
A Unified Framework for Oscillatory Integral Transforms:1

When to use NUFFT or Butterfly Factorization?2

Haizhao Yang

Department of Mathematics, National University of Singapore

3

March 13, 20194

Abstract5

This paper concerns the fast evaluation of the matvec g = Kf for K ∈ CN×N , which is6

the discretization of an oscillatory integral transform g(x) =
∫
K(x, ξ)f(ξ)dξ with a kernel7

function K(x, ξ) = α(x, ξ)e2πıΦ(x,ξ), where α(x, ξ) is a smooth amplitude function, and Φ(x, ξ)8

is a piecewise smooth phase function with O(1) discontinuous points in x and ξ. A unified9

framework is proposed to compute Kf with O(N logN) time and memory complexity via the10

non-uniform fast Fourier transform (NUFFT) or the butterfly factorization (BF), together with11

an O(N) fast algorithm to determine whether NUFFT or BF is more suitable. This framework12

works for two cases: 1) explicit formulas for the amplitude and phase functions are known; 2)13

only indirect access of the amplitude and phase functions are available. Especially in the case14

of indirect access, our main contributions are: 1) an O(N logN) algorithm for recovering the15

amplitude and phase functions is proposed based on a new low-rank matrix recovery algorithm;16

2) a new stable and nearly optimal BF with amplitude and phase functions in a form of a low-17

rank factorization (IBF-MAT1) is proposed to evaluate the matvec Kf . Numerical results are18

provided to demonstrate the effectiveness of the proposed framework.19

Keywords. Non-uniform fast Fourier transform, butterfly factorization, randomized algorithm,20

matrix completion, Fourier integral operator, special function transform.21

1 Introduction22

Oscillatory integral transforms have been an important topic for scientific computing. After dis-23

cretization with N grid points in each variable, the integral transform is reduced to a dense matrix-24

vector multiplication (matvec) g = Kf . The direct computation of the matvec takes O(N2)25

operations and is prohibitive in large-scale computation, which has motivated an active research26

line in developing nearly linear matvec. The most famous example is the fast Fourier transform27

(FFT) [38] that evaluate the integral:28

f̂(ξ) =

∫ 1

0
K(x, ξ)f(x)dx =

∫ 1

0
e−2πixξf(x)dx (1)

via the discretization29

f̂(ξi) =
1

N

∑
xj

e−2πixjξif(xj), i, j = 1, 2, . . . , N, (2)

1 IBF-MAT means interpolative butterfly factorization based on low-rank matrix information instead of explicit
formulas used in the IBF in [22].

1



Kernels K(x, ξ) Algorithms Precomputation time Application time memory

α(x, ξ)e2πıp(x)q(ξ) NUFFT [1, 34] O(N) O(N logN) O(N)

α(x, ξ)e2πıΦ(x,ξ) NUFFT O(N) O(N logN) O(N)

α(x, ξ)e2πıΦ(x,ξ) BF [28, 9, 22] O(N logN) O(N logN) O(N logN)

Table 1: Summary of existing algorithms and the proposed algorithms (in bold) for the evaluation
of Kf when amplitude and phase have explicit formulas. Although the BF in [9] requires no
precomputation and O(N) memory, it is a few times slower than the BF in [22] regarding the
application time. Hence, we adopt the scaling of [22] in this paper.

with {xi} and {ξj} as uniformly distributed points in [0, 1) and [−N/2, N/2) following

xi = (i− 1)/N and ξj = j − 1−N/2.

The matvec in (2) has a dense matrix K ∈ CN×N with the (i, j)-th entry as 1
N e
−2πixjξi and can be30

evaluated with O(N log(N)) operations using the FFT algorithm [38]. In the case of non-uniform31

distributed points {xi} and {ξj}, the non-uniform FFT (NUFFT) algorithms in [15, 34] are able to32

evaluate (2) with O(N log(N)) operations based on FFT. For a kernel function K(x, ξ) = e2πıp(x)q(ξ)
33

with either uniform or nonuniform {xi} and {ξj}, the transformation in (1) is an NUFFT. Nearly34

linear scaling matvec for more general kernel functions have been proposed either based on the35

similarity of K to the Fourier matrix in (2) [1, 34], i.e., K(x, ξ) = α(x, ξ)e2πıp(x)q(ξ), or based on the36

complementary low-rank structure of K [12, 20, 22, 23, 25, 28, 30, 35, 37] when the phase function37

is not in a form of separation of variables.38

The main ideas of existing algorithms are as follows. After computing the low-rank approxima-39

tion of α(x, ξ) ≈
∑r

k=1 ak(x)bk(ξ), we have40

g(x) ≈
r∑

k=1

ak(x)

