
REPRODUCING ACTIVATION FUNCTION FOR DEEP LEARNING

SENWEI LIANG

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907, USA
(LIANG339@PURDUE.EDU)

LIYAO LYU

DEPARTMENT OF COMPUTATIONAL MATHEMATICS, SCIENCE, AND ENGINEERING, MICHIGAN
STATE UNIVERSITY, EAST LANSING, MI, 48824, USA (LYULIYAO@MSU.EDU)

CHUNMEI WANG

DEPARTMENT OF MATHEMATICS & STATISTICS, TEXAS TECH UNIVERSITY, 1108 MEMORIAL
CIRCLE, LUBBOCK, TX 79409, USA (CHUNMEI.WANG@TTU.EDU)

HAIZHAO YANG

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907, USA

(HAIZHAO@PURDUE.EDU)

Abstract. In this paper, we propose the reproducing activation function to improve deep learning accuracy for
various applications ranging from computer vision problems to scientific computing problems. The idea of reproducing
activation functions is to employ several basic functions and their learnable linear combination to construct neuron-
wise data-driven activation functions for each neuron. Armed with such activation functions, deep neural networks
can reproduce traditional approximation tools and, therefore, approximate target functions with a smaller number of
parameters than traditional neural networks. In terms of training dynamics of deep learning, reproducing activation
functions can generate neural tangent kernels with a better condition number than traditional activation functions
lessening the spectral bias of deep learning. As demonstrated by extensive numerical tests, the proposed reproducing
activation function can facilitate the convergence of deep learning optimization for a solution with higher accuracy
than existing deep learning solvers for audio/image/video reconstruction, PDEs, and eigenvalue problems.

Key words. Deep Neural Network; Activation Function; Approximation; Neural Tangent Kernel; Partial Dif-
ferential Equation; Data Reconstruction.

AMS subject classifications. 65M75; 65N75; 62M45.

1. Introduction. High-dimensional problems are ubiquitous in science and engineering.
Deep learning has been an important tool for solving a wide range of high-dimensional problems,
not limited to machine learning, with surprising performance. For example, neural network-based
optimization has become a powerful tool for solving high-dimensional and nonlinear differential
equations in complicated domains [3, 35, 25, 46, 80, 62, 36]. First of all, as a form of function
approximation via the compositions of nonlinear functions [22], deep neural networks (DNNs) as a
mesh-free parametrization can efficiently approximate various high-dimensional solutions lessening
the curse of dimensionality [2, 53, 19, 18, 55, 61, 78, 47, 54, 30, 67] and/or achieving exponential
approximation rates [76, 55, 47, 43, 17, 59, 67]. Second, DNN parameters are identified via energy
minimization from variational formulation, which usually enjoys a summation form that can be
accelerated by the stochastic gradient descent (SGD) for a local minimizer. Popular choices of
the variational formulation include the residual method in the least-squares sense [14, 39], the Ritz
method [20], and the Nitsche method [44]. It is believed that the implicit regularization of SGD and
deep neural networks helps to obtain approximate solutions of a certain class of nonlienar PDEs,
though current optimization analysis [49] and generalization analysis [26, 4, 68, 49] are limited to
the case of linear PDEs.

Though neural network-based optimization for solving PDEs admits attractive properties men-
tioned above, it is also well known that the optimization problem is highly non-convex and hence

1

2 Reproducing Activation Function for Deep Learning

challenging to solve for a highly accurate solution. There has been extensive research on im-
proving the accuracy of the PDE solution provided by neural network-based optimization. They
include but are not limited to the following examples. Building neural networks satisfying the
initial/boundary conditions of the PDE can simplify the optimization formulation and increase the
accuracy [39, 24, 50]. Applying first-order methods to reformulate high-order PDEs can reduce
the difficulty of neural network optimization [7, 50]. Improving the sampling strategy of SGD
[56, 9] or the sample weights in the objective function [23] can facilitate the convergence of neural
network-based optimization. Building special neural network structures or neural network solutions
according to solution ansatz inspired by physical knowledge can significantly alleviate the training
difficulty of neural network optimization, e.g., using oscillatory structures [6]; multiscale structures
[46]; and other spectral structures [24]. Finally, hybrid algorithms combining neural network-based
solvers and traditional iterative solvers can provide highly accurate solutions to low-dimensional
nonlinear PDEs efficiently [75, 29].

Though high-dimensional problems are the main application domains of deep learning with
a superpower, it was also observed that deep learning can outperform traditional computational
tools in low-dimensional problems. Recently in computer vision and graphics, deep neural networks
were used as a mesh-free representation of objects, scene geometry, and appearance (e.g. meshes
and voxel grids), resulting in notable performance compared to traditional discrete representations.
These deep neural networks are called “coordinate-based” networks in [71] because they take low-
dimensional coordinates as inputs and output an object value of the shape, density, and/or color
at the given input coordinate. This strategy is compelling in data compression and reconstruction,
e.g., see [10, 34, 21, 51, 60, 45, 64, 70]. Similarly to the case of high-dimensional applications,
obtaining high accuracy in these applications is also a challenging topic. Exploring different neural
network architectures and training strategies for highly accurate solutions to these problems have
been an active research direction.

In this paper, we propose the reproducing activation functions to improve deep learning accu-
racy in the above applications. The idea of reproducing activation functions is to employ several
basic functions and their learnable linear combination to construct neuron-wise data-driven ac-
tivation functions for each neuron. Armed with such activation functions, deep neural networks
can reproduce traditional approximation tools efficiently, e.g., orthogonal polynomials, Fourier
basis functions, wavelets, radial basis functions. Therefore, deep neural networks with the pro-
posed reproducing activation function can approximate a wide class of target functions with a
smaller number of parameters than traditional neural networks (e.g., networks with ReLU activa-
tion functions). Therefore, these basic functions are referred to as basic activation functions and
the data-driven activation functions are called reproducing activation functions. The proposed re-
producing activation function is a general concept including many existing network structures with
super approximation power, e.g., the Sine-ReLU networks [78], the Floor-ReLU networks [67], the
Floor-Exponential-Sign networks [66].

In terms of training dynamics of deep learning, reproducing activation functions can empiri-
cally generate neural tangent kernels with a better condition number than traditional activation
functions lessening the spectrum bias of deep learning. Neural network-based optimization usually
can only find the smoothest solution with the fastest decay in the frequency domain due to the
implicit regularization of network structures and the stochastic gradient descent (SGD) for solving
the minimization problem, no matter how the initial guess is randomly selected. It was shown
through the frequency principle of neural networks [75] and the neural tangent kernel [8] that neu-
ral networks have an implicit bias towards functions that decay fast in the Fourier domain and
the gradient descent method tends to fit a low-frequency function better than a high-frequency
function. Through the analysis of the optimization energy landscape of SGD, it was shown that

Reproducing Activation Function for Deep Learning 3

SGD with small batches tends to converge to the flattest minimum [57, 41, 12]. Though the above
optimization and generalization analysis work only for regression problems, they can be generalized
to PDE problems, e.g., the optimization and generalization analysis of PDE solvers in [49] and the
spectral bias of PDE solvers in [74]. Therefore, designing an efficient deep learning algorithm to
identify oscillatory or singular solutions to regression and PDE problems is challenging. The pro-
posed reproducing activation function is a general concept also including many existing network
structures lessening the spectral bias of deep learning (e.g., the multiscale neural network [6], deep
neural networks composed with Fourier feature models [71]).

The paper is organized as follows. In Section 2, preliminary knowledge of deep learning is
introduced. In Section 3, we introduce the reproducing activation functions. Numerical results
are presented in Section 4 to demonstrate the efficiency of the reproducing activation functions.
Finally, we conclude this paper in Section 5.

2. Preliminaries. In this section, we will introduce deep neural networks and their appli-
cations in regression problems and solving PDEs.

2.1. Deep Neural Networks. Mathematically, DNNs are a form of highly non-linear
function parametrization via function compositions using simple non-linear functions [22]. The
justification of this kind of approximation is given by the universal approximation theorems of DNNs
in [38, 2, 76, 77] with newly developed quantitative and explicit error characterization [65, 47, 67],
which shows that function compositions are more powerful than other traditional approximation
tools. There are two popular neural network structures used in deep learning-based PDE solvers.

The first one is the fully connected feed-forward neural network (FNN), which is the composition
of L simple nonlinear functions as follows:

(2.1) φ(x;θ) := aThL ◦ hL−1 ◦ · · · ◦ h1(x),

where h`(x) = σ (W`x+ b`) with W` ∈ RN`×N`−1 , b` ∈ RN` for ` = 1, . . . , L, a ∈ RNL , σ is a
non-linear activation function, e.g., a rectified linear unit (ReLU) function max{x, 0} or hyperbolic
tangent function tanh(x). Each h` is referred as a hidden layer, N` is the width of the `-th layer,
and L is called the depth of the FNN. In the above formulation, θ := {a, W`, b` : 1 ≤ ` ≤ L}
denotes the set of all parameters in φ, which uniquely determines the underlying neural network.

Another popular network is the residual neural network (ResNet) introduced in [28]. We present
its variant defined recursively as follows:

h0 = V x,

g` = σ(W`h`−1 + b`), ` = 1, 2, . . . , L,

h` = Ū`h`−2 +U`g`, ` = 1, 2, . . . , L,

φ(x;θ) = aThL,(2.2)

where V ∈ RN0×d, W` ∈ RN`×N0 , Ũ` ∈ RN0×N0 , U` ∈ RN0×N` , b` ∈ RN` for ` = 1, · · · , L, a ∈ RN0 ,
h−1 = 0. Throughout this paper, we consider N0 = N` = N and U` is set as the identity matrix
in the numerical implementation of ResNets for the purpose of simplicity. Furthermore, as used in
[20], we set Ũ` as the identity matrix when ` is even and set Ũ` = 0 when ` is odd.

2.2. Deep Learning for Regression Problems. Regression problems aim at identifying
an unknown target function f : x ∈ Ω → y∈ R from training samples {(xi, yi)}Ni=1, where xi’s are
usually assumed to be i.i.d samples from an underlying distribution π defined on a domain Ω ⊆ Rn,
and yi = f(xi) (probably with an additive noise). Consider the square loss `(x, y;θ) = |φ(x;θ)− y|2

4 Reproducing Activation Function for Deep Learning

of a given DNN φ(x;θ) that is used to approximate f(x), the population risk (error) and empirical
risk (error) functions are respectively

(2.3) J (θ) =
1

2
Ex∼π

[
|φ(x;θ)− f(x)|2

]
, Ĵ (θ) =

1

2N

N∑
i=1

|φ(xi;θ)− yi|2 ,

which are also functions that depend on the depth L and width N` of φ implicitly. The optimal set
θ̂ is identified via

(2.4) θ̂ = arg min
θ

Ĵ (θ),

and φ(·; θ̂) : Ω→ R is the learned DNN that approximates the unknown function f .

2.3. Deep Learning for Solving PDEs. Deep learning can be applied to solve various
PDEs including the initial value problems and boundary value problems (BVP) based on different
variational formulations [14, 39, 20, 44]. In this paper, we will take the example of BVP and
the least squares method (LSM) [14, 39] without loss of generality. The generalization to other
problems and methods is similar. Consider the BVP

Du(x) = f(u(x),x), in Ω,

Bu(x) = g(x), on ∂Ω,
(2.5)

where D : Ω → Ω is a differential operator that can be nonlinear, f(u(x),x) can be a nonlinear
function in u, Ω is a bounded domain in Rd, and Bu = g characterizes the boundary condition.
Other types of problems like initial value problems can also be formulated as a BVP as discussed
in [23]. Then LSM seeks a solution u(x;θ) as a neural network with a parameter set θ via the
following optimization problem

(2.6) min
θ
L(θ) := ‖Du(x;θ)− f(u,x)‖2L2(Ω) + λ‖Bu(x;θ)− g(x)‖2L2(∂Ω),

where L is the loss function consisting of the L2-norm of the PDE residual Du(x;θ)− f(u,x) and
the boundary residual Bu(x;θ)− g(x), and λ > 0 is a regularization parameter.

