
SOLVING PDES ON UNKNOWN MANIFOLDS WITH MACHINE

LEARNING

A PREPRINT

Senwei Liang
Department of Mathematics, Purdue University, IN 47907, USA

liang339@purdue.edu

Shixiao W. Jiang
Institute of Mathematical Sciences, ShanghaiTech University, Shanghai, 201210, China

jiangshx@shanghaitech.edu.cn

John Harlim
Department of Mathematics, Department of Meteorology and Atmospheric Science,

Institute for Computational and Data Sciences
The Pennsylvania State University, University Park, PA 16802, USA

jharlim@psu.edu

Haizhao Yang
Department of Mathematics, Purdue University, IN 47907, USA

haizhao@purdue.edu

June 12, 2021

ABSTRACT

This paper proposes a mesh-free computational framework and machine learning theory for
solving elliptic PDEs on unknown manifolds, identified with point clouds, based on diffusion
maps (DM) and deep learning. The PDE solver is formulated as a supervised learning task to
solve a least-squares regression problem that imposes an algebraic equation approximating a PDE
(and boundary conditions if applicable). This algebraic equation involves a graph-Laplacian type
matrix obtained via DM asymptotic expansion, which is a consistent estimator of second-order
elliptic differential operators. The resulting numerical method is to solve a highly non-convex
empirical risk minimization problem subjected to a solution from a hypothesis space of neural-
network type functions. In a well-posed elliptic PDE setting, when the hypothesis space consists of
feedforward neural networks with either infinite width or depth, we show that the global minimizer
of the empirical loss function is a consistent solution in the limit of large training data. When the
hypothesis space is a two-layer neural network, we show that for a sufficiently large width, the
gradient descent method can identify a global minimizer of the empirical loss function. Supporting
numerical examples demonstrate the convergence of the solutions and the effectiveness of the
proposed solver in avoiding numerical issues that hampers the traditional approach when a large
data set becomes available, e.g., large matrix inversion.

K eywords High-Dimensional PDEs ·Diffusion Maps ·Deep Neural Networks ·Convergence Analysis · Least-Squares
Minimization · Manifolds · Point Clouds.

A PREPRINT - JUNE 12, 2021

1 Introduction

Solving PDEs on unknown manifolds is a challenging computational problem that commands a wide variety of
applications. In physics and biology, such a problem arises in modeling of granular flow [60], liquid crystal [70],
biomembranes [23]. In computer graphics [9], PDEs on surfaces have been used to restore damaged patterns on a
surface [51], brain imaging [53], among other applications. By unknown manifolds, we refer to the situation where
the parameterization of the domain is unknown. The main computational challenge arising from this constraint is
on the approximation of the differential operator using the available sample data (point clouds) that are assumed to
lie on (or close to) a smooth manifold. Among many available methods proposed for PDEs on surfaces embedded
in R3, they typically parameterize the surface and subsequently use it to approximate the tangential derivatives
along surfaces. For example, the finite element method represents surfaces [18, 11, 10] using triangular meshes.
Thus its accuracy relies on the quality of the generated meshes which may be poor if the given point cloud data
are randomly distributed. Another class of approach is to estimate the embedding function of the surface using
e.g., level set representation [9] or closest point representation [61], and subsequently solve the embedded PDE
on the ambient space. The key issue with this class of approaches is that since the embedded PDE is at least one
dimension higher than the dimension of the two-dimensional surface (i.e., co-dimension higher than one), the
computational cost may not be feasible if the manifold is embedded in high-dimensional ambient space. Another
class of approaches is the mesh-free radial basis function (RBF) method [58, 25] for solving PDE on surfaces. This
approach, however, may not be robust in high co-dimensional problems as pointed out in [25] and the convergence
near the boundary can be problematic.

Recently in [26], an unsupervised learning method called the Diffusion Map (DM) algorithm [12] was proposed to
directly approximate the second-order elliptic differential operator on point clouds data that lie on the manifolds.
The proposed DM-based solver has been extended to elliptic problems with various types of boundary conditions
that typically arise in applications [39], such as non-homogeneous Dirichlet, Neumann, and Robin types and
to time-dependent advection-diffusion PDEs [71]. The main advantage of this approach is to avoid the tedious
parameterization of sub-manifolds in a high-dimensional space. However, the estimated solution is represented by
a discrete vector whose components approximate the function values on the available point clouds, analogous to
standard finite-difference methods. With such a representation, one will need an interpolation method to find the
solutions on new data points, which is a nontrivial task when the domain is an unknown manifold. This issue is
particularly relevant if the available data points come sequentially. Another problem with the DM-based solver is
that the size of the matrix approximating the differential operator increases as a function of the data size, which
creates a computational bottleneck when the PDE solution involves a (pseudo) inversion operation or an eigenvalue
decomposition.

One way to overcome these computational issues is to solve the PDE in a supervised learning framework using
neural networks (NNs). On a Euclidean domain, where extensive research has been conducted [19, 29, 40, 69, 6, 76,
44, 5, 59, 24], NN-based PDE solvers reformulate the PDE problem as a regression problem where the governing
PDE and boundary conditions are imposed. Subsequently, the PDE solution is approximated by a class of NN
functions. An advantage of this mesh-free discretization method is that it has a good approximation properties
[4, 20, 21, 56, 67, 55, 35, 36, 35, 37, 64, 65], which enable application of these PDE solvers to high-dimensional
problems. With the advanced computational tools (e.g., TensorFlow and Pytorch) and the built-in optimization
algorithms therein, developing mathematical software with parallel computing using neural networks is much
simpler than conventional numerical techniques.

Building upon this encouraging result, we propose to solve PDEs on unknown manifolds by embedding the DM
algorithm in NN-based PDE solvers. In particular, the DM algorithm is employed to approximate the second-
order elliptic differential operator defined on the manifolds. Subsequently, a least-squares regression problem
is formulated by imposing an algebraic equation that involves a graph-Laplacian type matrix, obtained by the
discretization of the DM asymptotic expansion on the available point cloud training data. Numerically, we solve the
resulting empirical loss function by finding the solution from a hypothesis space of neural-network type functions
(e.g., with feedforward neural network, we consider the compositions of power of ReLU or polynomial-sine activation
functions). Theoretically, we study the approximation and optimization aspects of the error analysis, induced by
the training procedure that minimizes the empirical risk defined on available point cloud data. Under appropriate
regularity assumptions, we show that when the hypothesis space has either an infinite width or depth, the global
minimizer of the empirical loss function is a consistent solution in the limit of large training data. The corresponding
error bound gives the relations between the desired accuracy and the required length of training data and width (or
depth) of the network. Furthermore, when the hypothesis space is a two-layer neural network, we show that for a
sufficiently large width, the gradient descent method can identify a global minimizer of the empirical loss function.

2

A PREPRINT - JUNE 12, 2021

Numerically, we verify the proposed methods on several test problems on simple 2D and 3D manifolds with various
co-dimensions and boundaries.

The paper will be organized as follows. In Section 2, we give a brief review on the DM-based PDE solver on closed
manifolds and an overview of the ghost point diffusion maps (GPDM) for manifolds with boundaries. The proposed
PDE solver is introduced in Section 3. The theoretical foundation of the proposed method is presented in Section 4.
The numerical performance of the proposed method is illustrated in Section 5. We conclude the paper with a
summary in Section 6. For reader’s convenience, we present an algorithmic perspective for GPDM in Appendix A. We
also include the longer proof for the optimization aspect of the algorithm in Appendix B and report all parameters
used to generate the numerical results in Appendix C.

2 DM-based PDE Solver on Unknown Manifolds

To illustrate the main idea, let us discuss an elliptic problem defined on a d-dimensional closed sub-manifold
M ⊆ [0,1]n ⊆Rn . We will provide a brief discussion for the problem defined on compact manifolds with boundary
to end this section. Let u : M →R be a solution of the elliptic PDE,

(−a(x)+L)u(x) :=−a(x)u(x)+divg
(
κ(x)∇g u(x)

)= f (x), x ∈ M . (1)

Here, we have used the notations divg and ∇g for the divergence and gradient operators, respectively, defined with
respect to the Riemannian metric g inherited by M from the ambient space Rn . The real-valued functions a and κ
are strictly positive such that (−a(x)+L) is strictly negative definite. The problem is assumed to be well-posed for
f ∈C 1,α(M), for 0 <α< 1/2. For a ∈C 1,α(M) and κ ∈C 3,α(M), a unique classical solution u ∈C 3,α(M) is guaranteed.
Here, we raise the regularity by one-order of derivative (compared to reported results in the literature [31, 27]) for
the following reason.

The key idea of the DM-based PDE solver rests on the following asymptotic expansion,

Gεu(x) := ε−d/2
∫

M
h
(‖x−y‖2

ε

)
u(y)dV (y) = u(x)+ε(ω(x)u(x)+∆g u(x))+O (ε2), (2)

where the second equality is valid for any u ∈ C 3(M) and x ∈ M with a high probability. Here, the function

h : [0,∞) → (0,∞) is defined as h(s) = e−s/4

(4π)d/2 such that, effectively for a fixed bandwidth parameter ε > 0, Gε is

a local integral operator. In (2), ‖ · ‖ denotes the standard Euclidean norm for vectors in Rn and we will use the
same notation for arbitrary finite-dimensional vector space. Based on the asymptotic expansion in (2), one can
approximate the differential operator L as follows,

L u(x) =
p
κ(x)

ε

(
Gε(u(x)

√
κ(x))−u(x)Gε

√
κ(x)

)+O (ε) := Lεu(x)+O (ε). (3)

In our setup, we assume that we are given a set of point cloud data X := {xi ∈ M }i=1,...,N , independent and identically
distributed (i.i.d.) according to π, with an empirical measure defined as, πN (x) = 1

N

∑N
i=1δxi (x). We use the notation

L2(π) to denote the space of square-integrable functions with respect to the measure π. Accordingly, we define
L2(πN) as the space of functions u : X →Rn , endowed with the inner-product and norm-squared defined as,

〈u,u〉L2(πN) = ‖u‖2
L2(πN) =

∫
M

u2(x)dπN (x) = 1

N

N∑
i=1

u2(xi). (4)

Given point cloud data, we first approximate the sampling density, q = dπ/dV evaluated at xi , with Qi :=
ε−d/2N−1 ∑N

j=1 h
(‖xi−x j ‖2

4ε

)
. Define W ∈RN×N with entries,

Wi j := ε−d/2−1N−1h
(‖xi −x j ‖2

ε

)√
κ(xi)κ(x j)Q−1

j .

Define also a diagonal matrix D ∈RN×N with diagonal entries, Di i =∑N
j=1 Wi j . Then, we approximate the integral

operator in (3) with the following matrix Lε:

Lε = W−D, (5)

similarly to a discrete unnormalized graph Laplacian matrix. Here, the matrix Lε is self-adjoint and semi negative-
definite with respect to the inner-product in 〈u, v〉Q := 1

N

∑N
i=1 u(xi)v(xi)Q−1

i such that it admits a non-positive

3

A PREPRINT - JUNE 12, 2021

spectrum, 0 = λ1 > λ2 ≥ . . . ≥ λN with eigenvectors orthonormal in 〈·, ·〉Q . Since the kernel function h decays
exponentially, the k-nearest-neighbor algorithm is usually used to impose sparsity to the estimator Lε. The DM-
based PDE solver approximates the PDE solution u(xi) using the i -th component of the vector uε ∈RN that satisfies
the linear system

(−a+Lε)uε = f (6)

of size N . Here, the i -th diagonal component of the diagonal matrix a ∈RN×N and the i -th component of f ∈RN are
a(xi) and f (xi), respectively. In [26], this approach has been theoretically justified and numerically extended to
approximate the non-symmetric, uniformly elliptic second-order differential operators associated to the generator
of Itô diffusions with appropriate local kernel functions.

Beyond the no boundary case, the approximation in (3), unfortunately, will not produce an accurate approximation
when x is sufficiently closed to the boundary. To overcome this issue, a modified DM algorithm, following the
classical ghost points method to obtain a higher-order finite-difference approximation of Neumann problems
(e.g. [43]) was proposed in [39]. The proposed method, which is called the Ghost Point Diffusion Maps (GPDM),
appends the point clouds with a set of ghost points away from the boundary along the outward normal collar such
that the resulting discrete estimator is consistent in the L2(µN−Nb)-sense, averaged over N −Nb interior points
on the manifold M [71]. To simplify the discussion in the remainder of this paper, we will use the same notation
Lε to denote the discrete estimate of L , obtained either via the classical or the ghost points diffusion maps. In
Appendix A, we provide a brief review on the GPDM for Dirichlet boundary value problems.

3 Solving PDEs on Unknown Manifolds using Diffusion Maps and Neural Networks

We now present a new hybrid algorithm based on DM and NNs.