∫
e2πıΦ(x,ξ) (bk(ξ)f(ξ)) dξ. (3)

If K(x, ξ) = α(x, ξ)e2πıp(x)q(ξ), then41

g(x) ≈
r∑

k=1

ak(x)

∫
e2πıp(x)q(ξ) (bk(ξ)f(ξ)) dξ

can be evaluated through r NUFFT’s. If the phase function Φ(x, ξ) is not of the form p(x)q(ξ),42

then the butterfly factorization (BF) [23, 28, 30] of e2πıΦ(x,ξ) is computed and the dense matrix43

e2πıΦ(x,ξ) can be factorized as a product of O(log(N)) sparse matrices, each of which has only O(N)44

non-zero entries. Hence, storing and applying e2πıΦ(x,ξ) via the BF and (3) take only O(rN log(N))45

complexity. In sum, after precomputation (low-rank factorization in (3), and BF2, if needed), both46

kinds of algorithms admit O(N logN) computational complexity for applying K to a vector f .47

However, existing algorithms are efficient only when the explicit formulas of the kernel is known48

(see Table 1 and 2 for a detailed summary). The computational challenge in the case of indirect49

access of the kernel function (see Table 3 for a list of different scenarios) motivates a series of new50

algorithms in this paper.51

This paper proposes an O(N logN) unified framework for evaluating Kf either based on52

NUFFT or BF (see Figure 1 for the main computational flowchart of the unified framework). This53

2In most applications, K is applied to multiple vectors f ’s. Hence, it is preferable to save the results of expensive
computational routines that are independent of the input vectors f ’s for later applications.

2



Scenarios Algorithms Precomputation time Application time memory

Scenario 1 BF [28] O(N logN) O(N logN) O(N logN)
Scenario 2 BF [23, 26] O(N1.5 logN) O(N logN) O(N logN)
Scenario 3 BF [9, 22] O(N logN) O(N logN) O(N logN)

All scenarios NUFFT or IBF-MAT O(N logN) O(N logN) O(N logN)

Table 2: Summary of existing algorithms and the proposed algorithms (in bold) for the evaluation
of Kf for a general kernel α(x, ξ)e2πıΦ(x,ξ) when only the indirect access of amplitude and phase
is available according to different scenarios listed in Table 3. A remaining open problem was in
Scenario 2.

Yes

NoInput 
vector 

f

Output 
vector 

g

Explicit amplitude 
and phase 
functions 
available?

Discretize amplitude 
and phase functions 
and compute their 

low-rank 
approximations

Recover amplitude 
and phase matrices 
in form of low-rank 

approximations

Determine 
whether NUFFT is 

suitable for 
computing the 
matvec g=K*f

FLOWCHART Haizhao Yang   |   February 9, 2018

Yes

No

Apply NUFFT to 
compute the 
matvec g=K*f

Apply BF to 
compute the 
matvec g=K*f

Figure 1: The computational flowchart of the unified framework using NUFFT or BF. The frame-
work consists of three main steps: 1) construct the low-rank approximations of the amplitude and
phase matrices; 2) determine whether NUFFT is applicable; 3) apply NUFFT or BF. When the
numerical rank of the phase function rε is only larger than the dimension of the problem by one or
two, NUFFT is usually faster than BF and hence it will be applied to compute Kf .

framework considers possibly most application scenarios of oscillatory integral transforms. We also54

briefly discuss how to choose NUFFT or BF to maximize the computational efficiency according to55

several factors (e.g., accuracy and rank parameters in low-rank factorization, the number of vectors56

in the matvec) in a serial computational environment. The unified framework works in two cases:57

1) explicit formulas for the amplitude and phase functions are known; 2) only indirect access of58

the amplitude and phase functions are available. When the explicit formulas are given, computing59

Kf is relatively simple. Hence, we only focus on the case of indirect access. To the best of our60

knowledge, the most common indirect access can be summarized into three scenarios in Table 3.61

As the first main contribution of this paper, in the case of indirect access, a nearly linear62

scaling algorithm is proposed to recover the amplitude and phase matrices in a form of low-rank63

matrix factorization. In scientific computing, there are several important problems requiring an64

approximate or precise construction of the low-rank amplitude and phase matrices, e.g., special65

function transforms [4, 3], the compositions of Fourier integral operators (FIO’s) as a preconditioner66

for certain classes of parabolic and hyperbolic equations [21, 32, 33], etc. In signal and image67

3



Scenario 1 : There exists an algorithm for evaluating an arbitrary entry of the
kernel matrix in O(1) operations [4, 3, 23, 30].

