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ABSTRACT

In many applications, it is desired to obtain extreme eigenvalues and eigenvectors of large Hermi-
tian matrices by efficient and compact algorithms. In particular, orthogonalization-free methods
are preferred for large-scale problems for finding eigenspaces of extreme eigenvalues without ex-
plicitly computing orthogonal vectors in each iteration. For the top p eigenvalues, the simplest
orthogonalization-free method is to find the best rank-p approximation to a positive semi-definite
Hermitian matrix by algorithms solving the unconstrained Burer-Monteiro formulation. We show
that the nonlinear conjugate gradient method for the unconstrained Burer-Monteiro formulation by
proving its equivalence to a Riemannian conjugate gradient method on a quotient manifold with a flat
metric, thus its global convergence to a stationary point can be proven. Numerical tests suggest that it
is efficient for computing the largest k eigenvalues for large-scale matrices if the largest k eigenvalues
are nearly distributed uniformly.

Keywords Hermitian matrices, extreme eigenvalues, orthogonalization free, conjugate gradient, Riemannian
optimization, quotient manifold

1 Introduction

1.1 The eigenvalue problem of Hermitian positive definite matrices

In this paper, we are interested in solving the eigenvalue problem for a Hermitian matrix B ∈ Cn×n to find its largest
p eigenvalues and the corresponding eigenvectors. For large enough µ > 0, A := B + µI ∈ Cn×n is a positive
definite Hermitian matrix with the same extreme eigenspaces. Thus we focus only on Hermitian positive definite or
semi-definite matrices.

Extreme eigenvalue problems for Hermitian matrices naturally arise in many applications [1, 2, 3, 4, 5, 6, 7]. For
example, many problems can be cast as a graph, for which the adjacency matrix and the graph Laplacian are real
symmetric thus Hermitian [8]. The extreme eigenvalues and eigenvectors of these matrices contain information about
the graph and the point cloud data such as diffusion maps [9]. Notice that the discussion in this paper also applies to the
smallest k eigenvalues for a positive definite Hermitian matrix B by considering either A = µI −B with large enough
µ or A = B−1 if an efficient implementation of linear system solver for Bx = b is available, i.e., the matrix-vector
multiplication B−1b can be efficiently implemented.

The extreme eigenvalue problem can be written as an optimization problem, with many different cost functions to
consider. The most well-known one is to minimize the multicolumn Rayleigh quotient

minimize
x∈Cn×p

f(x) := tr
(
(x∗x)−1x∗Ax

)
. (1)



If assuming the spectrum of x∗x is bounded by one and take the inverse of x∗x as the first order approximation of the
Neumann series expansion, then as an approximation to multicolumn Rayleigh quotient, a popular method known as
orbital minimization method (OMM) is to minimize the cost function [10]:

minimize
x∈Cn×p

f(x) := tr ((2I − x∗x)x∗Ax) . (2)

Another simple formulation is to consider optimization over the noncompact Stiefel manifold Cn×p
∗ = {X ∈ Cn×p:

rank(X)=p}:
minimize
x∈Cn×p

∗

f(x) := 1
2 ∥xx

∗ −A∥2F , (3)

where ∥ · ∥F is the matrix Frobenius norm. Various orthogonalization-free algorithms for solving both (2) and (3) were
considered and compared numerically in [11].

1.2 The real inner product and Fréchet derivatives

In this paper, we mainly focus on the cost function (3) and consider the nonlinear conjugate gradient (CG) methods
solving (3).

Since f(x) is real-valued and thus not holomorphic, f(x) does not have a complex derivative with respect to x ∈ Cn×p.
The linear spaces of complex matrices will therefore be regarded as vector spaces over R. For any real vector space
E , the inner product on E is denoted by ⟨., .⟩E . For real matrices A,B ∈ Rn×p, the Hilbert–Schmidt inner product
is ⟨A,B⟩Rn×p = tr(ATB). Let ℜ(A) and ℑ(B) represent the real and imaginary parts of a complex matrix A. For
A,B ∈ Cn×p, the real inner product for the real vector space Cn×p then equals

⟨A,B⟩Cn×p := ℜ(tr(A∗B)), (4)

where ∗ is the conjugate transpose. We emphasize that (4) is a real inner product, rather than the complex Hilbert—
Schmidt inner product. It is straightforward to verify that (4) can be written as

⟨A,B⟩Cm×n = tr(ℜ(A)Tℜ(B)) + tr(ℑ(A)Tℑ(B)) = ⟨ℜ(A),ℜ(B)⟩Rm×n + ⟨ℑ(A),ℑ(B)⟩Rm×n .

With the real inner product (4) for the real vector space Cn×p, a Fréchet derivative for the real-valued function f(x)
can be defined as

∇f(x) = ∇fℜ(x)(x) + i∇fℑ(x)(x) ∈ Cn×p, (5)

where ∇fℜ(x)(x),∇fℑ(x)(x) ∈ Rn×p are the gradient of the cost function f with respect to the real and imaginary
parts of x, respectively. In particular, for f(x) = 1

2∥A(xx∗)− b∥2F with a linear operator A, the Fréchet derivative (5)
becomes

∇f(x) = 2A∗(A(xx∗)− b)x,

where A∗ is the adjoint operator of A. See Appendix in [12] for details.

1.3 The conjugate gradient method solving the Burer-Monteiro formulation

Notice that Cn×p
∗ is an open set in the Euclidean space Cn×p, thus any line search method xk+1 = xk + αkηk starting

with the iterate xk ∈ Cn×p
∗ and a small enough step size αk will give xk+1 ∈ Cn×p

∗ . Therefore, any such line search
algorithm can be regarded as the same algorithm solving an unconstrained problem with a non-degenerate x1 ∈ Cn×p

∗ :

minimize
x∈Cn×p

f(x) := 1
2 ∥xx

∗ −A∥2F . (6)

In the literature, the formulation (6) is often called the Burer-Monteiro method for Hermitian positive semi-definite
(PSD) fixed rank p constraint, i.e., for minimizing ∥X −A∥2F where X is a Hermitian PSD matrix of rank p.

The nonlinear conjugate gradient method for (6) can be written as{
xk+1 = xk + αkηk,

ηk+1 = −∇f(xk) + βkηk = −2(xx∗ −A)x+ βkηk,
(7)

where αk is the step size and βk is a nonlinear coefficient computed by various formulae. In this paper, we only consider
two variants for how to compute βk: one is the Polak–Ribiére CG method, and the other one is the Fletcher-Reeves CG
method for computing the conjugate direction [13].
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1.4 The main result: the convergence of Riemannian conjugate gradient method via quotient geometry

The CG method (7) for finding top p eigenvalues of Hermitian PSD matrix A has been considered in [11]. In particular,
(7) does not require any orthogonalization operation in each iteration, and its performance is superior especially for
uniformly distributed eigenvalues in numerical tests.

