
SIAM J. MATH. ANAL. c© 2018 Society for Industrial and Applied Mathematics
Vol. 50, No. 1, pp. 5–32

RECURSIVE DIFFEOMORPHISM-BASED REGRESSION
FOR SHAPE FUNCTIONS∗

JIEREN XU† , HAIZHAO YANG‡ , AND INGRID DAUBECHIES†

Abstract. This paper proposes a recursive diffeomorphism-based regression method for the
one-dimensional generalized mode decomposition problem that aims at extracting generalized modes
αk(t)sk(2πNkφk(t)) from their superposition

∑K
k=1 αk(t)sk(2πNkφk(t)). We assume that the in-

stantaneous information, e.g., αk(t) and Nkφk(t), is determined by, e.g., a one-dimensional syn-
chrosqueezed transform or some other methods. Our main contribution is to propose a novel approach
based on diffeomorphisms and nonparametric regression to estimate wave shape functions sk(t). This
leads to a framework for the generalized mode decomposition problem under a weak well-separation
condition. Numerical examples of synthetic and real data are provided to demonstrate the successful
application of our approach.
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1. Introduction. The analysis of oscillatory data is a ubiquitous challenge,
arising in a wide range of applications including but not limited to medicine (like
electrocardiograph [ECG] and electroencephalograph readings [1]), physical science
(e.g., gravitational waves [2], atomic crystal images [3]), mechanical engineering (such
as vibration measurements [4]), finance, geology (e.g., seismic data analysis [5, 6]),
art investigation [7], and audio signals (including speech and music recordings [8]).
Although different problems depend on different interpretation of the data measure-
ment, it is common that one wants to extract certain time-varying features or conduct
adaptive component analysis. For this purpose, a typical model is to assume that the
oscillatory data f(t) consist of a superposition of several (but typically reasonably
few) oscillatory modes like

(1) f(t) =
K∑
k=1

αk(t)e2πiNkφk(t),

where αk(t) is the instantaneous amplitude, 2πNkφk(t) is the instantaneous phase,
and Nkφ′k(t) is the instantaneous frequency. Analyzing instantaneous properties (e.g.,
instantaneous frequencies, instantaneous amplitudes, and instantaneous phases) and
decomposing the signal f(t) into several modes αk(t)e2πiNkφk(t) have been impor-
tant topics for over two decades. Many methods have been proposed to address this
mode decomposition problem, e.g., empirical mode decomposition methods [9], time-
frequency reassignment methods [10, 11], synchrosqueezed transforms [12], adaptive
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optimization [13, 14], recursive filtering [15, 16], and data-driven time-frequency de-
composition [17, 18].

In spite of considerable success in modeling oscillatory data of the form (1),
modes with sinusoidal oscillatory patterns like αk(t)e2πiNkφk(t) are no longer suffi-
ciently adaptive to characterize complicated features in the data. This motivates the
generalized mode decomposition problem of the form

f(t) =
K∑
k=1

fk(t) =
K∑
k=1

αk(t)sk(2πNkφk(t)),(2)

where {sk(t)}1≤k≤K are 2π-periodic generalized shape functions. For example, the
oscillatory pattern in the ECG signal contains information of the electrical pathway
inside the heart, the respiration, and the heart anatomy, which is embedded in a
generalized shape function as shown in Figure 1 (left). For another example, different
kinds of timbre of different music instruments result from different wave shapes in
music signals (see Figure 2). The Fourier expansion of generalized shape functions
results in

f(t) =
K∑
k=1

αk(t)sk(2πNkφk(t)) =
K∑
k=1

∞∑
n=−∞

ŝk(n)αk(t)e2πinNkφk(t).(3)

Hence, in another point of view, the generalized mode decomposition problem comes
from the motivation that combining modes with similar oscillatory patterns of the
form (1) leads to a more adaptive and physically more meaningful decomposition of
the form (2). When generalized shape functions are not band limited, the generalized
mode decomposition problem is challenging.

Although various methods have been proposed for the mode decomposition prob-
lem, the generalized mode decomposition problem is relatively recent, and there are
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Fig. 1. Left: a generalized shape function s(t) of a real ECG signal (in blue) and its band-
limited approximation

∑
|n|≤10 ŝ(n)e2πint (in red). Right: the Fourier power spectrum |ŝ(ξ)| of s(t).

As seen in the real ECG shape function in blue, there are three major peaks (called P, R, and T
peaks from left to right, respectively) that are valuable in medical study. This figure illustrates that a
high sampling rate is needed to identify these peaks accurately and that a band-limited approximation
to the shape function loses important information.
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Fig. 2. A few consecutive copies of generalized shape functions for the sound produced by
playing a note on a musical instrument. Left: violin. Right: piano.

few solutions. Existing solutions assume that the instantaneous amplitudes αk(t)
and the fundamental instantaneous frequencies Nkφ′k(t) can be estimated by the syn-
chrosqueezed transform [19, 20] or the data-driven time-frequency analysis [14]. With
these instantaneous properties ready, the generalized shape function can be estimated
by the diffeomorphism-based spectral analysis (DSA) [19], the singular value decom-
position method [21], and the functional regression method [20] under different condi-
tions as specified in these references. This paper proposes a recursive diffeomorphism-
based regression method (RDBR) as an alternative solution to the generalized mode
decomposition problem. Before applying the RDBR method, the synchrosqueezed
transform is applied to estimate instantaneous amplitudes {αk(t)}k and instanta-
neous frequencies {Nkφ′k(t)}k. With these instantaneous properties ready, the RDBR
method is able to estimate generalized shape functions {sk(t)}k using a time-frequency
unwarping technique (a diffeomorphism to be clarified later) and a nonparametric re-
gression algorithm with theoretical guarantee. Numerical examples show that this
novel method works in many different situations: it can identify and extract gen-
eralized modes with similar phase functions and a wide range of generalized shape
functions, and it can estimate generalized shape functions of a short signal with few
periods, which potentially enables online computation for dynamic shapes changing
in time.

The rest of this paper is organized as follows. In section 2, the one-dimensional
synchrosqueezed transform is briefly introduced with a simple example. In section 3,
the RDBR method is introduced and asymptotically analyzed.1 In section 4, some
synthetic and real examples are provided to demonstrate the efficiency of the RDBR
method. Finally, we conclude this paper in section 5.

2. Synchrosqueezed transform. A powerful tool for the mode decomposition
problem is the synchrosqueezed transform (SST). It consists of a linear time-frequency
analysis tool and a nonlinear synchrosqueezing technique to obtain a sharpened time-
frequency representation [6, 22, 12, 19, 23, 24]. The SST is a reasonably robust
algorithm [25, 26] with fast-forward and inverse transforms based on the FFT. It has
been applied to analyze oscillatory data in a wide range of real problems. Following
[19], the one-dimensional synchrosqueezed wave packet transform (SSWPT) is ap-
plied to estimate fundamental instantaneous properties before estimating generalized
shapes. Hence, we will follow the notations in [19] and briefly introduce the SSWPT
with a concrete example:

1Notations in the asymptotical analysis: we shall use the O(ε) notation, as well as the related
notations . and &; in particular, we write F = O(ε)G if there exists a constant C (which we will not
specify further) such that |F | ≤ Cε|G|; here C may depend on some general parameters as detailed
just before Theorem 2.9.
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Fig. 3. (a) and (c): two generalized shape functions s1(2πt) and s2(2πt) of real ECG signals;
(b) and (d): the Fourier spectrum of the generalized shape functions in (a) and (c), respectively.

(4) f(t) = f1(t) + f2(t),

where

f1(t) = α1(t)s1(2πN1φ1(t)) = (1 + 0.05 sin(4πx))s1 (120π(x+ 0.01 sin(2πx)))
f2(t) = α2(t)s2(2πN2φ2(t)) = (1 + 0.1 sin(2πx))s2 (180π(x+ 0.01 cos(2πx))) ,

where s1(t) and s2(t) are generalized shape functions defined in [0, 1] as shown in
Figure 3. The SSWPT is applied to recover αi(t), i = 1, 2, and Niφi(t), i = 1, 2 from
f(t). For detailed implementation, the reader is referred to [19].