Scenario 2 : There exist an O(N logN) algorithm for applying K and its transpose
to a vector [17, 23, 26, 33].

Scenario 3 : The amplitude and the phase functions are solutions of partial
differential equations (PDE’s) [12]. O(1) columns and rows of the
amplitude and phase matrices are available by solving PDE’s.

Table 3: Three scenarios of the indirect access of the amplitude and phase functions.

processing, amplitude and phase matrix recovery is also called the phase unwrapping problem68

[10, 29, 36]. As far as we know, this paper is the first to study the low-rank matrix recovery problem69

aiming at a nearly linear scaling algorithm. Previous algorithms [10, 29, 36] require computation70

with all the matrix entries and hence take at least O(N2) operations.71

As the second main contribution, when the low-rank amplitude and phase matrices have been72

recovered, a new BF (named as IBF-MAT for short) is proposed for the matvecKf . IBF-MAT is the73

first BF for the matvec Kf with O(N logN) complexity for both precomputation and application74

in the case of indirect access (see Table 2 for the comparison with existing algorithms).75

Finally, this paper shows that if the numerical rank of Φ(x, ξ) is rε (depending on an ε accuracy76

parameter), an rε-dimensional NUFFT can be applied to evaluate (3) in O(N logN) operations.77

The dimension of the NUFFT, rε, could be larger than the dimension of the variables x and ξ, and78

hence we consider it as a dimension lifting technique. This new method significantly extends the79

application range of the NUFFT approach for computing Kf . Applications of this kind include80

many special function transforms, e.g. the Jacobi polynomial [6] and the Bessel function [4] permit81

phase functions with one dominant term in the form of separation of variables asymptotically. It82

is also worth mentioning that the prefactor implicit in the NUFFT grows roughly exponentially83

in the dimension rε. In the case when rε is large, the dimension lifting technique would be less84

attractive than other methods.85

The rest of the paper is organized as follows. In Section 2, we revisit existing low-rank factoriza-86

tion techniques and propose our new low-rank matrix factorization in the case of indirect access. In87

Section 3, we introduce the new NUFFT approach by dimension lifting. In Section 4, we introduce88

the IBF-MAT. Finally, we provide several numerical examples to demonstrate the efficiency of the89

proposed unified framework in Section 5. Throughout this paper, we adopt MATLAB notations for90

the algorithm description for simplicity: given row and column index sets I and J , KI,J = K(I, J)91

is the submatrix with entries from rows in I and columns in J ; the index set for an entire row or92

column is denoted as “ : ”.93

2 Low-rank matrix factorization94

This section is for the first main step in the unified framework as shown in Figure 1: low-rank95

matrix factorizations of the amplitude and phase matrices.96

2.1 Existing low-rank matrix factorization97

Low-rank approximation by randomized sampling98

4



For K ∈ Cm×n, we define a rank-r approximate singular value decomposition (SVD) of K as99

K ≈ U0Σ0V
∗

0 , (4)

where U0 ∈ Cm×r is orthogonal, Σ0 ∈ Rr×r is diagonal, and V0 ∈ Cn×r is orthogonal, and r = O(1).100

Efficient randomized tools have been proposed to compute approximate SVDs for numerically low-101

rank matrices [14, 18]. The one in [14] is more attractive because it only requiresO(m+n) operations102

and memory: O(1) randomly sampled rows and columns of K are sufficient for construction (4).103

Interpolative low-rank approximation104

Randomized SVD is sufficiently efficient if we allow a linear complexity to construct the low-105

rank approximation. However, to construct the BF in nearly linear operations, we cannot even106

afford linear scaling low-rank approximations; we can only afford an algorithm that provides the107

low-rank factors with explicit formulas. This motivates the interpolative low-rank approximation108

below.109

Let us focus on the case of a kernel function K(x, ξ) = e2πıΦ(x,ξ) and its discretization K =110

e2πıΦ ∈ CNA×NB to introduce the interpolative low-rank approximation. We assume that x and ξ are111

one-dimensional variables and the algorithm below can be easily generalized to higher dimensional112

cases by tensor products. Note that if the phase function is given in a form of separation of113

variables, i.e., Φ(x, ξ) =
∑r

k=1 uk(x)vk(ξ), the following interpolative factorization will also work114

with a minor modification.115

Let A and B denote the sets of contiguous row and column indices of K. If A×B corresponds116

to a small two-dimensional interval in the variables x× ξ, then a low-rank approximation117

