1 ∩G3). Let

g(z) = −1

2
(z∗1 , z

∗
2 , z1, z2)Pε(z1, z2, z

∗
1 , z
∗
2)T ,

then by the change of variables we have

P (G1 ∩G3)

≈
∫
{|z1|<δ1,|z2|<δ3}

e−ε
−(1+q)
1 z∗V −1zeg(z)

π2ε
2(1+q)
1 detV

dz1dz2

=

∫
{|z1|<δ1,|z2|<δ3}

e−ε
−(1+q)
1 (D11|z′1|2+D22|z′2|2)eg(U

∗z′)

π2ε
2(1+q)
1 detV

dz′1dz
′
2

≥
∫
{|z′1|<d1,|z′2|<d1}

e−ε
−(1+q)
1 (D11|z′1|2+D22|z′2|2)eg(U

∗z′)

π2ε
2(1+q)
1 detV

dz′1dz
′
2

=
1

π2ε
2(1+q)
1 detV

∫ d1

0

∫ d1

0

∫ 2π

0

∫ 2π

0
r1r2e

−D11r
2
1

ε
1+q
1 e

−D22r
2
2

ε
1+q
1 eg̃(r1,θ1,r2,θ2)dθ1dθ2dr1dr2

=
1

π2ε
2(1+q)
1 detV

∫ d1

0

∫ d1

0

∫ 2π

0

∫ 2π

0
r1r2e

−D11r
2
1

ε
1+q
1 e

−D22r
2
2

ε
1+q
1

(
eg̃(r1,θ1,r2,θ2) − 1

)
dθ1dθ2dr1dr2

+

1− e
−D11d

2
1

ε
1+q
1

1− e
−D22d

2
1

ε
1+q
1

 , (10)

11



where g̃(r1, θ1, r2, θ2) = g(U∗z′). Recall that the 2-norm of Pε is bounded byO
(
ε
−(1+q)
1 εa(m−4)(s−1)

)
.

Hence,

|g̃(r1, θ1, r2, θ2)| ≤ O
(
ε
−(1+q)
1 εa(m−4)(s−1)

) (
|z1|2 + |z2|2

)
= O

(
ε
−(1+q)
1 εa(m−4)(s−1)

) (
r21 + r22

)
.

Therefore, the first term in (10) is bounded by

O
(
εa(m−4)(s−1)

)
ε
3(1+q)
1 detV

∫ d1

0

∫ d1

0
r1r2e

−D11r
2
1

ε
1+q
1 e

−D22r
2
2

ε
1+q
1

(
r21 + r22

)
dr1dr2

≤ O

(
ε

D22a(m−4)(1−s)

)∫ ∞
0

∫ ∞
0

r1r2
(
r21 + r22

)
e−r

2
1e−r

2
2dr1dr2

= O
( ε

a(m−4)(1−s)−2

)
. (11)

The analysis in (9) and (11) implies that

P (G1 ∪G3) ≥

1− e
−D11d

2
1

ε
1+q
1

1− e
−D22d

2
1

ε
1+q
1

+O
( ε

a(m−4)(1−s)−2

)
.

and similarly

P (G2 ∩G3) ≥

1− e
−D11d

2
2

ε
1+q
1

1− e
−D22d

2
2

ε
1+q
1

+O
( ε

a(m−4)(1−s)−2

)
.

The rest of the proof is exactly the same as the one in the first step and consequently we
know this theorem is also true for a mother wave packets of type (ε,m) with m satisfying
m ≥ 2

1−s + 4.

Thus far, we have considered the analysis for small perturbation and white Gaussian
process. Next, Theorem 2.6 is extended to a broader class of colored random processes.