Let w(t) be a mother wave packet in the Schwartz class. The Fourier transform
ŵ(ξ) is assumed to be a real-valued, nonnegative, smooth function with a support
equal to (−d, d) with d ≤ 1. Using w(t), a family of wave packets can be constructed
through scaling, modulation, and translation controlled by a geometric parameter s.

Definition 2.1. Given the mother wave packet w(t) and the parameter s ∈
(1/2, 1), the family of wave packets {wab(t) : |a| ≥ 1, b ∈ R} is defined as

wab(t) = |a|s/2w(|a|s(t− b))e2πi(t−b)a

or equivalently, in the Fourier domain, as

ŵab(ξ) = |a|−s/2e−2πibξŵ(|a|−s(ξ − a)).

If s were equal to 1 or 1/2, these functions would be qualitatively similar to the
standard wavelets or the wave atoms [27], respectively. Allowing one more degree of
freedom s makes wave packets more adaptive to the given data.

Definition 2.2. The one-dimensional wave packet transform of a function f(t)
is a function

Wf (a, b) = 〈wab, f〉 =
∫
wab(t)f(t)dt(5)

for |a| ≥ 1, b ∈ R.

Definition 2.3. Instantaneous frequency information function:
Let f∈L∞(R). The instantaneous frequency information function of f is de-

fined by

(6) vf (a, b) =

{
∂bWf (a,b)
2πiWf (a,b) , for |Wf (a, b)| > 0;

∞, otherwise,

where ∂bWf (a, b) is the partial derivative of Wf (a, b) with respect to b.
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As we shall see in Theorem 2.9, for a class of oscillatory functions f(t) =
α(t)e2πiNφ(t), vf (a, b) ≈ Nφ′(b) independently of a as long as Wf (a, b) 6= 0. If we
reassign the coefficients Wf (a, b) from the original position (a, b) to a new position
(vf (a, b), b), then we would obtain a sharpened time-frequency representation of f(t).
This motivates the definition of the synchrosqueezed energy distribution as follows.

Definition 2.4. Given f(t), Wf (a, b), and vf (a, b), the synchrosqueezed energy
distribution Tf (v, b) is defined by

(7) Tf (v, b) =
∫

R
|Wf (a, b)|2δ(<vf (a, b)− v)da

for v, b ∈ R, where < means the real part of a complex number.

For a multicomponent signal f(t) =
∑K
k=1 αk(t)e2πiNkφk(t), the synchrosqueezed

energy of each component will concentrate around its corresponding instantaneous
frequency Nkφ′k(b); i.e., the supports of Tf (v, b) are essentially narrow bands around
the curves (b,Nkφ′k(b)) in the two-dimensional time-frequency domain. (see Figure 4
(left) for an example of Tf (v, b)). Hence, the SSWPT can provide information about
their instantaneous frequencies. In the presence of generalized shape functions defined
below, the spectral information becomes more complicated (see Figure 4 (right) for
an example).

Definition 2.5. Generalized shape functions: the generalized shape function class
SM consists of 2π-periodic functions s(t) in the Wiener Algebra with a unitL2([−π, π])-
norm and a L∞-norm bounded by M satisfying the following spectral conditions:

1. The Fourier series of s(t) is uniformly convergent;
2.
∑∞
n=−∞ |ŝ(n)| ≤M and ŝ(0) = 0;

3. Let Λ be the set of integers {|n| : ŝ(n) 6= 0}. The greatest common divisor
gcd(s) of all the elements in Λ is 1.
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Fig. 4. Both figures show the synchrosqueezed energy distribution of the same signal in
equation (4). Left: in the low-frequency domain, the synchrosqueezed energy distribution shows
a few well-separated oscillatory components. The instantaneous frequencies of these components
can be directly read off from this distribution. Right: the synchrosqueezed energy distribution in
the whole time-frequency domain. Instantaneous frequencies of the Fourier expansion terms in
{ŝk(n)αk(t)e2πinNkφk(t)}k,n cross over together.
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Definition 2.6. A function f(t) = α(t)s(2πNφ(t)) is a generalized intrinsic
mode-type function (GIMT) of type (M,N) if s(t) ∈ SM and α(t) and φ(t) satisfy the
conditions below.

α(t) ∈ C∞, |α′| ≤M, 1/M ≤ α ≤M,

φ(t) ∈ C∞, 1/M ≤ |φ′| ≤M, |φ′′| ≤M.

Definition 2.7. A function f(t) is a well-separated generalized superposition of
type (M,N,K, s) if

f(t) =
K∑
k=1

fk(t),

where each fk(t) = αk(t)sk(2πNkφk(t)) is a GIMT of type (M,Nk) such that Nk ≥ N
and the phase functions satisfy the separation condition: for any pair (a, b), there
exists at most one pair (n, k) such that ŝk(n) 6= 0 and that

|a|−s|a− nNkφ′k(b)| < d.

We denote by GF (M,N,K, s) the set of all such functions.

If f(t) is a well-separated generalized superposition of type (M,N,K, s), the syn-
chrosqueezed energy distribution Tf (v, b) has well-separated supports, each of which
concentrates around one instantaneous frequency nNkφ

′
k(b). Fortunately, although

f(t) is not a well-separated generalized superposition, its Fourier expansion compo-
nents ŝk(n)αk(t)e2πinNkφk(t) might still be well separated in the low-frequency domain
(see Figure 4 (left) for an example). Hence, some instantaneous frequency nNkφ′k(b)
can be estimated from the ridge (or average) of its corresponding support, and its
corresponding component ŝk(n)αk(t)e2πinNkφk(t) can be recovered by an inverse SST
restricted to the corresponding support. Since in practice, and as illustrated by Figure
4, even if low-frequency components are well separated, high-frequency components
might still be mixed up, and well-separated generalized superposition is thus very
rare; this motivates the definition of a more reasonable situation below.

Definition 2.8. A function f(t) is a weak well-separated generalized superposi-
tion of type (M,N,K, s) if

f(t) =
K∑
k=1

fk(t),

where each fk(t) = αk(t)sk(2πNkφk(t)) is a GIMT of type (M,Nk) such that Nk ≥ N
and the phase functions satisfy the following weak well-separation conditions.

1. Suppose
Znk = {(a, b) : |a− nNkφ′k(b)| ≤ d|a|s} .

For each k, there exists nk such that ŝk(nk) 6= 0 and Znkk ∩ Znj = ∅ for all
pairs (n, j) 6= (nk, k) and ŝj(n) 6= 0.

2. ∃K0 < ∞ such that ∀a ∈ R and ∀b ∈ R, there exists at most K0 pairs of
(n, k) such that (a, b) ∈ Znk.

We denote by wGF (M,N,K0,K, s) the set of all such functions.

The weak well-separation condition essentially requires that each generalized
mode has at least one Fourier expansion component ŝk(n)αk(t)e2πinNkφk(t) well sep-
arated in the time-frequency domain. This enables the SSWPT to estimate the fun-
damental instantaneous amplitude and frequency of each generalized mode. The
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following theorem proved in [19] supports this intuition in more detail. Recall that,
when we write O(·), ., or &, the implicit constants may depend on M , K, K0, and
no other parameters.

Theorem 2.9. For a function f(t) and ε > 0, we define

Rε =
{

(a, b) : |Wf (a, b)| ≥ |a|−s/2
√
ε
}

and
Zn,k = {(a, b) : |a− nNkφ′k(b)| ≤ d|a|s}

for 1 ≤ k ≤ K and |n| ≥ 1. For fixed M , K0, K, and ∀ε > 0, there exists a constant
N0(M,K0,K, s, ε) > 0 such that ∀N > N0 and f(t) ∈ wGF (M,N,K0,K, s) and the
following statements hold:

(i) For each j, there exists nj such that ŝj(nj) 6= 0 and Znjj ∩ Znk = ∅ for all
pairs (n, k) 6= (nj , j) and ŝk(n) 6= 0.

(ii) For any (a, b) ∈ Rε ∩ Znj ,j,

|vf (a, b)− njNjφ′j(b)|
|njNjφ′j(b)|

.
√
ε.

(iii) For each j, let

lnj (b)= min
{
a : (a, b) ∈ Rε ∩ Znjj

}
, unj (b)= max

{
a : (a, b)∈Rε ∪ Znjj

}
.