K(A,B) = e2πıΦ(A,B) ≈ U0V
∗

0

exists and can be constructed via Lagrange interpolation following a discrete version of the algorithm118

in [9] as follows.119

Suppose the numbers of elements in A and B are NA and NB, respectively. Let120

R(A,B) := Φ(A,B)− ones(NA, 1) ∗ Φ(cA, B)− Φ(A, cB) ∗ ones(1, NB) + Φ(cA, cB), (5)

where cA and cB are the indices of A and B closest to the mean of all indices in A and B, respectively,121

then K can be written as122

K(A,B) = e−2πıΦ(cA,cB) ∗ diag
(
e2πıΦ(A,cB)

)
∗ e2πıR(A,B) ∗ diag

(
e2πıΦ(cA,B)

)
. (6)

Hence, the low-rank approximation of e2πıR(A,B) immediately gives the low-rank approximation of123

K(A,B). A Lagrange interpolation can be applied to construct the low-rank approximation of124

e2πıR(A,B).125

Recall the challenge that we may not have explicit formulas for the amplitude or phase functions.126

Hence, we cannot use Chebyshev grid points in the Lagrange interpolation to maintain a small127

uniform error as the previous BF in [9, 22] does. Therefore, we choose indices in A or B in a similar128

manner like Mock-Chebyshev points3, because both the Chebyshev grid points and the Mock-129

Chebyshev grid points have almost the same numerical performance when A and B correspond to130

3 Though it was shown in [31] that no fast stable approximation of analytic functions from equispaced samples in
a bounded interval in the sense of L∞-norm with an exponential convergence rate is available, the Mock-Chebyshev
points admit polynomial interpolation with a root-exponential convergence rate. In this paper, we care more about
the approximation error at the equispaced sampling locations, in which case it is still unknown whether the Mock-
Chebyshev points admit an exponential convergence rate.

5



equispaced grid points in the discretization of the kernel function K according to [2, 19]. For the131

interest of the reader, we refer to Figure 7 in [2] for the numerical comparison between the original132

Chebyshev interpolation and the Mock-Chebyshev interpolation on equispaced grid points. In the133

case of highly non-equispaced grid points, a stable Mock-Chebyshev interpolation algorithm is still134

under development.135

Let us assume A = {1, . . . , NA} and B = {1, . . . , NB}. If an index set doesn’t start with the136

index 1, we can simply shift the grid points accordingly. For a fixed integer r, the Chebyshev grid137

of order r on [−1
2 ,

1
2 ] is defined by138 {

zt =
1

2
cos

(
(t− 1)π

r − 1

)}
1≤t≤r

.

A grid adapted to the index set A is then defined via shifting, scaling, and rounding as139

{xt}t=1,...,r =

{
Round

(
t+ (NA − r)(zt +

1

2
)

)}
t=1,...,r

. (7)

Note that the rounding operator may result in repeated grid points. Only one grid point will be140

kept if repeated. Similarly, a grid adapted to the index set B is defined as141

{ξt}t=1,...,r =

{
Round

(
t+ (NB − r)(zt +

1

2
)

)}
t=1,...,r

. (8)

Given a set of indices {xt}t=1,...,r in A, define Lagrange interpolation polynomials MA
t (x) by142

MA
t (x) =

∏
1≤j≤r,j 6=t

x− xj
xt − xj

.

Similarly, MB
t is denoted as the Lagrange interpolation polynomials for B.143

Now we are ready to construct the low-rank approximation of e2πıR(A,B) by interpolation:144

• when we interpolate in ξ, the low-rank approximation of e2πıR(A,B) is given by145

e2πıR(A,B) ≈ U0V
∗

0 , (9)

where146

U0 =
(
e2πıR(A,ξ1), . . . , e2πıR(A,ξr)

)
∈ CNA×r,

147

V0 =
(
(MB

1 (B))∗, . . . , (MB
r (B))∗

)
∈ CNB×r,

and each MB
t (B) denotes a row vector of length NB such that the k-th entry is148

MB
t (ξk) =

∏
1≤j≤r,j 6=t

ξk − ξj
ξt − ξj

for ξk ∈ B, k = 1, . . . , NB, given by (8).149

• when we interpolate in x, the low-rank approximation of e2πıR(A,B) is150

e2πıR(A,B) ≈ U0V
∗

0 , (10)

where151

U0 =
(
(MA

1 (A))∗, . . . , (MA
r (A))∗

)
∈ CNA×r,

6



152

V0 =
((
e2πıR(x1,B)

)∗
, . . . ,

(
e2πıR(xr,B)

)∗) ∈ CNB×r,

and each MA
t (A) denotes a row vector of length NA such that the k-th entry is153

MA
t (xk) =

∏
1≤j≤r,j 6=t

xk − xj
xt − xj

for xk ∈ A, k = 1, . . . , NA, given by (7).154

Finally, we are ready to construct the low-rank approximation for the matrix e2πıΦ(A,B) when155

we have Φ(A,B) or equivalently a low-rank factorization of Φ(A,B) as in Algorithm 1.156

1 Input: The phase matrix Φ ∈ CN×N or its low-rank factorization Φ = Ū V̄ ∗. Contiguous
index sets A and B of the row and column indices of Φ, respectively. A rank parameter r.