The landscape of (6) has been well studied in [11, 14, 15, 16] and its local minimizers must also be global minimizers.
Theorem 2.1 in [11] implies that, if x̂ ∈ Cn×p

∗ satisfies ∇f(x̂) = 0 for f(x) = 1
2∥xx

∗ − A∥2F , then x̂ = UO where
O ∈ Cp×p is a unitary matrix, and U ∈ Cn×p has orthogonal columns as some eigenvectors of A. Furthermore, any
local minimum is a global minimum, i.e., any local minimizer of (6) in Cn×p

∗ has the form x̂ = UO with columns of U
being eigenvectors of a Hermitian PSD matrix A corresponding to its top p eigenvectors.

However, the convergence of CG method (7) for (6) has never been rigorously justified.

Notice that there is an ambiguity up to unitary matrices in both formulations (6) and (3), that is f(xO) = f(x) for any
O ∈ Op, where Op are all p× p unitary matrices. To this end, mathematically it is proper to consider an equivalence
class for each x ∈ Cn×p

∗ :
[x] = {xO : ∀O ∈ Op},

and a quotient set
Cn×p

∗ /Op := {[x] : ∀x ∈ Cn×p
∗ }.

The quotient set with a proper metric becomes a quotient manifold. It is not uncommon to abuse notation by letting x
denote the equivalent class [x], and x denote one representation of this equivalent class. So we can instead consider the
optimization over the quotient manifold:

minimize
x∈Cn×p

∗ /Op

h(x) := f(x) = 1
2 ∥xx

∗ −A∥2F . (8)

Following the recent progress in [12] for Riemannian optimization over Hermitian PSD fixed rank manifolds, we first
show that the simple unconstrained Burer-Monteiro CG method (7) is equivalent to a Riemannian CG method solving
(8) over the quotient manifold Cn×p

∗ /Op with a flat metric and proper retraction and vector transport operators. Then
with existing Riemannian optimization convergence theory, we can establish the global convergence of the simple
algorithm (7) to a stationary point of (3).

1.5 Related work and contributions

To be more specific, we will show that both the Polak–Ribiére CG method and the Fletcher-Reeves CG method in (7)
are equivalent to their Riemannian variants over the quotient manifold Cn×p

∗ /Op with a simple flat metric.

Moreover, this equivalence allows us to establish the global convergence of the conventional Fletcher-Reeves CG
method (7) to a stationary point of (3), following the convergence of the Riemannian Fletcher-Reeves CG method in
[17]. For the problem (6), it has been well known that local minima are also global minima [14, 15, 16, 11], e.g., critical
points are either global minima or saddle points. Combined with the result that first-order methods almost always
avoid strict saddle points [18], we obtain a justification of the global convergence of the conventional Fletcher-Reeves
CG method (7) to the global minimizer of (3). For the Polak–Ribiére CG method, the convergence is much harder to
establish, but its numerical performance is often superior.

In the literature, notable convergence results for orthogonalization-free methods include global convergence of perturbed
gradient descent for (6) in [15] and global convergence of TriOFM in [19].

The same CG algorithm (7) was also considered in [11] for real symmetric matrices. Both our algorithm and convergence
proof also applies to the Hermitian matrices. We also verify the numerical performance of the discussed algorithms on
large matrices of the size millions by millions. In particular, our numerical tests for large matrices are consistent with
the observation in [11] that the simple CG method (7) is superior for nearly uniformly distributed extreme eigenvalues.

1.6 Outline of this paper

We first review basic concepts and known results for Riemannian quotient manifolds Cn×p
∗ /Op in Section 2. Then we

review the equivalence of the conventional CG method to the Riemannian CG method in Section 3. The convergence
proof of the Riemannian CG method is provided in Section 4. In Section 5, a coordinate Riemannian gradient descent
method is given. Section 6 includes numerical tests. Concluding remarks are given in Section 7.
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2 Preliminaries: Riemannian Quotient Manifold Cn×p
∗ /Op

In this section, we briefly review some known results of the Riemannian geometry of Cn×p
∗ /Op that will be used in this

paper. Any missing details can be found in [12].

2.1 Cn×p
∗ /Op as a quotient manifold

Define Cn×p
∗ = {X ∈ Cn×p : rank(X) = p} and an equivalence relation on Cn×p

∗ through the smooth Lie group
action of unitary matrices Op on the manifold Cn×p

∗ :

Cn×p
∗ ×Op → Cn×p

∗
(x,O) 7→ xO.

This action defines an equivalence relation on Cn×p
∗ by setting x1 ∼ x2 if there exists an O ∈ Op such that x1 = x2O.

Hence we have constructed a quotient space Cn×p
∗ /Op that removes this ambiguity. The set Cn×p

∗ is called the total
space of Cn×p

∗ /Op.

Denote the natural projection as
π : Cn×p

∗ → Cn×p
∗ /Op

x 7→ x.

We denote the equivalence class containing x as

[x] = π−1(x) = {xO|O ∈ Op} .

Following Corollary 21.6 and Theorem 21.10 of [20], Cn×p
∗ /Op is a smooth manifold as stated in the following

theorem.
Theorem 2.1. The quotient space Cn×p

∗ /Op is a quotient manifold over R of dimension 2np− p2 and has a unique
smooth structure such that the natural projection π is a smooth submersion.

2.2 Vertical space

The equivalence class [x] = π−1(x) is an embedded submanifold of Cn×p
∗ ([21, Prop. 3.4.4]). The tangent space of [x]

at x is therefore a subspace of Cn×p called the vertical space at x and is denoted by Vx. The following proposition
characterizes Vx.
Proposition 2.2. The vertical space at x ∈ [x] = {xO|O ∈ Op}, which is the tangent space of [x] at x is

Vx =
{
xΩ|Ω∗ = −Ω,Ω ∈ Cp×p

}
.

2.3 Riemannian metric

A Riemannian metric g is a smoothly varying inner product defined on the tangent space. That is, gx(·, ·) is an inner
product on TxCn×p

∗ . Once we choose a Riemannian metric g for Cn×p
∗ , we can obtain the orthogonal complement

in TxCn×p
∗ of Vx with respect to the metric. In other words, we choose the horizontal distribution as orthogonal

complement w.r.t. Riemannian metric, see [21, Section 3.5.8]. This orthogonal complement to Vx is called horizontal
space at x and is denoted by Hx. We thus have

TxCn×p
∗ = Hx ⊕ Vx. (9)

Once we have the horizontal space, there exists a unique vector ξx ∈ Hx that satisfies Dπ(x)[ξx] = ξx for each
ξx ∈ TxCn×p

∗ /Op. This ξx is called the horizontal lift of ξx at x.