Suppose vf (a, b) 6= ∞. If a ≤ lnj
(b), then vf (a, b) ≤ lnj

(b)(1 + O(
√
ε)). If

a ≥ unj
(b), then vf (a, b) ≥ unj

(b)(1−O(
√
ε)).

Theorem 2.9 shows that the supports of the synchrosqueezed energy distribution
Tf (v, b) are essentially narrow bands around the curves (b, nkNkφ′k(b)) in the two-
dimensional time-frequency domain (see Figure 4 (left) for an example of Tf (v, b)).
Hence, we can estimate the instantaneous frequencies by tracking these curves. These
curves naturally belong to K groups, each of which corresponds to the multiple of
a fundamental instantaneous frequency Nkφ

′
k(t). Following the curve classification

idea in Algorithm 3.7 and Theorem 3.9 in [19], we are able to classify these curves
and extract the fundamental instantaneous frequencies {Nkφ′k(t)}1≤k≤K , which give
the fundamental instantaneous phases {Nkφk(t)}1≤k≤K . By applying the inverse syn-
chrosqueezed transform to the support of Tf (v, b) corresponding to the instantaneous
frequency nkNkφ′k(t), we can reconstruct ŝk(nk)αk(t)e2πinkNkφk(t), the magnitude of
which gives the estimation of the fundamental instantaneous amplitudes αk(t) up to a
constant prefactor. We refer the reader to [19] for more detail and assume that these
estimates are available afterward. There are some other alternative methods available
to estimate fundamental instantaneous properties, e.g., a recent paper [28] based on
the short-time ceptrum transform.

3. RDBR.

3.1. Algorithm description. In this section, we introduce the RDBR, which
we shall use to estimate generalized shape functions sk(t) in a superposition of the
form

f(t) =
K∑
k=1

αk(t)sk(2πNkφk(t)),
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assuming that the fundamental instantaneous phases {Nkφk(t)}Kk=1 and the instan-
taneous amplitudes {αk(t)}Kk=1 are known a priori. Suppose the signal f(t) is sam-
pled randomly in the domain [0, 1]. In particular, we have L points of measurement
{f(t`)}`=1,...,L with L independent and identically distributed (i.i.d.) grid points
{t`}`=1,...,L with a uniform distribution in [0, 1]. Usually, the grid is uniform in [0, 1),
which is a special case in our assumption. Numerical examples are provided in section
4.1 to support this assumption.

Notice that the smooth function pk(t) = Nkφk(t) has the interpretation of a
warping in each generalized mode via a diffeomorphism pk : R → R. Hence, we can
define the inverse-warping data by

hk(v) =
f ◦ p−1

k (v)
αk ◦ p−1

k (v)
= sk(2πv) +

∑
j 6=k

αj ◦ p−1
k (v)

αk ◦ p−1
k (v)

sj(2πpj ◦ p−1
k (v))

:= sk(2πv) + κk(v),

where v = pk(t). Correspondingly, we have a set of measurements of hk(v) sampled
on {hk(v`)}`=1,...,L with v` = pk(t`).

The observation that sk(2πv) is a periodic function with a period 1 motivates the
following folding map τ that folds the two-dimensional point set {(v`, hk(v`))}`=1,...,L
together:

τ : (v`, hk(v`)) 7→ (mod(v`, 1), hk(v`)) .

If there was only one generalized mode, then the point set {τ(v`, sk(2πv`))}`=1,...,L
⊂ R2 is a two-dimensional point set located at the curve (v, sk(2πv)) ⊂ R2 given by
the generalized shape function sk(2πv) with v ∈ [0, 1). Figure 5 (left) visualizes one
example of this point set in the case of one mode. This could also be understood in
the following way. Let Xk be an independent random variable in [0, 1) and Yk be the
response random variable in R. Consider (x`, y`) = τ(v`, sk(2πv`)) for ` = 1, . . . , L as
L i.i.d. samples of the random vector (Xk, Yk). Then we know sk is the regression
function satisfying Yk = sk(2πXk). Hence, the solution of the following regression
problem gives the generalized shape function:

(8) sk = sRk := arg min
s:R→R

E{|s(2πXk)− Yk|2},

where the superscript R means the ground truth regression function. Let s̄k denote the
numerical solution of the above regression problem; then the approximation s̄k ≈ sk
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Fig. 5. Left: the point set {τ(v`, sk(2πv`))}`=1,...,L ⊂ R2 in the case of one mode f(t) = f1(t),
where f1(t) is given in (4). Middle: the point set {τ(v`, sk(2πv`))}`=1,...,L ⊂ R2 in the case of two
modes f(t) = f1(t) + f2(t) defined in (4). Right: the true shape function s1(2πt) and the estimated
one s̄1(2πt) by regression once from the point set in the middle figure.
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is precise once L is sufficiently large since the variance σ2 := Var{Yk|Xk = x} = 0
for all x ∈ [0, 1). Once the generalized shape function sk has been estimated, the
estimated generalized mode αk(t)s̄k(2πNkφk(t)) is an immediate result.

The assumption that (x`, y`) = τ(v`, sk(2πv`)) for ` = 1, . . . , L are L i.i.d. sam-
ples of the random vector (Xk, Yk) comes from the fact that grid points {t`}`=1,...,L
are i.i.d.. In practice, these grid points are determinate and usually uniform. Notice
that the warping and folding maps behave essentially like pseudorandom number gen-
erators with a nonlinear congruential function mod(pk(t), 1) for k = 1, . . . ,K. Hence,
even if in the case of determinate grid points, the point set (x`, y`) = τ(v`, sk(2πv`))
for ` = 1, . . . , L has similar statistical properties like a set of i.i.d. samples. It might
be interesting to analyze this assumption further, but we would only assume it in
this paper and focus on the regression problem. This assumption will be validated by
numerical examples in section 4.1.

However, in the presence of multiple modes, the trace τ(v`, κk(v`)) of κk(v) in
the `th component stets like a noise perturbation in the regression problem (see
Figure 5 middle for an illustration). In this case, (x`, y`) = τ(v`, sk(2πv`)+κk(v`)) for
` = 1, . . . , L can be considered as L i.i.d. samples of a random vector (Xk, Yk)
with a noise perturbation in Yk. Hence, the regression in (8) only results in a
rough estimate s̄k as shown in Figure 5 right. To be more precise, let sEk (2πx) :=
E{Yk − sk(2πXk)|Xk = x} be the residual shape function; then s̄k ≈ sRk := sk + sEk .
Hence, the residual error of the mode decomposition

r(t) = f(t)−
K∑
k=1

αk(t)s̄k(2πNkφk(t)) ≈ −
K∑
k=1

αk(t)sEk (2πNkφk(t))

might be large if the residual shape functions {sEk }k are not zero. This motivates
the design of a recursive scheme that repeats the same decomposition procedure to
decompose the residual r(t) until the residual is small as follows.

Remark that Line 8 in Algorithm 1 is essential because it is a crucial condition
for the convergence of the recursive scheme as we shall see in Lemma 3.3. It ensures
that all generalized shape functions in each iteration has a zero mean. In practice, it
is sufficient to estimate instantaneous amplitude functions {αk(t)} up to an unknown
prefactor (e.g., {ŝk(1)αk(t)} can be estimated by the synchrosqueezed transform but
{ŝk(1)} are not available) because the unknown prefactor has been absorbed in the
shape function estimation s̃k(t), which will approximate sk(t)/ŝk(1). Hence, when we
reconstruct the kth mode, the unknown prefactor is canceled out as follows:

ŝk(1)αk(t)
1

ŝk(1)
sk(2πpk(t)) = αk(t)sk(2πpk(t)).

Similarly, it is sufficient that a phase function pk(t) is available up to a constant; e.g.,
pk(t)−pk(0) can be estimated by the synchrosqueezed transform but pk(0) is unknown.
A shift in the estimation of a phase function leads to a shift in the estimation of its
corresponding shape function. In the end, the shift is canceled out when a mode is
reconstructed.

Although Algorithm 1 relies on the exact instantaneous amplitudes and phases,
numerical examples in section 4 shows that the algorithm is not sensitive to the input
amplitudes and phases as long as the folding procedure in Line 6 is able to fold the
periodic part in h

(j)
k together.