2 Output: The low-rank factorization UV ∗ such that UV ∗ ≈ e2πıΦ(A,B), where U ∈ CNA×r,
and V ∈ CNB×r, where NA is the number of elements in A and NB is for B.

3 if the input contains low-rank factors Ū and V̄ of Φ then
4 define a function to evaluate an arbitrary entry of Φ at the position (m,n) in O(1)

operations as follows
Φ(m,n) = Ū(m, :)V̄ (n, :)∗.

5 if interpolation in the variable ξ in B then
6 by (6) and (9), we have

U := e−2πıΦ(cA,cB) ∗ diag
(
e2πıΦ(A,cB)

)
∗ U0, V ∗ := V ∗0 ∗ diag

(
e2πıΦ(cA,B)

)
, (11)

where U0 and V0 are given just below (9).

7 if interpolation in the variable x in A then
8 by (6) and (10), we have

U := e−2πıΦ(cA,cB) ∗ diag
(
e2πıΦ(A,cB)

)
∗ U0, V ∗ := V ∗0 ∗ diag

(
e2πıΦ(cA,B)

)
, (12)

where U0 and V0 are given just below (10).

Algorithm 1: Interpolative low-rank approximation for one-dimensional kernel e2πıΦ(x,ξ).
Factorization in higher dimensions can be constructed similarly via tensor products.

2.2 New low-rank matrix factorization with indirect access157

This section introduces a nearly linear scaling algorithm for constructing the low-rank factorization158

of the phase matrix Φ ∈ RN×N when we only know the kernel matrix K = e2πıΦ through Scenarios159

1 and 2 in Table 3. The main idea is to recover O(1) randomly selected columns and rows of Φ160

from the corresponding columns and rows of K = e2πıΦ. Then by the randomized SVD in Section161

2.1, we can construct the low-rank factorization of Φ.162

Obtaining O(1) randomly selected columns and rows of K is simple in Scenarios 1 and 2: we163

can directly evaluate them in Scenario 1; we apply the kernel matrix K and its transpose to O(1)164

randomly selected natural basis vectors in RN to obtain the columns and rows.165

7



However, reconstructing the corresponding columns and rows of Φ from those of K = e2πıΦ is166

more challenging. The difficulty comes from the fact that167

1

2π
= (log (K(i, j))) =

1

2π
=
(

log
(
e2πıΦ(i,j)

))
=

1

2π
arg
(
e2πıΦ(i,j)

)
= mod (Φ(i, j), 1),

where =(·) returns the imaginary part of the complex number, and arg(·) returns the argument of168

a complex number. Hence, Φ is only known up to modular 1.169

Fortunately, our main purpose is not to recover the exact Φ that generates K; instead, we are170

interested in a low-rank matrix Ψ such that171

mod (Ψ, 1) =
1

2π
= (log (K)) . (13)

Based on the smoothness of the phase function, a TV 3-norm4 minimization technique is proposed172

to recover the columns and rows of Φ up to an additive error matrix E that is numerically low-rank,173

i.e., the TV 3-norm minimization technique returns a matrix Ψ = Φ + E such that e2πıΨ = e2πıΦ
174

and E is numerically low-rank.175

To be more rigorous, we look for the solution of the following combinatorial constrained TV 3-176

norm minimization problem:177

min
Φ∈RN×N

∑
i∈R
‖Φ(i, :)‖TV 3 +

∑
j∈C
‖Φ(:, j)‖TV 3 (14)

subject to mod (Φ(i, j), 1) =
1

2π
= (log (K(i, j)))

for i ∈ R or j ∈ C,

where C and R are column and row index sets with O(1) randomly selected indices, respectively.178

The problem addressed here is similar to phase retrieval problems, but has a different setting to179

existing phase retrieval applications and different aims in numerical computation. Phase retrieval180

problems usually have sparsity assumptions on the signals (or after an appropriate transformation)181

that lose phases. In the problem considered in this paper, e2πıΦ is dense and might not be sparse182

after a transformation (e.g., the Fourier transform or wavelet transform). Furthermore, there are183

only O(N) samples of the target matrix of size N ×N to be recovered and the hard constrain (14)184

is preferred instead of treating it as a soft constraint. TV 1-norm is a useful tool for regularization185

in phase retrieval problems; however, TV 3-norm is preferred in this paper since, for example,186