Theorem 2.7. Suppose the mother wave packet is of type (ε,m), for any fixed ε ∈ (0, 1)
and any fixed integer m ≥ 2

1−s + 4. Suppose g(x) = f(x) + e, where e is a zero mean

stationary Gaussian process. Let ê(ξ) denote the spectrum of e, maxξ |ê(ξ)| ≤ ε−1 and

Ma = max|ξ|<1 ê(a
sξ + a). For any p ∈ (0, 12 ] and q > 0, let δa = M

( 1
2
−p)/(1+q)

a +
√
ε,

Rδa = {(a, b) : |Wg(a, b)| ≥ a−s/2δa},

Sδa = {(a, b) : |Wg(a, b)| ≥ δa},

and
Zk = {(a, b) : |a−Nkφ

′
k(b)| ≤ as}

for 1 ≤ k ≤ K. For fixed M , m, K, s, and ε, there exists a constant N0 (M,m,K, s, ε) '
max

{
ε
−1

2s−1 , ε
−1
1−s
}

such that for any N > N0 (M,m,K, s, ε) and f(x) ∈ F (M,N,K, s) the

following statements hold.

(i) {Zk : 1 ≤ k ≤ K} are disjoint.

12



(ii) If (a, b) ∈ Rδa, then (a, b) ∈
⋃

1≤k≤K Zk with a probability at least

1− e−O
(
N−sk M

−q/(1+q)
a

)
+O

(
ε

N
m(1−s)
k

)
.

(iii) If (a, b) ∈ Sδa, then (a, b) ∈
⋃

1≤k≤K Zk with a probability at least

1− e−O(M
−q/(1+q)
a ) +O

(
ε

N
m(1−s)
k

)
.

(iv) If (a, b) ∈ Rδa ∩ Zk for some k, then

|vg(a, b)−Nkφ
′
k(b)|

|Nkφ
′
k(b)|

.
√
ε+Mp/(1+q)

a

is true with a probability at least(
1− e−O

(
N2−3s
k M

−q/(1+q)
a

))(
1− e−O

(
N−s−2
k M

−q/(1+q)
a

))
+O

(
ε

N
(m−4)(1−s)−2
k

)
.

(v) If (a, b) ∈ Sδa ∩ Zk, then

|vg(a, b)−Nkφ
′
k(b)|

|Nkφ
′
k(b)|

. N
−s/2
k

(√
ε+Mp/(1+q)

a

)
is true with a probability at least(

1− e−O
(
N2−2s
k M

−q/(1+q)
a

))(
1− e−O

(
N−2
k M

−q/(1+q)
a

))
+O

(
ε

N
(m−4)(1−s)−2
k

)
.

Proof. The proof of this theorem is nearly identical to Theorem 2.6. Although calculations
are more cumbersome, the derivation proceeds along the same line (see the proof of Theorem
3.2.3 in [47] for details).

Theorem 2.6 and 2.7 provide a new insight that a smaller s yields a synchrosqueezed
transform that can provide a good estimation with higher probability. The parameter m in
the mother wave packet is also important, e.g., satisfying m ≥ 2

1−s + 4. In a special case,
if a compactly supported synchrosqueezed wavelet transform (corresponding to s = 1) is
preferable, then we require that m ≥ 2

1−s + 4 =∞. Hence, the mother wavelet is better to
be C∞.

We have not optimized the requirement of the variance of the Gaussian process e and
the probability bound in Theorem 2.6 and Theorem 2.7. According to the numerical perfor-
mance of the SSTs, the requirement of the variance could be weakened and the probability
estimation could be improved. A key step is to improve the estimate of P (G1 ∩ G3) and
P (G2 ∩G3) in the above proofs. This is left as future work.

The above statistical property of the 1D SSWPT can be extended to higher dimensional
cases. However, the notations are much heavier and the calculations are more tedious. We
close this section with the theorem for the 2D SSWPT. See the proof of Theorem 3.4.4 in
[47] for a detailed version.
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Theorem 2.8. Suppose the 2D mother wave packet is of type (ε,m), for any fixed ε ∈ (0, 1)

and any fixed integer m ≥ max
{

2(1+s)
1−s , 2

1−s + 4
}

. Suppose g(x) = f(x)+e, where e is a zero

mean stationary Gaussian process with a spectrum denoted by ê(ξ) and maxξ |ê(ξ)| ≤ ε−1.