3.2. Convergence analysis. In this section, an asymptotic analysis on the con-
vergence of the RDBR method is provided. The partition-based regression method
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1 Input: L points of i.i.d. measurement {f(t`)}`=1,...,L with t` ∈ [0, 1],
instantaneous phases {pk}k=1,...,K , instantaneous amplitudes {αk}k=1,...,K ,
an accuracy parameter ε < 1, and the maximum iteration number J .

2 Output: generalized shape function estimates {s̃k}k=1,...,K .
3 Initialize: let r(0) = f , ε1 = ε2 = 1, ε0 = 2, the iteration number j = 0,

s̄
(0)
k = 0, and s̃k = 0 for all k = 1, . . . ,K.

4 while j < J , ε1 > ε, ε2 > ε, and |ε1 − ε0| > ε do
5 For all k, 1 ≤ k ≤ K, define

h
(j)
k =

r(j) ◦ p−1
k

αk ◦ p−1
k

,

and we know it is sampled on grid points v` = pk(t`).
6 Observe that {τ(v`, h

(j)
k (v`))}`=1,...,L behaves like a sequence of i.i.d.

samples of a certain random vector (Xk, Y
(j)
k ) with Xk ∈ [0, 1).

7 For all k, 1 ≤ k ≤ K, solve the distribution-free regression problem

(9) s̄
(j+1)
k ≈ sR,(j+1)

k = arg min
s:R→R

E
{∣∣∣s(2πXk)− Y (j)

k

∣∣∣2} ,
where s̄(j+1)

k denotes the numerical solution approximating the ground
truth solution s

R,(j+1)
k .

8 Update s̄(j+1)
k = s̄

(j+1)
k − 1

2π

∫ 2π
0 s̄

(j+1)
k (t)dt for all k.

9 Update s̃k = s̃k + s̄
(j+1)
k for all k.

10 Update r(j+1) = r(j) −
∑K
k=1 αk(t)s̄(j+1)

k (2πpk(t)).
11 Update ε0 = ε1, ε1 = ‖r(j+1)‖L2 , ε2 = maxk{‖s̄(j+1)

k ‖L2}.
12 Set j = j + 1.

Algorithm 1: RDBR.

(or partitioning estimate) in Chapter 4 of [29] will be used. The first theorem concerns
about the convergence rate of the estimated regression function to the ground truth
regression function as the number of samples tends to infinity. The second theorem
clarifies the conditions that guarantee the convergence of the RDBR. The last theo-
rem shows that the RDBR method is robust against noise. Before presenting these
theorems, some notations and definitions are introduced below.

Given a small step side h � 1, the time domain [0, 1] is uniformly partitioned
into Nh = 1

h (assumed to be an integer) parts {[thn, thn+1)}n=0,...,Nh−1, where thn = nh.
The partition-based regression method with this uniform partition is applied to an-
alyze the RDBR. Suppose (x`, y`)`=1,...,L are L i.i.d. samples of a random vector
(X,Y ) with a ground truth regression function denoted as sR. Let sPL denote the es-
timated regression function by the partition-based regression method with L samples.
Following the definition in Chapter 4 of [29], we have

sR(x) ≈ sPL (x) :=

∑L
`=1 X[thn,t

h
n+1)

(x`)y`∑L
`=1 X[thn,t

h
n+1)

(x`)
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when x ∈ [thn, t
h
n+1), where X[thn,t

h
n+1)

(x) is an indicator function of [thn, t
h
n+1). The

following theorem given in Chapter 4 in [29] estimates the L2 risk of the approximation
sPL ≈ sR as follows.

Theorem 3.1. For the uniform partition with a step side h in [0, 1) as defined
just above, assume that

Var(Y |X = x) ≤ σ2, x ∈ R,

|sR(x)− sR(z)| ≤ C|x− z|, x, z ∈ R,

X has a compact support [0, 1), and there are L i.i.d. samples of (X,Y ). Then
the partition-based regression method provides an estimated regression function sPL to
approximate the ground truth regression function sR, where

sR = arg min
s:R→R

E{|s(2πX)− Y |2}

with an L2 risk bounded by

E‖sPL − sR‖2 ≤ c0
σ2 + ‖sR‖2L∞

Lh
+ C2h2,

where c0 is a constant independent of the number of samples L, the regression function
s, the step side h, and the Lipschitz continuity constant C.

Other regression methods would also be suitable for the analysis of the RDBR
and might lead to better convergence rate than the one in Theorem 3.1. For the
sake of simplicity, we only focus on the analysis based on Theorem 3.1. To simplify
notations, sP will be used instead of sPL , and s ∈ LC means that s is a Lipschitz
continuous function with a constant C later on.

Denote the set of sampling grid points {t`}`=1,...,L in Algorithm 1 as T . To
estimate the regression function using the partition-based regression method, T is
divided into several subsets as follows. For i, j = 1, . . . ,K, i 6= j, m,n = 0, . . . , Nh−1,
let

T ijh (m,n) =
{
t ∈ T : mod (pi(t), 1) ∈ [thm, t

h
m + h), mod (pj(t), 1) ∈ [thn, t

h
n + h)

}
and

T ih (m) =
{
t ∈ T : mod (pi(t), 1) ∈ [thm, t

h
m + h)

}
;

then T = ∪N
h−1

m=0 T ih (m) = ∪N
h−1

m=0 ∪
Nh−1
n=0 T ijh (m,n). Let

(10) Dij
h (m,n) and Di

h(m)

denote the number of points in T ijh (m,n) and T ih (m), respectively.

Definition 3.2. Suppose fk(t) = αk(t)sk(2πNkφk(t)) is a GIMT of type (M,Nk)
for k = 1, . . . ,K. Then the collection of phase functions {pk(t)}1≤k≤K is said to be
(M,N,K, h, β, γ)-well-differentiated and denoted as {pk(t)}1≤k≤K ∈ WD(M,N,K,
h, β, γ) if the following conditions are satisfied:

1. Nk ≥ N for k = 1, . . . ,K.
2. γ := min

m,n,i6=j
Dij
h (m,n) satisfies γ > 0 , where Dij

h (m,n) (and Di
h(m) below)

is defined in (10).
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3. Let

βi,j :=

Nh−1∑
m=0

1
Di
h(m)

Nh−1∑
n=0

(Dij
h (m,n)− γ)2

1/2

for all i 6= j; then β := max{βi,j : i 6= j} satisfies M2(K − 1)β < 1.

In the above definition, γ quantifies the dissimilarity between phase functions.
The larger γ is, the more dissimilarity phase functions have. If two phases are very
similar, there might be some nearly empty sets T ijh (m,n), and hence γ is small. If γ is
larger, the numbers {Dij

h (m,n)}m,n are closer, and β would be smaller. To guarantee
a large γ, N and L should be sufficiently large. With these notations defined, it is
ready to present the main analysis of the RDBR.

Let’s recall that in each iteration of Algorithm 1, if we denote the target shape
function as s(j)k , then the given data are

r(j) =
K∑
k=1

αk(t)s(j)k (2πpk(t)).(11)

In the regression problem

s
R,(j+1)
k = arg min

s:R→R
E
{∣∣∣s(2πXk)− Y (j)

k

∣∣∣2}(12)

= arg min
s:R→R

E
{∣∣∣s(2πXk)− (Y (j)

k − s(j)k (2πXk))
∣∣∣2}− s(j)k ,(13)

we have
s
R,(j+1)
k = s

(j)
k + s

E,(j)
k ,

where

(14) s
E,(j)
k (2πx) := E

{
Y

(j)
k − s(j)k (2πXk)|Xk = x

}
6= 0

due to the perturbation caused by other modes. In the next iteration, the target
shape function s

(j+1)
k = −sE,(j)k . Hence, the key convergence analysis is to show that

s
E,(j)
k decays as j →∞.

Remark that the partition-based regression method is only used to provide a
decay rate. In the analysis, we assume that all regression problems are solved exactly,
i.e., s̄(j+1)

k = s
R,(j+1)
k in equation (9).