The goal of (2.6) is to find an appropriate set of parameters θ such that the DNN u(x;θ)
minimizes the loss L(θ). If the loss L(θ) is minimized to zero with some θ, then u(x;θ) satisfies
Du(x;θ)−f(x) = 0 in Ω and Bu(x;θ)−g(x) = 0 on ∂Ω, implying that u(x;θ) is exactly a solution
of (2.5). If L is minimized to a nonzero but small positive number, u(x;θ) is close to the true
solution provided that (2.5) is well-posed (e.g. the elliptic PDE with Neumann boundary condition,
see Theorem 4.1 in [23]).

In the implementation of LSM, the minimization problem in (2.6) is solved by SGD or its
variants (e.g. Adagrad [16], Adam [37] and AMSGrad [63]). In each iteration of the SGD, a
stochastic loss function defined below is minimized instead of the original loss function in (2.6):

(2.7) min
θ
L̂(θ) :=

1

2N

N∑
i=1

(
Du(xi;θ)− f(xi)

)2
+

1

2M
λ

M∑
j=1

(
Bu(xj ;θ)− g(xj)

)2
,

where {xi}Ni=1 are N uniformly sampled random points in Ω and {xj}Mj=1 are M uniformly sampled
random points on ∂Ω. These random samples will be renewed in each iteration. Throughout this
paper, we will use Adam, which is a variant of SGD based on momentum, to solve the neural
network-based optimization.

Reproducing Activation Function for Deep Learning 5

To facilitate the optimization convergence to the desired PDE solution, special network struc-
tures can be proposed such that the DNN can satisfy common boundary conditions, which can
simplify the loss function in (2.6) to

(2.8) min
θ
L(θ) := ‖Du(x;θ)− f(u,x)‖2L2(Ω),

since Bu(x;θ) = g(x) is satisfied by construction. Correspondingly, the stochastic loss function is
reduced to

(2.9) min
θ
L̂(θ) :=

1

2N

N∑
i=1

(
Du(xi;θ)− f(u,xi)

)2
.

In numerical implementation, the LSM loss function in (2.8) is more attractive because (2.6) heavily
relies on the selection of a suitable weight parameter λ and a suitable initial guess. If λ is not
appropriate, it may be difficult to identify a reasonably good minimizer of (2.6), as shown by
extensive numerical experiments in [39, 24, 50]. However, we would like to remark that it is difficult
to build neural networks that automatically satisfy complicated boundary conditions especially
when the domain Ω is irregular.

The design of these special neural networks depends on the type of boundary conditions. We
will discuss the case of Dirichlet boundary conditions by taking one-dimensional problems defined in
the domain Ω = [a, b] as an example. Network structures for more complicated boundary conditions
in high-dimensional domains can be constructed similarly. The reader is referred to [24, 50] for
other kinds of boundary conditions.

Suppose û(x;θ) is a generic DNN with trainable parameters θ. We will augment û(x;θ) with
several specially designed functions to obtain a final network u(x;θ) that satisfies Bu(x;θ) = g(x)
automatically. For simplicity, let us consider the boundary conditions u(a) = a0 and u(b) = b0. In
this case, we can introduce two special functions h(x) and l(x) to augment û(x;θ) to obtain the
final network u(x;θ):

(2.10) u(x;θ) = h(x)û(x;θ) + l(x).

Then u(x;θ) is used to approximate the true solution of the PDE and is trained through (2.8).
A straightforward choice for l(x) is

l(x) = (b0 − a0)(x− a)/(b− a) + a0,

and h(x) can be set as

h(x) = (x− a)pa(x− b)pb ,

with 0 < pa, pb ≤ 1. To obtain an accurate approximation, pa and pb should be chosen to be
consistent with the orders of a and b of the true solution, hence no singularity is brought into the
network structure.

2.4. The Training Behavior of Deep Learning. The least-squares optimization prob-
lems in (2.6) and (2.8) are highly non-convex and hence they are challenging to solve. For regres-
sion problems or solving linear PDEs, under the assumption of over-parameterized DNNs (i.e., the
width of DNNs is sufficiently large) and appropriate random initialization of DNN parameters, it
was shown that the least-squares optimization admits global convergence by gradient descent with a
linear convergence rate [31, 15, 79, 11, 49]. Though the over-parametrization assumption might not
be realistic, it is still a positive sign for the justification of DNNs in these least-squares problems.

6 Reproducing Activation Function for Deep Learning

However, the convergence rate depends on the spectrum of the target function. The training of a
randomly initialized DNN has a stronger preference for reducing the fitting error of low-frequency
components of a target solution. The high-frequency component of the target function would not
be well captured until the low-frequency error has been eliminated. This phenomenon is called
the F-principle in [75] and the spectral bias of deep learning in [8]. Related work on the learning
behavior of DNNs in the frequency domain is further investigated in [75, 48]. In the case of non-
linear PDEs, these theoretical works imply that deep learning-based solvers would also have a bias
towards reducing low-frequency errors [74]. Without the assumption of over-parametrization, to
the best of our knowledge, there is no theoretical guarantee that neural network-based PDE solvers
can identify the global minimizer via a standard SGD. Through the analysis of the optimization
energy landscape of SGD without the over-parameterization, it was shown that SGD with small
batches tends to converge to the flattest minimum [58, 42, 13]. However, such local minimizers
might not provide the desired PDE solutions. Hence, designing new training techniques to make
SGD capable of identifying better minimizers has been an active research field.

2.5. Neural Tangent Kernel. Neural tangent kernel (NTK) originally introduced in [31]
and further investigated in [1, 40, 8, 49, 74] is one of the popular tools to study the training behavior
of deep learning in regression problems and PDE problems. Let us briefly introduce the main idea of
NTK following the linearized model for regression problems in [40] for simplicity. This introduction
is sufficient for us to discuss the advantage of reproducing activation functions later in the next
section.

Let us use X to denote the set of training sample locations {xi}Ni=1 in the empirical loss function
Ĵ (θ) in (2.3). Let Y be the set of function values at these sample locations. Using gradient flow
to analyze the training dynamics of Ĵ (θ), we have the following evolution equations:

(2.11) θ̇t = −∇θφt(X)T∇φt(X)Ĵ ,

and

(2.12) φ̇t(X) = ∇θφt(X)θ̇t = −Θ̂t(X ,X)∇φt(X)Ĵ ,

where θt is the parameter set at iteration time t, φt(X) = vec([φt(x;θt)]x∈X) is the N ×1 vector of
concatenated function values for all samples, and ∇φt(X)Ĵ is the gradient of the loss with respect to

the network output vector φt(X), Θ̂t := Θ̂t(X ,X) in RN×N is the NTK at iteration time t defined
by

Θ̂t = ∇θφt(X)∇θφt(X)T .

The NTK can also be defined for general arguments, e.g., Θ̂t(x,X) with x as a test sample location.
After initialization, the training dynamics of deep learning can be characterized by (2.11) and

(2.12). The steady-state solutions of these evolution equations give the learned network parameters
and the learned neural network in the regression problem. However, these evolution equations are
highly nonlinear and it is difficult to obtain the explicit formulations of their solutions. Fortunately,
as discussed in the literature [31, 1, 40, 8, 49], when the network width goes to infinity, these
evolution equations can be approximately characterized by their linearization, the solution of which
admit simple explicit formulas.

For simplicity, we consider the linearization in [40] to obtain explicit solutions to discuss the
training dynamics of deep learning. In particular, the following linearized network by Taylor ex-
pansion is considered,

(2.13) φlin
t (x) := φ(x;θ0) +∇θφ(x;θ0)ωt,

Reproducing Activation Function for Deep Learning 7

where ωt := θt − θ0 is the change in the parameters from their initial values. The dynamics of
gradient flow using this linearized function are governed by

(2.14) ω̇t = −∇θφ0(X)T∇φlint (X)Ĵ ,

and

(2.15) φ̇lin
t (x) = −Θ̂0(x,X)∇φlint (X)Ĵ .

The above evolution equations have closed form solutions

ωt = −∇θφ0(X)T Θ̂−1
0

(
I − e−Θ̂0t

)
(φ0(X)− Y),

and

(2.16) φlin
t (X) =

(
I − e−Θ̂0t

)
Y + e−Θ̂0tφ0(X).

For an arbitrary point x,

(2.17) φlin
t (x) = φ0(x)− Θ̂0(x,X)Θ̂−1

0

(
I − e−Θ̂0t

)
(φ0(X)− Y),

which is equivalent to

(2.18) φlin
t (x)− φ0(x) = Θ̂0(x,X)Θ̂−1

0

(
I − e−Θ̂0t

)
(Y − φ0(X)).

Therefore, once the initialized network φ0(x) and the NTK at initialization Θ̂0 are computed, we
can obtain the time evolution of the linearized neural network without running gradient descent.
The solution in (2.17) serves as an approximate solution to the nonlinear evolution equation in
(2.12). Based on (2.18), we see that deep learning can be approximated by a kernel method with
the NTK Θ̂0 that updates the initial prediction φ0(x) to a correct one.

There are mainly two kinds of observations from (2.17) from the perspective of kernel meth-
ods. The first one is through the eigendecomposition of the initial NTK. If the initial NTK is
positive definite, φlin

t eventually converges to a neural network that fits all training examples and
its generalization capacity is similar to kernel regression by (2.17). The error of φlin

t along the
direction of eigenvectors of Θ̂0 corresponding to large eigenvalues decays much faster than the
error along the direction of eigenvectors of small eigenvalues, which is referred to as the spec-
tral bias of deep learning. The second one is through the condition number of the initial NTK.
Since NTK is real symmetric, its condition number is equal to its largest eigenvalue over its small-
est eigenvalue. If the initial NTK is positive definite, in the ideal case when t goes to infinity,(
I − e−Θ̂0t

)
(φ0(X)−Y) in (2.17) approaches to φ0(X)−Y and, hence, φlin

t (x) goes to the desired

function value for x ∈ X . However, in practice, when Θ̂0 is very ill-conditioned, a small approxi-

mation error in
(
I − e−Θ̂0t

)
(φ0(X)− Y) ≈ φ0(X)− Y may be amplified significantly, resulting in

a poor accuracy for φlin
t (x) to solve the regression problem. We will discuss the advantage of the

proposed reproducing activation functions in terms of these two observations later in the next two
sections.

The above discussion is for the NTK in regression setting. In the case of PDE solvers, we
introduce the NTK below

(2.19) Θ̂t = (∇θDφt(X)) (∇θDφt(X))T ,

where D is the differential operator of the PDE. Similar to the discussion for regression problems,
the spectral bias and the conditioning issue also exist in deep learning based PDE solvers by almost
the same arguments.

8 Reproducing Activation Function for Deep Learning

3. Reproducing Activation Functions. In this section, we will introduce the concept
of reproducing activation functions, their examples, their reproducing properties, and the corre-
sponding NTK.

3.1. Abstract Framework. In Section 2.1, we have introduced deep neural networks
built with the same activation function σ(x) used in each neuron of the network. The concept of
reproducing activation functions is to apply different activation functions in different neurons. Let
A = {γ1(x), . . . , γP (x)} be a set of P different basic activation functions. In the i-th neuron of the
`-th layer, an activation function

(3.1) σi,`(x) =

P∑
p=1

αp,i,`γp(βp,i,`x)

is applied, where {αp,i,`, βp,i,`}Pp=1 is a set of learnable parameters. In this paper, αp,i,` is called a
learnable combination coefficient and βp,i,` is called a learnable scaling parameter. Let α be the
union of all learnable combination coefficients and β be the union of all learnable scaling parameters
in all reproducing activation functions. We then use φ(x;θ,α,β) to denote a deep neural network,
where θ is the set of all weights and bias introduced in (2.1) and (2.2).

In deep learning for regression problems, the new population and empirical loss functions with
reproducing activation functions become

(3.2) J (θ,α,β) =
1

2
Ex∼π

[
|φ(x;θ,α,β)− f(x)|2

]
, Ĵ (θ,α,β) =

1

2N

N∑
i=1

|φ(xi;θ,α,β)− yi|2 ,

respectively. The optimal set of parameters {θ̂, α̂, β̂} is identified via

(3.3) {θ̂, α̂, β̂} = arg min
θ,α,β

Ĵ (θ,α,β),

and φ(·; θ̂, α̂, β̂) : Ω→ R is the learned DNN that approximates the unknown function f .
Similarly, when deep learning is applied to solve the PDE in (2.5), the population loss function

in (2.6) becomes

(3.4) min
θ,α,β

L(θ,α,β) := ‖Du(x;θ,α,β)− f(u,x)‖2L2(Ω) + λ‖Bu(x;θ,α,β)− g(x)‖2L2(∂Ω),

and in each iteration of the SGD, the empirical loss function in (2.7) becomes
(3.5)

min
θ,α,β

L̂(θ,α,β) :=
1

2N

N∑
i=1

(
Du(xi;θ,α,β)− f(xi)

)2
+

1

2M
λ

M∑
j=1

(
Bu(xj ;θ,α,β)− g(xj)

)2
.