In this paper, we consider the Riemannian metric on Cn×p
∗ to be the canonical Euclidean inner product on Cn×p defined

by
gx(A,B) := ⟨A,B⟩Cn×p = ℜ(tr(A∗B)), ∀A,B ∈ TxCn×p

∗ = Cn×p. (10)
Proposition 2.3. Under metric g defined in (10), the horizontal space at x satisfies

Hx =
{
z ∈ Cn×p : x∗z = z∗x

}
=

{
x(x∗x)−1S + x⊥K|S∗ = S, S ∈ Cp×p,K ∈ C(n−p)×p

}
.

4



2.4 Projections onto vertical space and horizontal space

Due to the direct sum property (9), for our choices of HY , there exist projection operators for any z ∈ TY Cn×p
∗ = Cn×p

to HY as
z = PV

x (z) + PH
x (A).

It is straightforward to verify the following formulae for projection operators PV
Y and PH

Y .

Proposition 2.4. The orthogonal projections of any z ∈ Cn×p to Vx and Hx are

PV
x (z) = xΩ, PH

x (z) = z − xΩ,

where Ω is the skew-symmetric matrix that solves the Lyapunov equation

Ωx∗x+ x∗xΩ = x∗z − z∗x.

Remark 2.5. The solution X to the Lyapunov equation XE +EX = Z for a Hermitian E is unique if E is Hermitian
positive-definite [22, Section 2.2]. Let E = UΛU∗ be the SVD, then the Lyapunov equation XE + EX = Z becomes

(U∗XU)Λ + Λ(U∗XU) = U∗ZU,

which gives the solution
(U∗XU)i,j = (U∗ZU)i,j/(Λi,i + Λj,j).

2.5 Cn×p
∗ /Op as Riemannian quotient manifold

First, we show in the following lemma the relationship between the horizontal lifts of the quotient tangent vector ξx
lifted at different representatives in [x].

Lemma 2.6. Let η be a vector field on Cn×p
∗ /Op, and let η be the horizontal lift of η. Then for each x ∈ Cn×p

∗ , we
have

ηxO = ηxO

for all O ∈ Op.

Proof. See [22, Prop. A.8]

Recall from [21, Section 3.6.2] that if the expression gx(ξx, ζx) does not depend on the choice of x ∈ π−1(x) for every
x ∈ Cn×p

∗ /Op and every ξx, ζx ∈ TxCn×p
∗ /Op, then

gx(ξx, ζx) := gx
(
ξx, ζx

)
(11)

defines a Riemannian metric on the quotient manifold Cn×p
∗ /Op. By Lemma 2.6, it is straightforward to verify that the

Riemannian metric (10) on Cn×p
∗ induces a Riemannian metric on Cn×p

∗ /Op defined as (11). The quotient manifold
Cn×p

∗ /Op endowed with a Riemannian metric defined in (11) is called a Riemannian quotient manifold. By abuse of
notation, we use g for denoting Riemannian metrics on both total space Cn×p

∗ and quotient space Cn×p
∗ /Op.

2.6 Riemannian gradient

The cost function of (6) induces a cost function on Cn×p
∗ /Op.

h : Cn×p
∗ /Op → C

x 7→ f(x).
(12)

That is, f = h ◦ π. Notice when we solve (3), we restrict f on the noncompact Stiefel manifold Cn×p
∗ , which is a

submanifold of Cn×p. Hence the Riemannian gradient of f on Cn×p
∗ at x is the projection of the Fréchet gradient of f

on Cn×p, denoted by ∇f(x), onto the tangent space TxCn×p
∗ = Cn×p. Since ∇f is already in Cn×p, the projection is

identity. That is,
grad f(x) = ∇f(x). (13)
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Remark 2.7. One can refer to [12, Appendix A] for more details about Fréchet derivative. A Fréchet gradient for any
real-valued function f(X) at X ∈ Cm×n can be defined as

∇f(X) = ∇fℜ(X)(X) + i∇fℑ(X)(X) ∈ Cm×n, (14)

where ∇fℜ(X)(X),∇fℑ(X)(X) ∈ Rm×n are the gradient of f with respect to the real and imaginary parts of X ,
respectively. In particular, for the cost function considered in this paper f(x) = 1

2∥xx
∗ −A∥2F , the Fréchet gradient

(14) becomes
∇f(x) = 2(xx∗ −A)x.

Now consider the Riemannian gradient of h at x ∈ Cn×p
∗ /Op. gradh(x) is a tangent vector in TxCn×p

∗ /Op . The next
theorem shows that the horizontal lift of gradh(x) can be obtained from the Riemannian gradient of f .

Theorem 2.8. The horizontal lift of the Riemannian gradient of h at x is the Riemannian gradient of f at x. That is,

gradh(x)x = grad f(x).

Therefore, although grad f(x) belongs in Cn×p, it is automatically in Hx.

Proof. See [21, Section 3.6.2].

2.7 Retraction

The retraction on the quotient manifold Cn×p
∗ /Op can be defined using the retraction on the total space Cn×p

∗ . Let
Y ∈ Cn×p

∗ , for any Z ∈ Cn×p and a step size τ > 0,

RY (τZ) := Y + τZ,

is a retraction on Cn×p
∗ if Y + τZ remains full rank, which is ensured for small enough τ . Then Lemma 2.6 indicates

that R satisfies the conditions of [21, Prop. 4.1.3], which implies that

Rx(τηx) := π(Rx(τηx)) = π(x+ τηx) (15)

defines a retraction on the quotient manifold Cn×p
∗ /Op for a small enough step size τ > 0.

2.8 Vector transport

We use differentiated retraction as our vector transport [21, Section 8.1.4].

Tηx(ξx) := DRx(ηx)[ξx] =
d

dt

∣∣∣∣
t=0

Rx(ηx + tξx). (16)

Notice that

Tηx
(ξx) = DRx(ηx)[ξx]

= Dπ
(
Rx(ηx)

)
[DRx(ηx)[ξx]]

= Dπ (x+ ηx)

[
d

dt

∣∣∣∣
t=0

Rx

(
ηx + tξx

)]
= Dπ (x+ ηx)

[
d

dt

∣∣∣∣
t=0

(
x+ ηx + tξx

)]
= Dπ (x+ ηx)

[
ξx
]

= Dπ (x+ ηx)
[
PH
x+ηx

(
ξx
)]

.