In what follows, we assume that an accuracy parameter ε is fixed. Furthermore,
suppose the given K GIMTs fk(t) = αk(t)sk(2πNkφk(t)), k = 1, . . . ,K, have phases
in WD(M,N,K, h, β, γ) and all generalized shape functions and amplitude functions
are in the space LC . Under these conditions, all regression functions s(j)k ∈ LC and
have bounded L∞ norm depending only on M and K. By Line 8 in Algorithm 1, we
have the nice and key condition that

∫ 1
0 s

(j)
k (2πt)dt = 0 at each iteration for all k and

j. Note that Var(Y (j)
k |Xk = x) is bounded by a constant depending only on M and

K as well. For the fixed ε and C, there exists h0(ε,M,K,C) such that C2h2 < ε2

if 0 < h < h0. By the abuse of notation, O(ε) is used instead of Ch later. By
Theorem 3.1, for the fixed ε, M , K, C, and h, there exists L0(ε,M,K,C, h) such that
the L2 error of the partition-based regression is bounded by ε2. In what follows, h
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is smaller than h0, L is larger than L0, and hence all estimated regression functions
approximate the ground truth regression function with an L2 error of order ε. Under
these conditions and assumptions, sE,(j)k is shown to decay to O(ε) as j → ∞, and
the decay rate will be estimated.

Lemma 3.3. Under the conditions listed in the paragraph immediately preceding
this lemma, for the given ε, the estimated regression function s

P,(j)
k of the regression

problem in (13) by the partition-based regression method satisfies

‖sP,(j)k ‖L2 ≤ O(ε) +M2(K − 1)β max
1≤k≤K

‖s(j)k ‖L2

for all k = 1, . . . ,K and j.

We would like to emphasize that sP,(j)k is only used in the analysis and is not
computed in Algorithm 1.

Proof. First, we start with the case when K = 2 and αk(t) = 1 for all t and k.
Recall that pk(t) can be considered as a diffeomorphism from R to R transforming

data in the t domain to the pk(t) domain. We have introduced the inverse-warping
data

h
(j)
k (v) = r(j) ◦ p−1

k (v)

= s
(j)
k (2πv) +

∑
` 6=k

s
(j)
` (2πp` ◦ p−1

k (v))

:= s
(j)
k (2πv) + κ

(j)
k (v),

where v = pk(t). After the folding map

τ : (v, hk(v)) 7→
(

mod(v, 1), h(j)
k (v)

)
,

we have (x`, y`) = τ(v`, s
(j)
k (2πv`) + κ

(j)
k (v`)) for ` = 1, . . . , L as L i.i.d. samples

of a random vector (Xk, Y
(j)
k ), where Xk ∈ [0, 1]. We can assume the target shape

functions s(j)k for all k at the jth step are known in the analysis, although they are not
known in practice. The partition-based regression method is applied (not necessary to
know the distribution of the random vector (Xk, Y

(j)
k )) to solve the following regression

problem approximately, i.e.,

arg min
s:R→R

E
{∣∣∣s(2πXk)− (Y (j)

k − s(j)k (2πXk))
∣∣∣2} ,

and the solution is denoted as sP,(j)k . Recall notations in Definition 3.2. By the
partition-based regression method, when x ∈ [thm, t

h
m + h),

s
P,(j)
k (x) =

∑Nh−1
n=0

(
s
(j)
i (2πthn) +O(ε)

)
Dki
h (m,n)

Dk
h(m)

,

where i = 1 if k = 2 or i = 2 if k = 1 and O(ε) comes from the approximation of the
LC function si using the values on grid points thn. Hence,
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|sP,(j)k (x)| ≤ O(ε) +
∑Nh−1
n=0 s

(j)
i (2πthn)Dki

h (m,n)
Dk
h(m)

= O(ε) +
∑Nh−1
n=0 s

(j)
i (2πthn)

(
Dki
h (m,n)− γ

)
Dk
h(m)

+
γ
∑Nh−1
n=0 s

(j)
i (2πthn)

Dk
h(m)

.

Since s(j)i ∈ LC and
∫ 1
0 s

(j)
i (2πt)dt = 0, |

∑Nh−1
n=0 s

(j)
i (2πthn)| ≤ C. Note that Dk

h(m) ≥
Nhγ = γ/h. Hence, ∣∣∣∣∣γ

∑Nh−1
n=0 s

(j)
i (2πthn)

Dk
h(m)

∣∣∣∣∣ ≤ O(ε)

and

|sP,(j)k (x)| ≤ O(ε) +
∑Nh−1
n=0 s

(j)
i (2πthn)

(
Dki
h (m,n)− γ

)
Dk
h(m)

.

By the triangle inequality,

‖sP,(j)k ‖L2 ≤ O(ε) +

Nh−1∑
m=0

(∑Nh−1
n=0 s

(j)
i (2πthn)

(
Dki
h (m,n)− γ

)
Dk
h(m)

)2

h

1/2

≤ O(ε) +

Nh−1∑
m=0

Nh−1∑
n=0

(
s
(j)
i (2πthn)

)2

Nh−1∑
n=0

(
Dki
h (m,n)− γ
Dk
h(m)

)2
h

1/2

= O(ε) +

Nh−1∑
n=0

(
s
(j)
i (2πthn)

)2
h

1/2Nh−1∑
m=0

Nh−1∑
n=0

(
Dki
h (m,n)− γ
Dk
h(m)

)2
1/2

,

where the second inequality comes from Hölder’s inequality. Since s(j)i ∈ LC ,Nh−1∑
n=0

(
s
(j)
i (2πthn)

)2
h

1/2

=
(
‖s(j)i ‖

2
L2 +O(ε)

)1/2
= ‖s(j)i ‖L2 +O(ε).

Since phase functions are in WD(M,N, h, β, γ),Nh−1∑
m=0

Nh−1∑
n=0

(
Dki
h (m,n)− γ
Dk
h(m)

)2
1/2

≤ β < 1.

Hence,
‖sP,(j)k ‖L2 ≤ O(ε) + β‖s(j)i ‖

2
L2 ≤ O(ε) + β max

1≤k≤K
‖s(j)k ‖L2 .

To care the general case, we need to extend the argument to K > 2 and noncon-
stant αk. We shall do this in two steps: first K > 2 but αk ≡ 1 for all k and then,
finally, K > 2 and varying αk. Rather than repeating the earlier argument in full
detail, adapted to these more general situations, we indicate simply, for both steps,
what extra estimates need to be taken into account. This may not give the sharpest
estimate, but this is not a concern for now.
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Next, we prove the case when K > 2 and αk(t) = 1 for all t and k. Similarly, by
the definition of the partition-based regression and the triangle inequality, we have

|sP,(j)k (x)| ≤ O(Kε) +
∑
i 6=k

λi

∑Nh−1
n=0 s

(j)
i (2πthn)

(
Dki
h (m,n)− γ

)
Dk
h(m)

.

Hence, by the triangle inequality and the Hölder inequality again, it holds that

‖sP,(j)k ‖L2 ≤ O(Kε) +
∑
i6=k

Nh−1∑
m=0

(∑Nh−1
n=0 s

(j)
i (2πthn)

(
Dki
h (m,n)− γ

)
Dk
h(m)

)2

h

1/2

≤ O(Kε) +
∑
i6=k

Nh−1∑
n=0

(
s
(j)
i (2πthn)

)2
h

1/2

Nh−1∑
m=0

Nh−1∑
n=0

(
Dki
h (m,n)− γ
Dk
h(m)

)2
1/2

≤ O(Kε) +
∑
i6=k

β‖s(j)i ‖L2

≤ O(Kε) + (K − 1)β max
1≤k≤K

‖s(j)k ‖L2

= O(ε) + (K − 1)β max
1≤k≤K

‖s(j)k ‖L2 .