3.2. Examples and Reproducing Properties. Here, a few examples of reproducing
activation functions will be discussed, including existing examples with super approximation power
in the literature, examples lessening the spectral bias in the literature, and our new examples. We
will only introduce examples with multiple basic activation functions for simplicity.

3.2.1. Example 1: Sine-ReLU Networks. Sine-ReLU networks proposed in [78] applies
sine function sin(x) or ReLU function max{0, x} in each neuron to construct a deep neural network.
Instead, the proposed reproducing activation function here has a set of trainable parameters α and
β. The theory of Sine-ReLU networks proved in [78] provides a theoretical upper bound of the

Reproducing Activation Function for Deep Learning 9

approximation capacity of reproducing activation function for the set of basic activation functions
A = {sin(x),max{0, x}}. In fact, sin(x) can be replaced by any Lipschitz periodic function as shown
in Theorem 6.1 of [78]. Let Fr,d be the unit ball of the d-dimensional Sobolev space Hr,∞([0, 1]d).
We rephrase this theorem using the terminology of reproducing activation functions below.

Theorem 3.1. Fix r, d. Let σ : R→ R be a Lipschitz periodic function with period T . Suppose
that σ(x) > 0 for x ∈ (0, T/2) and σ(x) < 0 for x ∈ (T/2, T), and also that maxx∈R σ(x) =
−minx∈R σ(x). Let A = {σ(x),max{0, x}} be set of basic activation functions. For any sufficiently
large integer number W > 0 and any f(x) ∈ Fr,d, there exists a deep neural network φ(x;θ,α,β)
such that: 1) The total number of parameters in {θ,α,β} is less than or equal to W ; 2) φ(x;θ,α,β)
is built with reproducing activation functions associated with A; 3)

‖f(x)− φ(x;θ,α,β)‖∞ ≤ exp
(
−cr,dW 1/2

)
with a constant cr,d > 0 only depending on r and d.

There are other types of network structures utilizing both sin(x) and ReLU activation functions
together in a single network but for different application purposes and with different strategies. For
example, the network structure in [81] uses plane waves with different frequencies as activation func-
tions in the first hidden layer and use ReLU in other layers for the purpose of high-resolution image
reconstruction in cryo-electron microscopy. The same idea is applied in [52] for high-resolution
scene and shape reconstruction in various applications. The same structure is used in [27] for the
purpose of generating networks satisfying periodic boundary conditions. A variant of this structure
with several blocks is designed in [46, 73] for solving high-frequency PDEs. As discussed in [71],
using plane waves with different frequencies in the first hidden layer may lessen the spectral bias
of deep learning using NTK analysis.

3.2.2. Example 2: Floor-Exponential-Sign Networks. Recently, networks with super
approximation power (e.g., an exponential convergence rate without the curse of dimensionality for
Hölder continuous functions) have been proposed in [67, 66]. Let us consider the Floor-Exponential-
Sign Networks in [66]. The key idea is to use one of the following three activation functions in each
neuron:

(3.6) σ1(x) := bxc, σ2(x) := 2x, and σ3 := T (x− bxc − 1

2
),

for any x ∈ R. Here,

T (x) := 11x≥0 =

{
1, x ≥ 0,
0, x < 0,

for any x ∈ R. Obviously, the concept of reproducing activation functions includes the Floor-
Exponential-Sign networks as a special case when the set of combination coefficients α is a fixed
binary set and the set of scaling coefficients β is a set of constant ones. The theory of Floor-
Exponential-Sign networks proved in [66] provides a theoretical upper bound of the approxi-
mation power of reproducing activation function for the set of basic activation functions A =
{σ1(x), σ2(x), σ3(x)}. We rephrase Theorem 1.1 in [66] using the terminology of reproducing acti-
vation functions below.

Theorem 3.2. Given f in C([0, 1]d) and W ∈ N+, there exists a deep neural network
φ(x;θ,α,β) of width W and depth 4 (i.e., three hidden layers) built with reproducing activation
functions associated with A = {σ1(x), σ2(x), σ3(x)} such that

|φ(x;θ,α,β)− f(x)| ≤ 2ωf (
√
d)2−W + ωf (

√
d 2−W),

10 Reproducing Activation Function for Deep Learning

for any x = (x1, · · · , xd) ∈ [0, 1)d. The total number of parameters in {θ,α,β} is bounded by
2W 2 + (d+ 22)W + 1.

In the above theorem, ωf (·) is the modulus of continuity of f defined as

ωf (r) := sup
{
|f(x)− f(y)| : ‖x− y‖2 ≤ r, x,y ∈ [0, 1]d

}
,

for any r ≥ 0, where ‖x‖2 =
√
x2

1 + x2
2 + · · ·+ x2

d for any x = (x1, x2, · · · , xd) ∈ Rd. In Theorem

1.1 in [66], it was shown that only W parameters in the Floor-Exponential-Sign network depend
on f . However, introducing more parameters in the reproducing activation function concept may
alleviate the optimization difficulty of identifying parameters. We would like to point out that,
although the approximation power of the network in Theorem 3.2 is very attractive, there is no
efficient optimization methods for training networks with piecewise constant activation functions.
Therefore, it is worth exploring other reproducing activation functions as we shall see in the next
section.

3.2.3. Example 3: Poly-Sine-Gaussian Networks. Considering both the approxima-
tion power and the computational efficiency, we propose the poly-sine-Gaussian network as a
new example of reproducing activation functions in this paper. The main idea is to use A =
{x, x2, sin(x), e−x

2} such that deep neural networks can reproduce traditional approximation tools
efficiently, e.g., orthogonal polynomials, Fourier basis functions, wavelets, radial basis functions,
etc. Therefore, deep neural networks with the proposed reproducing activation function can ap-
proximate a wide class of target functions with a smaller number of parameters than traditional
neural networks, e.g., networks with ReLU activation functions, since existing approximation the-
ory with a continuous weight selection of ReLU networks are established by using ReLU networks
to approximate x and x2 as basic building blocks. We will present several lemmas and theorems to
illustrate the approximation capacity of poly-sine-Gaussian networks as follows.

Let us start by reproducing polynomial approximations exactly.

Lemma 3.3. A list of basic lemmas of the poly-sine-Gaussian networks.

(i) Any identity map in Rd can be realized exactly by a poly-sine-Gaussian network with one
hidden layer and d neurons.

(ii) f(x) = x2 can be realized exactly by a poly-sine-Gaussian network with one hidden layer
and one neuron.

(iii) f(x, y) = xy = (x+y)2−(x−y)2

4 can be realized exactly by a poly-sine-Gaussian network with
one hidden layer and two neurons.

(iv) Assume P (x) = xα = xα1
1 xα2

2 · · ·x
αd
d for α ∈ Nd. For any N,L ∈ N+ such that NL +

2blog2Nc ≥ |α|, there exists a poly-sine-Gaussian network φ with width 2N + d and depth
L+ dlog2Ne such that

φ(x) = P (x) for any x ∈ Rd.

(v) Assume P (x) =
∑J

j=1 cjx
αj for αj ∈ Nd. For any N,L, a, b ∈ N+ such that ab ≥ J and

(L− 2b− b log2N)N ≥ bmaxj |αj |, there exists a poly-sine-Gaussian network φ with width
2Na+ d+ 1 and depth L such that

φ(x) = P (x) for any x ∈ Rd.

Proof. Part (i) to (iii) are trivial. We will only prove Part (iv) and (v).

Part (iv): In the case of |α| = k ≤ 1, the proof is simple and left for the reader. When
|α| = k ≥ 2, the main idea of the proof of (v) can be summarized in Figure 3.1. By Part (i), we can
apply a poly-sine-Gaussian network to implement a d-dimensional identity map. This identity map

Reproducing Activation Function for Deep Learning 11

maintains necessary entries of x to be multiplied together. We apply poly-sine-Gaussian networks
to implement the multiplication function in Part (iii) and carry out the multiplication N times per
layer. After L layers, there are k − NL ≤ N multiplications to be implemented. Finally, these
at most N multiplications can be carried out with a small poly-sine-Gaussian network in a dyadic
tree structure.

Part (v): The main idea of the proof is to apply Part (iv) J times to construct J poly-sine-
Gaussian networks, {φj(x)}Jj=1, to represent xαj and arrange these poly-sine-Gaussian networks

as subnetwork blocks to form a larger poly-sine-Gaussian network φ̃(x) with ab blocks as shown in
Figure 3.2, where each red rectangle represents one poly-sine-Gaussian network φj(x) and each blue
rectangle represents one poly-sine-Gaussian network of width 1 as an identity map of R. There are
ab red blocks with a rows and b columns. When ab ≥ J , these subnetwork blocks can carry out all
monomials xαj . In each column, the results of the multiplications of xαj are added up to the input
of the narrow poly-sine-Gaussian network, which can carry the sum over to the next column. After
the calculation of b columns, J additions of the monomials xαj have been implemented, resulting
in the output P (x).

By Part (iv), for any N ∈ N+, there exists a poly-sine-Gaussian network φj(x) of width d+ 2N

and depth Lj = d |αj |N e+ dlog2Ne to implement xαj . Since bmaxj Lj ≤ b
(

maxj |αj |
N + 2 + log2N

)
,

there exists a poly-sine-Gaussian network φ̃(x) of depth b
(

maxj |αj |
N + 2 + log2N

)
and width da+

2Na + 1 to implement P (x) as in Figure 3.2. Note that the total width of each column of blocks
is ad+ 2Na+ 1 but in fact this width can be reduced to d+ 2Na+ 1, since the red blocks in each
column can share the same identity map of Rd (the blue part of Figure 3.1).

Note that b
(

maxj |αj |
N + 2 + log2N

)
≤ L is equivalent to (L − 2b − b log2N)N ≥ bmaxj |αj |.

Hence, for any N,L, a, b ∈ N+ such that ab ≥ J and (L − 2b − b log2N)N ≥ bmaxj |αj |, there
exists a poly-sine-Gaussian network φ(x) with width 2Na+ d+ 1 and depth L such that φ̃(x) is a
subnetwork of φ(x) in the sense of φ(x) = Id ◦ φ̃(x) with Id as an identify map of R, which means
that φ(x) = φ̃(x) = P (x). The proof of Part (v) is completed.

Fig. 3.1: Left: An illustration of the proof of Lemma 3.3 (iv). Green vectors represent the input and
output of the poly-sine-Gaussian network carrying out P (x). Blue vectors represent the poly-sine-
Gaussian network that implements a d-dimensional identity map in Part (i), which was repeatedly
applied for L times. Black arrows represent the data flow for carrying out the identity maps. Red
vectors represent the poly-sine-Gaussian networks implementing the multiplication function in Part
(iii) and there are NL such red vectors. Red arrows represent the data flow for carrying out the
multiplications. Finally, a red triangle represents a poly-sine-Gaussian network of width at most
2N and depth at most dlogN2 e carrying out the rest of the multiplications. Right: An example of the
red triangle is given on the right when it consists of 15 red vectors carrying out 15 multiplications.

12 Reproducing Activation Function for Deep Learning

Fig. 3.2: An illustration of the proof of Lemma 3.3 (v). Green vectors represent the input and
output of the poly-sine-Gaussian network φ̃(x) carrying out P (x). Each red rectangle represents
one poly-sine-Gaussian network φj(x) and each blue rectangle represents one poly-sine-Gaussian
network of width 1 as an identity map of R. There are ab ≥ J red blocks with a rows and b
columns. When ab ≥ J , these subnetwork blocks can carry out all monomials xαj . In each column,
the results of the multiplications of xαj are added up to (indicated by black arrows) the input of
the narrow poly-sine-Gaussian network, which can carry the sum over to the next column. Each
red arrow passes x to the next red block. After the calculation of b columns, J additions of the
monomials xαj have been implemented, resulting in the output P (x).