Define Ma = max|ξ|<1 ê(|a|sξ+a). For any p ∈ (0, 12 ] and q > 0, let δa = M
( 1
2
−p)/(1+q)

a +
√
ε,

Rδa = {(a, b) : |Wg(a, b)| ≥ |a|−sδa},

Sδa = {(a, b) : |Wg(a, b)| ≥ δa},

and
Zk = {(a, b) : |a−Nk∇bφk(b)| ≤ |a|s}

for 1 ≤ k ≤ K. For fixed M , m, s, ε and K, there exists a constant N0 (M,m,K, s, ε) '
max

{
ε
−2

2s−1 , ε
−1
1−s
}

such that for any N > N0 and f(x) ∈ F (M,N,K, s) the following

statements hold.

(i) {Zk : 1 ≤ k ≤ K} are disjoint.

(ii) If (a, b) ∈ Rδa, then (a, b) ∈
⋃

1≤k≤K Zk with a probability at least

1− e−O
(
N−2s
k M

−q/(1+q)
a

)
+O

(
ε

N
m(1−s)
k

)
.

(iii) If (a, b) ∈ Sδa, then (a, b) ∈
⋃

1≤k≤K Zk with a probability at least

1− e−O(M
−q/(1+q)
a ) +O

(
ε

N
m(1−s)
k

)
.

(iv) If (a, b) ∈ Rδa ∩ Zk for some k, then

|vg(a, b)−Nk∇φk(b)|
|Nk∇φk(b)|

.
√
ε+Mp/(1+q)

a

is true with a probability at least(
1− e−O

(
N2−4s
k M

−q/(1+q)
a

))(
1− e−O

(
N−4s
k M

−q/(1+q)
a

))(
1− e−O

(
N−2−2s
k M

−q/(1+q)
a

))
+O

(
ε

N
(m−4)(1−s)−2
k

)
+O

(
ε

N
m−2−(m+2)s
k

)
.

(v) If (a, b) ∈ Sδa ∩ Zk for some k, then

|vg(a, b)−Nk∇φk(b)|
|Nk∇φk(b)|

. N−sk

(√
ε+Mp/(1+q)

a

)
is true with a probability at least(

1− e−O
(
N2−2s
k M

−q/(1+q)
a

))(
1− e−O

(
N−2s
k M

−q/(1+q)
a

))(
1− e−O

(
N−2
k M

−q/(1+q)
a

))
+O

(
ε

N
(m−4)(1−s)−2
k

)
+O

(
ε

N
m−2−(m+2)s
k

)
.
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3 Implementation and numerical results

In this section, we provide numerical examples to demonstrate some statistical properties
discussed in Section 2. Guided by these properties, we explore several new ideas to improve
the statistical stability of discrete SSTs in the presence of heavy noise. We have developed
SynLab, a collection of MATLAB implementation for various SSTs that has been publicly
available at: https://github.com/HaizhaoYang/SynLab. Most numerical examples pre-
sented in this paper can be found in this toolbox. All examples are implemented using a
MacBook Pro with 2.7 GHz Intel Core i7.
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Figure 1: Top-left: The real instantaneous frequency. Top-right: The standard SSWT avail-
able in [1]. Bottom-left: The standard SSSTFT available in [1]. Bottom-right: The SSWPT
with only one frame, i.e., the redundancy parameter red = 1 in SynLab. Parameters in
these transforms have been tuned for reasonably good visualization.

3.1 Implementation for better statistical stability

From the discussion in Section 2, we can summarize several observations for designing better
implementation of SSTs to reduce the fluctuation of noise.