{Φ(x, y)+ax+by}a,b∈Z are good solutions to obtain the low-rank factorization of the phase function,187

and it is not necessary to pick up one function among {Φ(x, y) + ax+ by}a,b∈Z with the minimum188

TV 1-norm using much extra effort. TV 3-norm minimization leave us much more flexibility to189

obtain an approximately good solution to (13) quickly.190

Our goal here is an O(N) algorithm for solving the matrix recovery problem in (14). Though191

there have been many efficient algorithms for phase retrieval problems, they usually require compu-192

tational cost at least O(nN2), where N2 is the size of the target and n is the number of iterations.193

n and N2 are both too large to be applied to our problem. Hence, instead of solving (14) exactly194

using advanced optimization techniques, we propose a heuristic fast algorithm to identify a rea-195

sonably good approximate solution to (14). As we can see in numerical examples, the proposed196

heuristic algorithm works well in most applications.197

A heuristic solution of the TV 3-norm minimization is to use the columns and rows of 1
2π= (log (K))198

to identify smooth columns and rows of Ψ agreeing with (13) and satisfying the following conditions:199

4The TV 3-norm of a vector v ∈ RN is defined as ‖v‖TV 3 :=
∑N−2
i=2 |vi+1 + vi−1 − 2vi − (vi+2 + vi − 2vi+1)| in this

paper. Similarly, The TV 1-norm of a vector v ∈ RN is defined as ‖v‖TV 1 :=
∑N
i=2 |vi − vi−1|. The TV 2-norm of a

vector v ∈ RN is defined as ‖v‖TV 2 :=
∑N−1
i=2 |vi+1 + vi−1 − 2vi|.

8



1. the variation of these columns and rows of Ψ is small;200

2. recovered columns and rows share the same value at the intersection.201

Let us start with an example of vector recovery with TV 3-norm minimization to motivate the202

algorithm for matrix recovery:203

min
v∈RN

‖v‖TV 3 (15)

subject to mod (v, 1) =
1

2π
= (log (k)) ,

where k ∈ RN is a given vector. The discussion below will be summarized in Algorithm 2 and204

visualized in Figure 2.205

First, we assume that k is a vector from the discretization of e2πiφ(ξ) with a smooth function206

φ(ξ). To simplify notations, let u = 1
2π= (log (k)), then we would like to identify a smooth v from207

a given vector u. It is easy to check that the solution to (15) is not unique. Fortunately, we can208

empirically identify v using the following steps:209

1. Set v(1) = u(1) +m for an arbitrary integer m.210

2. Identify v(2) via minimizing |v(2)− v(1)| such that mod (v(2), 1) = u(2) (corresponding to211

Line 6-9 in Algorithm 2).212

3. Identify v(3) via minimizing |(v(2)− v(1))− (v(3)− v(2))| such that mod (v(3), 1) = u(3)213

(corresponding to Line 10-13 in Algorithm 2).214

4. For each i = 4, 5, . . . , N , set v(i) via minimizing215

|(v(i− 1) + v(i− 3)− 2v(i− 2))− (v(i) + v(i− 2)− 2v(i− 1))|

such that mod (v(i), 1) = u(i) (corresponding to Line 16 in Algorithm 2).216

Second, in a more general case when k is a vector from the discretization of e2πiφ(ξ) with a217

piecewise smooth function φ(ξ). Suppose218

S = {c1, c2, . . . , cn}

is an index set indicating the discontinuity locations of φ(ξ) with c1 = 1 < c2 < · · · < cn < N .219

Since we assume that φ(ξ) is discontinuous at the end points of its domain, we let c1 = 1. By220

applying the procedures just above to each piece v(ci : ci+1) for i = 1, . . . , n, we can empirically221

identify v. Since there is no prior information about S except that we know c1 = 1 ∈ S, Algorithm222

2 automatically determines the discontinuous locations in Line 17-19 according to a threshold τ :223

when the second derivative of v at a certain location is larger than τ , we consider v is discontinuous224

at this location.225

Recall the goal of matrix recovery in (13). It is not necessary to tune the parameter τ such226

that the discontinuous locations are exactly identified. If Algorithm 2 misses some discontinuous227

locations, Algorithm 3 will provide a smoother estimation of the phase matrix; if Algorithm 2228

artificially detects O(1) fake discontinuous locations, Algorithm 3 will provide an estimation of the229

phase matrix with more pieces of smooth domains. As long as (13) is satisfied, all these estimations230

are satisfactory. The correct τ depends on the phase function and is not known a priori. In practice,231

one can specify a small τ and it takes O(N) operations to obtain the corresponding discontinuous232

points; if the number of discontinuous points is too large, then 1
2τ is used to identify discontinuous233

