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Overview of PDE Solvers

Mesh-based methods: 

• Finite difference method, finite element 
method, etc. 

• High accuracy with numerical convergence 

• Curse of dimensionality in approximation: 
 parametersO(1/ϵd)



Overview of PDE Solvers
Mesh-free methods: 

Neural network-based methods (dating back to 1990s)   

• e.g.,            and         

• A neural network  is constructed to approximate the solution  via least square fitting 

            

            or numerically 

 

            where  is a hyperparameter

𝒟(u) = f in Ω ℬ(u) = g on ∂Ω
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Overview of PDE Solvers
Neural networks 

No curse of dimensionality in 
approximation  

•  parameters to achieve 
arbitrary accuracy, Shen, Y., Zhang, 
arXiv:2107.02397 

Curse of dimensionality in numerical 
computation  

• Optimal nonlinear approximation 
with continuous parameter selection, 
DeVore, Howard, Micchelli, 1989

O(d2)

https://arxiv.org/abs/2107.02397


Question: How to obtain a numerical solver scalable in 
dimension? 

Idea: Find an appropriately small function space with 
stable computation



Question: What function space is appropriate? 

Ideas:  

• Barron space: functions with integral representations 
(Barron, 1993, E et al. 2019, Xu et al. 2021) 

• Ours: functions with finite expressions



Question: Why finite expressions? 

Ideas: sparse or low-complexity structure of a high-
dimensional problem



Finite Expression Method (FEX)

Motivating Problem: 

A structured high-dimensional Poisson equation  

                                                                       

     with a solution  of low complexity , i.e.,  operators in this expression 

Idea: 

Find an explicit expression that approximate the solution of a PDE 

Function space with finite expressions 

• Mathematical expressions: a combination of symbols with rules to form a valid function, e.g.,  

• -finite expression: a mathematical expression with at most  operators 

• Function space in FEX:  as the set of -finite expressions with 

−Δu = f  for x ∈ Ω, u = g for x ∈ ∂Ω

u(x) =
1
2

d

∑
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x2
i O(d) O(d)

sin(2x) + 5

k k

𝕊k s s ≤ k

Liang and Y. arXiv:2206.10121 

https://arxiv.org/abs/2206.10121


Finite Expression Method (FEX)

Advantages: No curse of dimensionality in approximation 

• NN:  parameters to achieve arbitrary accuracy, Shen, Y., Zhang, arXiv:2107.02397 

• NN has finite expressions:  

• Theorem (Liang and Y. 2022) Suppose the function space  is  generated with 
operators including  ``+", ``-", `` ", ``/",  `` ", ``sin(x)", and `` ". Let 

. For any  in the Holder function class  and , there exists 

a k-finite expression  in  such that , if .

O(d2)

𝕊k

× max{0,x} 2x

p ∈ [1, + ∞) f ℋα
μ([0,1]d) ε > 0

ϕ 𝕊k ∥f − ϕ∥Lp ≤ ε k ≥ 𝒪(d2(log d + log
1
ε

)2)

Liang and Y. arXiv:2206.10121 

https://arxiv.org/abs/2107.02397
https://arxiv.org/abs/2206.10121


Finite Expression Method (FEX)

Advantages:  

• Lessen the curse of dimensionality in numerical computation for structured 
problems  

• To be proved numerically

Liang and Y. arXiv:2206.10121 

https://arxiv.org/abs/2206.10121


Finite Expression Method
Least square based FEX 

• e.g.,            and         

• A mathematical expression  to approximate the PDE solution via 

                                                       
 

• Or numerically 

 

Question: how to solve this combinatorial optimization problem?

𝒟(u) = f in Ω ℬ(u) = g on ∂Ω

u*
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Reinforcement Learning for Combinatorial Optimization

• Goal: Apply reinforcement learning to select mathematical expressions to solve a PDE  

• Ideas:  

1. Reformulate the sequential (selection, realization, evaluation) procedure as a sequence of 
(action, state, reward) 

2. Reformulate the decision strategy for selection as the policy to take actions 

3. The PDE regression quality as the reward

By Richard S. Sutton and Andrew G. Barto.