Lemma 3.3 plays a key role to characterize the approximation power of poly-sine-Gaussian net-
works since it characterizes how well poly-sine-Gaussian networks reproduce arbitrary polynomials
including orthogonal polynomials. Compared to well-known approximation results of ReLU net-
works for polynomials in [76, 47], poly-sine-Gaussian networks require less parameters. Orthogonal
polynomials are important tools for classical approximation theory and numerical computation. For
example, the Chebyshev series lies at the heart of approximation theory. In particular, for analytic
functions, the truncated Chebyshev series defined as fn(x) =

∑n
k=0 ckTk(x/M) are exponentially

accurate approximations [72, Thm. 8.2], where Tk is the Chebyshev polynomial of degree k defined
on [−1, 1].

More precisely, for some scalars M ≥ 1 and s > 1, if we define

aMs = M
s+ s−1

2
, bMs = M

s− s−1

2
,

and the Bernstein s-ellipse scaled to [−M,M],

EMs =

{
x+ iy ∈ C :

x2

(aMs)2
+

y2

(bMs)2
= 1

}
,

then we have the following theorem.
Theorem 3.4 (Poly-sine-Gaussian networks for analytic functions). For any scalar M ≥ 1,

s > 1, Cf > 0 and 0 < ε < 1, and any real-valued analytic function f with input x ∈ [−M,M]
that is analytically continuable to the open ellipse EMs , where it satisfies |f(x)| ≤ Cf , there is a
poly-sine-Gaussian network φ with input x ∈ [−M,M], that has width 2N + 2 and depth L such
that

‖φ(x)− f(x)‖L∞([−M,M]) ≤ ε,

where N and L are positive integers satisfying (L − 2n − 2 − (n + 1) log2N)N ≥ n(n + 1) and

n = O
(

1
log2 s

log2
2Cf
ε

)
.

Proof. Let M ≥ 1, s > 1, Cf > 0 and 0 < ε < 1 be four scalars, and f be an analytic function
defined on [−M,M] that is analytically continuable to the open Bernstein s-ellipse EMs , where
it satisfies |f(x)| ≤ Cf . We first approximate f by a truncated Chebyshev series fn, and then
approximate fn by a poly-sine-Gaussian network φ using Lemma 3.3.

Reproducing Activation Function for Deep Learning 13

Since f is analytic in the open Bernstein s-ellipse EMs then, for any integer n ≥ 2,

‖fn(x)− f(x)‖L∞([−M,M]) ≤
2Cfs

−n

s− 1
= O

(
Cfs

−n) .
Therefore, if we take n = O

(
1

log2 s
log2

2Cf
ε

)
, then the above term is bounded by ε.

Let us now approximate fn by a poly-sine-Gaussian network φ. We first write

fn(x) =
n∑
k=0

ckTk

(x
M

)
,

with

max
0≤k≤n

|ck| = O (Cfs) , via [72, Thm. 8.1].(3.7)

Since, fn is a polynomial of degree n, by Lemma 3.3 (v) with d = 1, a = 1, and b = n + 1, there
exists a poly-sine-Gaussian network φ with width 2N + 2 and depth L such that

φ(x) = fn(x)

for x ∈ R, as long as N and L satisfy (L− 2n− 2− (n+ 1) log2N)N ≥ n(n+ 1). This yields

|φ(x)− f(x)| = |fn(x)− f(x)| ≤ ε.

By choosing N = O(n) and L = O(n log2(n)) in Theorem 3.4, it is easy to see that the width
and depth of φ approximating an analytic function f with ε accuracy can be as small as O

(
log2

1
ε

)
and O

((
log2

1
ε

)
log2

(
log2

1
ε

))
, respectively. Hence, the size of the poly-sine-Gaussian network is

smaller than the size of the ReLU network for approximating the same f in Theorem 2.6 in [55].

Next, we will prove the approximation of poly-sine-Gaussian networks to generalized bandlim-
ited functions defined below.

Definition 3.5 (Generalized bandlimited functions [55]). Let d ≥ 2 be an integer, M ≥ 1 be
a scalar, and B = [0, 1]d. Suppose K : R → C is analytic and bounded by a constant DK ∈ (0, 1]
on [−dM, dM], and that K satisfies the assumption of Thm. 3.4 for some s > 1 and CK > 0. We
define the Hilbert space HK,M (B) of generalized bandlimited functions via

HK,M (B) =

{
f(x) =

∫
[−M,M]d

F (w)K(w · x)dw

 F : [−M,M]d → C is in L2([−M,M]d)

}
,

with inner product 〈f, g〉HK,M (B) :=
∫

[−M,M]d Ff (w)F g(w)dw and its induced norm ‖f‖HK,M (B),
where

Ff = arg min
F∈Sf

‖F‖L2([−M,M]d), Sf =

{
F

 f(x) =

∫
[−M,M]d

F (w)K(w · x)dw

}
.

Note that

|f(x)| ≤ DK

∫
[−M,M]d

|Ff (w)|dw ≤ (2M)d/2‖Ff‖L2([−M,M]d) = (2M)d/2‖f‖HK,M (B),

14 Reproducing Activation Function for Deep Learning

which shows that if we consider an evaluation functional Lx defined on HK,M (B) by

f(x) = Lx(f) :=

∫
[−M,M]d

Ff (w)K(w · x)dw,

then Lx is bounded on HK,M (B). Hence, HK,M (B) is a reproducing kernel Hilbert space (RKHS);
a classical example of interest is K(t) = eit. For simplicity, we will use F instead of Ff for
f ∈ HK,M (B), when the dependency on f is clear.

To show the approximation of poly-sine-Gaussian networks to generalized bandlimited func-
tions, we will need Maurey’s unpublished theorem below. It was used to study shallow network
approximation by Barron in [2].

Theorem 3.6 (Maurey’s theorem). Let H be a Hilbert space with norm ‖ · ‖. Suppose there
exists G ⊂ H such that for every g ∈ G, ‖g‖ ≤ b for some b > 0. Then, for every f in the convex
hull of G and every integer n ≥ 1, there is a fn in the convex hull of n points in G and a constant
c > b2 − ‖f‖2 such that ‖f − fn‖2 ≤ c

n .

Now, we are ready to show the approximation of poly-sine-Gaussian networks to generalized
bandlimited functions below.

Theorem 3.7 (Poly-sine-Gaussian networks for HK,M). Suppose f is an arbitrary real-valued
function in HK,M (B), for some function K, scalars M ≥ 1, s > 1 and CK > 0, and integer d ≥ 2.
Let us assume that

∫
Rd |F (w)|dw =

∫
[−M,M]d |F (w)|dw = CF . Then, for any measure µ and any

scalar 0 < ε < 1, there exists a poly-sine-Gaussian network φ with inputs x ∈ B = [0, 1]d, that has
width

O

(
4CF

√
µ(B)

ε2 log2 s
log2

4CF
√
µ(B)CK
ε

)
and depth

O

((
1

log2 s
log2

4CF
√
µ(B)CK
ε

)
log2 log2

4CF
√
µ(B)CK
ε

)
such that

‖φ− f‖L2(µ,B) =

√∫
B
|φ(x)− f(x)|2dµ(x) ≤ ε.

Proof. Let f be an arbitrary function in HK,M , and µ be an arbitrary measure. Let F (w) =
|F (w)|eiθ(w). Since f is real-valued, we may write

f(x) = Re

(∫
Rd
CF e

iθ(w)K(w · x)
|F (w)|
CF

dw

)
,

=

∫
[−M,M]d

CF

[
cos(θ(w))KR(w · x)− sin(θ(w))KI(w · x)

]
|F (w)|
CF

dw,

where KR(w · x) = Re(K(w · x)) and KI(w · x) = Im(K(w · x)). The integral above represents f
as an infinite convex combination of functions in the set

GK,M =
{
γ
[

cos(β)Re(K(w · x))− sin(β)Im(K(w · x))
]
, |γ| ≤ CF , β ∈ R, w ∈ [−M,M]d

}
.

Reproducing Activation Function for Deep Learning 15

Therefore, f is in the closure of the convex hull of GK,M . Since functions in GK,M are bounded
in the L2(µ,B)-norm by 2CFDK

√
µ(B) ≤ 2CF

√
µ(B), Theorem 3.6 tells us that there exist real

coefficients bj ’s and βj ’s such that1

fε0(x) =

d1/ε20e∑
j=1

bj
[

cos(βj)KR(w · x)− sin(βj)KI(w · x)
]
,

d1/ε20e∑
j=1

|bj | ≤ CF ,

for some 0 < ε0 < 1 to be determined later, such that

‖fε0(x)− f(x)‖L2(µ,B) ≤ 2CF
√
µ(B)ε0.

We now approximate fε0(x) by a poly-sine-Gaussian network φ(x). Note that KR and KI are
both analytic and satisfy the same assumptions asK. Using Theorem 3.4, they can be approximated
to accuracy ε0 using networks K̃R and K̃I of width and depth

O
(

1

log2 s
log2

CK
ε0

)
and O

((
1

log2 s
log2

CK
ε0

)
log2 log2

CK
ε0

)
,

respectively. We define the poly-sine-Gaussian network φ(x) by

φ(x) =

d1/ε20e∑
j=1

bj
[

cos(βj)K̃R(w · x)− sin(βj)K̃I(w · x)
]
.

This network has width O
(

1
ε20 log2 s

log2
CK
ε0

)
and depth O

((
1

log2 s
log2

CK
ε0

)
log2 log2

CK
ε0

)
, and

|φ(x)− fε0(x)| ≤

d 1

ε20
e∑

j=1

|bj ||K̃R(wj · x)−KR(wj · x)|+

d 1

ε20
e∑

j=1

|bj ||K̃I(wj · x)−KI(wj · x)| ≤ 2CF ε0,

which yields

‖φ(x)− fε0(x)‖L2(µ,B) ≤ 2CF
√
µ(B)ε0.

The total approximation error satisfies

‖φ(x)− f(x)‖L2(µ,B) ≤ 4CF
√
µ(B)ε0.

We take

ε0 =
ε

4CF
√
µ(B)

to complete the proof.
We would like to revisit the discussion in [2, 55] about CF and µ(B). If F is a mollifier then

CF = 1, whereas if F is a normal distribution truncated to [−M,M]d then CF < 1. In general,
however, CF might grow algebraically or exponentially with the dimension d. If µ is a probability
measure, then µ(B) ≤ 1 for any compact domain B. If µ is Lebesgue measure, then µ(B) = 1 for
B = [0, 1]d, but grows exponentially with the dimension d if B = [0, `]d, ` > 1. Hence, the curse of

1We use Theorem 3.6 with b = 2CF
√
µ(B), c = b2 > b2 − ‖f‖2, and ‖ · ‖ = ‖ · ‖L2(µ,B).

16 Reproducing Activation Function for Deep Learning

dimensionality of approximation may exist due to large CF and µ(B). However, the approximation
rate of poly-sine-Gaussian networks is dimension-independent. Compared to ReLU networks in
Theorem 3.2 in [55] approximating the same bandlimited function, the poly-sine-Gaussian network
in Theorem 3.7 requires less parameters.

Poly-sine-Gaussian networks can also reproduce typical applied harmonic analysis tools as in
the following lemma.

Lemma 3.8. A list of basic lemmas of the poly-sine-Gaussian networks for reproducing basis
functions in applied harmonic analysis.

(i) Poly-sine-Gaussian networks can reproduce all basis functions in the discrete cosine trans-
form and discrete sine transform in an arbitrary dimension.

(ii) Poly-sine-Gaussian networks can reproduce all basis functions in the discrete windowed
cosine transform and discrete windowed sine transform with a Gaussian window function
in an arbitrary dimension.

(iii) Poly-sine-Gaussian networks with complex parameters in the last affine linear transform can
reproduce all basis functions in the discrete Fourier transform in an arbitrary dimension.

(iv) Poly-sine-Gaussian networks with complex parameters in the last affine linear transform
can reproduce all basis functions in the discrete Gabor wavelet transform in an arbitrary
dimension.