Hence the horizontal lift of a transported vector is simply the projection of the original horizontal lift to the new
horizontal space, as shown in the following formula.

Tηx(ξx)x+ηx
= PH

x+ηx
(ξx). (17)
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3 The Conjugate Gradient Methods

We first recall the traditional conjugate gradient method for solving (6), which is summarized as Algorithm 1. We
present the abstract Riemannian conjugate gradient method for solving (8) over the quotient manifold as Algorithm 2,
with Wolfe conditions

h(Rxk
(αkηk)) ≤ h(xk) + c1αkgxk

(gradh(xk), ηk), (18)∣∣∣gRxk
(αkηk)(gradh(Rxk

(αkηk)),DRxk
(αkηk)[ηk])

∣∣∣ ≤ c2 |gxk
(gradh(xk), ηk)| . (19)

0 < c1 < c2 < 1.

The abstract Algorithm 2 can be implemented as Algorithm 3, in which each tangent vector is treated as horizontal lift
and each iterate is a representative of its equivalence class, and it is independent of the choice of the representative of
the equivalent class.

Algorithm 1 (Polak–Ribiére or Fletcher-Reeves) Conjugate Gradient on Cn×p

Require: initial iterate x0 ∈ Cn×p, tolerance ε > 0, initial descent direction as negative gradient η0 = −∇f(x0) =
−2(x0x

∗
0 −A)x0

1: for k = 0, 1, 2, . . . do
2: Use backtracking to compute the step size αk > 0 satisfying the strong Wolfe conditions
3: Obtain the new iterate by

xk+1 = xk + αkηk

4: Compute the gradient
ξk+1 := ∇f(xk+1)

5: Check for convergence
if ∥ξk+1∥F < ε, then break

6: Compute a conjugate direction by the Polak–Ribiére method or the Fletcher-Reeves method
ηk+1 = −ξk+1 + βk+1ηk

where βk+1 =


max

(
0,

⟨∇f(xk+1),∇f(xk+1)−∇f(xk)⟩
⟨∇f(xk),∇f(xk)⟩

)
if using Polak–Ribiére

⟨∇f(xk+1),∇f(xk+1)⟩
⟨∇f(xk),∇f(xk)⟩

if using Fletcher-Reeves.

7: end for

Algorithm 2 Riemannian Conjugate Gradient on the quotient manifold Cn×p
∗ /Op with metric g

Require: initial iterate x0 ∈ Cn×p
∗ /Op, tolerance ε > 0, tangent vector η0 = −gradh(x0)

1: for k = 0, 1, 2, . . . do
2: Compute the step size αk > 0 satisfying the strong Wolfe conditions (18) and (19)
3: Obtain the new iterate by retraction

xk+1 = Rxk
(αkηk)

4: Compute the gradient
ξk+1 := gradh(xk+1)

5: Check for convergence
if ∥ξk+1∥ :=

√
gxk+1

(ξk+1, ξk+1) < ε, then break
6: Compute a conjugate direction by the Polak–Ribiére (PR+) method or the Fletcher-Reeves (FR) method, and

vector transport
ηk+1 = −ξk+1 + βk+1Tαkηk

(ηk)

where βk+1 =


max

(
0,

gxk+1
(gradh(xk+1), gradh(xk+1)− Tαkηk

(ξk))

gxk
(gradh(xk), gradh(xk))

)
PR+

gxk+1
(gradh(xk+1), gradh(xk+1))

gxk
(gradh(xk), gradh(xk))

FR

7: end for
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Algorithm 3 Implementation for Riemannian Conjugate Gradient on the quotient manifold Cn×p
∗ /Op with metric g

Require: initial iterate x0 ∈ Cn×p
∗ , tolerance ε > 0, initial descent direction as η0 = −grad f(x0) = −2(x0x

∗
0−A)x0

1: for k = 0, 1, 2, . . . do
2: Compute the step size αk > 0 satisfying the strong Wolfe conditions
3: Obtain the new iterate by retraction

xk+1 = Rxk
(αkηk) = xk + αkηk

4: Compute the horizontal lift of gradient
ξk+1 := grad f(xk+1) = 2(xk+1x

∗
k+1 −A)xk+1

5: Check for convergence

if
∥∥ξk+1

∥∥ :=
√
gxk+1

(ξk+1, ξk+1) < ε, then break
6: Compute a conjugate direction by PR+ or by FR and vector transport

ηk+1 = −ξk+1 + βk+1Tαkηk
(ηk)xk+1

where βk+1 =


max

0,
gxk+1

(
grad f(xk+1), grad f(xk+1)− Tαkηk

(ξk)xk+1

)
gxk

(grad f(xk), grad f(xk))

 PR+

gxk+1
(grad f(xk+1), grad f(xk+1))

gxk
(grad f(xk), grad f(xk))

FR

7: end for

The following results were first proven in [12]. For completeness, we include a detailed proof.
Lemma 3.1. Let ηk be the descent direction generated by Algorithm 2. Then we have

Tαkηk
(ηk)xk+1

= PH
xk+αkηk

(ηk) = ηk. (20)

Proof. The first equality follows from (17). Recall the projection formula given in proposition 2.4. Denote xk+1 =
xk + αkηk. Then we have

PH
xk+αkηk

(ηk) = ηk − xk+1Ωk. (21)

Hence in order to show PH
xk+αkηk

(ηk) = ηk, it is equivalent to show the Lyapunov equation

Ωkx
∗
k+1xk+1 + x∗

k+1xk+1Ωk = x∗
k+1ηk − η∗kxk+1 (22)

only has trivial solution Ωk = 0 for all k ≥ 0.

The solution X to the Lyapunov equation XE+EX = Z for a Hermitian E is unique if E is Hermitian positive-definite
[22, Section 2.2]. Thus (22) has a unique solution if x̄k+1 ∈ Cn×p

∗ . Thus we only need to show the right-hand side of
the equation is zero. We prove this by induction.

When k = 0, the right hand side of (22) is

x∗
1η0 − η∗0x1 = (x0 + α0η0)

∗η0 − η∗0(x0 + α0η0)

= x∗
0η0 − η∗0x0

= −2x∗
0(x0x

∗
0 −A)x0 + 2x∗

0(x0x
∗
0 −A∗)x0

= 0.