1. Smaller geometric parameter s
As we can see in the theorems for noisy data, a smaller geometric parameter s results
in a higher probability of a good estimation of the instantaneous frequency or the
local wave vector via the information function vf (a, b). Hence, in the case when noise
is heavy, it is better to apply an SST with a smaller geometric parameter s.
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2. Highly redundant frames
Previously in the synchrosqueezed wavelet transform (SSWT) [16], the synchrosqueezed
short-time Fourier transform (SSSTFT) [37], and the synchrosqueezed wave packet
transform (SSWPT) [48], various SSTs are generated from time-frequency transforms
with low redundancy to obtain efficient forward and inverse transforms. However, the
resultant transforms are not reliable when noise is heavy as we can see in the example
in Figure 1. In this example, one single IMT f(x) = e60πi(x+0.05 cos(2πx)) is embedded
in white Gaussian noise with a distribution 2N (0, 1). The signal is sampled in a time
interval [0, 1] with a sampling rate 1024 Hz. We apply the standard SSWT, SSSTFT
in [1] and the SSWPT with s = 0.75 in SynLab and visualize their results using the
same discrete grid in the time-frequency domain. Although we could identify a rough
curve in these results to estimate the instantaneous frequency of f(x), the accuracy
is poor in some areas and there are many misleading curves coming from the noise.

As we can see in the theory for SSTs, the accuracy of the estimation provided by
the information function vf (a, b) is essentially independent of a and the mother wave
packet w(x). This motivates us to synchrosqueeze a highly redundant time-frequency
transform with over-complete samples in a and different mother wave packets w(x).
This generates many samples of estimations from a single realization of the noisy data.
Averaging these estimation samples leads to a better result. It can be understood
in the point of view that the contribution of IMTs to the synchrosqueezed energy
distribution Tf (a, b) will remain the same due to the coherent averaging, but the
contribution of the noise will be smoothed out because of the incoherent averaging.
Applying different mother wave packets is essentially the same as applying multitapers
in the multitaper time-frequency reassignment in [46]. In this paper, we only focus on
oversampling the variable a and leave the design of different multidimensional mother
wave packets as future work. In the numerical examples later, for a fixed geometric
parameter s, we synchrosqueeze a union of wave packet frames generated by time-
frequency shifting, dilation (and rotation in multidimensional spaces). The number
of frames is denoted as red in SynLab.

3. Selective time-frequency coefficients
As we can see in the proofs of previous theorems, a larger time-frequency coefficient
results in a higher probability for a good estimation provided by the information
function vf (a, b). This inspires two ideas: 1) applying an adaptive time-frequency
transform before synchrosqueezing; 2) only reassigning the largest coefficient in the
domain where there is at most one IMT. The first idea aims at generating large
coefficients while the second idea avoids incorrect reassignments as many as possible.
Selecting the best coefficients to reassign, in some sense, is similar to the idea of
sparse matching pursuit in a highly redundant frame, but we avoid its expensive
optimization.

3.2 Numerical examples

Here we provide numerical examples to demonstrate the efficiency of the proposed imple-
mentation in Section 3.1. In all examples, we assume the given data g(x) = f(x) + e(x)
is defined in [0, 1]n, where f(x) is the target signal, e(x) is white Gaussian noise with a
distribution σ2N (0, 1), and n is the number of dimensions.

As we have seen in the theorems in Section 2, a proper threshold adaptive to the noise
level after the wave packet transform is important to obtain an accurate instantaneous
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frequency/local wave vector estimate. We refer to [18, 19] for estimating noise level and
[36] for designing thresholds for the SSWT. The generalization of these techniques for
the transforms here is straightforward. In this paper, we use a small uniform threshold
δ = 10−2 (rather than a threshold adaptive to noise level) and set σ2 such that the noise is
overwhelming the original signal. The accuracy tolerance ε = 10−4.

3.2.1 Visual illustrations for statistical properties

To support the theoretical analysis in Section 2 and the proposals in Section3.1, we compare
the performance of the SSWPT with different redundancy parameter red and s = 1/2+k/8,
where k = 1, 2 and 3, in both noiseless cases and highly noisy cases.

0 0.2 0.4 0.6 0.8

−1

−0.5

0

0.5

1

x

0 0.2 0.4 0.6 0.8

−2

−1

0

1

2

3

x

0 0.2 0.4 0.6 0.8

−10

−5

0

5

10

x

Figure 2: Left: A 1D synthetic benchmark signal. It is normalized using L∞ norm. Middle:
A noisy version generated with white Gaussian noise 0.75N (0, 1). Right: A noisy version
contaminated by an α stable random noise [2] with parameters α = 1, dispersion= 0.9,
δ = 1, N = 8192. The noise is re-scaled to have a L∞-norm equal to 15 by dividing a
constant factor.