Proof. The proof of this lemma is simple by three facts: 1) the affine linear transforms before
activation functions can play the role of translation and dilation in the spatial and Fourier domains;
2) the Gaussian activation function plays the role of localization in the transforms in this lemma;
3) Lemma 3.3 shows that the x2 activation function can reproduce multiplication.

In theory, Lemma 3.8 above implies that poly-sine-Gaussian networks can be very useful in
many computer vision tasks involving Fourier transforms and wavelet transforms. As we shall
see in the numerical section, a few examples of audio/image reconstruction will be presented to
demonstrate this advantage numerically. Due to the advantage of wavelets to represent functions
with singularity, poly-sine-Gaussian networks may also be useful in representing functions with
singularity, the performance of which is as good as rational neural networks in [5] as we shall
see in the numerical section. We would like to highlight that the Gaussian function may not be
the optimal choice in the concept of reproducing activation function. Other window functions in
wavelet analysis may provide better performance and this would be problem-dependent. We will
leave this for future exploration.

Finally, in terms of approximation capacity, we have the following lemma for radial basis func-
tions.

Lemma 3.9. Poly-sine-Gaussian networks for radial basis functions.

(i) Poly-sine-Gaussian networks can reproduce radial basis functions with arbitrary shape pa-
rameters and a Gaussian kernel.

(ii) Poly-sine-Gaussian networks can approximate radial basis functions defined on a bounded
closed domain with arbitrary shape parameters and analytic kernels with an exponential
convergence rate.

Proof. The proof of this lemma is trivial by Lemma 3.3 and the proof of Theorem 3.4.

We have finished the discussion of the poly-sine-Gaussian networks in terms of approximation
theory. We will end this section with a short and informal discussion about the NTK of poly-
sine-Gaussian networks. As we have seen in Section 2.5, deep learning can be approximated by
kernel methods with a kernel Θ̂0 in (2.18). Therefore, from the perspective of kernel regression
for regressing f(x) with training samples {(xi, f(xi))}Ni=1, Θ̂0(x,xi) quantifies the similarity of the
point x and a training point xi ∈ X and, hence, serves as a weight of f(xi) in the following toy

Reproducing Activation Function for Deep Learning 17

regression formulation:

(3.8) φ(x;ω) :=

N∑
i=1

ωif(xi)Θ̂(x,xi),

where ω = [ω1, . . . , ωN] ∈ RN is a set of learnable parameters and φ(x;ω) is the approximant
of the target function f(x). According to (3.8), to enable a kernel method to learn both smooth
functions and highly oscillatory functions, the kernel function Θ̂ should have a widely spreading
Fourier spectrum. By using sin(βx) with a tunable β in the poly-sine-Gaussian, the poly-sine-
Gaussian network could learn an appropriate kernel for both kinds of functions. Similarly, by using
exp(−(βx)2)) with a tunable β in the poly-sine-Gaussian, the poly-sine-Gaussian network could
learn an appropriate kernel for both smooth and singular functions. We will provide numerical
examples to demonstrate this empirically in the next section.

4. Numerical Results. In this section, we will illustrate the advantages of reproducing
activation functions in two kinds of applications. In the first part, several examples in scientific
computing will be provided, e.g., regression problems, solving high dimensional and nonlinear PDEs,
and eigenvalue problems. In the second part, several examples in signal processing and computer
vision will be provided.

We would like to emphasize that the optimal choice of basic activation functions would be
problem-dependent. According to the discussion in the previous section, we know that A =
{x, x2, sin(x), exp(−x2)} has nice approximation properties for various functions. However, deep
learning optimization usually cannot identify the best parameter set to verify these properties.
Different training strategies are required to specify or train the combination coefficients α, the
scaling parameters β, and other network parameters θ in a problem-dependent manner. Generally
speaking, A = {x, x2, sin(x), exp(−x2)} achieves the best performance in various scientific comput-
ing problems in Part I. In Part II, we will have different strategies for α and β according to the
characteristic of tasks.

4.1. Part I: Scientific Computing Applications. In Part I, we will compare the pro-
posed poly-sine-Gaussian reproducing activation function with existing activation functions, e.g.,
the ReLU function, the ReLU3 function, the rational activation function in [5]. We will also provide
ablation study to justify the combination of A = {x, x2, sin(x), exp(−x2)} in the poly-sin-Gaussian
network.

The Adam method in PyTorch is employed to minimize the loss functions discussed in Section
2 for regression and solving PDEs. We will follow the approach of [27] for the loss function of
eigenvalue problems. We define the relative L2 error by

(4.1)

(∑N
i=1 (u(xi)− û(xi))

2∑N
i=1 u

2(xi)

) 1
2

,

where {xi}Ni=1 are random samples uniformly distributed in the function domain, u is the ground
truth solution, and û is the estimation by deep learning.

The overall setting for all examples is summarized as follows.
• Environment. The experiments are performed in Python 3.7 environment. We utilize

PyTorch library for neural network implementation and CUDA 10.0 toolkit for GPU-based
parallel computing.
• Optimizer. In all examples, the optimization problems are solved by Adam subroutine

from PyTorch library with default hyper-parameters. This subroutine implements the Adam
algorithm in [37].

18 Reproducing Activation Function for Deep Learning

• Learning rate. The learning rate will be decreased step by step in all examples following
the formula

(4.2) τn = τ0 ∗ qb
n
s
c,

where τn is the learning rate in the n−th iteration, q is a factor set to be 0.95, and s means
that we update learning rate after s steps.
• Numbers of samples. The numbers of training and testing samples for regression and

PDE problems are 10, 000. The numbers of training and testing samples for eigenvalue
problems are 2048 following the approach in [27].
• Network setting. In all PDE examples, we construct a special network that satisfies the

given boundary condition as discussed in Section 2.3. In all examples, we apply ResNet with
two residual blocks and each block contains two hidden layers. The width is set as 50 unless
specified. Unless specified particularly, all weights and biases in the `-th layer are initialized
by U(−

√
N`−1,

√
N`−1), where N`−1 is the width of the `−1-th layer. Note that the network

with reproducing activation functions can be expressed by a network with a single activation
function in each neuron but different neurons can use different activation functions. For
example, in the case of poly-sine-Gaussian networks, we will use 1/4 neurons within each
layer with x activation function, 1/4 with x2, 1/4 with sin(x), and 1/4 with exp(−x2) for
coding simplicity. In the case of poly-sine networks, 1/3 neurons for each x, x2, and sin(x)
activation functions. In this new setting, it is not necessary to train extra combination
coefficients in the reproducing activation function. Though training the scaling parameters
in the reproducing activation function might be beneficial in general applications, we focus
on justifying the poly-sine-Gaussian activation function without emphasizing the scaling
parameters. Hence, in almost all tests in Part I, the scaling parameters are set to be one
for x, x2, and sin(x), and the scaling parameter is set to be 0.1 for exp(−x2). In the
case of oscillatory target functions, we specify the scaling parameter of sin(x) to introduce
oscillation in the NTK as we shall discuss and improved performance is observed. The idea
of scaling parameters has been tested and verified in [33, 32].
• Performance Evaluation. We will adopt two criteria to quantify the performance of

different activation functions. The first one is the relative L2 error on test samples. Note
that the ground truth solution is not available in real applications and, hence, it is not known
when to stop the training. Therefore, we will keep the best historical L2 test error and the
best historical moving-average L2 test error. In the moving-average error calculation, the
error at a given iteration is the average L2 test error of 100 previous iterations. The second
criterion is the condition number of the NTK matrices. A smaller condition number usually
leads to a smaller iteration number to achieve the same accuracy.

4.1.1. Discontinuous Function Regression. We first demonstrate the advantage of
the poly-sine-Gaussian activation function in a regression problem when the target function is
discontinuous. For example, consider the following target function

(4.3) f(x) =

{
1− x, x ≥ 0,

x− 1, x < 0,

on the domain Ω = [−1, 1]. The empirical loss function in (2.3) is applied with different random
samples in each SGD iteration. The relative L2 error is presented in Table 4.1 and the training
process is visualized in Figure 4.1. Numerical results show that the poly-sine-Gaussian activation
function has the best performance in terms of the moving-average error and its best historical error

Reproducing Activation Function for Deep Learning 19

is only slightly worse than the rational activation function recently proposed in [5]. We would
like to remark that rational activation functions in [5] work well for regression problems but fail
in our PDE problems without any meaningful solutions. Hence, we only compare reproducing
activation functions with rational activation functions in this example. The numerical results also
justify the combination of four kinds of activation functions. Though there is no obvious accuracy
difference between the poly-sine-Gaussian activation function and the rational activation function,
the computational time of rational activation functions is twice of the time of poly-sine-Gaussian
activation functions as shown in Table 4.1.

Relative L2 Relative L2 Forward Backward
Activation Function Error (Moving Error Evaluation Propagation

-Average) (Min) Time Time

ReLu 6.61 e-02 4.98 e-02 1.58 e-03 3.02 e-03
ReLU3 1.13 e-01 1.01 e-01 2.07 e-03 3.43 e-03
x⊕ x2 3.71 e-01 3.58 e-01 4.79 e-03 5.44 e-03

x⊕ x2 ⊕ ReLU 9.98 e-02 8.36 e-02 3.33 e-03 4.12 e-03
x⊕ x2 ⊕ ReLU3 9.12 e-02 6.96 e-02 3.62 s-03 4.34 e-03
x⊕ x2 ⊕ sin(x) 9.07 e-02 7.90 e-02 4.83 e-03 6.92 e-03

x⊕ x2 ⊕ sin(x)⊕ Gaussian 3.46 e-02 1.39 e-02 5.92 e-03 8.91 e-03
Rational function [5] 3.94 e-02 1.03 e-02 5.31 e-03 2.03 e-02

Table 4.1: The performance comparison of different activation functions for the regression problem
in terms of the best historical accuracy after 50, 000 iterations and the average computational time
for one forward or backward evaluation. The ⊕ notation here means that the activation function
is applied together with other activation functions in the network.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations numbers ×104

10−1

100

Re
la

tiv
e
L2

 e
rro

r

ReLu(x)
ReLu(x)3

x⊕ x2

x⊕ x2 ⊕ReLu(x)
x⊕ x2 ⊕ReLu(x)3

x⊕ x2 ⊕ sin(x)
x⊕ x2 ⊕ sin(x) ⊕ Gaussian
Rational

0.0 0.2 0.4 0.6 0.8 1.0
Iterations numbers ×104

10−2

10−1

100

Re
la

tiv
e
L2

 e
rro

r

ReLu(x)
ReLu(x)3

x⊕ x2

x⊕ x2 ⊕ReLu(x)
x⊕ x2 ⊕ReLu(x)3

x⊕ x2 ⊕ sin(x)
x⊕ x2 ⊕ sin(x) ⊕ Gaussian
Rational

Fig. 4.1: The training process of the regression problem with different activation functions. Left:
the moving-average minimal historical error. Right: the minimal historical error.

4.1.2. Poisson Equation with a Smooth Solution. Now we solve a two-dimensional
Poisson equation

(4.4)

{
−∆u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,

20 Reproducing Activation Function for Deep Learning

with a smooth solution u(x) = x2
1(1− x1)x2

2(1− x2) defined on Ω = [0, 1]2. The numerical solution
can be constructed as

(4.5) û(x;θ) =
(
Π2
i=1xi(1− xi)

)
φ(x;θ)

where φ(x;θ) is a deep neural network. Since the constructed network û(x;θ) satisfies the boundary
condition automatically, we apply the loss function without boundary penalty introduced in Section
2.3 to identify an approximate solution to the Poisson equation.

Different activation functions are applied to construct the deep neural network in the above
solver. The resulting relative L2 errors are shown in Table 4.2. The corresponding training
process is visualized in Figure 4.2. It is obvious that the reproducing activation function with
A = {x, x2, sin(x), exp(−x2)} achieves the best performance. After around 20, 000 iterations, net-
works with other activation functions have achieved local minimizers and cannot escape from these
minimizers. The poly-sine-Gaussian activation enables networks to escape from bad local minimiz-
ers (e.g., around 3, 000 and 20, 000 iterations) and gradient descent can still reduce the solution
error after 50, 000 iterations since the error curve is far away from being a flat line. The numerical
results also justify the combination of four kinds of activation functions.