9



0 10 20 30

0

10

20

30

40

0 10 20 30

0

10

20

30

40

0 10 20 30

0

10

20

30

40

0 10 20 30

0

10

20

30

40

0 10 20 30

0

10

20

30

40

(a) (b) (c) (d) (e)

0 10 20 30

0

10

20

30

40

0 10 20 30

0

10

20

30

40

0 10 20 30

0

10

20

30

40

0 10 20 30

0

10

20

30

40

0 10 20 30

0

10

20

30

40

(f) (g) (h) (i) (j)

Figure 2: Illustration of the recovery of one row of the phase function Φ(x, ξ) = x · ξ + c(x)|ξ|,
where c(x) = (2 + sin(2πx))/2, by Algorithm 2. This row is a function in ξ denoted as v of length
N , and v has two discontinuous point: one at the beginning and one in the middle. Suppose
u = mod (v, 1), we only know u (in blue) and would like to recover v (in red) from u. Top
panel: (a) u. (b) Line 6-9 in Algorithm 2 assign the first two entries of v right after the first
discontinuous point such that they have the minimum distance while maintaining mod (v, 1) =
mod (u, 1). (c) Line 10-13 in Algorithm 2 assign the third entry of v such that v(2) − v(1) and
v(3)− v(2) have the minimum distance while maintaining mod (v, 1) = mod (u, 1). (d) Line 16
in Algorithm 2 assigns the fourth entry of v such that v(3)+v(1)−2v(2) and v(4)+v(2)−2v(3) have
the minimum distance while maintaining mod (v, 1) = mod (u, 1). (e) Similarly, for all other
i’s before the second discontinuous point, assign the i-th entry of v by minimizing the distance
between v(i−1)+v(i−3)−2v(i−2) and v(i)+v(i−2)−2v(i−1) while maintaining mod (v, 1) =
mod (u, 1). Bottom panel: the second discontinuous point is detected by Line 17 in Algorithm 2;
apply the same procedure as for (a)-(e) to recover the second part of v after the second discontinuous
point.

points; this procedure is repeated until desired discontinuous points have been detected. The total234

cost to obtain a reasonably good τ is at most O(N log(N)). In our numerical tests, τ is set to be235

π
2 for all numerical examples. Other values of τ result in similar numerical results.236

10



1 Input: a vector u of length N , a discontinuity detection parameter τ .
2 Output: a vector v satisfying mod (v, 1) = mod (u, 1), and a vector of indices S for

discontinuity locations.
3 Initialize: S = [1]; let n be the number of elements in S; and let c = 1.
4 while c ≤ n do
5 If c < n, let st = S(c) and ed = S(c+ 1)− 1; otherwise, let st = S(c) and ed = N .
6 if c = 1 then
7 Set v(st : st+ 1) such that these two values have the minimum distance while

maintaining mod (u(st : st+ 1), 1) = mod (v(st : st+ 1), 1).

8 else
9 Set v(st) such that two values in v(st− 1 : st) have the minimum distance while

maintaining mod (u(st− 1 : st), 1) = mod (v(st− 1 : st), 1).

10 if c = 1 then
11 Set v(st+ 2) such that v(st+ 2)− v(st+ 1) and v(st+ 1)− v(st) have the minimum

distance while maintaining mod (u(st+ 2), 1) = mod (v(st+ 2), 1).

12 else
13 Set v(st+ 1) such that v(st+ 1)− v(st) and v(st)− v(st− 1) have the minimum

distance while maintaining mod (u(st+ 1), 1) = mod (v(st+ 1), 1).

14 If c = 1, let bg = st+ 3; otherwise, let bg = st+ 2.
15 for all indices a from bg to ed do
16 Assign the value of v(a) such that v(a− 1) + v(a− 3)− 2v(a− 2) and

v(a) + v(a− 2)− 2v(a− 1) have the minimum distance while maintaining
mod (v(a), 1) = mod (u(a), 1).

17 if |v(a) + v(a− 2)− 2v(a− 1)| > τ then
18 Consider a as a new location at which v is discontinuous, add a to S, and let

n← n+ 1.
19 Break the for-loop.

20 c← c+ 1.

Algorithm 2: An O(N) algorithm for recovering a vector v from the observation u =
mod (v, 1). The discontinuous locations of v is automatically detected. See Figure 2 for
an illustration with a simple example.