Now suppose x∗
kηk−1 − η∗k−1xk = 0 and hence PH

xk
(ηk−1) = ηk−1. Then

x∗
k+1ηk − η∗kxk+1 = (xk + αkηk)

∗ηk − η∗k(xk + αkηk)

= x∗
kηk − η∗kxk

= x∗
k

(
−ξk + βkP

H
xk
(ηk−1)

)
−
(
−ξk + βkP

H
xk
(ηk−1)

)∗
xk

= x∗
k

(
−ξk + βkηk−1

)
−
(
−ξk + βkηk−1

)∗
xk

= −x∗
kξk + ξ

∗
kxk

8



= −2x∗
k(xkx

∗
k −A)xk + 2x∗

k(xkx
∗
k −A∗)xk

= 0.

Hence PH
xk+1

(ηk) = ηk also holds and we have proved this lemma.

We can now state our first main result:
Theorem 3.2. Algorithm 3 is equivalent to Algorithm 1, which is the conjugate gradient method solving (6), in the
sense that they produce exactly the same iterates if started from the same initial point.

Proof. By (13), the gradients generated by Algorithm 1 and Algorithm 3 are the same. By Lemma 3.1 and the
equivalence between the Riemannian metric on Cn×p

∗ and the inner product on Cn×p, we see that βk generated by these
two algorithms are also equivalent. Hence the conjugate directions are also the same. So the two algorithms generate
the same iterates.

4 The Convergence of the Fletcher-Reeves Conjugate Gradient Method

In this section, we will prove that the Riemannian Fletcher-Reeves Conjugate Gradient method converges to a stationary
point thus Algorithm 1 also converges by the equivalence Theorem 3.2.

The discussion in this section follows the same lines as in standard convergence theory, e.g., [17]. The cost function and
vector transport considered in this paper satisfy the conditions for convergence analysis in [17]. For completeness, we
include the full proof.

Let ηk ∈ Txk
Cn×p

∗ /Op be a descent direction. Define the angle θk between −gradh(xk) and ηk by

cos θk = − gxk
(gradh(xk), ηk)

∥gradh(xk)∥xk
∥ηk∥xk

(23)

Let L := {x ∈ Cn×p
∗ /Op : 0 ≤ h(x) ≤ h(x0)} and π−1(L) = {x ∈ Cn×p

∗ : 0 ≤ f(x) ≤ f(x0)}. We can show that
π−1(L) is bounded.
Lemma 4.1. There is a constant C such that ∥x̄∥F ≤ C, ∀x̄ ∈ π−1(L).

Proof. Assume it is not true, then ∀n ∈ N,∃x̄n ∈ π−1(L) such that ∥x̄n∥F ≥ n. Let yn = x̄n

∥x̄n∥F
, then ∥yn∥F = 1

and x̄n = ∥x̄n∥F yn = anyn with an ≥ n. Thus f(x̄n) =
1
2∥a

2
nyny

∗
n − A∥2F → ∞ since an → ∞ and ∥yn∥F = 1.

On the other hand, x̄n ∈ π−1(L) implies that f(x̄n) should be bounded, which is a contradiction.

Lemma 4.2. The Riemannian gradient of f , i.e., grad f(x) = 2(xx∗ −A)x is Lipschitz continuous on π−1(L). That
is, there exists a constant L > 0 such that

∥grad f(y)− grad f(x)∥F ≤ L ∥y − x∥F , for all x, y ∈ π−1(L). (24)

Proof. It suffices to show that q : x 7→ xx∗x is Lipschitz continuous on π−1(L). Let x, y ∈ π−1(L). Then
∥x∥F ≤ C, ∥y∥F ≤ C by Lemma 4.2.

∥q(x)− q(y)∥F = ∥xx∗x− yy∗y∥F
= ∥xx∗x− xx∗y + xx∗y − yy∗y∥F
≤ ∥xx∗x− xx∗y∥F + ∥xx∗y − yy∗y∥F
= ∥xx∗x− xx∗y∥F + ∥xx∗y − yx∗y + yx∗y − yy∗y∥F
≤ ∥xx∗x− xx∗y∥F + ∥xx∗y − yx∗y∥F + ∥yx∗y − yy∗y∥F
≤ ∥xx∗∥ ∥x− y∥F + ∥x− y∥F ∥x∗∥F ∥y∥F + ∥y∥F ∥x∗ − y∗∥F ∥y∥F
≤ 3C2 ∥x− y∥F

Theorem 4.3 (Zoutendijk’s theorem on manifold). Let ηk be a descent direction and let αk satisfy the strong Wolfe
conditions (18) and (19). Then for the cost function h defined in 12, the following series converges.

∞∑
k

cos2 θk ∥gradh(xk)∥2xk
< ∞

9



Proof. From the strong Wolfe condition (19) we have

(c2 − 1)gxk
(gradh(xk), ηk) ≤ gxk+1

((gradh(Rxk
(αkηk),DRxk

(αkηk)[ηk])− gxk
(gradh(xk), ηk)

= gxk+1

(
grad f(xk + αkηk), P

H
xk+αkηk

(ηk)
)
− gxk

(grad f(xk), ηk)

= gxk+1
(grad f(xk + αkηk), ηk)− gxk

(grad f(xk), ηk) .

Notice that our Riemannian metric g is simply the inner product on the Euclidean space Cn×p, hence

gxk+1
(grad f(xk + αkηk), ηk)− gxk

(grad f(xk), ηk) = ⟨grad f(xk + αkηk)− grad f(xk), ηk⟩ . (25)

From Lemma 4.2 we know

⟨grad f(xk + αkηk)− grad f(xk), ηk⟩ ≤ αkL ∥ηk∥
2
F .

Hence for any k we have

αk ≥ (c2 − 1)gxk
(gradh(xk), ηk)

L ∥ηk∥
2
F

. (26)

Now it follows from (18) and (26) that

0 ≤ h(xk+1) ≤ h(xk) + c1αkgxk
(gradh(xk), ηk)

≤ h(xk)−
c1(1− c2)

L
cos2 θk ∥gradh(xk)∥2xk

≤ h(x0)−
c1(1− c2)

L

k∑
j=0

cos2 θj ∥gradh(xj)∥2xj
.

Hence
∞∑
k=0

cos2 θk ∥gradh(xk)∥2xk
≤ L

c1(1− c2)
h(x0) < ∞. (27)

Lemma 4.4. If using Fletcher-Reeves method in Algorithm 2, then for 0 < c1 < c2 < 1/2, the search direction ηk is a
descent direction satisfying

− 1

1− c2
≤ gxk

(gradh(xk), ηk)

∥gradh(xk)∥2xk

≤ 2c2 − 1

1− c2
. (28)

Proof. We prove it by induction on k.