Deep neural networks (DNNs). Mathematically, DNNs are highly nonlinear functions constructed by compositions
of simple nonlinear functions. For simplicity, we consider the fully connected feed-forward neural network (FNN),
which is the composition of L simple nonlinear functions as follows: φ(x;θ) := a>hL ◦hL−1 ◦ · · · ◦h1(x), where
h`(x) =σ (W`x+b`) with W` ∈RN`×N`−1 , b` ∈RN` for `= 1, . . . ,L, a ∈RNL , σ is a nonlinear activation function, e.g.,
a rectified linear unit (ReLU) σ(x) = max{x,0}. Each h` is referred as a hidden layer, N` is the width of the `-th layer,
and L is called the depth of the FNN. In the above formulation, θ := {a, W`, b` : 1 ≤ ` ≤ L} denotes the set of all
parameters in φ. For simplicity, we focus on FNN with a uniform width m, i.e., N` = m for all ` 6= 0, in this paper.

Supervised Learning. Supervised learning approximates an unknown target function f : x ∈Ω→ y∈R from training
samples {(xi , yi)}N

i=1, where xi ’s are usually assumed to be i.i.d samples from an underlying distribution π defined

on a domain Ω⊆Rn , and yi = f (xi). Consider the square loss 1
2`(x, y ;θ) = ∣∣φ(x;θ)− y

∣∣2 of a given DNN φ(x;θ) that
is used to approximate f (x), the population risk (error) and empirical risk (error) functions are, respectively,

J (θ) = 1

2
Ex∼π

[∣∣φ(x;θ)− f (x)
∣∣2

]
, Ĵ (θ) = 1

2N

N∑
i=1

∣∣φ(xi ;θ)− yi
∣∣2 . (7)

The optimal set θ̂ is identified via
θ̂ = argmin

θ

Ĵ (θ), (8)

and φ(·; θ̂) :Ω→R is the learned DNN that approximates the unknown function f .

The NN-based PDE solver with DM. Solving a PDE can be transformed into a supervised learning problem. Physical
laws, like PDEs and boundary conditions, are used to generate training data in a supervised learning problem
to infer the solution of PDEs. In the case when the PDE is defined on a manifold, we propose to use DM as an
approximation to the differential operator according to (3) to obtain a linear system in (6), apply NN to parametrize
the PDE solution, and adopt a least-square framework to identify the NN that approximates the PDE solution. For
example, to solve the PDE problem in (1) on a d-dimensional closed, smooth manifold M identified with points
X = {x1, . . . ,xN } ⊂ M , we minimize the following empirical loss

θS = argmin
θ

JS,ε(θ) := argmin
θ

1

2
‖(−a+Lε)φθ− f‖2

L2(πN), (9)

where Lε ∈RN×N denotes the DM estimator for the differential operator L , a and f are defined in (6), φθ ∈RN with
the i -th entry as φ(xi ;θ). When a = 0, we add a regularization term γ

2 ‖φθ‖2
L2(πN)

in the loss function (9) to guarantee

4

A PREPRINT - JUNE 12, 2021

well-posedness, where γ> 0 is a regularization parameter. When stochastic gradient descent is used to minimize (9),
a small subset of the given point clouds is randomly selected in each iteration. Computationally, this amounts to
randomly choosing batches, consisting of a few rows of (−a+Lε) and a few entries of f, to approximate the empirical
loss function.

In the case of Dirichlet problems with non-homogeneous boundary conditions, u(x) = g (x), ∀x ∈ M , given boundary
points {x̄1, . . . , x̄Nb } ⊂ X ∩∂M as the last Nb points of X , a penalty term is added to (9) to enforce the boundary
condition as follows:

θS = argmin
θ

JS,ε(θ) := argmin
θ

1

2
‖(−a+Lε)φθ− f‖2

L2(πN−Nb
) +

λ

2
‖φb

θ−g‖2
L2(πNb

), (10)

where Lε ∈ R(N−Nb)×N denotes the GPDM estimator for the differential operator L defined for problem with
boundary and λ> 0 is a hyper-parameter. The construction of the matrix Lε is discussed in Appendix A. Accordingly,
letting ᵀ denotes the transpose operator, we have also defined a column vector φb

θ
= (

φ(x̄1;θ), . . . ,φ(x̄Nb ;θ)
)ᵀ ∈

RNb , whose components are also elements of the column vector φθ = (
φ(x1;θ), . . . ,φ(xN ;θ)

)ᵀ ∈ RN ; the column
vector f = (

f (x1), . . . , f (xN−Nb)
)ᵀ ∈ RN−Nb with function values on the interior points; and the column vector g =(

g (x̄1), . . . , g (x̄Nb)
)ᵀ ∈ RNb with function values on the boundary points. In the case of other kinds of boundary

conditions, a corresponding boundary operator can be applied to φb
θ

to enforce the boundary condition.

4 Theoretical Foundation of the Proposed Algorithm

The classical machine learning theory concerns with characterizations of the approximation error, optimization
error estimation, and generalization error analysis. For the proposed PDE solver, the approximation theory involves
characterizing: 1) the error of the DM-based discrete approximation of the differential operator on manifolds, and
2) the error of neural networks for approximating the PDE solution. In the optimization algorithm, a numerical
minimizer (denoted as θN) provided by a certain algorithm might not be a global minimizer of the empirical risk
minimization in (9) and (10). Therefore, designing an efficient optimization algorithm such that the optimization
error |JS,ε(θN)−JS,ε(θS)| ≈ 0 is important. In the generalization analysis, the goal is to quantify the error defined
as ‖u −φ(·,θS)‖L2(π) over the distribution x ∼π that is unknown.

In approximation theory, the error analysis of DM is relatively well-developed, while the error of NNs is still
under active development. Recently, there are two kinds of directions have been proposed to characterize the
approximation capacity of NNs. The first one characterizes the approximation error in terms of the total number of
parameters in an NN [73, 74, 54, 22, 56, 75, 57, 28, 67]. The second one quantifies the approximation error in terms
of NN width and depth [63, 48, 64, 66, 65, 72]. In real applications, the width and depth of NNs are the required
hyper-parameters to decide for numerical implementation instead of the total number of parameters. Hence, we
will develop the approximation theory for the proposed PDE solver adopting the second direction.

In optimization theory, for regression problems without regularization (e.g., the right equation of (7)), it has been
shown in [38, 14, 52, 15, 49] that (stochastic) gradient descent algorithms can converge to a global minimizer of the
empirical loss function under the assumption of over-parametrization (i.e., the number of parameters are much
larger than the number of samples). However, existing results for regression problems cannot be applied to the
minimization problem corresponding to PDE solvers, which is much more difficult due to differential operators
and boundary operators. A preliminary attempt was conducted in [50], but the results in [50] cannot be directly
applied to our minimization problem in (9) and (10). Below, we will develop a new analysis to show that the gradient
descent method can identify a global minimizer of (9).

The generalization analysis aims at quantifying the convergence of the generalization error ‖u −φ(·;θS)‖L2(π), i.e.,
showing that a global minimizer of the empirical risk minimization can also keep the population risk small. Let
u(X) ∈ RN be a column vector representing the evaluation of u on the training data set X = {x1, . . . ,xN } and this
notation is used similarly for other functions. Beyond the identification of θS (a global minimizer of the empirical
loss), which is addressed in the optimization theory, a typical approach is to estimate the difference between
‖u −φ(·;θS)‖L2(π) and ‖u(X)−φ(X ;θS)‖L2(πN) via statistical learning theories. There have been several papers for
the generalization error analysis of PDE solvers, e.g., [7, 30, 1, 50, 47, 16, 34, 46]. In most existing generalization
analysis for PDE solvers, it is assumed that a good minimizer of the empirical risk minimization satisfies a certain
norm constraint so that this minimizer can generalize well, e.g., the minimizer corresponds to a neural network
with a small Lipschitz constant or norm. However, it is still an open problem to design numerical optimization
algorithms to identify this nice minimizer. Another direction is to regularize the empirical risk minimization so that
a global minimizer of the regularized loss can generalize well [50]. Nevertheless, there is no global convergence

5

A PREPRINT - JUNE 12, 2021

analysis of the optimization algorithm for the regularized loss, which suggests that there is no guarantee that one
can practically obtain the global minimizer of the regularized loss that can generalize well.

The theoretical analysis in this paper focuses on the approximation and optimization perspectives of the proposed
PDE solver to develop an error analysis of ‖u(X)−φ(X ;θS)‖L2(πN). In the discussion below, we restrict to the case
of manifolds without boundaries to convey our main ideas for the theoretical analysis of the proposed algorithm.
We further assume that the ReLU activation function, i.e., max{x,0}, its power, e.g., ReLUr , and FNNs are used in
the analysis. An extension to other activation functions and network architectures might be possible. In Section
4.1, we show that the numerical solution of the proposed solver is consistent with the ground truth in appropriate
limits, assuming that a global minimizer of our optimization problem is obtainable. In Section 4.2, we show that
the gradient descent method can identify a global minimizer of our optimization problem for two-layer neural
networks when their width is sufficiently large. The optimization theory together with the parametrization error
analysis forms the theoretical foundation of the convergence analysis of the proposed PDE solver on manifolds.

4.1 Parametrization Error

The proposed PDE solver on manifolds applies DM to parametrize differential operators on manifolds and uses an
NN to parametrize the PDE solution. We are going to quantify the parametrization error due to these two ideas,
assuming that a global minimizer of the empirical loss minimization in (9) is achievable via a certain numerical
optimization algorithm, i.e., estimating ‖u−φS‖L2(πN), where φS ∈ RN with the i -th entry as φ(xi ;θS) is the NN-
solution of the PDE in (9). Our goal is to show the following convergence result.

Theorem 4.1 (Parametrization Error). Assume u solves (1) with 0 < amin ≤ a(x) ≤ amax on X = {x1, . . . ,xN }, randomly
sampled from a distribution π on M ⊂ [0,1]n , where M is a C 4-manifold with condition number τ−1

M , volume VM ,
and geodesic covering regularity GM . For u,κ ∈C 4(M)∩L2(M) and q ∈C (M), where q = dπ/dV , with probability
higher than 1−N−2,

‖u(X)−φ(X ;θS)‖L2(πN) =O
(
ε, N− 1

2 ε−2− d
4 , N− 1

2 ε−
1
2 − d

4 , N 1/2ε−1m−8/(d ln(n))L−8/(d ln(n))), (11)

as ε→ 0, after N →∞ and m or L →∞. Hence,

lim
ε→0

lim
N→∞

lim
m→∞‖u(X)−φ(X ;θS)‖L2(πN) = 0. (12)

Here φ(x;θS) has a width O (n ln(n)m log(m)) and a depth O (L log(L)+ ln(n)) with m ∈N+ and L ∈N+ as two interger
hyper-parameters.

In (11) and throughout this paper, the big-oh notation means O (f , g) :=O (f)+O (g), as f , g → 0. As we shall see in
our discussion below, the first three error terms come from the DM discretization, whereas the last error term is due
to the approximation property of NNs. In (11), for a given sufficiently small ε, there exists a sufficiently large N0

such that O
(
ε, N− 1

2 ε−2− d
4 , N− 1

2 ε−
1
2 − d

4) =O (ε) for N ≥ N0. For this ε and N , there exists a sufficiently large m0 such

that O
(
ε, N− 1

2 ε−2− d
4 , N− 1

2 ε−
1
2 − d

4 , N 1/2ε−1m−8/(d ln(n))L−8/(d ln(n))
)=O (ε) when m ≥ m0 for any L. For example, in the

case of uniformly sampled data, the second error term, induced by estimation of the sampling density q , becomes
irrelevant and the factor N 1/2 in the last error term disappears due to symmetry. In such a case, the number of

data points needed to achieve order-ε of the DM discretization for N ≥ N0 =O (ε−
6+d

2), obtained by balancing the

first and third error terms in (11). The NN width to achieve the same accuracy is m ≥ m0 =O (ε−
d ln(n)

4) , obtained by
balancing the first and last error terms in (11).

Before we prove Theorem 4.1, let us review relevant results that will be used for the proof.

The Parametrization Error of DM. For reader’s convenience, we briefly summarize the pointwise error bound of
the discrete estimator, which has been reported extensively (see e.g., [12, 68, 8, 17]). Our particular interest is to
quantify the error induced by the matrix La,ε :=−a+Lε, where Lε is defined in (5) and a is a diagonal matrix with
diagonal entries ai i = a(xi).

First, let us quantify the Monte-Carlo error of the discretization of the integral operator, i.e., the error for introducing
Lε in (3). In particular, using the Chernoff bound (see Appendix B.2 in [8] or Appendix A in [26]), for any xi ∈ X and
any fixed ε,η> 0, and u ∈ L2(M), we have

P(|(Lεu)i −Lεu(xi)| > η) < 2exp
(
−C

η2εd/2+1N

‖∇g u(xi)‖2q(xi)−1

)
,

6

A PREPRINT - JUNE 12, 2021

for some constant C that is independent of ε and N . Choosing N 2 = 2exp
(
−C η2εd/2+1N

‖∇g u(xi)‖2q(xi)−1

)
, one can deduce that

η=C−1/2(log N
N)1/2ε−1/2−d/4‖∇g u(xi)‖q(xi)−1/2, which means that with probability greater than 1−N−2,

(Lεu)i = Lεu(xi)+O
(√

log N‖∇g u(xi)‖q(xi)−1/2

N 1/2ε1/2+d/4

)
,

as N →∞. When the density q = dπ/dV is non-uniform, one can use the same argument (e.g., see Appendix B.1 in

[8]) to deduce the error induced by the estimation of the density, which is of order O (q(x j)(log N
N)1/2ε−2−d/4) with

probability 1−N−2, to ensure a density estimation of order-ε2. Together with (3), ignoring the
√

log(N) factor, we
have the following pointwise error estimate.