Activation Function Relative L2 Error (Moving-Average) Relative L2 Error (Min)

ReLU3 9.40 e-04 8.98 e-04
x⊕ x2 4.50 e-04 4.38 e-04

x⊕ x2 ⊕ ReLU 4.49 e-04 4.36 e-04
x⊕ x2 ⊕ ReLU3 1.39 e-03 1.35 e-03
x⊕ x2 ⊕ sin(x) 4.45 e-04 4.33 e-04

x⊕ x2 ⊕ sin(x)⊕ exp(−x2) 6.87 e-05 6.85 e-05

Table 4.2: The best historical accuracy for the Poisson equation defined in (4.4) with a smooth
solution. Different activation functions are applied to solve the Poisson equation.

0.0 0.2 0.4 0.6 0.8 1.0
Iterations numbers ×105

10−4

10−3

10−2

10−1

100

Re
la
tiv
e
L2
 e
rro
r

ReLU3
x x2

x x2 ReLU
x x2 ReLU3
x x2 sin(x)
x x2 sin(x) Gaussian

0.0 0.2 0.4 0.6 0.8 1.0
Iterations numbers ×105

10−4

10−3

10−2

10−1

100

Re
la
tiv
e
L2
 e
rro
r

ReLU3
x x2

x x2 ReLU
x x2 ReLU3
x x2 sin(x)
x x2 sin(x) Gaussian

Fig. 4.2: The training process for the Poisson equation in (4.4) with a smooth solution. Left: the
moving-average minimal historical error. Right: the minimal historical error.

Reproducing Activation Function for Deep Learning 21

4.1.3. PDEs with Low Regularity. Next, we consider a two-dimensional PDE

(4.6)

{
−∇ · (|x|∇u) = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,

with a solution u(x) = sin(2π(1 − |x|)) defined on Ω = {x : |x| ≤ 1}. The exact solution has low
regularity at the origin. Let φ(x;θ) be an arbitrary network, then

(4.7) û(x;θ) = (1− |x|)φ(x;θ)

satisfies the boundary condition automatically. We apply the loss function without boundary
penalty introduced in Section 2.3 to identify an approximate solution û(x;θ) to the equation in
(4.6).

Different activation functions are applied to construct the deep neural network in the above
solver. The resulting relative L2 errors are shown in Table 4.3. The corresponding training process
is visualized in Figure 4.3. Since the exact solution has low regularity, it is more challenging than
the previous example and the numerical accuracy is not as good as those in the previous example.
It is obvious that the reproducing activation function with A = {x, x2, sin(x), exp(−x2)} achieves
the best performance. Note that gradient descent can still reduce the solution error after 50, 000
iterations in the case of poly-sine-Gaussian activation function since the error curve is still not flat.
However, the error curves for other activation functions are close to flat lines. The numerical results
also justify the combination of four kinds of activation functions.

Activation Function Relative L2 Error (Moving-Average) Relative L2 Error (Min)

ReLU3 6.12 e-03 4.49 e-03
x⊕ x2 4.41 e-02 3.86 e-02

x⊕ x2 ⊕ ReLU 6.18 e-01 5.97 e-01
x⊕ x2 ⊕ ReLU3 2.46 e-03 1.56 e-03
x⊕ x2 ⊕ sin(x) 6.59 e-03 3.99 e-03

x⊕ x2 ⊕ sin(x)⊕ Gaussian 1.60 e-03 8.23 e-04

Table 4.3: The best historical accuracy for the equation (4.6) with a solution not smooth at the
origin.

4.1.4. PDEs with an Oscillatory Solution. Next, to test the benefit of using sin(x) in
the reproducing activation function, we consider a two-dimensional Poisson equation

(4.8)

{
−∆u+ (u+ 2)2 = f, x ∈ Ω,

u = 0, x ∈ ∂Ω,

with an oscillatory solution u(x) = sin(6πx1) sin(6πx2) defined on Ω = [0, 1]2. The deep neural
network is constructed following (4.5) so that it satisfies the boundary condition automatically.
We apply the loss function without boundary penalty introduced in Section 2.3 to identify an
approximate solution û(x;θ) to the equation in (4.8).

Different activation functions are applied to construct the deep neural network in the above
solver. Their performance is shown in Table 4.4 and Figure 4.4 (left). It is obvious that reproducing
activation functions with A = {x, x2, sin(x)} and A = {x, x2, sin(x), exp(−x2)} achieve the best
performance. Note that gradient descent in the case of A = {x, x2, sin(x), exp(−x2)} has a steeper

22 Reproducing Activation Function for Deep Learning

0 1 2 3
Iterations numbers ×105

10−4

10−3

10−2

10−1

100

Re
la

tiv
e
L2

 e
rro

r

ReLU3

x⊕ x2

x⊕ x2 ⊕ ReLU
x⊕ x2 ⊕ ReLU3

x⊕ x2 ⊕ sin(x)
x⊕ x2 ⊕ sin(x) ⊕ Gaussian

0 1 2 3
Iterations numbers ×105

10−4

10−3

10−2

10−1

100

Re
la

tiv
e
L2

 e
rro

r

ReLU3

x⊕ x2

x⊕ x2 ⊕ ReLU
x⊕ x2 ⊕ ReLU3

x⊕ x2 ⊕ sin(x)
x⊕ x2 ⊕ sin(x) ⊕ Gaussian

Fig. 4.3: The training process for the equation (4.6) with a solution not smooth at the origin. Left:
the moving-average minimal historical error. Right: the minimal historical error.

error curve than other activation functions. When the number of iteration is sufficiently large, the
performance of A = {x, x2, sin(x), exp(−x2)} become the best.

According to the discussion about NTK in Section 2.5, introducing oscillation in neural networks
is a crucial step to lessen the spectral bias of deep learning. Although using sin(x) in reproducing ac-
tivation functions has helped to relieve the spectral bias as we have seen in the above results. As dis-
cussed in [71], pre-specifying a wide range of different scaling parameters in sin(x) can help to lessen
the spectral bias better and obtain high-resolution image (coordinate-wise low-dimensional func-
tion) reconstruction. Therefore, in the case of oscillatory target functions, we also specify the scaling
parameters as different frequencies in sin(x) to check the performance. Particularly, if n sin(x) ac-
tivation functions is used in a layer, we will replace them with {sin(2πx), sin(4πx), . . . , sin(2nπx)}.
Besides, it is also of interest to check whether adding cos(x) in the set of basic activation functions
can improve the performance. Note that specifying a wide range of scaling parameters in every
hidden layer would create too much oscillation and, hence, we would only specify scaling parame-
ters either in the first or in the last hidden layer. Therefore, a set of four tests were conducted and
their results are shown in Table 4.5 and Figure 4.4 (right). Numerical results show that there is
no much difference whether cos(x) is used or not, but specifying different scaling parameters does
improve the performance. Specifying different scaling parameters in the first hidden layer is better
than in the last hidden layer.

Finally, to show an example of truly oscillatory, we choose f in (4.8) such that the exact
solution is u(x) = sin(40x1) sin(40x2). The numerical performance of different activation functions
is summarized in Table 4.6 and Figure 4.5. The performance of A = {x, x2, sin(x), exp(−x2)} is
the best.

4.1.5. Nonlinear Schrödinger Equation. The last example of Part I is a d-dimensional
nonlinear Schrödinger operator defined below.

(4.9) Lϕ = −∆ϕ+ ϕ3 + V ϕ,

where V (x) = − 1
c2

exp(2
d

∑d
i=1 cosxi) +

∑d
i=1(sin2 xi

d2
− cosxi

d) − 3 such that λ = −3 and ϕ(x) =

exp(1
d

∑d
j=1 cos(xj))/c is the leading eigenpair of the operator. Here c is a positive constant such

that
∫

Ω ϕ
2(x)dx = |Ω|. This example is considered in [27] and we follow the approach in [27] to

solve for the leading eigenpair. The network structure in [27] consists of two parts: 1) the first

Reproducing Activation Function for Deep Learning 23

Activation Function Relative L2 Error (Average) Relative L2 Error (Min)

ReLU3 3.16 e-05 3.06 e-05
x⊕ x2 9.46 e-02 9.19 e-02

x⊕ x2 ⊕ ReLU 3.81 e+00 3.72 e+00
x⊕ x2 ⊕ ReLU3 3.15 e-05 3.01 e-05
x⊕ x2 ⊕ sin(x) 4.69 e-06 4.57 e-06

x⊕ x2 ⊕ sin(x)⊕ Gaussian 3.35 e-06 3.27 e-06

Table 4.4: The best historical accuracy for the equation in (4.8) with an oscillatory solution.

0.0 0.5 1.0 1.5 2.0
Iterations numbers ×106

10−4

10−2

100

102

Re
la

tiv
e
L2

 e
rro

r

ReLU3

x⊕ x2

x⊕ x2 ⊕ ReLU
x⊕ x2 ⊕ ReLU3

x⊕ x2 ⊕ sin(x)
x⊕ x2 ⊕ sin(x) ⊕ Gaussian

0.0 0.5 1.0 1.5 2.0
Iterations numbers ×106

10−5

10−4

10−3

10−2

10−1

100

Re
la

tiv
e
L2

 e
rro

r

ReLU3

x⊕ x2

x⊕ x2 ⊕ ReLU
x⊕ x2 ⊕ ReLU3

x⊕ x2 ⊕ sin(x)
x⊕ x2 ⊕ sin(x) ⊕ Gaussian

0.0 0.5 1.0 1.5 2.0
Iterations numbers ×106

10−5

10−3

10−1

Re
la

tiv
e
L2

 e
rro

r

x⊕ x2 ⊕ sin(x) (first)
x⊕ x2 ⊕ sin(x) (last)
x⊕ x2 ⊕ sin(x) ⊕ cos(x) (first)
x⊕ x2 ⊕ sin(x) ⊕ cos(x) (last)
x⊕ x2 ⊕ sin(x)

0.0 0.5 1.0 1.5 2.0
Iterations numbers ×106

10−5

10−3

10−1

Re
la

tiv
e
L2

 e
rro

r

x⊕ x2 ⊕ sin(x) (first)
x⊕ x2 ⊕ sin(x) (last)
x⊕ x2 ⊕ sin(x) ⊕ cos(x) (first)
x⊕ x2 ⊕ sin(x) ⊕ cos(x) (last)
x⊕ x2 ⊕ sin(x)

Fig. 4.4: The training process of the equation in (4.8) with an oscillatory solution.

hidden layer uses sin(x) and cos(x) with different scaling parameters so that the whole network
satisfies periodic boundary conditions; 2) the other hidden layers use ReLU activation functions.
In our test, we compare different activation functions (e.g., ReLU, ReLU3, poly-sine-Gaussian)
after the first hidden layer. In the case when d = 5, the relative L2 error of the estimated leading
eigenfunction after 60, 000 iterations is 0.307, 6.38e − 03, and 2.09e − 03 for ReLU3, ReLU, and
poly-sine-Gaussian activation functions, respectively. In the case when d = 10, the relative L2 error
of the estimated leading eigenfunction after 80, 000 iterations is 0.223, 4.59e − 03, and 1.10e − 03
for ReLU3, ReLU, and poly-sine-Gaussian activation functions, respectively. The training process

24 Reproducing Activation Function for Deep Learning

Activation Function Relative L2 Error (Average) Relative L2 Error (Min)

x⊕ x2 ⊕ sin(x) (first) 2.31 e-07 2.26 e-07
x⊕ x2 ⊕ sin(x) (last) 3,14 e-06 3.06 e-06

x⊕ x2 ⊕ sin(x)⊕ cos(x) (first) 3.79 e-07 3.71 e-07
x⊕ x2 ⊕ sin(x)⊕ cos(x) (last) 1.90 e-03 5.57 e-04

Table 4.5: The best historical accuracy for the equation in (4.8) with an oscillatory solution when
the scaling parameters of sin(x) activation functions either in the first hidden layer or the last
hidden layer are pre-fixed.

Activation Function Relative L2 Error (Average) Relative L2 Error (Min)

ReLU3 3.09 2.95
x⊕ x2 ⊕ sin(x) (first) 1.61 e-02 1.57 e-02

x⊕ x2 ⊕ sin(x) (first) ⊕ Gaussian 6.58 e-04 5.78 e-04

Table 4.6: The best historical accuracy for the equation in (4.8) with an oscillatory solution u(x) =
sin(40x1) sin(40x2). The scaling parameters of sin(x) activation functions in the first hidden layer
are pre-fixed as in Table 4.5.

of these solvers have been visualized in Figure 4.6.