When k = 0, (28) holds since

gx0
(gradh(x0), η0)

∥gradh(x0)∥2x0

=
gx0

(gradh(x0),−gradh(x0))

∥gradh(x0)∥2x0

= −1.

Now suppose (28) holds for some k ≥ 0.

Recall that we use differentiated retraction as our vector transport:

Tαkηk
(ηk) = DRxk

(αkηk)[ηk].

And the βk+1 in Fletcher-Reeves method is defined as

βk+1 =
gxk+1

(gradh(xk+1), gradh(xk+1))

gxk
(gradh(xk), gradh(xk))

.

Hence the middle term in (28) for k + 1 is

gxk+1
(gradh(xk+1), ηk+1)

∥gradh(xk+1)∥2xk+1

=
gxk+1

(gradh(xk+1),−gradh(xk+1) + βk+1Tαkηk
(ηk))

∥gradh(xk+1)∥2xk+1

10



=
gxk+1

(gradh(xk+1),−gradh(xk+1) + βk+1DRxk
(αkηk)[ηk]))

∥gradh(xk+1)∥2xk+1

= −1 +
gxk+1

(gradh(xk+1)),DRxk
(αkηk)[ηk])

∥gradh(xk)∥2xk

. (29)

From the strong Wolfe condition (19) we have

c2gxk
(gradh(xk), ηk) ≤ gxk+1

(gradh(xk+1),DRxk
(αkηk)[ηk]) ≤ −c2gxk

(gradh(xk), ηk). (30)

Hence from (29) and (30) we have

−1 + c2
gxk

(gradh(xk), ηk)

∥gradh(xk)∥2xk

≤
gxk+1

(gradh(xk+1), ηk+1)

∥gradh(xk+1)∥2xk+1

≤ −1− c2
gxk

(gradh(xk), ηk)

∥gradh(xk)∥2xk

.

And the result (28) follows from the induction hypothesis.

Theorem 4.5. For cost function h in (12), the Algorithm 2 with Fletcher-Reeves method generates iterates xk such that

lim inf
k→∞

∥gradh(xk)∥xk
= 0. (31)

Proof. If gradh(xk) = 0 for some k = k0. Then gradh(xk) = 0 for all k ≥ k0.

So we consider gradh(xk) ̸= 0 for all k. We shall prove (31) by contradiction. Suppose (31) does not hold. Then there
exists a constant c > 0 such that

∥gradh(xk)∥xk
≥ c > 0, ∀k ≥ 0. (32)

From (23) and (28) we have

cos θk ≥ 1− 2c2
1− c2

∥gradh(xk)∥xk

∥ηk∥xk

. (33)

It follows by Theorem 4.3 that the following series converges.

∞∑
k=0

∥gradh(xk)∥4xk

∥ηk∥2xk

< ∞. (34)

For k ≥ 1, the strong Wolfe condition (19) and (28) gives rise to∣∣gxk

(
gradh(xk), Tαk−1ηk−1

(ηk−1)
)∣∣ ≤ −c2gxk−1

(gradh(xk−1), ηk−1) (35)

≤ c2
1− c2

∥gradh(xk−1)∥2xk−1
. (36)

Hence we have the following recurrence equation for ∥ηk∥2xk
.

∥ηk∥2xk
=

∥∥−gradh(xk) + βkTαk−1ηk−1
(ηk−1)

∥∥2
xk

≤ ∥gradh(xk)∥2xk
+ 2βk

∣∣gxk

(
gradh(xk), Tαk−1ηk−1

(ηk−1)
)∣∣+ β2

k

∥∥Tαk−1ηk−1
(ηk−1)

∥∥2
xk

≤ ∥gradh(xk)∥2xk
+

2c2
1− c2

βk ∥gradh(xk−1)∥2xk−1
+ β2

k

∥∥Tαk−1ηk−1
(ηk−1)

∥∥2
xk

= ∥gradh(xk)∥2xk
+

2c2
1− c2

∥gradh(xk)∥2xk
+ β2

k

∥∥Tαk−1ηk−1
(ηk−1)

∥∥2
xk

=
1 + c2
1− c2

∥gradh(xk)∥2xk
+ β2

k

∥∥Tαk−1ηk−1
(ηk−1)

∥∥2
xk

. (37)

Recall that we use differentiated retraction as our vector transport:

Tαk−1ηk−1
(ηk−1) = DRxk−1

(αk−1ηk−1)[ηk−1] = Dπ(xk−1 + αk−1ηk−1)
[
PH
xk−1+αk−1ηk−1

(ηk−1)
]
.
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Hence ∥∥Tαk−1ηk−1
(ηk−1)

∥∥2
xk

= gxk

(
Tαk−1ηk−1

(ηk−1), Tαk−1ηk−1
(ηk−1)

)
= gxk

(
Tαk−1ηk−1

(ηk−1)xk
, Tαk−1ηk−1

(ηk−1)xk

)
= gxk

(
PH
xk−1+αk−1ηk−1

(ηk−1), P
H
xk−1+αk−1ηk−1

(ηk−1)
)

= gxk−1

(
ηk−1, ηk−1

)
= ∥ηk−1∥2xk−1

Hence (37) becomes the following recurrence formula for ∥ηk∥2xk
.

∥ηk∥2xk
≤ 1 + c2

1− c2
∥gradh(xk)∥2xk

+ β2
k ∥ηk−1∥2xk−1

. (38)

By recursively using (37) and recall the definition of βk in Fletcher-Reeves method we obtain

∥ηk∥2xk
≤ 1 + c2

1− c2

(
∥gradh(xk)∥2xk

+ β2
k ∥gradh(xk−1)∥2xk−1

+ · · ·+ β2
kβ

2
k−1 . . . β

2
2 ∥gradh(x1)∥2x1

)
+β2

kβ
2
k−1 . . . β

0
0 ∥η0∥

2
x0

=
1 + c2
1− c2

∥gradh(xk)∥4xk

(
∥gradh(xk)∥−2

xk
+ ∥gradh(xk)∥−2

xk−1
+ · · ·+ ∥gradh(xk)∥−2

x1

)
+ ∥gradh(xk)∥4xk

∥gradh(x0)∥−2
x0

<
1 + c2
1− c2

∥gradh(xk)∥4xk

k∑
j=0

∥gradh(xj)∥−2
xj

≤ 1 + c2
1− c2

∥gradh(xk)∥4xk

k + 1

c2
, (39)

where we have used the contradiction assumption (32) in the last inequality. (39) results in the divergence of the
following series.