Finally, we prove the case when amplitude functions are smooth functions but
not a constant 1. If the instantaneous frequencies are sufficiently large, depending
on ε, M , K, and C, amplitude functions are nearly constant up to an approximation
error of order ε. The time domain [0, 1] is divided into sufficiently small intervals
such that amplitude functions are nearly constant inside each interval. Accordingly,
the samples (x`, y`) = τ(v`, sk(2πv`) + κk(v`)) for ` = 1, . . . , L of the random vector
(Xk, Y

(j)
k ) is divided into groups, and the partition-based regression method is applied

to estimate the regression function for each group. This is similar to data splitting
in nonparametric regression. The bound of |sP,(j)k (x)| is a weighted average of the
bound given by each group, and the weight comes the number of points in each group
over the total number of samples. Note that ‖αk‖L∞ ≤M . By repeating the analysis
above, it is simple to show

‖sP,(j)k ‖L2 ≤ O(ε) +M2(K − 1)β max
1≤k≤K

‖s(j)k ‖L2 ,

where M2 comes from
αi ◦ p−1

k (v)
αk ◦ p−1

k (v)

in κk(v) after warping.

Lemma 3.4. Under the conditions in Lemma 3.3, sE,(j)k in (14) satisfies

‖sE,(j)k ‖L2 ≤ O(ε) +M2(K − 1)β max
1≤k≤K

‖s(j)k ‖L2

for all k = 1, . . . ,K and j.
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Proof. Let sP,(j)k be the estimated regression function constructed in Lemma 3.3;
then

‖sE,(j)k ‖L2 ≤ ‖sE,(j)k − sP,(j)k ‖L2 + ‖sP,(j)k ‖L2

≤ O(ε) +M2(K − 1)β max
1≤k≤K

‖s(j)k ‖L2

by Theorem 3.1 and Lemma 3.3.

Theorem 3.5. (convergence of the RDBR) Under the conditions in Lemma 3.3,
we have

max
1≤k≤K

‖sE,(j)k ‖L2 ≤ O
(
cε+

(
M2(K − 1)β

)j+1
)

and

‖r(j)‖L2 ≤ O
(
cε+

(
M2(K − 1)β

)j)
,

where c = 1
1−M2(K−1)β is a finite number, sE,(j)k is defined in equation (14), and r(j)

is defined in equation (11).

Proof. This theorem is an immediate result of Lemma 3.4 by induction. Let

c1 = M2(K − 1)β

and

c2(j) =
j∑

n=0

cn1 ;

then c2(j) < limj→∞ c2(j) = c for all j and c is a finite number because 0 < M2(K −
1)β < 1 by the assumption. In the initial step when j = 0, s(j)k = sk, ‖sk‖L∞ ≤ M ,
and ‖αk‖L∞ ≤M . Hence, by Lemma 3.4,

max
1≤k≤K

‖sE,(0)k ‖L2 ≤ O(ε) +M2(K − 1)β max
1≤k≤K

‖s(0)k ‖L2

≤ O(ε) +M2(K − 1)β
√

2πM
= O(εc2(0) +M2(K − 1)β),

‖r(0)‖L2 ≤
K∑
k=1

‖αk(t)sk(2πNkφk(t))‖L2 ≤ KM2 = O(1),

and the conclusion holds. When j 6= 0, we have

(15) s
(j)
k = −sE,(j−1)

k ,

where

max
1≤k≤K

‖sE,(j−1)
k ‖L2 ≤ O

(
εc2(j − 1) +

(
M2(K − 1)β

)j)
.(16)

By Lemma 3.4, equations (15) and (16),

‖sE,(j)k ‖L2 ≤ O(ε) +M2(K − 1)β max
1≤k≤K

‖s(j)k ‖L2

≤ O
(
εc2(j) +

(
M2(K − 1)β

)(j+1)
)
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for all k. Hence,

max
1≤k≤K

‖sE,(j)k ‖L2 ≤ O
(
εc2(j) +

(
M2(K − 1)β

)j+1
)
.

By (15) and (16),

‖r(j)‖L2 = ‖
K∑
k=1

αk(t)s(j)k (2πpk(t))‖L2

≤
K∑
k=1

M‖s(j)k (2πpk(t))‖L2

≤ O
(
εc2(j − 1) +

(
M2(K − 1)β

)j)
.

Note that for all j, we have 0 < c2(j) < limj→∞ c2(j) = c. Hence, this theorem holds
for j 6= 0.

Theorem 3.5 shows that the regression function in each step of Algorithm 1 decays
if M2(K − 1)β < 1 in the L2 sense up to a fixed accuracy parameter as the iteration
number becomes large. Hence, the recovered shape function s̃k converges, and the
residual decays up to a fixed accuracy parameter if M2(K − 1)β < 1. When the
iteration number is sufficiently large, the accuracy of the RDBR in Theorem 3.5 is as
good as a single step of regression in Theorem 3.1.

Theorem 3.6. (robustness of the RDBR) Let fk(t) = αk(t)sk(2πNkφk(t)),
k = 1, . . . ,K, be K GIMTs and f(t) =

∑K
k=1 fk(t)+n(t), where n(t) is a random noise

with a bounded variance σ2. Under the other conditions introduced in
Theorem 3.5, for the given ε, ∃L0(ε,M,K,C, h, σ), if L > L0, then

max
1≤k≤K

‖sE,(j)k ‖L2 ≤ O
(
cε+

(
M2(K − 1)β

)j+1
)

and
‖r(j)‖L2 ≤ O

(
cε+

(
M2(K − 1)β

)j)
,

where c = 1
1−M2(K−1)β is a finite number, sE,(j)k is defined in equation (14), and r(j)

is defined in equation (11).

Proof. The proof basically follows the one in Theorem 3.5. The difference is that
the number of samples in (Xk, Y

(j)
k ) should be large enough, depending on σ2, such

that Lemma 3.3 is still true.

Theorem 3.6 shows that as soon as the number of sampling points L is large
enough, the noise effect will be negligible, and the RDBR method can still identify
generalized shape functions accurately.

4. Numerical examples. In this section, some numerical examples of synthetic
and real data are provided to demonstrate the proposed properties of the RDBR.
We apply the least squares spline regression method with free knots in [30] to solve
all the regression problems in this paper. The implementation of this method is
available online.2 In all synthetic examples, we assume the fundamental instantaneous

2Available at https://www.mathworks.com/matlabcentral/fileexchange/25872-free-knot-spline-
approximation.

https://www.mathworks.com/matlabcentral/fileexchange/25872-free-knot-spline-approximation.
https://www.mathworks.com/matlabcentral/fileexchange/25872-free-knot-spline-approximation.
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Table 1
Parameters in the spline regression, SynLab, and Algorithm 1. The notation “–” means the

corresponding parameter is not used or its value can be found in the description of its corresponding
example.

Figure nk krf ord s rad red εsst mIter ε L

6 20 1.01 3 – – – – 4000 1e-6 216

7 (left) 20 1.01 3 – – – – 9 1e-13 212

7 (middle) 20 1.01 3 – – – – 200 1e-13 –
7 (right) 20 1.01 3 – – – – – – –
8 (clean) 20 1.01 3 – – – – 200 1e-6 212

8 (noisy) 20 1.0001 3 – – – – 200 1e-10 216

9 (clean) 20 1.01 2 – – – – 200 1e-6 212

9 (noisy) 20 1.01 2 – – – – 200 1e-6 216

11 (clean) 20 1.01 3 – – – – 200 1e-6 212

11 (noisy) 20 1.001 3 – – – – 200 1e-6 216

12-14 (clean) 20 1.001 3 0.66 1 8 1e-3 200 1e-10 214

12-14 (noisy) 20 1.001 3 0.66 1 8 1e-3 200 1e-10 216

15 (noisy) 20 1.01 3 0.66 1 20 1e-3 200 1e-10 1600

phases and amplitudes are known and only focus on verifying the theory of the RDBR
in section 3. In real examples, we apply the one-dimensional SSWPT to estimate
instantaneous phases and amplitudes as inputs of the RDBR. The implementation of
the SSWPT is also publicly available in SynLab.3. The code for the RDBR will be
available online shortly.4

Before presenting results, we would like to summarize the main parameters in the
above packages and in Algorithm 1. In the spline regression with free knots, main
parameters are

• nk: the number of free knots;
• krf : the knot removal factor, a number quantifying how likely a free knot

would be removed;
• ord: the highest degree of spline polynomials.

In SynLab, main parameters are
• s: a geometric scaling parameter;
• rad: the support size of the mother wave packet in the Fourier domain;
• red: a redundancy parameter, the number of frames in the wave packet trans-

form;
• εsst: a threshold for the wave packet coefficients.