Lemma 4.1. Let u,κ ∈C 3(M)∩L2(M) and q ∈C (M), where M ⊆Rn is a d-dimensional closed C 3−submanifold, then
for any xi ∈ X , with probability higher than 1−N−2,

(La,εu)i −Lau(xi) = (Lεu)i −L u(xi) =O
(
ε,

q(xi)1/2

N 1/2ε2+d/4
,
‖∇g u(xi)‖q(xi)−1/2

N 1/2ε1/2+d/4

)
, (13)

as ε→ 0 after N →∞.

If we allow for u,κ ∈C 4(M), then by Lemma 3.3 in [33], we can replace the first-order error term in (13) by Ru(x)ε4β−1,
where 0 <β< 1/2 such that

‖Ru‖L2(M) ≤C‖u‖H 4(M)‖
p
κ‖2

C 4(M) <∞
for some constant C > 0 for u,κ ∈C 4(M). The term Ru will also appear in the second-error term as well since this
error bound is to ensure the density estimation to achieve O (ε2). Also, with the given assumptions, it is immediate
to show that ‖Ru q‖2

L2(π)
,‖Ru‖2

L2(π)
<∞.

For a fixed ε> 0 and using the fact that limN→∞ 1
N

∑N
i=1 f (xi)2 = ∫

M f (x)2q(x)dV (x) = ‖ f ‖2
L2(π)

, we have,

lim
N→∞

‖La,εu−Lau(X)‖2
L2(πN) = lim

N→∞
1

N

N∑
i=1

|(La,εu)i −Lau(xi)|2

≤ C1ε
8β−2 lim

N→∞
1

N

N∑
i=1

Ru(xi)2 +C2ε
−4− d

2 lim
N→∞

1

N 2

N∑
i=1

(Ru(xi)q(xi)2)

+C3ε
−1− d

2 lim
N→∞

1

N 2

N∑
i=1

‖∇g u(xi)‖2(q(xi)−1)

= C1ε
8β−2‖Ru‖2

L2(π) +
(

lim
N→∞

1

N

)(
C2ε

−4− d
2 ‖Ru q‖2

L2(π) +C3ε
−1− d

2 ‖u‖H 1(M)

)
= C1ε

8β−2‖Ru‖2
L2(π).

To conclude, we have the following lemma.

Lemma 4.2. Let u,κ ∈C 4(M) and q ∈C (M) and let M ∈Rn be a d−dimensional, closed, C 3-submanifold. Then, with
probability higher than 1−N−2,

lim
ε→0

lim
N→∞

‖La,εu−Lau(X)‖L2(πN) = 0. (14)

This consistency estimate only holds when the limits are taken in the sequence as above.

The Parametrization Error of NNs. Let us denote the best possible empirical loss as JS,ε(θS), which depends
only on the NN model and is independent of the optimization algorithm to solve the empirical loss minimization
in (9), since θS is a global minimizer of the empirical loss. The estimation of JS,ε(θS) can be derived from deep
network approximation theory in Theorem 1.1 of [48] and its corollary in [13]. The (nearly optimal) error bound
in Theorem 1.1 of [48] focuses on approximating functions in C s ([0,1]n) and hence suffers from the curse of
dimensionality; namely, the total number of parameters in the ReLU FNN scales exponentially in n to achieve
the same approximation accuracy. Fortunately, our PDE solution is only defined on a d-dimensional manifold
embedded in [0,1]n with d ¿ n. By taking advantage of the low-dimensional manifold, a corollary of Theorem 1.1
in [48] was proposed in [13] following the idea in [63] to conquer the curse of dimensionality. For completeness, we
quote this corollary below.

7

A PREPRINT - JUNE 12, 2021

Lemma 4.3 (Proposition 4.2 of [13]). Given m,L ∈N+, µ ∈ (0,1), ν ∈ (0,1). Let M ⊂Rn be a compact d-dimensional
Riemannian submanifold having condition number τ−1

M , volume VM , and geodesic covering regularity GM , and define
the µ-neighborhood as Mµ := {x ∈ Rn : inf

y∈M
‖x−y‖2 ≤ µ}. If u ∈C s (Mµ) with s ∈N+, then there exists a ReLU FNN φ

with width 17sdν+13dνdν(m +2)log2(8m) and depth 18s2(L+2)log2(4L)+2dν such that for any x ∈ Mµ,

|φ(x) − u(x)| ≤ 8‖u‖C s (Mµ)µ
(
(1 − ν)−1

√
n/dν + 1

)
+ 170(s + 1)dν8s (1 − ν)−1‖u‖C s (Mµ)m

−2s/dνL−2s/dν , (15)

where dν :=O
(
d ln

(
nVM GMτ

−1
M /ν

)
/ν2

)=O
(
d ln(n/ν)/ν2

)
is an integer with d < dν < n.

In Lemma 4.3, ReLU FNNs are used while in practice the learnable linear combination of a few activation functions
might boost the numerical performance of neural networks [45]. The extension of Lemma 4.3 to the case of multiple
kinds of activation functions is interesting future work. Lemma 4.3 can provide a baseline characterization to the
approximation capacity of FNNs when ReLU is one of the choices of activation functions for a learnable linear
combination. Hence, the following error estimation is still true for NNs constructed with the learnable linear
combination of a few activation functions.

Using the same argument as the extension lemma for smooth functions (see e.g., Lemma 2.26 in [42]), one can
extend any u ∈C 4(M) to u ∈C 4(Mµ0), for any C 4 manifold M ⊆ Rn and a positive µ0. Therefore, by Corollary 4.3,
there exists a ReLU FNN φ with width O (n ln(n)m log(m)) and depth O (L log(L)+ ln(n)) such that

|u(x)−φ(x)| ≤CM ,d ,ν‖u‖C 3(Mµ0)

(
µ

√
n

lnn
+nm−8/(d ln(n))L−8/(d ln(n))

)
for all x ∈ M ,

for any µ ∈ (0,µ0), where CM ,d ,ν is a constant depending only on M , d , and ν. Note that the curse of dimensionality
has been lessened in the above approximation rate. Therefore, by taking µ → 0, we have the following error
estimation

‖u−φ‖L2(πN) =O (m−8/(d ln(n))L−8/(d ln(n))), (16)
where the prefactor depends on M , d , ν, ‖u‖C 3(Mµ0), and n. By (13) and (16),

‖La,εφS − f‖L2(πN) ≤ ‖La,εφ− f‖L2(πN) ≤ ‖La,εφ−La,εu‖L2(πN) +‖La,εu−Lau(X)‖L2(πN)

≤ ‖La,ε‖2‖φ−u‖L2(πN) +O (ε, N− 1
2 ε−2− d

4 , N− 1
2 ε−

1
2 − d

4)

= ‖La,ε‖2O (m−8/(d ln(n))L−8/(d ln(n)))+O (ε, N− 1
2 ε−2− d

4 , N− 1
2 ε−

1
2 − d

4), (17)
where, for simplicity, we suppressed the functional dependence on x in the second error term above.

Recall that La,ε =−a+Lε, where a is a diagonal matrix with diagonal entries 0 < amin ≤ a(xi) ≤ amax and Lε1 = 0. By
definition, Lε is diagonally dominant with diagonal negative entries and non-diagonal positive entries. This means

‖La,ε‖∞ = max
1≤ j≤N

{
a(x j)−Lε, j j +

∑
i 6= j

Lε,i j

}
= max

1≤ j≤N

{
a(x j)−2Lε, j j

}
= amax +Cε−1,

for some constant C that depends on ‖κ‖∞. Therefore, ‖La,ε‖2 ≤ N 1/2‖La,ε‖∞ ≤C N 1/2ε−1. Plugging this to (17), we
obtain

‖La,εφS − f‖L2(πN) ≤O
(
ε, N− 1

2 ε−2− d
4 , N− 1

2 ε−
1
2 − d

4 , N 1/2ε−1m−8/(d ln(n))L−8/(d ln(n))), (18)
as ε→ 0 after N →∞, and m or L →∞. This concludes the upper bound for the best possible empirical loss.

Proof of Theorem 4.1. Now we derive the overall parametrization error considering DM and NN parametrization
together to prove Theorem 4.1. Since Lε is an unnormalized discrete Graph-Laplacian matrix that is semi-negative
definite, for a ≥ amin > 0, one can see that,

〈ξ,La,εξ〉L2(πN) = 〈ξ,Lεξ〉L2(πN) −〈ξ,aξ〉L2(πN) ≤−amin‖ξ‖2
L2(πN),

for any ξ ∈ L2(πN). Letting ξ= u−φS , we have,

amin‖u−φS‖2
L2(πN) ≤ −〈u−φS ,La,ε(u−φS)〉L2(πN) ≤ ‖La,ε(u−φS)‖L2(πN)‖u−φS‖L2(πN)

and with probability higher than 1−N−2,

‖u−φS‖L2(πN) ≤ 1

amin
‖La,ε(u−φS)‖L2(πN)

≤ 1

amin

(
‖La,εu− f‖L2(πN) +‖La,εφS − f‖L2(πN)

)
,

≤ 1

amin

(
‖La,εu−Lau(X)‖2

L2(πN) +‖La,εφS − f‖L2(πN)

)
,

= O
(
ε, N− 1

2 ε−2− d
4 , N− 1

2 ε−
1
2 − d

4 , N 1/2ε−1m−8/(d ln(n))L−8/(d ln(n))), (19)

8

A PREPRINT - JUNE 12, 2021

as ε → 0 after N → ∞, and m or L → ∞. Here, we have used (13) and (18) in the last equality above. Since
the inequality in (15) is valid uniformly, together with (14), we achieve the convergence in (12) and the proof is
completed.

4.2 Optimization Error

In the parametrization error analysis, we have assumed that a global minimizer of the empirical loss minimization
in (9) is achievable. In practice, a numerical optimization algorithm is used to solve this optimization problem and
the numerical minimizer might not be equal to a global minimizer. Therefore, it is important to investigate the
numerical convergence of an optimization algorithm to a global minimizer. The neural tangent kernel analysis
originated in [38] and further developed in [3, 2] has been proposed to analyze the global convergence of the
(stochastic) gradient descent method for the least-squares empirical loss function in (9). In the situation of solving
PDEs, the global convergence analysis of optimization algorithms is vastly open. In [50], it was shown that the
gradient descent method can identify a global minimizer of the least-squares optimization for solving second-order
linear PDEs with two-layer neural networks under the assumption of over-parametrization. In this paper, we
will extend this result in the context where the differential operator in the loss function is replaced by a discrete
and approximate operator, La,ε, applied to the neural network solution (e.g., see (9) and (10)). Furthermore, the
activation function considered here is ReLUr , which is more general than the activation function in [50]. The
extension to deeper neural networks follows the analysis in [2] and is left as future work.

To establish a general theorem applicable to various applications, we consider the following emprical risk RS (θ)
with an over-parametrized two-layer neural network optimized by the gradient descent method:

RS (θ) := 1

2N
(Aφ(X ;θ)− f (X))ᵀ(Aφ(X ;θ)− f (X)), (20)

where X := {x i }N
i=1 is a given set of samples in [0,1]n of an arbitrary distribution (π in our specific application); A is a

given matrix of size N ×N ; and the two-layer neural network used here is constructed as

φ(x ;θ) =
m∑

k=1
akσ(wᵀ

k x), (21)

where for k ∈ [m] := {1, . . . ,m}, ak ∈R, w k ∈Rn , θ = vec{ak , w k }m
k=1, and σ(x) = ReLUr (x), i.e., the r -th power of the

ReLU activation function. We should point out that the matrix A in our specific application is La,ε for (9); A is a
block-diagonal matrix for (10) with one block for the differential equation and another block for the boundary
condition; A is also a block-diagonal matrix when a regularization term ‖φθ‖2

L2(πN)
is applied to either (9) or (10).

In the remainder of this section, we use the notation A since the result holds in general under some assumption
discussed below. Without loss of generality, throughout our analysis, we also assume | f | ≤ 1, since the PDE defined
on a compact domain can be normalized.

Recall that we use the two-layer neural network φ(x ;θ) in (21) with θ = vec{ak , w k }m
k=1. In the gradient descent

iteration, we use t to denote the iteration or the artificial time variable in the gradient flow. Hence, we define the
following notations for the evolution of parameters at time t :

at
k := ak (t), w t

k := w k (t), θt := θ(t) := vec{at
k , w t

k }
m
k=1.