One-dimensional examples:

We start with the 1D SSWPT. In some real applications, e.g., seismic data analysis
[34, 52], wave-like components are only supported in a bounded domain or they have sharp
changes in instantaneous frequencies. Hence, we would like to test a benchmark signal f(x)
in which there is a component with a bounded support and an oscillatory instantaneous
frequency, and a component with an exponential instantaneous frequency (see Figure 2).
Of a special interest to test the performance of synchrosqueezed transforms for impulsive
waves, a wavelet component is added in this signal at x = 0.2. The synthetic benchmark
signal1 f(x) is defined as

f(x) = χ[0,0.6](x)f1(x) + χ[0,0.6](x)f2(x) + χ[0.6,1](x)f4(x) + χ[0.4,0.8](x)f3(x) + f5(x),

1Prepared by Mirko van der Baan and available in [34, 40].
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where

f1(x) = 0.6 cos(700πx),

f2(x) = 0.8 cos(300πx),

f3(x) = 0.7 cos(1300πx+ 5 sin(20πx)),

f4(x) = sin

(
80π1005x/4

ln(100)

)
,

f5(x) = 3e−50(x−0.2)
2

cos(50(x− 0.2)),

and χ(x) is the indicator function. f(x) is sampled in [0, 1] with a sampling rate 8192 Hz
and the range of instantaneous frequencies is 150− 1600 Hz. The white Gaussian noise in
this example is 0.75N (0, 1).

Although we are not aware of the optimal value of the scaling parameter s, it is clear
from Theorem 2.6 and 2.7 that the synchrosqueezed transform with a smaller s is more
suitable for noisy signals. As shown in the second and the third rows in Figure 3, in the
noisy cases, the synchrosqueezed energy distribution with s = 0.625 (in the first column)
is better than the one with s = 0.75 (in the second column), which is better than the one
with s = 0.875 (in the last column). This agrees with the conclusion in Theorem 2.6 and
2.7 that a smaller s results in a higher probability to obtain a good instantaneous frequency
estimate.

Another key point is that a wave packet coefficient with a larger magnitude has a
higher probability to give a good instantaneous frequency estimate. A highly redundant
wave packet transform would have wave packets better fitting the local oscillation of wave-
like components. In another word, there would be more coefficients with large magnitudes.
The resulting synchrosqueezed energy distribution has higher non-zero energy concentrating
around instantaneous frequencies. This is also validated in Figure 3. The results in the
third row obtained with red = 16 is better than those in the second row obtained with
red = 1.

It is also interesting to observe that the SST with a smaller s is better at capturing the
component boundaries, e.g. at x = 0.39, 0.59 and 0.77 and is more robust to an impulsive
perturbation (see Figure 2 and 3 at x = 0.2 and an example of α stable noise in Figure
2 and 4). Boundaries and impulse perturbations would produce frequency aliasing. The
SSWPT with a smaller s has wave packets with a smaller support in frequency and a
larger support in space. Hence, it is more robust to frequency aliasing in the sense that
the influence of impulsive perturbations is smoothed out and the synchrosqueezed energy
of the target components might not get dispersed when it meets the frequency aliasing, as
shown in Figure 4.

However, if s is small, the instantaneous frequency estimate might be smoothed out and
it is difficult to observe detailed information of instantaneous frequencies. As shown in the
first row of Figure 3, when the input signal is noiseless, the synchrosqueezed transforms
with s = 0.75 and 0.875 have better accuracy than the one with s = 0.625. In short, it
is important to tune scaling parameters for data-dependent synchrosqueezed transforms,
which has been implemented in the SynLab toolbox.