4.1.6. Neural Tangent Kernel of PDE Solvers. As discussed in Section 2.5, the con-
dition number of NTK is also a crucial factor that determines the performance of deep learning. We
compute the NTK of the PDE problems we considered in previous examples at initialization when
different activation functions are used. These condition numbers are summarized in Table 4.7. The
condition number of the poly-sine-Gaussian activation function is the smallest one. Hence, from
the perspective of NTK, we have also justified the combination of basic activation functions in the
poly-sine-Gaussian activation function.

4.2. Coordinate-based Data Representation. In this part, we verify the performance
of reproducing activation functions on the task of continuous representations using coordinate-based
neural networks. In this task, neural networks are trained to regress a given signal, which takes
low-dimensional coordinates as input and outputs the signal value at the corresponding coordinate
point. Mean square error (MSE) is used to quantify the difference between the ground truth
and the neural network output. Standard neural networks, e.g., ReLU networks, were shown to
have poor performance of fitting some signal patterns, for example, the high-frequency component
of signals [69, 71]. SIREN activation function [69], i.e., sin(30x), improves the ability of neural
networks to represent complex signals.

As we discussed in the theoretical part of reproducing activation function, the SIREN activation
function is a special case of the poly-sine-Gaussian activation function in our framework. We will
show that poly-sine-Gaussian activation function can provide better performance than SIREN when
the combination coefficients α and the scaling parameters β are specified or trained appropriately
in a problem-dependent manner. In our implementation, we follow the official implementation
of SIREN on representations of audio, image, and video signal (refer to [69] for implementation
details). The main difference between the SIREN code and our implementation is the activation
function. In all of the examples in Part II, each neuron will have a data-driven reproducing
activation function as in (3.1). All trainable parameters are trained to minimize the empirical

Reproducing Activation Function for Deep Learning 25

0.0 0.2 0.4 0.6 0.8 1.0
Iterations numbers 105

10−3

10−2

10−1

100

101

Re
la
tiv
e
L2
 e
rro
r

ReLU3
x⊕ x2⊕sin(x) (first)
x⊕ x2⊕ sin(x) (First) ⊕Gaussian

0.0 0.2 0.4 0.6 0.8 1.0
Iterations numbers 105

10−3

10−2

10−1

100

Re
la
tiv
e
L2
 e
rro
r

ReLU3
x⊕ x2⊕sin(x) (first)
x⊕ x2⊕ sin(x)(First)⊕Gaussian

Fig. 4.5: The training process of the equation in (4.8) with an oscillatory solution u(x) =
sin(40x1) sin(40x2).

0 1 2 3 4 5 6
Iterations numbers ×104

10−2

10−1

100

101

Re
la

tiv
e
L2

 e
rro

r

ReLU3

ReLU
x⊕ x2 ⊕ sin(x) ⊕ Gaussian

0 1 2 3 4 5 6 7 8
Iterations numbers ×104

10−3

10−2

10−1

100

Re
la
tiv
e
L2
 e
rro
r

ReLU3
ReLU
x x2 sin(x) Gaussian

Fig. 4.6: The training process of the nonlinear Schrödinger Equation in (4.9) with different activa-
tion functions.

loss function in (3.2).

4.2.1. Audio Signal. We start from modeling audio signals on two audio clips, Bach and
Counting as shown in Figure 4.7. A neural network is trained to regress from a one-dimensional
time coordinate to the corresponding sound level. Note that audio signals are purely oscillatory
signals. Therefore, in the reproducing activation framework, x and x2 are not necessary. We apply
two forms of reproducing activation functions, Sine and Sine-Gaussian. The Sine one is set as

α1 sin(β1x),(4.10)

while the Sine-Gaussian one is set as

α1 sin(β1x) + α2exp(−x2/(2β2
2)),(4.11)

where α1 is initialized as N (2, 0.1), α2 is initialized as N (1.0, 0.1), β1 is initialized as N (30, 0.001),
and β2 is initialized with a uniform distribution U(0.01, 0.05). We use a 3-hidden-layer neural

26 Reproducing Activation Function for Deep Learning

Activation Function Equation (4.4) Equation (4.6) Equation (4.8)

ReLU3 1.32 e+11 2.60 e+10 3.23 e+11
x⊕ x2 4.71 e+11 1.74 e+11 4.28 e+11

x⊕ x2 ⊕ ReLU 1.01 e+11 1.09 e+10 3.11 e+10
x⊕ x2 ⊕ ReLU3 2.03 e+12 1.65 e+11 3.45 e+11
x⊕ x2 ⊕ sin(x) 1.92 e+12 5.18 e+10 1.10 e+11

x⊕ x2 ⊕ sin(x)⊕ Gaussian 3.91 e+08 4.11 e+09 1.36 e+10

Table 4.7: The condition number of the NTK in (2.19) of different PDE solvers with different
activation functions at initialization. The NTK matrix is evaluated with 100 samples, i.e., the
matrix size is 100× 100.

network with 256 neurons per layer to fit the audio signal following the network structure of
SIREN. The neural networks are trained for 2000 iterations and optimized by Adam optimizer
with an initial learning rate 10−4 and cosine learning rate decay.

Figure 4.7 and Figure 4.8 display the fitting performance and training curves on the audio
Bach and Counting. From Figure 4.7, we can see that our method has the capacity of modeling
the audio signals more accurately than SIREN and leads to a smaller error in regression. Besides,
our reproducing activation functions can converge to a better local minimum at a faster speed
compared with SIREN as shown in Figure 4.8. Moreover, the add-in Gaussian function enhances
the fitting ability of reproducing activation functions.

Fig. 4.7: The comparison of fitting performance on the audio Bach and Counting for SIREN and
our reproducing activation function (Sine and Sine-Gaussian).

4.2.2. Image Signal. In this part, we regress a grayscale image by learning a map from
two-dimensional pixel coordinates to the corresponding pixel value. Four image of size 256×256
are used, including Camera, Astronaut, Cat and Coin, , which are available in Python Pillow
Package. Note that images usually contain a cartoon part and a texture part. Here, we apply

Reproducing Activation Function for Deep Learning 27

Fig. 4.8: The comparison of training curves on the audio Bach and Counting for SIREN and our
reproducing activation function (Sine and Sine-Gaussian).

the following three types of reproducing activation functions for image fitting, Sine, Poly-Sine, and
Poly-Sine-Gaussian. Sine is defined by α1 sin(β1x), same as Equation 4.10. Poly-Sine is set as

α1 sin(β1x) + α3x+ α4x
2,(4.12)

and Poly-Sine-Gaussian is defined as

α1 sin(β1x) + α2exp(−x2/(2β2
2)) + α3x+ α4x

2.(4.13)

Here, α1 is initialized as N (2, 0.1), α2 is initialized as N (1, 0.1), α3 is initialized as N (0.0, 0.1),
α4 is initialized as N (1.0, 0.1), β1 is initialized as N (30, 0.001), and β2 is initialized as U(0.01, 0.05).
A neural network with 3 hidden layers and 256 neurons per layer is trained for 2, 000 iterations.
The Adam optimizer is used with an initial learning rate 10−4 and cosine learning rate decay.
Table 4.8 presents the Peak signal-to-noise ratio (PSNR) and Structural similarity (SSIM) of the
fitted images by SIREN and our reproducing activation function. From Table 4.8, we see that our
methods outperforms SIREN with a significant margin.

Activation Camera Astronaut Cat Coin

SIREN 45.80/0.9913 44.84/0.9962 49.58/0.9970 43.05/0.9868
Sine 60.60/0.9995 59.37/0.9997 65.94/0.9999 62.66/0.9998

Poly-Sine 61.21/0.9996 59.99/0.9997 66.41/0.9999 63.57/0.9998
Poly-Sine-Gaussian 73.80/1.0000 70.98/1.0000 82.55/1.0000 74.92/1.0000

Table 4.8: The comparison of PSNR/SSIM of the fitted images using different activation functions.
The larger these numbers are, the better the performance is.

4.2.3. Video Signal. In this part, we fit a color video named Bike with 250 frames, which
is available in Python Skvideo Package. The regression is from three-dimensional coordinates to
RGB pixel values. We apply the same reproducing activation function in (4.11), but α1, α2, β1

and β2 are initialized by N (1, 0.1), N (1, 0.1), N (30, 0.001) and U(0.002, 0.01), respectively. A
neural networks with 3 hidden layers and 400 neurons per layer is trained for 100, 000 iterations.

28 Reproducing Activation Function for Deep Learning

Activation Mean PSNR SD PSNR

SIREN 32.17 2.16
Sine-Gaussian 32.79 2.10

Table 4.9: The comparison of PSNR of videos fitted by different activation functions. The mean
and standard derivation (SD) are computed over 250 frames of the video.

The Adam optimizer is used with an initial learning rate 10−4 and cosine learning rate decay.
Figure 4.9 displays the training curves of video fitting for different activation function. Table 4.9
shows the mean and standard derivation of PSNR for video over 250 frames. From Figure 4.9,
RAFs can lead to a better minimizer with a larger PSNR than SIREN.

Fig. 4.9: Comparison of training curves on video fitting for different activation functions.

5. Conclusion. In this paper, we proposed the reproducing activation function to improve
deep learning accuracy for various applications ranging from computer vision problems to scien-
tific computing problems. The idea of reproducing activation functions is to employ several basic
functions with learnable linear combination and rescaling to construct neuron-wise data-driven ac-
tivation functions for each neuron. In theory, we have proved that this new concept can lead to
powerful deep neural networks approximating various kinds of functions better than ReLU neu-
ral networks. In terms of training dynamics of deep learning, we have numerically demonstrated
that reproducing activation functions can generate neural tangent kernels with a better condi-
tion number than traditional activation functions, lessening the spectral bias of deep learning. As
demonstrated by extensive numerical tests, the proposed reproducing activation function can facili-
tate the convergence of deep learning optimization for a solution with higher accuracy than existing
deep learning solvers for audio/image/video reconstruction, PDEs, and eigenvalue problems. We
have not explored the optimal choice of basic activation functions in this paper, which would be
problem-dependent and is left for future work.

Acknowledgements. C. W. was partially supported by National Science Foundation Award
DMS-1849483. H. Y. was partially supported by the US National Science Foundation under award
DMS-1945029. The authors thank Mo Zhou for sharing his code for Schrödinger equations.

REFERENCES

Reproducing Activation Function for Deep Learning 29

[1] Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of optimization
and generalization for overparameterized two-layer neural networks. arxiv:1901.08584, 2019.

[2] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inf.
Theory, 39(3):930–945, 1993.

[3] J. Berg and K. Nyström. A Unified Deep Artificial Neural Network Approach to Partial Differential Equations
in Complex Geometries. Neurocomputing, 317:28 – 41, 2018.

[4] Julius Berner, Philipp Grohs, and Arnulf Jentzen. Analysis of the generalization error: Empirical risk min-
imization over deep artificial neural networks overcomes the curse of dimensionality in the numerical ap-
proximation of black-scholes partial differential equations. CoRR, abs/1809.03062, 2018.

[5] Nicolas Boullé, Yuji Nakatsukasa, and Alex Townsend. Rational neural networks. arXiv:2004.01902, 2020.
[6] Wei Cai, X. Li, and L. Liu. A phase shift deep neural network for high frequency approximation and wave

problems. arXiv: Learning, 2019.
[7] Zhiqiang Cai, Jingshuang Chen, Min Liu, and Xinyu Liu. Deep least-squares methods: An unsupervised

learning-based numerical method for solving elliptic pdes. Journal of Computational Physics, page 109707,
2020.

[8] Yuan Cao, Zhiying Fang, Yue Wu, Ding-Xuan Zhou, and Quanquan Gu. Towards understanding the spectral
bias of deep learning. arXiv preprint arXiv:1912.01198, 2019.

[9] J. Chen, Rui Du, Panchi Li, and Liyao Lyu. Quasi-monte carlo sampling for machine-learning partial differential
equations. ArXiv, abs/1911.01612, 2019.

[10] Z. Chen and H. Zhang. Learning implicit fields for generative shape modeling. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 5932–5941, 2019.