Similarly, we can introduce t to other functions or variables depending on θ(t). When the dependency of t is clear,
we will drop the index t . In the initialization of gradient descent, we set

a0
k := ak (0) ∼N (0,γ2), w 0

k := w k (0) ∼N (0, I n), θ0 := θ(0) := vec{a0
k , w 0

k }
m
k=1. (22)

Then the empirical risk can be written as

RS (θ) = 1

2N
(Aφ(X ;θ)− f (X))ᵀ(Aφ(X ;θ)− f (X))

= 1

2N
(φ(X ;θ)− A−1 f (X))ᵀAᵀA(φ(X ;θ)− A−1 f (X))

= 1

2N
eᵀAᵀAe,

where we denote ei =φ(x i ;θ)−(A−1 f (X))i for i ∈ [N] and e = (e1,e2, . . . ,eN)ᵀ. Hence, the gradient descent dynamics
is

θ̇ =−∇θRS (θ), (23)

9

A PREPRINT - JUNE 12, 2021

or equivalently in terms of ak and w k as follows:

ȧk =−∇ak RS (θ) =− 1

N

N∑
i=1

(eᵀAᵀA)iσ(wᵀ
k x i),

ẇ k =−∇w k RS (θ) =− 1

N

N∑
i=1

(eᵀAᵀA)i akσ
′(wᵀ

k x i)x i .

(24)

Adopting the neuron tangent kernel point of view [38], in the case of a two-layer neural network with an infinite
width, the corresponding kernels k(a) for parameters in the last linear transform and k(w) for parameters in the first
layer are functions from M ×M to R defined by

k(a)(x , x ′) := Ew∼N (0,I n)g (a)(w ; x , x ′),

k(w)(x , x ′) := E(a,w)∼N (0,I n+1)g (w)(a, w ; x , x ′),

where

g (a)(w ; x , x ′) := [
σ(wᵀx)

] · [σ(wᵀx ′)
]

,

g (w)(a, w ; x , x ′) := a2[σ′(wᵀx)x
] · [σ′(wᵀx ′)x ′].

These kernels evaluated at N ×N pairs of samples lead to N ×N Gram matrices K (a) and K (w) with K (a)
i j = k(a)(x i , x j)

and K (w)
i j = k(w)(x i , x j), respectively. Our analysis requires the matrix K (a) to be positive definite, which has been

verified for regression problems under mild conditions on random training data X = {x i }N
i=1 and can be generalized

to our case. Hence, we assume this together with the non-singularity of A as follows for simplicity.

Assumption 4.1. Assume that: 1) The smallest eigenvalue of K (a), denoted asλS , is positive. 2) The smallest eigenvalue
of A Aᵀ, denoted as λA , is positive.

For a two-layer neural network with m neurons, define the N × N Gram matrix G (a)(θ) and G (w)(θ) using the
following expressions for the (i , j)-th entry

G (a)
i j (θ) := 1

m

m∑
k=1

g (a)(w k ; x i , x j),

G (w)
i j (θ) := 1

m

m∑
k=1

g (w)(ak , w k ; x i , x j).

(25)

Clearly, G (a)(θ) and G (w)(θ) are both positive semi-definite for any θ. Let G(θ) = G (a)(θ)+G (w)(θ), taking time
derivative of (20) and using the equalities in (24) and (25), then we have the following evolution equation to
understand the dynamics of the gradient descent method applied to (20):

d

dt
RS (θ) =−‖∇θRS (θ)‖2

2 =− m

N 2 eᵀAᵀAG(θ)AᵀAe ≤− m

N 2 eᵀAᵀAG (a)(θ)AᵀAe. (26)

Our goal is to show that RS (θ) converges to zero. These goals are true if the smallest eigenvalue λmin
(
G (a)(θ)

)
of

G (a)(θ) has a positive lower bound uniformly in t , since in this case we can solve (26) and bound RS (θ) with a
function in t converging to zero when t →∞ as shown in Lemma B.6. In fact, a uniform lower bound ofλmin

(
G (a)(θ)

)
can be 1

2λS , which can be proved in the following three steps:

• (Initial phase) By Assumption 4.1 of K (a), we can show that λmin
(
G (a)(θ(0))

)≈λS in Lemma B.5 using the

observation that K (a)
i j is the mean of g (w ; x i , x j) over the normal random variable w , while G (a)

i j (θ(0)) is the

mean of g (w ; x i , x j) with m independent realizations.

• (Evolution phase) The GD dynamics results in θ(t) ≈ θ(0) under the assumption of over-parametrization
as shown in Lemma B.7, which indicates that

λmin
(
G (a)(θ(0))

)≈λmin
(
G (a)(θ(t))

)
.

• (Final phase) To show the uniform bound λmin
(
G (a)(θ(t))

) ≥ 1
2λS for all t ≥ 0, we introduce a stopping

time t∗ via
t∗ = inf{t | θ(t) ∉M (θ0)}, (27)

where

M (θ0) :=
{
θ | ‖G (a)(θ)−G (a)(θ0)‖F ≤ 1

4
λS

}
, (28)

and show that t∗ is in fact equal to infinity in the final proof of Theorem 4.2 in Appendix B.

10

A PREPRINT - JUNE 12, 2021

Let κA denote the condition number of AᵀA. Our main result of the global convergence of the gradient descent
method for (20) is summarized in Theorem 4.2 below. The proof of Theorem 4.2 can be found in Appendix B.

Theorem 4.2 (Global Convergence of Gradient Descent: Two-Layer Neural Networks). Let θ0 := vec{a0
k , w 0

k }
m
k=1

at

the gradient descent initialization for solving (20), where a0
k ∼N (0,γ2) and w 0

k ∼N (0, I n) with any γ ∈ (0,1). Let λS

be a positive constant in Assumption 4.1. For any δ ∈ (0,1), if m ≥O (κApoly(N ,r,n, 1
δ , 1

λS
)), then with probability at

least 1−δ over the random initialization θ0, we have, for all t ≥ 0,

RS (θ(t)) ≤ exp

(
−mλSλA t

N

)
RS (θ0).

For the estimate of RS (θ0), see Lemma B.4. In particular, if γ = O (1p
m(logm)2), then RS (θ0) = O (1). For two-layer

neural networks, Theorem 4.2 shows that, as long as the network width m ≥O (κApoly(N ,r,n, 1
δ , 1

λS
)), the gradient

descent method can identify a global minimizer of the empirical risk minimization in (20). For a quantitative
description of O (κApoly(N ,r,n, 1

δ , 1
λS

)), see (44) in Appendix B. In the case of FNNs with L layers, following the proof

in [2], one can show the global convergence of gradient descent when m ≥O (κApoly(L, N ,r,n, 1
δ , 1

λS
)), which is left

as future work.

5 Numerical Examples

In this section, we numerically demonstrate the effectiveness and practicability of our proposed NN-based PDE
solver on unknown manifolds. Our numerical examples will show that an NN-based solver can achieve low error on
the given points and good generalization on the unseen data points. Also, we will include clock-time comparison to
show that the proposed NN solver requires a much shorter clock-time compared with the DM-based solver (which
directly solves the linear system in (6)) for the large point cloud size.

Three numerical examples are used for demonstration. First, we test our method on a two-dimensional torus
embedded in R3 to show that the NN-based solver can achieve comparable error to the DM-based solver. We will
see that the NN-based solver can handle large data set while the DM-based solver fails. Second, we demonstrate the
ability of the NN-based solver to deal with manifolds of high co-dimension by validating it on a three-dimensional
manifold embedded in R12. We will see that the NN-based solver can obtain a more accurate solution than DM.
Finally, our method is applied to the equation on a two-dimensional semi-torus to verify the performance of the
NN-based solver on problems with Dirichlet boundary conditions.

Devices and environments. The experiments of DM are conducted on the workstation with 32× Intel(R) Xeon(R)
CPU E5-2667 v4 @ 3.20GHz and 1 TB RAM and Matlab R2019a. The experiments of the NN-solver are conducted on
the workstation with 16× Intel(R) Xeon(R) Gold 5122 CPU @ 3.60GHz and 93G RAM using Pytorch 1.0 and 1× Tesla
V100.

Implementation detail. We summarize notations and list the hyperparameter setting for each numerical example
in Appendix C. In our implementation, we use a 3-hidden-layer FNN with the same width m per hidden layer and the
smooth Polynomial-Sine activation function in [45]. Polynomial-Sine is defined asα1 sin(β1x)+α2x+α3x2, whereβ1,
αi , i = 1,2,3 are trainable parameters initialized by normal distribution N (1,0.01),N (1,0.01),N (0,0.01),N (0,0.01)
respectively. As we shall demonstrate, our proposed NN solver is not sensitive to the numerical choices (e.g.,
activation functions, network types, and optimization algorithms) but a more advanced algorithm design may
improve the accuracy and convergence. Particularly in Example 2, we will compare the performance of ReLU FNNs
and ReLU3 FNNs trained by the gradient descent method and the performance of the Polynomial-Sine FNNs trained
with the Adam optimizer [41]. Though the ReLU or ReLU3 FNNs with the gradient descent method enjoy theoretical
guarantees in our analysis, the Polynomial-Sine FNNs with Adam can generalize better. So, the Polynomial-Sine
activation and Adam optimizer will be used in all of our examples. In Adam, we use an initial learning rate of 0.01
for T iterations. The learning rate follows cosine decay with the increasing training iterations, i.e., the learning rate
decays by multiplying a factor 0.5(cos(πt

T)+1), where t is the current iteration. The NN results reported in this
section are averaged over 5 independent experiments.

11

A PREPRINT - JUNE 12, 2021

5.1 Example 1: 2D Torus

In this first example, we solve the elliptic PDE in (1) for a = 0 on a two-dimensional torus embedded in R3 with an
embedding function defined as,

ι(θ1,θ2) =
(2+cosθ1)cosθ2

(2+cosθ1)sinθ2
sinθ1

 ∈R3 for
0 ≤ θ1 ≤ 2π
0 ≤ θ2 ≤ 2π. (29)

Here θ1,θ2 denote the intrinsic coordinates. For this numerical experiment, we set the diffusion coefficient
κ(θ1,θ2) = 1.1+ sin2θ1 cos2θ2, the true solution u(θ1,θ2) = (sin2θ2 −2cos2θ2/(2+cosθ1))cosθ1, and analytically
compute the right hand side function f . The point cloud data X = {x1, . . . ,xN } are uniformly sampled from intrinsic
coordinates (θ1,θ2). We solve the PDE by optimizing the least-square problem given by,

argmin
θ

1

2
‖Lεφθ− f‖2

L2(πN) +
γ

2
‖φθ‖2

L2(πN). (30)

where we add a regularization term with γ> 0 to overcome the ill-posedness induced by a = 0 (as discussed right
after (9)).

The hyperparameter setting for the different N is summarized in Table 4 in Appendix C. To facilitate the training
of FNN, we increase the NN width m and the number of iterations T as the number of training points N grows.
We apply Adam optimizer to minimize (30). In particular, when N = 80089, Adam is used to minimize (30) since
Lε ∈R80089×80089 is too large to compute in GPU directly. In our implementation, at each time, 8000 rows from Lε are
randomly sampled and the submatrix Lsub of size 8000×80089 substitutes Lε in the loss (30). Then the network
parameters θ are updated for 100 iterations at each time. We repeat this procedure for 80 times.

Figure 1 shows various errors of DM and NN solutions as functions of training data size, N . We report the more
precise numerical value of the errors in Table 5 in Appendix C. Since DM-based solver can only obtain the approxi-
mate solution at the point cloud data, we report the forward error, ‖Lεu− f‖∞, where u = u(X), which quantifies the
accuracy of the approximation of the differential operator, and the inverse error, ‖uε−u‖∞, where uε is the solution
obtained by taking a pseudo-inverse of (6), which quantifies the accuracy of the approximate solution. As for the
NN solution, since the solution is of the form φ(·,θN), where θN denotes the numerically obtained minimizer, we
show the testing error, which is defined as the `∞ error on 3002 Gauss-Legendre quadrature points that are not in
the training data set. In Table 5 in Appendix C, we also report the the training error from NN-based solver, which is
the `∞ error on training data points. From Figure 1, one can see both DM and NN provide convergent solutions.
However, when N is large enough, e.g., over 40000, the Matlab software fails to compute the pseudo-inverse. Besides,
from Figure 1, we see that the NN solution produces a good generalization on the unseen points.

We compare the clock-time, RAM, and GPU memory consumption for DM and NN in Table 1. We can see that the
clock-time for pseudo-inverse of DM grows rapidly with the increasing N while that of NN remains much smaller
when N < 80089. The rapid increase of NN clock-time for the case N = 80089 is attributed to the time consuming of
the retrievals of the submatrix Lsub from Lε. When conducting pseudo-inverse of DM, the Matlab occupies RAM to
load the full matrix and do the computation. The NN-based solver utilizes RAM to load the matrix and uses GPU
memory for model training. From Table 1, we see that the NN solver has larger memory consumption than DM
when N is small but the NN solver uses less memory than DM when N is large. Since we set the batch size to be the
total number of training points for all cases except N = 80089, the memory consumption will significantly decrease
if a mini-batch is used in Adam.