Two-dimensional examples:

We now explore the performance of the 2D SSWPT using a single wave-like component
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Figure 3: Synchrosqueezed energy distributions with s = 0.625 (left column), s = 0.75
(middle column) and s = 0.875 (right column). In the first row, we apply the SSWPT to
clean data. In the second row, the SSWPT with a smaller redundancy is applied to the
noisy data with 0.75N (0, 1) noise in Figure 2. In the last row, a highly redundant SSWPT
is applied to the same noisy data.

in Figure 5. The function

f(x) = e2πi(60(x1+0.05 sin(2πx1))+60(x2+0.05 sin(2πx2))) (12)

is uniformly sampled in [0, 1]2 with a sampling rate 512 Hz and is disturbed by additive
white Gaussian noise 5N (0, 1). The 2D SSWPTs with s = 0.625, 0.75 and 0.875 are applied
to this noisy example and their results are shown in Figure 6. Since the synchrosqueezed
energy distribution Tf (k1, k2, x1, x2) of an image is a function in R4, we fix x2 = 0, stack
the results in k2, and visualize

∫
R Tf (k1, k2, x1, 0)dk2. The results in Figure 6 again validate

the theoretical conclusion in Theorem 2.8 that a smaller scaling parameter s and a higher
redundancy yield to a better SST for noisy data.

It is interesting that a band-limited SST can also provide better statistical stability if
the range of instantaneous frequencies/local wave vectors is known a priori. Let us justify
this idea with the follow example. We apply the band-limited SSWPT to the 2D noisy
image in Figure 6 and present the results in the last row of Figure 6. Comparing to the
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Figure 4: Synchrosqueezed energy distributions with s = 0.625 (left), s = 0.75 (middle)
and s = 0.875 (right) using highly redundant SSWPTs. The synchrosqueezed energy with
a smaller s is smoother and the influence of impulsive noise is weaker.
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Figure 5: Left: A 2D noiseless wave-like component. Right: A noisy wave-like component
generated with white Gaussian noise 5N (0, 1).

results in the second row of Figure 6, the band-limited SSWPT clearly outperforms the
original SSWPT.

Component test

Here we present an example to validate the last observation in Section 3.1. Suppose
we look at a region in the time-frequency or phase space domain and we know there might
be only one IMT in this region. This assumption is reasonable because after the SST
people might be interested in the synchrosqueezed energy in a particular region: is this
corresponding to a component or just heavy noise? A straightforward solution is that, at
each time or space grid point, we only reassign those coefficients with the largest magnitude.
By Theorem 2.8, if there is an IMT, we can obtain a sketch of its instantaneous frequency
or local wave vector with a high probability. If there was only noise, we would obtain
random reassigned energy with a high probability. Using this idea, we apply the band-
limited SSWPT with s = 0.625 and red = 10 to a noisy version of the image in Figure
5 left. From left to right, Figure 7 shows the results of a noisy image (12) with 5N (0, 1)
noise, a noisy image (12) with 10N (0, 1) noise, and an image with only noise, respectively.
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Figure 6: Stacked synchrosqueezed energy distribution
∫
R Tf (k1, k2, x1, 0)dk2 of the noisy

2D signal in Figure 5. From left to right, s = 0.625, 0.75 and 0.875. From top to bottom:
red = 1, red = 10, and red = 10 with a restricted frequency band from 20 to 120 Hz.

A reliable sketch of the local wave vector is still visible even if the input image is highly
noisy.

3.2.2 Quantitative performance analysis

We quantitatively analyze the performance of the highly redundant SSWPT and compare
it with other methods in this subsection in terms of statistical stability and operation
efficiency. Let us revisit the wave-like component in Figure 1, where

f(x) = e60πi(x+0.05 cos(2πx))

is sampled in [0, 1] with a sampling rate 1024 Hz. Its instantaneous frequency is q(x) =
30(1 − 0.1π sin(2πx)). Let g = f + e be the noisy data, where e is white Gaussian noise
with a distribution σ2N (0, 1). To measure noise, we introduce the following signal-to-noise
ratio (SNR) of the input data g = f + e:

SNR[dB](g) = 10 log10

(
Var(f)

Var(e)

)
.
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Figure 7: Top row: The synchrosqueezed energy distribution of the highly redundant band-
limited SSWPT with a frequency band 20 to 120 Hz. Bottom row: reassigned wave packet
coefficients with the largest magnitude at a space location. Left column: 5N (0, 1) noise.
Middle column: 10N (0, 1) noise. Right column: noise only.