[11] Zixiang Chen, Yuan Cao, Difan Zou, and Quanquan Gu. How much over-parameterization is sufficient to learn
deep relu networks? CoRR, arXiv:1911.12360, 2019.

[12] X. Dai and Y. Zhu. Towards theoretical understanding of large batch training in stochastic gradient descent.
CoRR, abs/1812.00542, 2018.

[13] Xiaowu Dai and Yuhua Zhu. Towards theoretical understanding of large batch training in stochastic gradient
descent. arXiv preprint arXiv:1812.00542, 2018.

[14] M. W. M. G. Dissanayake and N. Phan-Thien. Neural-network-based Approximations for Solving Partial
Differential Equations. Comm. Numer. Methods Engrg., 10:195–201, 1994.

[15] S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes over-parameterized neural
networks. arXiv e-prints, arXiv:1810.02054, 2018.

[16] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic optimiza-
tion. J. Mach. Learn. Res, 12:2121–2159, 2011.

[17] W. E and Q. Wang. Exponential convergence of the deep neural network approximation for analytic functions.
CoRR, abs/1807.00297, 2018.

[18] Weinan E, Chao Ma, and Qingcan Wang. A priori estimates of the population risk for residual networks. ArXiv,
abs/1903.02154, 2019.

[19] Weinan E, Chao Ma, and Lei Wu. A priori estimates of the population risk for two-layer neural networks.
Communications in Mathematical Sciences, 17(5):1407 – 1425, 2019.

[20] Weinan E and Bing Yu. The deep ritz method: a deep learning-based numerical algorithm for solving variational
problems. Commun. Math. Stat., 6:1–12, 2018.

[21] K. Genova, F. Cole, A. Sud, A. Sarna, and T. Funkhouser. Local deep implicit functions for 3d shape. In 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 4856–4865, 2020.

[22] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, Cambridge, 2016.
[23] Y. Gu, H. Yang, and C. Zhou. SelectNet: Self-paced Learning for High-dimensional Partial Differential Equa-

tions. arXiv e-prints, arXiv:2001.04860, 2020.
[24] Yiqi Gu, Chunmei Wang, and Haizhao Yang. Structure probing neural network deflation. arXiv preprint

arXiv:2007.03609, 2020.
[25] J. Han, A. Jentzen, and W. E. Solving high-dimensional partial differential equations using deep learning. Proc.

Natl. Acad. Sci., 115(34):8505–8510, 2018.
[26] Jiequn Han and Jihao Long. Convergence of the deep bsde method for coupled fbsdes. ArXiv, abs/1811.01165,

2018.
[27] Jiequn Han, Jianfeng Lu, and Mo Zhou. Solving high-dimensional eigenvalue problems using deep neural

networks: A diffusion monte carlo like approach. Journal of Computational Physics, 423:109792, 2020.
[28] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.
[29] Jianguo Huang, Haoqin Wang, and Haizhao Yang. Int-deep: A deep learning initialized iterative method for

nonlinear problems. Journal of Computational Physics, 419:109675, 2020.
[30] M. Hutzenthaler, A. Jentzen, Th. Kruse, and T. A. Nguyen. A proof that rectified deep neural networks overcome

30 Reproducing Activation Function for Deep Learning

the curse of dimensionality in the numerical approximation of semilinear heat equations. Technical Report
2019-10, Seminar for Applied Mathematics, ETH Zürich, Switzerland, 2019.

[31] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization in
neural networks. CoRR, abs/1806.07572, 2018.

[32] Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Locally adaptive activation functions with
slope recovery for deep and physics-informed neural networks. Proceedings of the Royal Society A: Mathe-
matical, Physical and Engineering Sciences, 476(2239):20200334, 2020.

[33] Ameya D. Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activation functions accelerate
convergence in deep and physics-informed neural networks. Journal of Computational Physics, 404:109136,
2020.

[34] Timothy Jeruzalski, Boyang Deng, Mohammad Norouzi, J. P. Lewis, G. Hinton, and A. Tagliasacchi. Nasa:
Neural articulated shape approximation. ArXiv, abs/1912.03207, 2020.

[35] S. Justin and S. Konstantinos. Dgm: A deep learning algorithm for solving partial differential equations. J.
Comput. Phys., 375:1339–1364, 2018.

[36] Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric pde problems with artificial neural networks.
arXiv: Numerical Analysis, 2017.

[37] D. P. Kingma and J. Ba. Adam: a method for stochastic optimization. arXiv e-prints, arXiv:1412.6980, 2014.
[38] V. Kůrková. Kolmogorov’s theorem and multilayer neural networks. Neural Networks, 5:501–506, 1992.
[39] I.E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial Neural Networks for Solving Ordinary and Partial Differential

Equations. IEEE Trans. Neural Networks, 9:987–1000, 1998.
[40] Jaehoon Lee, Lechao Xiao, Samuel S Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, and

Jeffrey Pennington. Wide neural networks of any depth evolve as linear models under gradient descent.
Journal of Statistical Mechanics: Theory and Experiment, 2020(12):124002, dec 2020.

[41] D. Lei, Z. Sun, Y. Xiao, and W. Y. Wang. Implicit regularization of stochastic gradient descent in natural
language processing: observations and implications. arXiv e-prints, arXiv:1811.00659, 2018.

[42] Deren Lei, Zichen Sun, Yijun Xiao, and William Yang Wang. Implicit regularization of stochastic gradient
descent in natural language processing: Observations and implications. arXiv preprint arXiv:1811.00659,
2018.

[43] S. Liang and R. Srikant. Why deep neural networks? CoRR, abs/1610.04161, 2016.
[44] Yulei Liao and Pingbing Ming. Deep nitsche method: Deep ritz method with essential boundary conditions.

arXiv preprint arXiv:1912.01309, 2019.
[45] S. Liu, Y. Zhang, S. Peng, B. Shi, M. Pollefeys, and Z. Cui. Dist: Rendering deep implicit signed distance

function with differentiable sphere tracing. In 2020 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 2016–2025, 2020.

[46] Ziqi Liu, Wei Cai, and Zhi-Qin John Xu. Multi-scale deep neural network (mscalednn) for solving poisson-
boltzmann equation in complex domains. Communications in Computational Physics, 28(5):1970–2001,
Jun 2020.

[47] J. Lu, Z. Shen, H. Yang, and S. Zhang. Deep Network Approximation for Smooth Functions. arXiv e-prints,
arXiv:2001.03040, 2020.

[48] T. Luo, Z. Ma, Z.J. Xu, and Y. Zhang. Theory of the frequency principle for general deep neural networks.
CoRR, abs/1906.09235, 2019.

[49] Tao Luo and Haizhao Yang. Two-Layer Neural Networks for Partial Differential Equations: Optimization and
Generalization Theory. arXiv e-prints, arXiv:2006.15733, 2020.

[50] Liyao Lyu, Keke Wu, Rui Du, and J. Chen. Enforcing exact boundary and initial conditions in the deep mixed
residual method. ArXiv, abs/2008.01491, 2020.

[51] M. Michalkiewicz, J. K. Pontes, D. Jack, M. Baktashmotlagh, and A. Eriksson. Implicit surface representations
as layers in neural networks. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
pages 4742–4751, 2019.

[52] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for view synthesis. arxiv:2003.08934, 2020.

[53] H. Montanelli and Q. Du. New error bounds for deep networks using sparse grids. arXiv e-prints,
arXiv:1712.08688, 2017.

[54] H. Montanelli and H. Yang. Error bounds for deep relu networks using the kolmogorov–arnold superposition
theorem. Neural Networks, 129:1–6, 2020.

[55] Hadrien Montanelli, Haizhao Yang, and Qiang Du. Deep relu networks overcome the curse of dimensionality
for bandlimited functions. arXiv preprint arXiv:1903.00735, 2019.

[56] Tenavi Nakamura-Zimmerer, Qi Gong, and Wei Kang. Adaptive deep learning for high dimensional hamilton-
jacobi-bellman equations. ArXiv, abs/1907.05317, 2019.

[57] B. Neyshabur, R. Tomioka, R. Salakhutdinov, and N. Srebro. Geometry of optimization and implicit regular-

Reproducing Activation Function for Deep Learning 31

ization in deep learning. arXiv e-prints, arXiv:1705.03071, 2017.
[58] Behnam Neyshabur, Ryota Tomioka, Ruslan Salakhutdinov, and Nathan Srebro. Geometry of optimization and

implicit regularization in deep learning. arXiv preprint arXiv:1705.03071, 2017.
[59] J.A.A. Opschoor, C. Schwab, and J. Zech. Exponential relu dnn expression of holomorphic maps in high

dimension. Technical report, Zurich, 2019.
[60] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learning continuous signed

distance functions for shape representation. In 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 165–174, 2019.

[61] T. Poggio, H.N. Mhaskar, L. Rosasco, B. Miranda, and Q. Liao. Why and when can deep—but not shallow—
networks avoid the curse of dimensionality: A review. International Journal of Automation and Computing,
14:503–519, 2017.

[62] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning framework
for solving forward and inverse problems involving nonlinear partial differential equations. Journal of
Computational Physics, 378:686 – 707, 2019.

[63] S. J. Reddi, S. Kale, and S. Kumar. On the convergence of Adam and beyond. arXiv e-prints, arXiv:1904.09237,
2019.

[64] S. Saito, Zeng Huang, R. Natsume, S. Morishima, A. Kanazawa, and Hao Li. Pifu: Pixel-aligned implicit
function for high-resolution clothed human digitization. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 2304–2314, 2019.

[65] Z. Shen, H. Yang, and S. Zhang. Deep network approximation characterized by number of neurons. arXiv
e-prints, arXiv:1906.05497, 2019.

[66] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Neural network approximation: Three hidden layers are enough.
arXiv:2010.14075, 2020.

[67] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network with approximation error being reciprocal of
width to power of square root of depth. Neural Computation, 2021.

[68] Yeonjong Shin, J. Darbon, and G. Karniadakis. On the convergence and generalization of physics informed
neural networks. ArXiv, abs/2004.01806, 2020.

[69] Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit neural
representations with periodic activation functions. Advances in Neural Information Processing Systems, 33,
2020.

[70] Vincent Sitzmann, M. Zollhöfer, and G. Wetzstein. Scene representation networks: Continuous 3d-structure-
aware neural scene representations. ArXiv, abs/1906.01618, 2019.

[71] Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal,
Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let networks learn high frequency
functions in low dimensional domains. arxiv:2006.10739, 2020.

[72] L.N. Trefethen. Approximation Theory and Approximation Practice. Other Titles in Applied Mathematics.
SIAM, 2013.

[73] Bo Wang. Multi-scale deep neural network (mscalednn) methods for oscillatory stokes flows in complex domains.
Communications in Computational Physics, 28(5):2139–2157, Jun 2020.

[74] Sifan Wang, Xinling Yu, and Paris Perdikaris. When and why pinns fail to train: A neural tangent kernel
perspective. arXiv:2007.14527, 2020.

[75] Zhi-Qin John Xu, Yaoyu Zhang, Tao Luo, Yanyang Xiao, and Zheng Ma. Frequency principle: Fourier analysis
sheds light on deep neural networks. Communications in Computational Physics, 28(5):1746–1767, 2020.

[76] D. Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 94:103–114, 2017.
[77] D. Yarotsky. Optimal approximation of continuous functions by very deep relu networks. In 31st Annual

Conference on Learning Theory, volume 75, pages 1–11. 2018.
[78] Dmitry Yarotsky and Anton Zhevnerchuk. The phase diagram of approximation rates for deep neural networks.

arXiv e-prints, page arXiv:1906.09477, June 2019.
[79] Z. Song Z. A.-Zhu, Y. Li. A convergence theory for deep learning via over-parameterization. In Kamalika

Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 242–252, Long Beach, California,
USA, 2019. PMLR.

[80] Y. Zang, G. Bao, X. Ye, and H. Zhou. Weak adversarial networks for high-dimensional partial differential
equations. J. Comput. Phys., 411:109409, 2020.

[81] Ellen D. Zhong, Tristan Bepler, Joseph H. Davis, and Bonnie Berger. Reconstructing continuous distributions
of 3d protein structure from cryo-em images. arXiv:1909.05215, 2020.