N 625 1225 2500 5041 10000 19881 40000 80089

DM

clock-time (sec.) 0.09 0.40 2.37 25.98 201.20 1294.06 N/A N/A
RAM (G) - - 0.34 0.61 2.26 9.20 37.50 148.00

GPU Mem (G) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

NN

clock-time (sec.) 10.70 14.94 20.45 23.99 29.96 59.86 166.78 1831.71
RAM (G) 1.75 1.76 1.82 1.94 2.50 5.04 14.81 53.81

GPU Mem (G) 1.01 1.02 1.05 1.17 1.52 2.87 8.07 9.02

Table 1: The comparison of clock-time, RAM, GPU memory for DM and NN solvers. In the DM case, we also report
the require RAM space, estimated by the system process-manager, to solve the problem for large N , which we did
not pursue due to the excessive wall-clock time.

12

A PREPRINT - JUNE 12, 2021

625 1225 2500 5041 10000 19881 40000 80089
N

10 3

10 2

10 1

100

 e
rr

or

(DM) Forward error
(DM) Inverse error
(NN) Testing error

Figure 1: The comparison of the `∞ errors as functions of the number of training points N for DM and NN on a 2D
torus embedded in R3.

5.2 Example 2: A 3D Manifold of High Co-Dimension

In this example, we consider the elliptic PDE in (1) with a = 0,κ = 1 on a closed manifold M , embedded by
ι : M ,→R12, defined through the following embedding function,

ι(t1, t2, t3) := (
sin(t1),cos(t1),sin(2t1),cos(2t1),sin(t2),cos(t2),sin(2t2),cos(2t2),sin(t3),cos(t3),sin(2t3),cos(2t3)

)
,

for t1, t2, t3 ∈ [0,2π). We manufacture the right hand data f by setting the true solution to be u = sin t1 cos t2 sin2t3.

The training points {x1, . . . ,xN } are generated by uniformly sampled points from the intrinsic coordinates (t1, t2, t3).
We solve the PDE problem by minimizing the loss function (30). The hyperparameter setting of DM and NN is
presented in Table 6 in Appendix C. Figure 2 displays the error for DM and NN. We refer the readers to Table 7
for the detailed numerical values corresponding to this figure. The testing error refers to the `∞ error on 803

Gauss-Legendre quadrature points obtained from the intrinsic coordinates (t1, t2, t3). From Figure 2, one can see
that the NN solver produces convergent solutions. Besides, when N is large (e.g., N = 4096 or 12167), NN obtains a
slightly more accurate solution than DM.

We compare the training and testing errors for different activation functions and optimizers in Table 2. The
training errors of Polynomial-Sine with Adam are comparable to that of ReLU and ReLU3 with gradient descent,
but the Polynomial-Sine FNN optimized by Adam obtains the lowest testing error for most N . Therefore, we apply
Polynomial-Sine and Adam in other examples.

Activation Optimizer N 512 1331 4096 12167 24389

Polynomial-Sine Adam
training error 0.2665 0.1148 0.0297 0.0066 0.0023
testing error 0.2715 0.1346 0.0302 0.0069 0.0024

ReLU3 gradient descent
training error 0.2624 0.1137 0.0309 0.0058 0.0025
testing error 0.2994 0.1977 0.0425 0.0147 0.0103

ReLU gradient descent
training error 0.2637 0.1145 0.032 0.0066 0.0016
testing error 0.4673 0.198 0.0326 0.0069 0.0016

Table 2: The comparison of the `∞ errors for different activation functions and optimizers on the 3D manifold
embedded in R12.

5.3 Example 3: 2D Semi-Torus with Dirichlet Conditions

We consider solving the PDE in (1) with a = 0 on a two-dimensional semi-torus M with a Dirichlet boundary
condition. Here, the embedding function is the same as in (29) except that the range of θ2 is changed to 0 ≤ θ2 ≤π.
Also, κ and the true solution u are defined as in Example 1 except for 0 ≤ θ2 ≤ π, and the Dirichlet boundary
condition is imposed by setting g to correspond to the solution u at θ2 = 0,π and 0 ≤ θ1 ≤ 2π.

13

A PREPRINT - JUNE 12, 2021

512 1331 4096 12167 24389
N

10 3

10 2

10 1

100

 e
rr

or

(DM) Forward error
(DM) Inverse error
(NN) Testing error

Figure 2: The comparison of the `∞ errors as functions of the number of training points N for DM and NN on the
3D manifold embedded in R12.

1024 2025 4096 16384 32400
N

10 3

10 2

10 1

 e
rr

or

(DM) Inverse error
(NN) Testing error

Figure 3: The comparison of the errors as functions of the number of training points for DM and NN on 2D
semi-torus with Dirichlet condition.

We obtain the NN-based solution by solving the optimization problem in (10) with λ = 5 and a = 0. The other
hyperparameter setting can be found in Table 8 in Appendix C. The results (see Figure 3) show that our NN method
works well on the equation with boundary condition. We refer the readers to Table 9 for the detailed numerical
values corresponding to this figure.

6 Conclusion

This paper proposed a mesh-free computational framework and machine learning theory for solving PDEs on
unknown manifolds given as a form of point clouds based on diffusion maps (DM) and deep learning. Parameterizing
manifolds is challenging if the unknown manifold is embedded in a high-dimensional ambient Euclidean space,
especially when the manifold is identified with randomly sampled data and has boundaries. First, a mesh-free
DM algorithm was introduced to approximate differential operators on point clouds enabling the design of PDE
solvers on manifolds with and without boundaries. Second, deep neural networks were applied to parametrize PDE
solutions. Finally, we solved a least-squares minimization problem for PDEs, where the empirical loss function
is evaluated using the DM discretized differential operators on point clouds and the minimizer is identified via
stochastic gradient descent. The minimizer provides a PDE solution in a form of a neural network function on the
whole unknown manifold with reasonably good accuracy. The mesh-free nature and randomization of the proposed
solver enable efficient solutions to PDEs on manifolds arbitrary co-dimensional. New convergence and consistency

14

A PREPRINT - JUNE 12, 2021

theories based on approximation and optimization analysis were developed to support the proposed framework.
From the perspective of algorithm development, it is interesting to extend the proposed framework to various
boundary conditions in future work. In terms of theoretical analysis, it is important to develop a generalization
analysis of the proposed solver in the future and extend all of the analysis in this paper to manifolds with boundaries.

Acknowledgment

The research of J. H. was partially supported under the NSF grant DMS-1854299. S. L. and H. Y. were partially
supported by the NSF grant DMS-1945029 and the NVIDIA GPU grant.

A GPDM algorithm for manifolds with boundaries

In this appendix, we give a brief overview of ghost point diffusion maps (GPDM) to construct the matrix Lε for
manifolds with Dirichlet boundary conditions. As mentioned in [12, 32, 26, 39], the asymptotic expansion (2) in
standard DM approaches is not valid near the boundary of the manifold. One way to overcome this boundary issue
is the GPDM approach introduced in [39]. This approach extends the classical ghost point method [43] to solve
elliptic and parabolic PDEs on unknown manifolds with boundary conditions [39, 71]. The GPDM approach can be
summarized as follows (see [39, 71] for details).

1. Estimation of normal vectors at boundary points (see details in Section 2.2 and Appendix A of [71]):
Assume the normal vector ν is unknown and it will be numerically estimated. For well-sampled data,
where data points are well-ordered along intrinsic coordinates, one can identify ν̃ as the tangent line
approximation to ν. The error is |ν− ν̃| = O(h), where the parameter h denotes the distance between
consecutive ghost points (see Fig. 1(b) in [71] for a geometric illustration). For randomly sampled data, one
can use the kernel method to estimate ν̃ and the error is |ν− ν̃| =O(

p
ε) (see Fig. 1(c) in [71] for a geometric

illustration and Appendix A in [71] for the detailed discussion).

2. Specification of ghost points: The basic idea of ghost points, as introduced in [39], is to specify the ghost
points as data points that lie on the exterior normal collar, ∆M , along the boundary. Then all interior
points whose distances are within εr from the boundary ∂M are at least εr away from the boundary of
the extended manifold M ∪∆M . Theoretically, it was shown that, under appropriate conditions, the
extended set M ∪∆M can be isometrically embedded with an embedding function that is consistent with
the embedding M ,→Rm when restricted on M (see Lemma 3.5 in [39]).
Technically, for randomly sampled data, the parameter h can be estimated by the mean distance from the
boundary x̄b to its P (around 10 in simulations) nearest neighbors. Then, given the distance parameter h
and the estimated normal vector ν̃, the approximate ghost points are given by,

x̃b,k = x̄b +khν̃, for k = 1, . . . ,K and b = 1, . . . , Nb . (31)

In addition, one layer of interior ghost points are supplemented as x̃b,0 = x̄b −hν̃. For well-sampled data,
the interior estimated ghost point coincides with one of the interior points on the manifold when the
tangent line is used. However, for randomly sampled data, the estimated interior ghost points will not
necessarily coincide with an interior point (see Fig. 1 in [71] for comparison).

3. Estimation of function values on the ghost points:

The main goal here is to estimate the function values {u(x̃b,k)}Nb ,K
b,k=1 on the exterior ghost points by extrapo-

lation, where the ghost points xb,k lie exactly on the collar manifold ∆M (corresponding to the estimates in
(31)). We assume that we are given the components of the column vector,

uM := (u(x1), . . . ,u(x̃b,0), . . . ,u(xN)) ∈RN . (32)

Here, we stress that the function values {u(x̃b,0)}Nb
b=1 are given exactly like the u(xi) for any xi ∈ M , even

when the ghost points x̃b,0 do not lie on the manifold M . Then we will use the components of the column
vector,

UG := (U1,1, . . . ,UNb ,K) ∈RNb K , (33)

to estimate the components of function values on ghost points, UG := (u(x̃1,1), . . . ,u(x̃Nb ,K)) ∈ RNb K . Nu-
merically, we will obtain the components of UG by solving the following linear algebraic equations for each
b = 1, . . . , Nb ,

Ub,1 −2u(xb)+u(x̃b,0) = 0,

Ub,2 −2Ub,1 +u(xb) = 0,

Ub,k −2Ub,k−1 +Ub,k−2 = 0, k = 3, . . .K .

(34)

15

A PREPRINT - JUNE 12, 2021

These algebraic equations are discrete analogs of matching the first-order derivatives along the estimated
normal direction, ν̃.

4. Construction of the GPDM estimator: We now define the GPDM estimator for the differential operator
L in (1). The discrete estimator will be constructed based on the available training data {xi ∈ M }N

i=1 and

the estimated ghost points, {x̃b,k }Nb ,K
b,k=1,0. In particular, since the interior ghost points, {x̃b,0}Nb

b=1 may or may

not coincide with any interior points on the manifold, we assume that X h := {x1, . . . , x̃b,0, . . . ,xN } has N
components that include the estimated ghost points in the following discussion. With this notation, we
define a non-square matrix,

Lh := (L(1),L(2)) ∈RN×(N+Nb K), (35)

constructed as in (5), by evaluating the kernel on components of X h for each row and the components of

X h ∪ {x̃b,k }Nb ,K
b,k=1 for each column. With these definitions and those in (32)-(34), we note that

LhU = L(1)uM +L(2)UG = (L(1) +L(2)G)uM = L̃uM ,

where U := (uM ,UG) ∈RN+Nb K and G ∈RNb K×N is defined as a solution operator to (34), which is given in a
compact form as UG = GuM . Then, the GPDM estimator L̃ is defined as an N ×N matrix,

L̃ := L(1) +L(2)G. (36)

Note that we have the consistency of GPDM estimator for the differential operator defined on functions
that take values on the extended M ∪∆M (see Lemma 2.3 in [71]).

5. Combination with the discretization of the boundary conditions: We take Lε ∈ R(N−Nb)×N to be a sub-
matrix of L̃ ∈RN×N in (36), where the N −Nb rows of Lε correspond to the interior points from X h . There
are N −Nb equations from the linear system (−a+Lε)uM = f. To close the discretized problem, we use
the Nb equations from the Dirichlet boundary condition at the boundary points, u(x̄b) = g (x̄b) for x̄b ∈{

x̄1, . . . , x̄Nb

}⊂ X h∩∂M . With the construction of Lε and the Dirichlet boundary conditions, we alternatively
solve the system in (10) using DNN approach.

B Global convergence analysis of neural network optimization

In this section, we will prove several lemmas in preparation for the proof of Theorem 4.2. The proof of Theorem 4.2
will be presented after these lemmas.

The Rademacher complexity is a basic tool for generalization analysis. In our analysis, we will use several important
lemmas and theorems related to it. To be self-contained, they are listed as follows.

Definition B.1 (The Rademacher complexity of a function class F). Given a sample set S = {z1, . . . , zN } on a domain
Z , and a class F of real-valued functions defined on Z , the empirical Rademacher complexity of F on S is defined as

RadS (F) = 1

N
Eτ

[
sup
f ∈F

N∑
i=1

τi f (zi)

]
,

where τ1, . . . , τN are independent random variables drawn from the Rademacher distribution, i.e., P(τi = +1) =
P(τi =−1) = 1

2 for i = 1, . . . , N .