In Algorithm 1, main parameters are
• mIter: the maximum number of iterations allowed;
• ε: the accuracy parameter.

For the purpose of convenience, the synthetic data are defined in [0, 1] and sampled on
a uniform grid. All these parameters in different examples are summarized in Table 1.

In the noisy synthetic examples, Gaussian random noise with a distribution
N (σ2, 0) is used. We follow the definition of the signal-to-noise ratio (SNR) in [19]:

(17) SNR[dB] = min
{

10 log10

(
‖fi‖L2

σ2

)
, 1 ≤ i ≤ K

}
,

where {fi}Ki=1 are the generalized modes contained in the signal f(t) to be analyzed.

3Available at https://github.com/HaizhaoYang/SynLab.
4 Will be available at https://github.com/HaizhaoYang/DeCom.

https://github.com/HaizhaoYang/DeCom
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4.1. Numerical distribution of sampling points. In this section, we provide
numerical examples to support the assumption that, the collection of samples after
warping and folding behaves essentially like a collection of i.i.d. samples in the analysis
of the RDBR in section 3.

Let us revisit the example in (4) and choose its instantaneous phase functions

p1(t) = 60(t+ 0.01 sin(2πt))

and
p2(t) = 90(t+ 0.01 cos(2πt))

to define warping and folding maps

τ1 : t 7→ mod(p1(t), 1)

and

τ2 : t 7→ mod(p2(t), 1).

Let T denote the collection of L uniform grid points {tn}n=0,...,L−1 in [0, 1] with a
step side 1/L and tn = n/L. The warping and folding map τ1 (or τ2) acts like a
pseudorandom number generator mapping T to a collection of i.i.d. samples of a
random variable X with a uniform distribution in [0, 1]; i.e., sample points in

(18) S1 = τ1(T )

and

(19) S2 = τ2(T )

are approximately uniformly distributed in [0, 1]. To support this claim numerically,
we randomly sample L points from a random variable with a uniform distribution in
[0, 1] and denote this set of samples as S0. The distribution of Sk for k = 0, 1, and 2,
when L = 212, 214, and 216, are summarized in Figure 6. Figure 6 shows that points
in S1 and S2 have a more uniform distribution than those in S0. Hence, S1 and S2
would lead to better results in the regression than S0.

4.2. Convergence of the RDBR. In this section, numerical examples are
provided to verify the convergence analysis in section 3. In the analysis, for a fixed
accuracy parameter ε, we have shown that as long as the fundamental instantaneous
frequencies are sufficiently high and the number of samples is large enough, the RDBR
is able to estimate shape functions from a class of superpositions of generalized modes.
The residual error in the iterative scheme linearly converges to a quantity of order
ε. Since it is difficult to specify the relation of the rate of convergence and other
parameters explicitly in the analysis, we provide numerical examples to study this
rate quantitatively.

In all examples in this section, we consider a simple case when the signal has two
components with piecewise linear and continuous generalized shapes. This makes it
easier to verify the convergence analysis. For example, we consider signals of the form

f(t) = f1(t) + f2(t),(20)

where

f1(t) = α1(t)s1(2πNφ1(t)) = (1 + 0.05 sin(4πx))s1 (2πN(x+ 0.006 sin(2πx)))
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Fig. 6. Histograms of the point sets S0 (left column), S1 (middle column), and S2 (right
column) with a uniform bin size 0.02. Here S1 and S2 are defined in equation 18 and equation 19,
respectively, and S0 is defined right below equation 19. From top to bottom, the number of samples
in Sk (for all k = 0, 1, and 2) is L = 212, 214, and 216, respectively. These histograms show that
points in S1 and S2 are approximately uniformly distributed in [0, 1).

and

f2(t) = α2(t)s2(2πNφ2(t)) = (1 + 0.05 cos(2πx))s1 (2πN(x+ 0.006 cos(2πx))) ,

where s1(t) and s2(t) are generalized shape functions defined in [0, 1] as shown in
Figure 7.

In the first example of this section, we show that the RDBR still converges even if
the fundamental instantaneous frequencies are very low, i.e., the signal only contains a
few periods of oscillation. Figure 7 shows the numerical results of a signal when N = 2
in (20) and L = 216 samples on a uniform grid in [0, 1]. This is a challenging case
when there are approximately two periods in each mode. Although we cannot prove a
linear convergence in this case, Figure 7 (right) shows that the RDBR converges with
a sublinear convergence rate. With a sufficiently large iteration number, the RDBR is
able to identify shape functions with a reasonably good accuracy as shown in Figure 7
(left and middle). The capability of handling low-frequency modes is attractive to
people working on real-time data, in which the shape function might change in time
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Fig. 7. Numerical results of the signal in (20) when N = 2. Left: the ground truth shape
function s1 and its estimation by the RDBR. Middle: the ground truth shape function s2 and
its estimation by the RDBR. Right: the L2-norm of residual r(j) in the jth iteration, i.e., ε1 in
Algorithm 1.
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Fig. 8. Left: Estimated convergence rates β in different iteration steps when different values
are assigned to N in (20). Middle: the relation of the final residual norm ε

(j)
1 (after the RDBR has

been terminated) and the number of samples L. Right: the relation of the regression error in the
L2-norm and the number of samples L.

and such changes are interesting to track; in this case, only the information within a
few consecutive periods can be used for shape function extraction (see [28] for more
references).

In the second example in this section, we fix the number of samples L = 212, vary
the parameter N in (20), and estimate the convergence rate numerically. By Theorem
3.5 (adapted to the example in this section), the residual norm ε1 in Algorithm 1
converges to O(ε) as follows:

ε
(j)
1 = O(ε) + βjO(1).

Hence, if we define a sequence {µj} by

µj = log
(
|ε(j−1)

1 − ε(j)1 |
)

and a sequence {ηj} by
ηj = µj − µj+1,

then ηj approximately quantifies the convergence in the jth iteration and should
be nearly a constant close to − log(β). Figure 8 (left) visualizes the sequences {ηj}
generated from different signals with various N ’s. It shows that when the fundamental
frequency N is sufficiently large, {ηj} are approximately a constant for all j, and hence
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the convergence is linear; when N is small, the RDBR converges sublinearly since
ηj > 0 for all j and {ηj} decays as j becomes large. Remark that the convergence
analysis is valid up to an O(ε) accuracy; i.e., once the residual is reduced to O(ε),
it might not be reduced any further, and, in the worst case, it might even increase
again due to the numerical error in the spline regression with free knots. Hence, we
only show results in the first few iterations in Figure 8 (left) to verify the convergence
rate. Actually, the next example will illustrate the effect of the error in the spline
regression on the accuracy of the RDBR.

In the last example of this section, we fixed N = 100, only vary the number of
samples L = 2m with m = 7, 8, . . . , 12, and compare the accuracy of the RDBR and
the spline regression with free knots. To obtain results with an accuracy as high as
possible, we let maxIter = 200 and ε = 1e − 13. Figure 8 (middle) shows that the
final residual norm ε1 after the RDBR essentially decays in L with the exception of
the two largest values of L.

To understand the two exceptions observed in Figure 8 (middle), let us check the
effect of the error in the spline regression on the accuracy of the RDBR. Recall that
the final residual norm after the RDBR depends on the accuracy of the regression
in Lemma 3.3 by the analysis in Theorem 3.5. Although Theorem 3.1 considers only
the partition-based regression, a similar conclusion holds for the spline regression (see
Chapter 14 in [29]). Hence, if the number of samples L increases to infinity, the
regression error is reduced to a small constant that depends on other parameters; i.e.,
the solution of the regression problem cannot be improved any more by increasing L.
Therefore, the accuracy of the RDBR might not be improved by increasing L if L has
been large enough. This explains the two exceptions in Figure 8 (middle).