∞∑
k=0

∥gradh(xk)∥4xk

∥ηk∥2xk

≥ c2
1− c2
1 + c2

∞∑
k=0

1

k + 1
= ∞. (40)

This contradicts to (34) and hence we have completed the proof.

In general, it is more difficult to prove the convergence of the Riemannian PR+ CG method. It is possible to extend the
convergence proof of PR+ CG method in [23] to Riemannian PR+ CG method, but it is beyond the scope of this paper.

5 Coordinate Riemannian Gradient Descent (CRGD)

The coordinate descent method is favored to solve large-scale problems where the full gradient can get too large to even
store. We can generalize the coordinate gradient descent method in [16] to the manifold setting of Cn×p

∗ /Op. In [24],
a method called the tangent subspace descent method was proposed. This method generalized the block coordinate
descent method to manifold settings. Instead of updating the full gradient at each iteration, the tangent direction in each
update is a projected vector of the full gradient gradh(xk) to a subspace of the tangent space Txk

Cn×p
∗ /Op by some

selection rule denoted by Pk. In the setting of Cn×p
∗ /Op, this method can be written as Algorithm 4.

Since the horizontal lift of gradh(xk) is a n-by-p matrix, we choose the subspace selection rule simply by cyclically
selecting the N -column block of the n-by-p matrix grad f(xk). Let Mk denote the mask that evaluates the k-th
N -column block of a n-by-p matrix cyclically. That is, if Z is a n-by-p matrix, then

Mk(Z) = ZkN+1:(k+1)N,:

where ZkN+1:(k+1)N,: denotes the N -by-p matrix that takes the (kN + 1)-th to (k + 1)N -th columns of Z. And the
index that exceeds the matrix range is understood as modulo by the matrix size, namely, cyclically. Then our update to
xk is written through the following

xk+1 = Rxk
(αMk(grad f(xk))),

12



where α is a constant step size.

To take the advantage of CRGD to solve large-scaled problems, one should implement it through compact implementa-
tion. That is, each update should only depend on the block size N and should be independent of the problem size n.
In the case of eigenvalue problem, f(x) = 1

2 ∥xx
∗ −A∥2F . If we assume that A is a sparse matrix such that we can

achieve Mk(Av) in O(N), then we can indeed achieve a compact implementation of CRGD as in Algorithm 5.

Algorithm 4 Coordinate Riemannian gradient descent on the quotient manifold Cn×p
∗ /Op with metric g

Require: initial iterate x0 ∈ Cn×p
∗ /Op, tolerance ε > 0, tangent vector ξ0 = −gradh(x0), projection of ξ0 to a

subspace of tangent space: δ0 := P0(ξ0), stepsize α > 0.
1: for k = 0, 1, 2, . . . do
2: Obtain the new iterate by retraction

xk+1 = Rxk
(αδk)

3: Compute the projection of ξk+1 := −gradh(xk+1) to a subspace of Txk+1
Cn×p/Op

δk+1 := Pk+1(ξk+1)
4: Check for convergence

if ∥δk+1∥ :=
√
gxk+1

(δk+1, δk+1) < ε, then break
5: end for

Algorithm 5 Compact implementation for cyclic coordinate Riemannian gradient descent on the quotient manifold
Cn×p

∗ /Op with metric g

Require: initial iterate x0 ∈ Cn×p
∗ , η0 = −grad f(x0) ∈ Cn×p, first N columns of η0: δ0 = M0(η0), a0 = x∗

0x0,
b0 = δ∗0x0, c0 = δ∗0δ0, stepsize α > 0, s0 = a0 + αb0 + αb∗0 + α2c0, tolerance ε > 0.

1: for k = 0, 1, 2, . . . do
2: Obtain the new iterate by retraction

xk+1 = Rxk
(αδk) = xk + αδk

3: Cyclically compute the next N columns of ηk+1 = −grad f(xk+1)

δk+1 := −2Mk+1(xksk)− 2αMk+1(δksk) + 2Mk+1(Axk) + 2αMk+1(Aδk)
4: Check for convergence

if
∥∥δk+1

∥∥ :=
√
gxk+1

(δk+1, δk+1) < ε, then break
5: Compute and update ak+1, bk+1, ck+1

ak+1 = ak + αx∗
kδk + αδ

∗
kxk + α2δ

∗
kδk

bk+1 = δ
∗
k+1xk+1

ck+1 = δ
∗
k+1δk+1

6: Compute temporary variable sk+1 ∈ Cp×p

sk+1 = ak+1 + αbk+1 + αb∗k+1 + α2ck+1

7: end for

6 Numerical Experiments

In this section, we test the performance of the simple CG methods (7) for (6) with large matrices A.

6.1 Real symmetric PSD matrices

We consider two types of matrices A. The first type is a 2D Laplacian matrix, which has a nearly uniform eigenvalue
gap for a few top eigenvalues. Consider the discretization of a 2D Poisson equation with homogeneous Dirichlet
boundary conditions on [0, 1]× [0, 1] using m-by-m interior grid points. Then the matrix representing the Laplacian
operator is a 2D Laplacian matrix A of size m2-by-m2 given as

A =
1

∆x2
K ⊗ Im + Im ⊗ 1

∆y2
K, (41)
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where ∆x = ∆y = 1
m+1 and K is a m-by-m tridiagonal matrix.

K =



2 −1
−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1
−1 2

 (42)

The second type is constructed by eigenvalue decomposition A = V ΛV −1 where eigenvectors V are given by discrete
cosine transform. We assign Λ so that the eigenvalues λi have four types of distribution of eigenvalues, similar to the
numerical experiments considered in [11] but with a much larger matrix size:

1. (random) λi ∼ |N (0, 1)|, where N (0, 1) is standard normal distribution.

2. (uniform) λi = 1− i−1
n , 1 ≤ i ≤ r.

3. (u-shape) λ1 = 14
16 , λ2 = 10

16 , λ3 = 8
16 , λ4 = 7

16 , λ5 = 5
16 , λi =

1
16 .

4. (logarithm) λi =
21+⌊log2 n⌋

n
1
2i , 1 ≤ i ≤ r.

The comparison of simple CG methods (7) with the TriOFM method in [19] for a 2D discrete Laplacian matrix is shown
in Figure 1.