First, we recall a well-known contraction lemma for the Rademacher complexity.

Lemma B.1 (Contraction lemma [62]). Suppose thatψi :R→R is a CL-Lipschitz function for each i ∈ [N] := {1, . . . , N }.
For any y ∈RN , let ψ(y) = (ψ1(y1), · · · ,ψN (yN))ᵀ. For an arbitrary set of functions F on an arbitrary domain Z and
an arbitrary choice of samples S = {z1, . . . , z N } ⊂Z , we have

RadS (ψ◦F) ≤CLRadS (F).

Second, the Rademacher complexity of linear predictors can be characterized by the lemma below.

Lemma B.2 (Rademacher complexity for linear predictors [62]). Let Θ= {w 1, · · · , w m} ∈Rn . Let G = {g (w) = wᵀx :
‖x‖1 ≤ 1} be the linear function class with parameter x whose `1 norm is bounded by 1. Then

RadΘ(G) ≤ max
1≤k≤m

‖w k‖∞
√

2log(2n)

m
.

16

A PREPRINT - JUNE 12, 2021

Finally, let us state a general theorem concerning the Rademacher complexity and generalization gap of an arbitrary
set of functions F on an arbitrary domain Z , which is essentially given in [62].

Theorem B.1 (Rademacher complexity and generalization gap [62]). Suppose that f ’s in F are non-negative and
uniformly bounded, i.e., for any f ∈F and any z ∈Z , 0 ≤ f (z) ≤ B. Then for any δ ∈ (0,1), with probability at least
1−δ over the choice of N i.i.d. random samples S = {z1, . . . , z N } ⊂Z , we have

sup
f ∈F

∣∣∣∣∣ 1

N

N∑
i=1

f (z i)−Ez f (z)

∣∣∣∣∣≤ 2ES RadS (F)+B

√
log(2/δ)

2N
,

sup
f ∈F

∣∣∣∣∣ 1

N

N∑
i=1

f (z i)−Ez f (z)

∣∣∣∣∣≤ 2RadS (F)+3B

√
log(4/δ)

2N
.

Here, we should point out that the distribution of z is arbitrary. In our specific application, Ez = Eπ.

Now we are going to prove several lemmas for Theorem 4.2. In the analysis below, we use āt
k := āk (t) := γ−1ak (t)

with 0 < γ< 1, e.g., γ= 1p
m

or γ= 1
m , and θ̄(t) := vec{āt

k , w t
k }m

k=1
.

Lemma B.3. For any δ ∈ (0,1) with probability at least 1−δ over the random initialization in (22), we have

max
k∈[m]

{|ā0
k |, ‖w 0

k‖∞
}≤

√
2log

2m(n +1)

δ
,

max
k∈[m]

{|a0
k |

}≤ γ
√

2log
2m(n +1)

δ
.

(37)

Proof. If X ∼N (0,1), then P(|X| > ε) ≤ 2E−
1
2 ε

2
for all ε> 0. Since ā0

k ∼N (0,1), (w 0
k)
α
∼N (0,1) for k ∈ [m],α ∈ [n],

and they are all independent, by setting

ε=
√

2log
2m(n +1)

δ
,

one can obtain

P

(
max
k∈[m]

{|ā0
k |,‖w 0

k‖∞
}> ε)=P((⋃

k∈[m]

{|ā0
k | > ε

})⋃(⋃
k∈[m],α∈[n]

{|(w 0
k)
α
| > ε}))

≤
m∑

k=1
P

(|ā0
k | > ε

)+ m∑
k=1

n∑
α=1

P
(|(w 0

k)
α
| > ε)

≤ 2me−
1
2 ε

2 +2mne−
1
2 ε

2

= 2m(n +1)e−
1
2 ε

2

= δ,

which implies the conclusions of this lemma.

Lemma B.4. For any δ ∈ (0,1) with probability at least 1−δ over the random initialization in (22), we have

RS (θ0) ≤ 1

2

(
1+3γnrpm‖A‖2

(
2log

4m(n +1)

δ

)(r+1)/2 (
r
√

2log(2n)+
√

log(8/δ)/2
))2

,

Proof. From Lemma B.3 we know that with probability at least 1−δ/2,

|ā0
k | ≤

√
2log

4m(n +1)

δ
and ‖w 0

k‖1 ≤ n

√
2log

4m(n +1)

δ
.

Let
H = {h(ā, w ; x) | h(ā, w ; x) = āσ(wᵀx), x ∈Ω}.

Each element in the above set is a function of ā and w while x ∈ [0,1]n is a parameter. Since ‖x‖∞ ≤ 1, we have

|h(ā0
k , w 0

k ; x)| ≤ |ā0
k |‖w 0

k‖r
1 ≤ nr

(
2log

4m(n +1)

δ

)(r+1)/2

.

17

A PREPRINT - JUNE 12, 2021

Then with probability at least 1−δ/2, by the Rademacher-based uniform convergence theorem, we have

1

γm
sup
x∈Ω

|φ(x ;θ0)| = sup
x∈Ω

∣∣∣∣∣ 1

m

m∑
k=1

h(ā0
k , w 0

k ; x)−E(ā,w)∼N (0,I n+1)h(ā, w ; x)

∣∣∣∣∣
≤ 2Rad

θ̄
0 (H)+3nr

(
2log

4m(n +1)

δ

)(r+1)/2
√

log(8/δ)

2m
,

where

Rad
θ̄

0 (H) := 1

m
Eτ

[
sup
x∈Ω

m∑
k=1

τk h(ā0
k , w 0

k ; x)

]
= 1

m
Eτ

[
sup
x∈Ω

m∑
k=1

τk ā0
kσ(w 0ᵀ

k x)

]
,

where τ is a random vector in Nm with i.i.d. entries {τk }m
k=1 following the Rademacher distribution. With probability

at least 1−δ/2, ψk (yk) = ākσ(yk) for k ∈ [m] is a Lipschitz continuous function with a Lipschitz constant

r nr−1
(
2log

4m(n +1)

δ

)r /2

when yk ∈ [−n
√

2log(4m(n +1)/δ),n
√

2log(4m(n +1)/δ)]. We continuously extend ψk (yk) to the domain R with
the same Lipschitz constant.

Applying Lemma B.1 with ψk (yk), we have

1

m
Eτ

[
sup
x∈Ω

m∑
k=1

τk ā0
kσ(w 0ᵀ

k x)

]
≤ 1

m
r nr−1

(
2log

4m(n +1)

δ

)r /2

Eτ

[
sup
x∈Ω

m∑
k=1

τk w 0ᵀ
k x

]

≤ r nr
√

2log(2n)p
m

(
2log

4m(n +1)

δ

)(r+1)/2

, (38)

where the second inequality is by the Rademacher bound for linear predictors in Lemma B.2.

So one can get

sup
x∈Ω

|φ(x ;θ0)| ≤ γpmnr
(
2log

4m(n +1)

δ

)(r+1)/2 (
2r

√
2log(2n)+3

√
log(8/δ)/2

)
≤ 3γ

p
mnr

(
2log

4m(n +1)

δ

)(r+1)/2 (
r
√

2log(2n)+
√

log(8/δ)/2
)

.

Then

RS (θ0) ≤ 1

2N

(
‖A‖2‖φ(S;α0)‖2 +

p
N

)2

≤ 1

2

(
1+3γ

p
mnr ‖A‖2

(
2log

4m(n +1)

δ

)(r+1)/2 (
r
√

2log(2n)+
√

log(8/δ)/2
))2

,

where the first inequality comes from the fact that | f | ≤ 1 by our assumption of the target function.

The following lemma shows the positive definiteness of G (a) at initialization.

Lemma B.5. For any δ ∈ (0,1), if m ≥ 16N 4Cn

λ2
Sδ

, then with probability at least 1−δ over the random initialization in

(22), we have

λmin
(
G (a)(θ0)

)≥ 3

4
λS ,

where Cn := E‖w‖4r
1 <+∞ with w ∼N (0, I n).

Proof. We define Ωi j := {θ0 | |G (a)
i j (θ0)−K (a)

i j | ≤
λS
4N }. Note that

|g (a)(w 0
k ; x i , x j)| ≤ ‖w 0

k‖2r
1 .

So
Var

(
g (a)(w 0

k ; x i , x j)
)≤ E(

g (a)(w 0
k ; x i , x j)

)2 ≤ E‖w 0
k‖4r

1 =Cn ,

18

A PREPRINT - JUNE 12, 2021

and

Var
(
G (a)

i j (θ0)
)
= 1

m2

m∑
k=1

Var
(
g (a)(w 0

k ; x i , x j)
)≤ Cn

m
.

Then the probability of the event Ωi j has the lower bound:

P(Ωi j) ≥ 1−
Var

(
G (a)

i j (θ0)
)

[λS /(4N)]2 ≥ 1− 16N 2Cn

λ2
S m

.

Thus, with probability at least

(
1− 16N 2Cn

λ2
S m

)N 2

≥ 1− 16N 4Cn

λ2
S m

, we have all eventsΩi j for i , j ∈ [N] to occur. This implies

that with probability at least 1− 16N 4Cn

λ2
S m

, we have

‖G (a)(θ0)−K (a)‖F ≤ λS

4
.

Note that G (a)(θ0) and K (a) are positive semi-definite normal matrices. Let v be the singular vector of G (a)(θ0)
corresponding to the smallest singular value, then

λmin
(
G (a)(θ0)

)= vᵀG (a)(θ0)v = vᵀK (a)v +vᵀ(G (a)(θ0)−K (a))v ≥λS −‖G (a)(θ0)−K (a)‖2 ≥λS −‖G (a)(θ0)−K (a)‖F.

So

λmin
(
G (a)(θ0)

)≥λS −‖G (a)(θ0)−K (a)‖F ≥ 3

4
λS .

For any δ ∈ (0,1), if m ≥ 16N 4Cn

λ2
Sδ

, then with probability at least 1− 16N 4Cn

λ2
S m

≥ 1−δ over the initialization θ0, we have

λmin
(
G (a)(θ0)

)≥ 3
4λS .

The following lemma estimates the empirical loss dynamics before the stopping time t∗ in (27).

Lemma B.6. For any δ ∈ (0,1), if m ≥ 16N 4Cn

λ2
Sδ

, then with probability at least 1−δ over the random initialization in

(22), we have for any t ∈ [0, t∗)

RS (θ(t)) ≤ exp

(
−mλSλA t

N

)
RS (θ0).

Proof. From Lemma B.5, for any δ ∈ (0,1) with probability at least 1−δ over initialization θ0 and for any t ∈ [0, t∗)
with t∗ defined in (27), we have θ(t) ∈M (θ0) defined in (28) and

λmin
(
G (a)(θ)

)≥λmin
(
G (a)(θ0)

)−‖G (a)(θ)−G (a)(θ0)‖F ≥ 3

4
λS − 1

4
λS = 1

2
λS .

Note that G i j = 1
m ∇θφ(x i ;θ) ·∇θφ(x j ;θ) and ∇θRS = 1

N ∇θφ(S;θ)AᵀAe , so

‖∇θRS (θ(t))‖2
2 =

m

N 2 eᵀAᵀAG(θ(t))AᵀAe ≥ m

N 2 eᵀAᵀAG (a)(θ(t))AᵀAe,

where the last equation is true by the fact that G (w)(θ(t)) is a Gram matrix and hence positive semi-definite. Together
with

m

N 2 eᵀAᵀAG (a)(θ(t))AᵀAe ≥ m

N 2λmin
(
G (a)(θ(t))

)
eᵀAᵀA AᵀAe.

≥ 2m

N
λmin

(
G (a)(θ(t))

)
λmin

(
A Aᵀ)

RS (θ(t))

≥ m

N
λSλARS (θ(t)),

then finally we get
d

dt
RS (θ(t)) =−‖∇θRS (θ(t))‖2

2 ≤−m

N
λSλARS (θ(t)).

Integrating the above equation yields the conclusion in this lemma.

19

A PREPRINT - JUNE 12, 2021

The following lemma shows that the parameters in the two-layer neural network are uniformly bounded in time
during the training before time t∗ as defined in (27)-(28).

Lemma B.7. For any δ ∈ (0,1), if

m ≥ max

32N 4Cn

λ2
Sδ

,
5max{n,r }N

√
2λA,N RS (θ0)

λSλA

(
2n

√
2log

4m(n +1)

δ

)r−1
 ,

then with probability at least 1−δ over the random initialization in (22), for any t ∈ [0, t∗) and any k ∈ [m],

|ak (t)−ak (0)| ≤ q, ‖w k (t)−w k (0)‖∞ ≤ q,

|ak (0)| ≤ γη, ‖w k (0)‖∞ ≤ η,

where

q :=
(

2n

√
2log

4m(n +1)

δ

)r
2max{n,r }N

√
2λA,N RS (θ0)

nmλSλA

and

η :=
√

2log
4m(n +1)

δ
.