Expression Generation

An expression tree as a sequence of node values by using its pre-order traversal, e.g.,     and   2 sin(x) + 3 x + y



Computation Flow of FEX



Learning to Regress in FEX

• State at time t:  

        The expression tree  

• Action at time t: 

The operators, variables, and constants drawn from the policy 

• Reward at time t:     

• Policy (controller):    is the probability specified by a 
deep neural network

R(at) = 1/(1 + ℒ(u))

p(a |θ)



Numerical Comparison
NN method: 

•  Neural networks with a ReLU -activation function 
• ResNet with depth 7 and width 50 

FEX method: 
• Depth 3 binary tree 
• Binary set  
• Unary set  

Fex NN method: 
• Apply FEX to obtain an estimated solution structure 
• Design NN adaptively with this structure,  
• e.g., u(x)=exp(NN(x; ))

2

𝔹 = { + , − , × }
𝕌 = {0,1,Id, ( ⋅ )2, ( ⋅ )3, ( ⋅ )4, exp, sin, cos}

θ



Poisson Equation
• Boundary value problem: 

 

 

•   

• True solution  

• Stochastic optimization: 

                                   

    with Monte Carlo discretization of high-dimensional integrals

−Δu = f  for x ∈ Ω

u = g for x ∈ ∂Ω

Ω = [−1,1]d

u(x) =
1
2

d

∑
i=1

x2
i

min
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ℒ(u) := min
u∈𝕊k

∥ − Δu(x) − f(x)∥2
L2(Ω) + λ∥u(x) − g(x)∥2

L2(∂Ω)



Poisson Equation



Poisson Equation

Convergence Test: 

• True solution  

• Binary set  
• Unary set  
• No expression tree to exactly represent u(x)

u(x) =
1
2

d

∑
i=1

x2
i

𝔹 = { + , − , × }
𝕌 = {0,1,Id, ( ⋅ )3, ( ⋅ )4, exp, sin, cos}



Linear Conservation Law
• Consider 

 

 

•   

• True solution  

• Stochastic optimization: 

                                                    

    with Monte Carlo discretization of high-dimensional integrals

πd
4
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4
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π
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Linear Conservation Law



Nonlinear Schrodinger Equation
• Consider 

 

•   for   

•   

• True solution  

• Stochastic optimization: 

                                                    

    with Monte Carlo discretization of high-dimensional integrals

−Δu + u3 + Vu = 0  for x ∈ Ω

V(x) = −
1
9
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2
d

d
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d
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(
sin2 xi
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−
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d
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u(x) = exp(
1
d

d

∑
j=1

cos(xj))/3

min
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∥ − Δu + u3 + Vu∥2
L2(Ω)/∥u∥3

L2(Ω)



Nonlinear Schrodinger Equation



Eigenvalue Problem
• Consider 

 

 

•  and   

• The smallest eigenfunction is  

• Stochastic optimization (DeepRitz, Weinan E and Bing Yu, 2017): 

                                                         

    with Rayleigh quotient  

                                                                                   

−Δu + w ⋅ u = γu, x ∈ Ω

u = 0, x ∈ ∂Ω

Ω = [−3,3]d w = ∥x∥2
2

u(x) = exp(−2∥x∥2
2)

min
u∈𝕊k

ℒ(u) := min
u∈𝕊k

ℐ(u) + λ1 ∫∂Ω
u2dx + λ2(∫Ω

u2dx − 1)2

ℐ(u) =
∫

Ω
∥∇u∥2

2dx + ∫
Ω

w ⋅ u2dx

∫
Ω

u2dx



Eigenvalue Problem



Finite Expression Method

• Theory:  finite expressions approximate -dimensional continuous functions 
to arbitrary accuracy 

• Algorithm: reinforcement learning solve combinatorial optimization to identify 
expressions to solve PDEs 

• Advantage: PDE solver scalable in dimension with high accuracy 

• Preprint: Liang and Y. arXiv:2206.10121

O(d2) d

Conclusion

https://arxiv.org/abs/2206.10121
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