The comparison is shown for randomly distributed eigenvalues in Figure 2, uniformly distributed eigenvalues in
Figure 3, U-shape distribution of eigenvalues in Figure 4, and log distribution of eigenvalues in Figure 5. Notice
that the simple CG-PR method is much less efficient than the TriOFM method for the log distribution of eigenvalues.
However, this slowness is due to the eigenvalue gap between σp and σp+1. In Figure 6, the top p eigenvalues with
p = 5 have a log distribution but the gap between σp and σp+1 is enlarged by shifting the top p eigenvalues from
the same matrix in Figure 5, and we observe that the simple CG-PR method is efficient in this scenario. In other
words, the matrix in Figure 5 has eigen values λ1 ≥ λ2 ≥ · · · ≥ λn, and the matrix in Figure 6 has eigenvalues
λ1 + C ≥ λ2 + C ≥ λp + C ≥ λp+1 ≥ · · · ≥ λn.
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Figure 1: Comparison for computing the top-10 eigenvalues of a 2D Laplacian matrix of size 106 × 106.
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Figure 2: Comparison for computing the top-10-eigenvalue problem of a 104-by-104 matrix with randomly distributed
eigenvalues.
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Figure 3: Comparison for computing the top-10-eigenvalue problem of a 104-by-104 matrix with uniformly distributed
eigenvalues.
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Figure 4: Comparison for computing the top-10-eigenvalue problem of a 104-by-104 matrix with U-shape distributed
eigenvalues.
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Figure 5: Comparison for computing the top-5-eigenvalue problem of a 104-by-104 matrix with logarithm distributed
eigenvalues.
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Figure 6: Comparison for computing the top-5-eigenvalue problem of a 104-by-104 matrix with eigenvalues λ1 + C ≥
λ2 + C ≥ λ5 + C ≥ λ5+1 ≥ · · · ≥ λn, where C = λ1 and λ1 ≥ λ2 ≥ · · · ≥ λn has a log distribution.

6.2 Hermitian PSD matrices

It is shown in [12] that Algorithm 2 can be used for finding the top eigenvalues of a Hermitian PSD matrix. We test
Algorithm 2 on 6 for a matrix A with eigenvectors defined by 2D Fast Fourier Transform. Namely, the linear operator
of applying A to a 2D array u is defined by

Au = ifft2(Σ. ∗ fft2(u)),
where .∗ denotes the entrywise product and Σ is a 2D array consisting of nonnegative eigenvalues of A.

The performance of the CG-PR method is shown in Figure 7 for four kinds of eigenvalue distributions in such a
Hermitian PSD matrix.
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Figure 7: The CG-PR method for the top-10-eigenvalue problem with rank-1000 Hermitian matrices of 106-by-106
with different distributions of eigenvalues.

6.3 Smallest eigenvalues

6.3.1 Inverse 2D Laplacian matrix

One technique to find the smallest eigenvalues of a given invertible matrix A is through the shift-and-inverse method.
That is, to find the largest eigenvalues of (A + µI)−1, where µ > 0 is a shift constant such that A + µI becomes
positive definite. We use this method to find the smallest eigenvalues of the 2D Laplacian matrix A as in (41).
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Notice that the top eigenvalues of A−1 almost follow a logarithm distribution. Based on our observation, we can choose
µ appropriately to make the top eigenvalues of (A+ µI)−1 have a uniform distribution to accelerate the convergence
of the CG method. Since we know the true eigenvalues of A, we shift it by choosing µ to be the smallest desired
eigenvalue. That is, suppose the smallest r eigenvalues of A is σ1 ≤ σ2 ≤ · · · ≤ σr. Then we choose µ = σ1. As
a result the top eigenvalues of (A+ µI)−1 would be 1

σ1+σ1
≥ 1

σ2+σ1
≥ · · · ≥ 1

σ2+σ1
that almost follows a uniform

distribution. A fast matrix inversion is implemented by using the eigendecomposition of the matrix. The performance is
shown in Figure 8 and Figure 9.
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Figure 8: The shift-and-inverse method on the smallest-10-eigenvalue problem of a 106-by-106 2D-Laplacian matrix.
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Figure 9: The shift-and-inverse method on the smallest-3-eigenvalue problem of a 106-by-106 2D-Laplacian matrix.

6.3.2 Negative 2D Laplacian matrix

Another way to find the smallest eigenvalues of a given matrix A is through the negative-shift method. That is, to
consider finding the largest eigenvalues of µI − A, where µ > 0 is a shift constant such that µI − A is positive
semi-definite. We use this method to find the smallest eigenvalues of the 2D Laplacian matrix defined in (41).

Notice we need to shift at least the largest eigenvalue of A to ensure that µI − A is PSD. And once we find the top
eigenvalues of µI − A we need to shift back and extract the smallest eigenvalues of A by computing µ − (µ − σ),
where σ’s are the smallest eigenvalues of A. Hence when the condition number of A is bad, i.e., if µ >> σ, then we
might lose a significant number of digits of accuracy for computing µ− (µ− σ). In our numerical tests, we did not
encounter this numerical accuracy issue. The performance is shown in Figure 10. Notice that the negative-shift method
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is much slower than the shift-and-inverse method, because of the different distributions of the largest eigenvalues of
µI −A and (A+ µI)−1.
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Figure 10: The negative-shift method on the smallest-10-eigenvalue problem of a 106-by-106 2D-Laplacian matrix.

6.4 Coordinate Riemannian gradient descent

We consider applying the coordinate Riemannian gradient descent method described in Section 5 to a 1D Laplacian
matrix of size n-by-n given byA = 1

∆x2K, where ∆x = 1
n+1 and K is the tridiagonal matrix defined in (42). This

example is only for the demonstration purpose of the coordinate gradient descent method. Choosing this simple A
makes it easy for the compact implementation of the matrix-vector multiplication of Au. One can also apply this
method to any sparse matrix A as long as one has the compact implementation of Mk(Au) in O(N), where N is a
constant independent of the problem size n.

As we can see from Figure 11, the CPU time for running the first 3000 iterations is independent of problem size. This
demonstrated the O(1) computational complexity of the coordinate Riemannian gradient descent method for leading
eigenpairs.
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Figure 11: Coordinate Riemannian gradient descent for solving the top-10 eigenvalues of a Laplacian matrix.
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7 Conclusions

This paper studied the orthogonalization-free method to find leading eigenpairs of a positive semi-definite Hermitian
matrix via an unconstrained Burer-Monteiro formulation. For this optimization problem, we have shown the equivalence
between the nonlinear conjugate gradient method and a Riemannian conjugate gradient method on a quotient manifold
with a flat metric, leading to a new understanding of the global convergence of the nonlinear conjugate gradient method
to a stationary point. Extensive numerical tests have been conducted to test the efficiency of the orthogonalization-free
method for computing leading eigenpairs for large-scale matrices. A new coordinate Riemannian gradient descent
method has been implemented, which would be very useful in large-scale computation when the whole matrix is not
accessible due to the limit of computer memory.
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