Proof. Let ξ(t) = max
k∈[m],s∈[0,t]

{|ak (s)|,‖w k (s)‖∞}. Note that

|∇ak RS (θ)|2 =
[

1

N

N∑
i=1

(eᵀAᵀA)iσ(wᵀ
k x i)

]2

≤ ‖w k‖2r
1

[
1

N

N∑
i=1

(|eᵀAᵀA|)i

]2

≤ 2‖w k‖2r
1 λA,N RS (θ)

≤ 2n2r (ξ(t))2rλA,N RS (θ),

where λA,N denotes the largest eigenvalue of A, and

‖∇w k RS (θ)‖2
∞ =

∥∥∥ 1

N

N∑
i=1

(eᵀAᵀA)i akσ
′(wᵀ

k x i)x i

∥∥∥2

∞

≤ |ak |2r 2‖w k‖2(r−1)
1

∥∥∥ 1

N

N∑
i=1

(eᵀAᵀA)i x i

∥∥∥2

∞

≤ |ak |2r 2‖w k‖2(r−1)
1

∣∣∣∣∣ 1

N

N∑
i=1

(|eᵀAᵀA|)i

∣∣∣∣∣
2

≤ 2|ak |2r 2‖w k‖2(r−1)
1 λA,N RS (θ)

≤ 2r 2n2(r−1)(ξ(t))2rλA,N RS (θ).

From Lemma B.6, if m ≥ 32N 4Cn

λ2
Sδ

, then with probability at least 1−δ/2 over random initialization, one can represent

(24) in an integral form and obtain,

|ak (t)−ak (0)| ≤
∫ t

0
|∇ak RS (θ(s))|ds

≤
√

2λA,N nr (ξ(t))r
∫ t

0

√
RS (θ(s))ds

≤
√

2λA,N nr (ξ(t))r
∫ t

0

√
RS (θ0)exp

(
−mλSλA s

2N

)
ds

≤
2
√

2λA,N nr N
√

RS (θ0)

mλSλA
(ξ(t))r

≤ p(ξ(t))r ,

20

A PREPRINT - JUNE 12, 2021

where p := 2
p

2λA,N max{n,r }nr−1N
p

RS (θ0)
mλSλA

.

‖w k (t)−w k (0)‖∞ ≤
∫ t

0
‖∇w k RS (θ(s))‖∞ ds

≤
√

2λA,N r nr−1(ξ(t))r
∫ t

0

√
RS (θ(s))ds

≤
√

2λA,N r nr−1(ξ(t))r
∫ t

0

√
RS (θ0)exp

(
−mλSλA s

2N

)
ds

≤
2
√

2λA,N N r nr−1
√

RS (θ0)

mλSλA
(ξ(t))r

≤ p(ξ(t))r .

We should point out that the above inequalities hold for all t ∈ (0, t∗) since the upper bounds are based on Lemma B.6,
thus

ξ(t) ≤ ξ(0)+p(ξ(t))r , (39)

for all t ∈ (0, t∗). From Lemma B.3 with probability at least 1−δ/2,

ξ(0) = max
k∈[m]

{|ak (0)|,‖w k (0)‖∞} ≤ max

{
γ

√
2log

4m(n +1)

δ
,

√
2log

4m(n +1)

δ

}
≤

√
2log

4m(n +1)

δ
= η. (40)

Since

m ≥
5max{n,r }N

√
2λA,N RS (θ0)

λSλA

(
2n

√
2log

4m(n +1)

δ

)r−1

= 5

2
mp(2η)r−1,

then p(2η)r−1 ≤ 2
5 . Let

t0 := inf{t | ξ(t) > 2η}.

Then t0 is the first time for the magnitude of a NN parameter exceeding 2η. Recall that t∗, introduced in (27),
denotes the first time for ‖G (a)(θ)−G (a)(θ0)‖F > 1

4λS . We will prove t0 ≥ t∗, i.e., we show that, as long as the kernel
G (a)(θ(t)) introduced by the gradient descent method is well controlled around its initialization G (a)(θ(0)), all
network parameters have a well-controlled magnitude in the sense that there is no parameter with a magnitude
larger than 2η. We will prove t0 ≥ t∗ by contradiction. Suppose that t0 < t∗. For t ∈ [0, t0), by (39), (40), and ξ(t) ≤ 2η,
we have

ξ(t) ≤ η+p(2η)r−1ξ(t) ≤ η+ 2

5
ξ(t),

then

ξ(t) ≤ 5

3
η.

After letting t → t0, the inequality just above contradicts with the definition of t0. So t0 ≥ t∗ and then ξ(t) ≤ 2η for all
t ∈ [0, t∗). Thus

|ak (t)−ak (0)| ≤ (2η)r p

‖w k (t)−w k (0)‖∞ ≤ (2η)r p.

Finally, notice that

(2η)r p =
(

2n

√
2log

4m(n +1)

δ

)r
2max{n,r }N

√
2λA,N RS (θ0)

nmλSλA
= q, (41)

which ends the proof.

Now we are ready to prove Theorem 4.2.

Proof of Theorem 4.2. From Lemma B.6, it is sufficient to prove that the stopping time t∗ in Lemma B.6 is equal to
+∞. We will prove this by contradiction.

Suppose t∗ <+∞. Note that

|G (a)
i j (θ(t∗))−G (a)

i j (θ(0))| ≤ 1

m

m∑
k=1

|g (a)(w k (t∗); x i , x j)− g (a)(w k (0); x i , x j)|. (42)

21

A PREPRINT - JUNE 12, 2021

By the mean value theorem,

|g (a)(w k (t∗); x i , x j)− g (a)(w k (0); x i , x j)| ≤ ‖∇w g (a) (cw k (t∗)+ (1− c)w k (0); x i , x j
)‖∞‖w k (t∗)−w k (0)‖1

for some c ∈ (0,1). Further computation yields

∇w g (a)(w ; x i , x j) =
[
σ′(wᵀx i)x i

]
×

[
σ(wᵀx j)

]
+

[
σ′(wᵀx j)x j

]
×

[
σ(wᵀx i)

]
for all w . Hence, it holds for all w that ‖∇w g (a)(w ; x i , x j)‖∞ ≤ 2r‖w‖2r−1

1 . Therefore, the bound in (42) becomes

|G (a)
i j (θ(t∗))−G (a)

i j (θ(0))| ≤ 2r

m

m∑
k=1

‖cw k (t∗)+ (1− c)w k (0)‖2r−1
1 ‖w k (t∗)−w k (0)‖1. (43)

By Lemma B.7,

‖cw k (t∗)+ (1− c)w k (0)‖1 ≤ ‖w k (0)‖1 +‖w k (t∗)−w k (0)‖1 ≤ n(η+q) ≤ 2nη,

where η and q are defined in Lemma B.7. So, (43) and the above inequalities indicate

|G (a)
i j (θ(t∗))−G (a)

i j (θ(0))| ≤ r (2n)2rη2r−1q,

and

‖G (a)(θ(t∗))−G (a)(θ(0))‖F ≤ nr (2n)2rη2r−1q

= nr (2n)2r (2log
4m(n +1)

δ
)(3r−1)/2 (2n)r

2max{n,r }N
√

2λA,N RS (θ0)

nmλSλA

= 29r /2+1n3r−1N 2r

(
log

4m(n +1)

δ

)(3r−1)/2 max{n,r }
√
λA,N RS (θ0)

mλSλA

≤ 1

4
λS ,

if we choose

m ≥ 29r /2+3n3r−1N 2r

(
log

4m(n +1)

δ

)(3r−1)/2 max{n,r }
√
λA,N RS (θ0)

λ2
SλA

.

The fact that ‖G (a)(θ(t∗))−G (a)(θ(0))‖F ≤ 1
4λS above contradicts with the definition of t∗ in (27).

Let us summarize the conclusion in the above discussion. Let Cn := E‖w‖4r
1 <+∞ with w ∼N (0, I n). The largest

eigenvalue and the condition number of A Aᵀ are denoted as λA,N and κA , respectively. For any δ ∈ (0,1) , define

m1 = 32N 4Cn

λ2
Sδ

,

m2 =
5max{n,r }N

√
2λA,N RS (θ0)

λSλA

(
2n

√
2log

4m(n +1)

δ

)r−1

,

and

m3 = 29r /2+3n3r−1N 2r

(
log

4m(n +1)

δ

)(3r−1)/2 max{n,r }
√
λA,N RS (θ0)

λ2
SλA

. (44)

Then when m ≥ max{m1,m2,m3}, with probability at least 1−δ over the random initialization θ0, we have, for all
t ≥ 0,

RS (θ(t)) ≤ exp

(
−mλSλA t

N

)
RS (θ0).

Note that O (κApoly(N ,r,n, 1
δ , 1

λS
)) ≥ max{m1,m2,m3}. Hence, we have completed the proof.

C More details on the numerical experiments

In this Appendix, we report the detailed hyper-parameter setting for the three examples presented in the main text.
We also report the numerical values of the errors (up to four decimals) corresponding to the result in Figures 1-3 in
the main text. For convenience, we report the notations in the following table.

22

A PREPRINT - JUNE 12, 2021

Notation Explanation

k k-nearest neighbors in DM
ε the bandwidth parameter for local integral in DM
m the width of hidden layer in FNN
T the number of iterations for training a FNN
N the number of training points
Nb the number of training points on the boundary
γ the regularization coefficient for 1

2‖φθ‖2
2 introduced in Section 3

λ the penalty coefficient to enforce the boundary condition in the loss function (10)

Table 3: The summary of hyperparameter notations in the algorithms.

N 625 1225 2500 5041 10000 19881 40000 80089

DM
ε 0.1166 0.0508 0.0237 0.0118 0.0059 0.0029 0.0014 0.0008
k 128 128 128 256 256 256 512 768

NN

T 2000 3000 4000 4000 4000 4000 4000 8000
m 50 71 100 141 200 282 400 583
γ 0.001 0.001 0.001 0.001 0.001 0.002 0.005 0.01

Table 4: The hyperparameter setting for Example 1: 2D torus embedded in R3.

N 625 1225 2500 5041 10000 19881 40000 80089

DM
forward error 3.7837 1.8985 1.0231 0.4871 0.2519 0.1251 0.0630 0.0326
inverse error 0.7606 0.3175 0.1511 0.0680 0.0336 0.0159 N/A N/A

NN
training error 0.7563 0.3183 0.1508 0.0680 0.0336 0.0158 0.0082 0.0036
testing error 0.7764 0.3213 0.1516 0.0682 0.0336 0.0159 0.0082 0.0036

Table 5: The errors for DM and NN corresponding to Example 1: 2D torus embedded in R3. N/A indicates that the
result is not computable.

N 512 1331 4096 12167 24389

DM
ε 0.43 0.23 0.12 0.073 0.051
k 128 128 256 256 256

NN

T 1000 2000 2000 3000 3000
m 100 150 250 400 500
γ 0.001 0.001 0.005 0.005 0.005

Table 6: The hyperparameter setting for Example 2: 3D manifold embedded in R12.

N 512 1331 4096 12167 24389

DM
forward error 0.4241 0.1498 0.0403 0.0109 0.0039
inverse error 0.2614 0.1113 0.0347 0.0092 N/A

NN
training error 0.2665 0.1148 0.0297 0.0066 0.0023
testing error 0.2715 0.1346 0.0302 0.0069 0.0024

Table 7: The errors for DM and NN corresponding to Example 2: 3D manifold embedded in R12. N/A indicates that
the result is not computable.

23

A PREPRINT - JUNE 12, 2021

N 1024 2025 4096 16384 32400

DM
ε 0.0221 0.0096 0.0048 0.0013 0.00064
k 128 128 128 256 256

NN

T 2000 3000 4000 10000 12000
m 100 100 150 250 250
λ 5.0 5.0 5.0 5.0 5.0

Table 8: The hyperparameter setting for Example 3: 2D semi-torus with Dirichlet condition.

N 1024 2025 4096 16384 32400

DM
forward error 6.7976 6.8733 7.0843 8.1603 8.9551
inverse error 0.0627 0.0286 0.0149 0.0047 0.0026

NN
training error 0.0613 0.0285 0.0150 0.0048 0.0029
testing error 0.0634 0.0293 0.0154 0.0048 0.0029

Table 9: The errors for DM and NN corresponding to Example 3: 2D semi-torus with Dirichlet condition.

References

[1] On the convergence of physics informed neural networks for linear second-order elliptic and parabolic type
pdes. Communications in Computational Physics, 28(5):2042–2074, 2020.

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th In-
ternational Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
242–252. PMLR, 09–15 Jun 2019.

[3] Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, and Ruosong Wang. Fine-grained analysis of optimization
and generalization for overparameterized two-layer neural networks. In 36th International Conference on
Machine Learning, ICML 2019, 36th International Conference on Machine Learning, ICML 2019, pages 477–502.
International Machine Learning Society (IMLS), January 2019. 36th International Conference on Machine
Learning, ICML 2019 ; Conference date: 09-06-2019 Through 15-06-2019.