To further verify the explanation in the last paragraph, we check the accuracy
of the spline regression when L is increased. Recall that, in each iteration of the
RDBR, the estimation of each shape function is perturbed by other modes. For
the example considered here, in the first iteration, when we try to estimate s1 by
regression, another mode f2 acts like a noise perturbation with a nonzero mean and
a bounded variance determined by the amplitude function and the shape function in
f2. By the formula of f2, the largest amount perturbed is approximately 0.5. Hence,
we use a toy example,

Y = s1(2πX) + ns,

where X is a random variable with a uniform distribution in [0, 1] and ns is a random
variable with a zero mean and a uniform distribution in [−0.5, 0.5]. L samples of
the random vector (X,Y ) are generated independently. The spline regression with
free knots is applied to estimate s1(2πx) from these samples, and its L2 regression
error defined in Theorem 3.1 is recorded. Figure 8 (right) shows the regression errors
with different L’s. As we can see, the regression error cannot be further reduced by
increasing L once L has reached almost the same (large) critical value as in Figure 8
(middle). This agrees with the explanation in the last paragraph. Remark that the
accuracy in Figure 8 (middle) is much higher than the one in Figure 8 (right), and
the decay rate is larger as well, indicating the possibility that the accuracy of the
recursive scheme in the RDBR exceeds that of a single regression.

4.3. Synthetic examples. In this section, we apply the RDBR to examples
with known instantaneous properties in various generalized mode decomposition prob-
lems. To make it easier to compare the RDBR with other methods, we follow the
examples in the paper of the DSA method in [19] since [19] provides various examples
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with different shape functions. We will apply the RDBR to the examples in Figures
16, 17, and 18 in [19] without replicating the results of the DSA here. For more details
about setting up these examples, the reader is referred to [19]. As for the parameters
in the RDBR, see Table 1.

The first example in this section, corresponding to the example in Figures 17 and
18 in [19], contains two generalized modes generated with two ECG shape functions
shown in Figure 9. Figure 9 (left two graphs) shows the recovered shape functions, as
compared with the ground truth shape functions, when the synthetic data are clean.
Figure 9 (right two graphs) shows the recovered shape functions when the SNR (as
defined in equation (17)) is −3 dB. Note that the SNR in the example in Figures 17
and 18 in [19] is 0 dB, which is larger than the one in our example. Comparing Figure
17 in [19] and Figure 9, we see that the RDBR is more accurate than the DSA.

The second example in this section, corresponding to the example in Figure 16
in [19], contains two generalized modes generated with two piecewise constant shape
functions shown in Figure 10. Figure 10 (left two graphs) shows the recovered shape
functions, as compared with the ground truth shape functions, when the synthetic
data are clean. Figure 10 (right two graphs) shows the recovered shape functions when
SNR = −3 dB. Again, the SNR in the example in Figure 16 in [19] is 0 dB, meaning
that our example here is noisier than that in [19], and we obtained better results,
even though the results in [19] are improved by additional TV-norm minimization
to remove noise and the Gibbs phenomenon around discontinuous points in shape
functions. Comparing Figure 16 in [19] and Figure 10, we see that the RDBR, even
without postprocessing, is competitive with the DSA.

In the last example of this section, we apply the RDBR to a very challenging case
in which the signal f(t) contains four modes with close instantaneous frequencies (see
Figure 11) given below:

(21) f(t) = f1(t) + f2(t) + f3(t) + f4(t),
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Fig. 9. Recovered shapes in clean (left) and noisy (right) examples, as compared with ground
truth shapes.
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Fig. 11. Instantaneous frequencies of the example in (21).
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Fig. 12. From left to right, the ground truth shape functions sk(2πt) for k = 1, . . . , 4 (in red)
and their estimations by the RDBR (in blue). From top to buttom, the results recovered from a
clean signal and a noisy signal with SNR = −3 dB.

where

fk(t) = sk(2πNφk(t)),
φk(t) = t+ 0.05(k − 1) + 0.01 sin(2π(t+ 0.05(k − 1)))

for k = 1, . . . , 4, N = 200, and {sk(t)}k=1,...,4 visualized in Figure 12. As shown in
Figure 12, the RDBR is able to estimate shape functions precisely from clean data. In
the case of very noisy data when SNR = −3 dB, even if the instantaneous frequencies
are very close, the RDBR is still able to recover shape functions with reasonably good
accuracy.

4.4. Practical applications. In this section, we provide two examples to demon-
strate the capability of the RDBR in practical applications when instantaneous prop-
erties are not known. The synchrosqueezed transform as implemented in [19] is applied
to estimate these properties as inputs of the RDBR. These inputs may contain system-
atic error due the synchrosqueezed transform, but the RDBR is still able to estimate
the shape functions precisely. The first example is a generalized mode decomposition
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similar to the example of Figure 9 that used ECG shape functions. To make the prob-
lem more challenging, instantaneous frequencies are much smaller and more similar
in this example. Let us define

f(t) = α1(t)s1(2πN1φ1(t)) + α2(t)s2(2πN2φ2(t)),

where α1(t) = 1 + 0.05 sin(2πt), α2(t) = 1 + 0.05 cos(2πt), N1 = 32, N2 = 48,
φ1(t) = t+ 0.001 sin(2πt), and φ2(t) = t+ 0.001 cos(2πt).

A clean signal and a noisy signal with SNR = −3 dB were analyzed. The SSWPT
in [19] was applied to estimate fundamental instantaneous properties, and results are
shown in Figures 13 and 14. Inputting these properties in the RDBR, we obtained
estimated shape functions contained in f(t) as shown in Figure 15. Note that even
though the estimated instantaneous properties have large errors, especially in the
noisy case, the RDBR is still able to give reasonably good shape estimation.

In the last example, we apply the RDBR to analyze daily atmospheric CO2 con-
centration data in [31]. The data were observed by the National Oceanic and Atmo-
spheric Administration at Mauna Loa in 31 recent years (1981–2011). As shown in
Figure 16 (top), there is a smooth growing trend in the original data. To focus on the
oscillatory pattern, this trend is approximated by a linear function and removed from
the original data. The SSWPT is applied to estimate fundamental instantaneous prop-
erties of the residual data. As shown in Figure 17 (left), the synchrosqueezed energy
distribution indicates only one fundamental component. The semiannual component
has a instantaneous frequency that is nearly twice of the one of the annual component.
The RDBR is applied to the residual data with the estimated fundamental properties
by the SSWPT. Figure 17 (right) shows the estimated shape function contained in
the residual data. This shape function reflects a nonlinear evolution pattern in a year:
the CO2 concentration usually increases in a longer period and decreases in a shorter
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Fig. 13. Recovered fundamental instantaneous frequencies in clean (left) and noisy (right)
examples by the synchrosqueezed transform in [19], as compared with ground truth shapes.
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Fig. 14. Recovered fundamental instantaneous amplitudes (up to an unknown factor) in clean
(left) and noisy (right) examples by the synchrosqueezed transform in [19], as compared with ground
truth shapes.
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Fig. 15. Recovered shapes in clean (left) and noisy (right) examples, as compared with ground
truth shapes.

C
O

2
 (

p
p
m

)

340

365

390

Time (Year)
0 5 10 15 20 25 30

C
O

2
 (

p
p

m
)

-10

0

10

Fig. 16. Top: original CO2 concentration data. Bottom: the residual CO2 concentration data
after removing a smooth trend.

Time (Year)
0 5 10 15 20 25 30

F
re

q
u

e
n

c
y
 (

1
/Y

e
a

r)

0

0.5

1

1.5

2

2.5

3

0 0.5 1

-4

-2

0

2

4
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low frequency part. Right: estimated shape function by the RDBR.

period. As explained in [31], this special pattern comes from seasonal photosynthetic
drawdown and respiratory release of CO2 by terrestrial ecosystems.

5. Conclusion. This paper introduced an RDBR method for estimating shape
functions from a superposition of GIMTs. Combining the RDBR with other methods
for estimating instantaneous properties of GIMTs, namely, synchrosqueezed trans-
forms [12], adaptive optimization [13, 14], and recursive filtering [15, 16], we provide
an alternative solution to the generalized mode decomposition problem. As we have
shown theoretically and numerically, once the instantaneous properties are accurate,
the RDBR is a precise and robust method to estimate shape function, as long as in-
stantaneous phases of these oscillatory modes are well differentiated. The convergence
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of the RDBR is linear if instantaneous frequencies are sufficiently large. Numerical
observation suggests that the RDBR converges sublinearly if instantaneous frequen-
cies are small.
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