An ideal time-frequency distribution of f(x) is a function D(ξ, x) such that D(ξ, x) =
δ(ξ− q(x)), where δ(ξ) is a Dirac delta function. To quantify the numerical performance of
various methods, we introduce the Earth mover’s distance (EMD) [29, 30, 31] to measure the
distance between a resultant time-frequency distribution T (ξ, x) and the ideal distribution
D(ξ, x). At each x, after the discretization and normalization of T (ξ, x), we obtain a 1D
discrete distribution T̃ (ξ, x). Similarly, we compute the discrete version D̃(ξ, x) of D(ξ, x).
At each x, we compute the 1D EMD between T̃ (ξ, x) and D̃(ξ, x). The average EMD at
all x is defined as the distance (also denoted as EMD) between T (ξ, x) and D(ξ, x) in this
paper. A smaller EMD means a better time-frequency concentration to the ground true
instantaneous frequency and fewer noise fluctuations.

First, we compare the performance of the SSWPT with different redundancy parameters
red for noisy data with different SNRs. We compare the EMD between their resultant time-
frequency distributions and the ideal one. Figure 9 (left) shows the EMD as functions in
the variable of red. The EMD functions decrease fast when the red increases to 10. All the
SSWPTs with red ≥ 10 have almost the same efficiency.

Second, we compare the performance of the standard SSWT, SSSTFT in [1] and the
highly redundant SSWPT. Again, we choose the parameters in the example of Figure 1
because they result in good visualization of time-frequency distribution. These transforms
are applied to noisy data with different noise level, e.g. σ2 ranging from 0 to 4, i.e., SNR
from∞ to −15. We compare the EMD between their resultant time-frequency distributions
and the ideal one. The comparison is shown in Figure 9 (middle). The highly redundant
SSWPT has better time-frequency concentration than the standard SSWT and SSSTFT
in all examples, even if in the noiseless case.
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Figure 8: Left and middle: The multitaper time-frequency reassignment using an arithmetic
mean (MRSA) and a geometric mean (MRSG) with 10 tapers. Right: The highly redundant
SSWPT with s = 0.75 and red = 10.

Finally, we compare the multitaper time-frequency reassignment using an arithmetic
mean (MRSA) and a geometric mean (MRSG) in[46] with the highly redundant SSWPT. A
MATLAB package of the MRSA and the MRSG is available on the authors’ homepage. The
time-frequency distribution of these three methods are visualized in Figure 8. We visualize
their results using the same discrete grid in the time-frequency domain. To make a fair
comparison, the number of tapers are chosen to be 10 for the MRSA and the MRSG, and
the redundancy parameter red is 10 for the SSWPT. For one realization of this experiment,
the running time for the MRSA or the MRSG is 155.13 seconds, while the running time
for the SSWPT is only 0.43 seconds. A visual inspection shows that the SSWPT also
outperforms the MRSA and the MRSG: clear spectral energy at the boundary and better
time-frequency concentration. To quantify this comparison, we apply the EMD again and
the results are shown in Figure 9 (right). In most cases, the SSWPT gives a smaller EMD.
When σ2 is near 4, i.e., the SNR is near −15, the MRSG with 10 tapers and the SSWPT
have comparable performance.
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Figure 9: Left: The EMD as functions in the variable of red for different SNRs. Middle:
Comparison of the standard SSWT, SSSTFT and the SSWPT with s = 0.75 and red = 10.
Right: Comparison of the multitaper time-frequency reassignment (the numbers of tapers
are 5 and 10) and the SSWPT with s = 0.75 and red = 10. Data plotted above is the
averaging of 10 independent realizations.
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4 Conclusion

In theory, the robustness analysis in this paper has analyzed the statistical properties of a
wide range of compactly supported synchrosqueezed transforms in multidimensional spaces,
considering zero mean stationary Gaussian random process and small perturbation. Guided
by these properties, this paper has presented several approaches to improve the performance
of these synchrosqueezed transforms under heavy noise. A MATLAB package SynLab for
these algorithms is available at https://github.com/HaizhaoYang/SynLab.
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