[4] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions
on Information Theory, 39(3):930–945, 1993.

[5] Christian Beck, Sebastian Becker, Patrick Cheridito, Arnulf Jentzen, and Ariel Neufeld. Deep splitting method
for parabolic PDEs. arXiv e-prints, arXiv:1907.03452, Jul 2019.

[6] Jens Berg and Kaj Nyström. A unified deep artificial neural network approach to partial differential equations
in complex geometries. Neurocomputing, 317:28 – 41, 2018.

[7] Julius Berner, Philipp Grohs, and Arnulf Jentzen. Analysis of the generalization error: Empirical risk minimiza-
tion over deep artificial neural networks overcomes the curse of dimensionality in the numerical approximation
of black–scholes partial differential equations. SIAM Journal on Mathematics of Data Science, 2(3):631–657,
2020.

[8] T. Berry and J. Harlim. Variable bandwidth diffusion kernels. Appl. Comput. Harmon. Anal., 40:68–96, 2016.

[9] Marcelo Bertalmıo, Li-Tien Cheng, Stanley Osher, and Guillermo Sapiro. Variational problems and partial
differential equations on implicit surfaces. Journal of Computational Physics, 174(2):759–780, 2001.

[10] Andrea Bonito, J Manuel Cascón, Khamron Mekchay, Pedro Morin, and Ricardo H Nochetto. High-order
afem for the laplace–beltrami operator: Convergence rates. Foundations of Computational Mathematics,
16(6):1473–1539, 2016.

[11] Fernando Camacho and Alan Demlow. L2 and pointwise a posteriori error estimates for fem for elliptic pdes
on surfaces. IMA Journal of Numerical Analysis, 35(3):1199–1227, 2015.

[12] R. Coifman and S. Lafon. Diffusion maps. Appl. Comput. Harmon. Anal., 21:5–30, 2006.

[13] Qiang Du, Yiqi Gu, Haizhao Yang, and Chao Zhou. The discovery of dynamics via linear multistep methods
and deep learning: Error estimation. arxiv:2103.11488, 2021.

24

A PREPRINT - JUNE 12, 2021

[14] Simon Du, Jason Lee, Haochuan Li, Liwei Wang, and Xiyu Zhai. Gradient descent finds global minima of
deep neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
1675–1685. PMLR, 09–15 Jun 2019.

[15] Simon S. Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes over-
parameterized neural networks. In International Conference on Learning Representations, 2019.

[16] Chenguang Duan, Yuling Jiao, Yanming Lai, Xiliang Lu, and Zhijian Yang. Convergence rate analysis for deep
ritz method. arxiv:2103.13330, 2021.

[17] D Dunson, Hau-Tieng Wu, and Nan Wu. Spectral convergence of graph Laplacian and Heat kernel reconstruc-
tion in L∞ from random samples. arXiv preprint arXiv:1912.05680, 2019.

[18] Gerhard Dziuk and Charles M Elliott. Finite element methods for surface pdes. Acta Numerica, 22:289–396,
2013.

[19] Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations. Communications in
Mathematics and Statistics, 5(4):349–380, Dec 2017.

[20] Weinan E, Chao Ma, and Lei Wu. A priori estimates of the population risk for two-layer neural networks.
Communications in Mathematical Sciences, 17(5):1407 – 1425, 2019.

[21] Weinan E, Chao Ma, and Lei Wu. Barron Spaces and the Compositional Function Spaces for Neural Network
Models. Constructive Approximation, 2020.

[22] Weinan E and Qingcan Wang. Exponential convergence of the deep neural network approximation for analytic
functions. Science China Mathematics, 61(10):1733–1740, 10 2018.

[23] Charles M Elliott and Björn Stinner. Modeling and computation of two phase geometric biomembranes using
surface finite elements. Journal of Computational Physics, 229(18):6585–6612, 2010.

[24] Z. Fang and J. Zhan. A physics-informed neural network framework for pdes on 3d surfaces: Time independent
problems. IEEE Access, 8:26328–26335, 2020.

[25] Edward J Fuselier and Grady B Wright. A high-order kernel method for diffusion and reaction-diffusion
equations on surfaces. Journal of Scientific Computing, 56(3):535–565, 2013.

[26] F. Gilani and J. Harlim. Approximating solutions of linear elliptic PDE’s on smooth manifold using local kernels.
J. Comput. Phys., 395:563–582, 2019.

[27] David Gilbarg and Neil S Trudinger. Elliptic partial differential equations of second order. springer, 2015.

[28] Ingo Gühring, Gitta Kutyniok, and Philipp Petersen. Error bounds for approximations with deep relu neural
networks in ws,p norms. Analysis and Applications, 18(05):803–859, 2020.

[29] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations using deep
learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

[30] Jiequn Han and Jihao Long. Convergence of the deep bsde method for coupled fbsdes. Probability, Uncertainty
and Quantitative Risk, 5(1):5, 2020.

[31] Qing Han and Fanghua Lin. Elliptic partial differential equations, volume 1. American Mathematical Soc.,
2011.

[32] J. Harlim. Data-Driven Computational Methods: Parameter and Operator Estimations. Cambridge University
Press, 2018.

[33] John Harlim, Daniel Sanz-Alonso, and Ruiyi Yang. Kernel methods for bayesian elliptic inverse problems on
manifolds. SIAM/ASA Journal on Uncertainty Quantification, 8(4):1414–1445, 2020.

[34] Qingguo Hong, Jonathan W. Siegel, and Jinchao Xu. A priori analysis of stable neural network solutions to
numerical pdes. arxiv:2104.02903, 2021.

[35] Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, and Tuan Anh Nguyen. A proof that rectified deep neural
networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations.
SN Partial Differential Equations and Applications, 1(10), 2020.

[36] Martin Hutzenthaler, Arnulf Jentzen, and von Wurstemberger Wurstemberger. Overcoming the curse of
dimensionality in the approximative pricing of financial derivatives with default risks. Electron. J. Probab.,
25:73 pp., 2020.

25

A PREPRINT - JUNE 12, 2021

[37] Martin Hutzenthaler, Arnulf Jentzen, and von Wurstemberger Wurstemberger. Overcoming the curse of
dimensionality in the approximative pricing of financial derivatives with default risks. Electron. J. Probab.,
25:73 pp., 2020.

[38] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18, page 8580–8589, Red Hook, NY, USA, 2018. Curran Associates Inc.

[39] Shixiao W. Jiang and John Harlim. Ghost point diffusion maps for solving elliptic pde’s on manifolds with
classical boundary conditions. Comm. Pure Appl. Math. (in press), arXiv preprint arXiv:2006.04002, 2020.

[40] Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric pde problems with artificial neural networks.
European Journal of Applied Mathematics, page 1–15, 2020.

[41] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and Yann
LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings, 2015.

[42] John M Lee. Introduction to Smooth Manifolds. Springer, 2013.

[43] Randall J LeVeque. Finite difference methods for ordinary and partial differential equations: steady-state and
time-dependent problems, volume 98. Siam, 2007.

[44] Ke Li, Kejun Tang, Tianfan Wu, and Qifeng Liao. D3M: A Deep Domain Decomposition Method for Partial
Differential Equations. IEEE Access, 8:5283–5294, 2020.

[45] Senwei Liang, Liyao Lyu, Chunmei Wang, and Haizhao Yang. Reproducing activation function for deep learning.
arxiv:2101.04844, 2021.

[46] Jianfeng Lu and Yulong Lu. A priori generalization error analysis of two-layer neural networks for solving high
dimensional schrödinger eigenvalue problems. arxiv:2105.01228, 2021.

[47] Jianfeng Lu, Yulong Lu, and Min Wang. A priori generalization analysis of the deep ritz method for solving high
dimensional elliptic equations. arxiv:2101.01708, 2021.

[48] Jianfeng Lu, Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep Network Approximation for Smooth
Functions. arXiv e-prints, page arXiv:2001.03040, January 2020.

[49] Yiping Lu, Chao Ma, Yulong Lu, Jianfeng Lu, and Lexing Ying. A mean field analysis of deep ResNet and beyond:
Towards provably optimization via overparameterization from depth. In Hal Daumé III and Aarti Singh, editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 6426–6436. PMLR, 13–18 Jul 2020.

[50] Tao Luo and Haizhao Yang. Two-layer neural networks for partial differential equations: Optimization and
generalization theory. ArXiv, abs/2006.15733, 2020.

[51] Colin B Macdonald and Steven J Ruuth. The implicit closest point method for the numerical solution of partial
differential equations on surfaces. SIAM Journal on Scientific Computing, 31(6):4330–4350, 2010.

[52] Song Mei, Andrea Montanari, and Phan-Minh Nguyen. A mean field view of the landscape of two-layer neural
networks. Proceedings of the National Academy of Sciences, 115(33):E7665–E7671, 2018.

[53] Facundo Mémoli, Guillermo Sapiro, and Paul Thompson. Implicit brain imaging. NeuroImage, 23:S179–S188,
2004.

[54] Hadrien Montanelli and Qiang Du. New error bounds for deep relu networks using sparse grids. SIAM Journal
on Mathematics of Data Science, 1(1), Jan 2019.

[55] Hadrien Montanelli and Haizhao Yang. Error bounds for deep ReLU networks using the Kolmogorov–Arnold
superposition theorem. Neural Networks, 129:1–6, 2020.

[56] Hadrien Montanelli, Haizhao Yang, and Qiang Du. Deep ReLU networks overcome the curse of dimensionality
for bandlimited functions. Journal of Computational Mathematics, To appear.

[57] Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise smooth functions using deep
ReLU neural networks. Neural Networks, 108:296 – 330, 2018.

[58] Cécile Piret. The orthogonal gradients method: A radial basis functions method for solving partial differential
equations on arbitrary surfaces. Journal of Computational Physics, 231(14):4662–4675, 2012.

[59] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning frame-
work for solving forward and inverse problems involving nonlinear partial differential equations. Journal of
Computational Physics, 378:686 – 707, 2019.

26

A PREPRINT - JUNE 12, 2021

[60] Matthias Rauter and Željko Tuković. A finite area scheme for shallow granular flows on three-dimensional
surfaces. Computers & Fluids, 166:184–199, 2018.

[61] Steven J Ruuth and Barry Merriman. A simple embedding method for solving partial differential equations on
surfaces. Journal of Computational Physics, 227(3):1943–1961, 2008.

[62] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to algorithms. Cambridge
university press, 2014.

[63] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network approximation characterized by number of
neurons. Communications in Computational Physics, 28(5):1768–1811, 2020.

[64] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network with approximation error being reciprocal of
width to power of square root of depth. Neural Computation, 33(4):1005–1036, 2021.

[65] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Neural network approximation: Three hidden layers are
enough. Neural Networks, 141:160–173, 2021.

[66] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Optimal approximation rate of ReLU networks in terms of
width and depth. Journal de Mathématiques Pures et Appliquées, to appear.

[67] Jonathan W. Siegel and Jinchao Xu. Approximation rates for neural networks with general activation functions.
Neural Networks, 128:313 – 321, 2020.

[68] Amit Singer. From graph to manifold Laplacian: The convergence rate. Appl. Comp. Harmonic Anal., 21:128–
134, 2006.

[69] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial differential
equations. Journal of Computational Physics, 375:1339 – 1364, 2018.

[70] Epifanio G Virga. Variational theories for liquid crystals. CRC Press, 2018.

[71] Q Yan, S.W. Jiang, and J Harlim. Kernel-based methods for Solving Time-Dependent Advection-Diffusion
Equations on Manifolds. arXiv preprint arXiv:2105.13835, 2021.

[72] Yunfei Yang and Yang Wang. Approximation in shift-invariant spaces with deep ReLU neural networks. arXiv
e-prints, page arXiv:2005.11949, May 2020.

[73] Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks, 94:103 – 114,
2017.

[74] Dmitry Yarotsky. Optimal approximation of continuous functions by very deep ReLU networks. In Sébastien
Bubeck, Vianney Perchet, and Philippe Rigollet, editors, Proceedings of the 31st Conference On Learning Theory,
volume 75 of Proceedings of Machine Learning Research, pages 639–649. PMLR, 06–09 Jul 2018.

[75] Dmitry Yarotsky and Anton Zhevnerchuk. The phase diagram of approximation rates for deep neural networks.
In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 13005–13015. Curran Associates, Inc., 2020.

[76] Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou. Weak adversarial networks for high-dimensional
partial differential equations. Journal of Computational Physics, 411:109409, 2020.

27

	Introduction
	DM-based PDE Solver on Unknown Manifolds
	Solving PDEs on Unknown Manifolds using Diffusion Maps and Neural Networks
	Theoretical Foundation of the Proposed Algorithm
	Parametrization Error
	Optimization Error

	Numerical Examples
	Example 1: 2D Torus
	Example 2: A 3D Manifold of High Co-Dimension
	Example 3: 2D Semi-Torus with Dirichlet Conditions

	Conclusion
	GPDM algorithm for manifolds with boundaries
	Global convergence analysis of neural network optimization
	More details on the numerical experiments