237

When the vector recovery algorithm in Algorithm 2 is ready, we apply it to design a matrix238

recovery algorithm in Algorithm 3. Recall that recovered columns and rows by Algorithm 2 should239

share the same value at the intersection. To guarantee this, we carefully choose the recovery order240

of the rows and columns, and the initial values of vector recovery, to avoid assignment conflicts241

at the intersection. For simplicity, we only introduce Algorithm 3 for a phase function defined on242

R× R. We will leave the extension to high-dimensional cases as future work.243

11



1 Input: a vector C and a vector R as the column and row index sets indicating O(1)
randomly selected columns and rows of Φ, columns U = mod (Φ(:, C), 1), rows V =
mod (Φ(R, :), 1), a discontinuity detection parameter τ .

2 Output: columns Ū and rows V̄ satisfying mod (Ū , 1) = mod (U, 1), and mod (V̄ , 1) =
mod (V, 1).

3 Apply Algorithm 2 to U(:, C(1)) to detect a discontinuous point set Sr; add Sr to R and
update row samples V accordingly.

4 Apply Algorithm 2 to V (R(1), :) to detect a discontinuous point set Sc; add Sc to C and
update row samples U accordingly.

5 Let nr be the number of elements in Sr and nc be the number of elements in Sc. The
discontinuous point sets naturally partition the phase matrix into nr × nc blocks (see
Figure 3 for an example).

6 for Each block partitioned by discontinuous point sets do
7 Set τ = 2π, since it is not necessary to detect discontinuity here.
8 Apply Algorithm 2 to recover the first row and the first column of each block.
9 Apply Algorithm 2 to recover the second and the third columns of each block. Make sure

that the recovery shares the same entries when they intersect with the first row, and
there is no discontinuity along rows inside the first three columns.

10 Apply Algorithm 2 to recover O(1) rows of each block such that the first three entries of
these rows have the same entries as in the first three columns.

11 Apply Algorithm 2 to recover O(1) columns of each block such that these columns have
the same entries as in the recovered rows when a column and a row intersect.

Algorithm 3: An O(N) algorithm for the approximate solution of the TV 3-norm minimiza-
tion when the phase function Φ(x, ξ) is defined on R× R.

244

  

(a) (b)(a)

(c) (d)  

(a) (b)(a)

(c) (d)

  

(a) (b)(a)

(c) (d)
  

(a) (b)(a)

(c) (d)(a) (b) (c) (d)

Figure 3: Illustration of the low-rank matrix recovery in Algorithm 3. (a) The matrix is partitioned
into submatrices such that there is no discontinuity along columns and rows in each submatrix.
Line 8 in Algorithm 3 recovers the first column and row of each submatrix. (b) Next, Line 9 in
Algorithm 3 recovers the second and the third columns for each submatrix. (c) Next, Line 10 in
Algorithm 3 recovers O(1) rows of each submatrix such that the first three entries of these rows
have the same entries as in the first three columns. (d) Finally, Line 11 in Algorithm 3 recovers
O(1) columns of each submatrix such that these columns have the same entries as in the recovered
rows when a column and a row intersects.

In the case of higher dimensions, the discretization of the oscillatory integral transform and245

the arrangement of grid points will lead to fake discontinuity along the column and row indices.246

For example, a column or a row as a one-dimensional function in the index is discontinuous at247

a certain point, while we look back to the original high dimensional domain, the original kernel248

12



function is continuous at the corresponding point. Hence, once the discretization and arrangement249

of grid points have been fixed, we can remove the fake discontinuity and apply the same ideas as250

in Algorithm 3 to recover high dimensional phase functions.251

With Algorithm 3 ready, we are able to introduce the nearly linear scaling algorithm for con-252

structing a low-rank factorization UV ∗, where U ∈ CN×r and V ∈ CN×r, such that e2πıUV ∗ = e2πıΦ
253

when we only know the kernel matrix K = e2πıΦ through Scenarios 1 and 2 in Table 3. This method254

is summarized in Algorithm 4.255

2.3 Summary for the low-rank matrix factorization256

Before moving to the algorithms for other main steps of the unified framework as shown in Figure 1,257

let us summarize how those algorithms in Section 2.1 and Section 2.2 can be applied to construct the258

low-rank matrix factorization of the amplitude and phase functions with nearly linear computational259

complexity.260

For a general kernel K(x, ξ) = α(x, ξ)e2πıΦ(x,ξ), suppose we discretize α(x, ξ) and Φ(x, ξ) with261

N grid points in each variable to obtain the amplitude matrix A and the phase matrix Φ. When262

the explicit formulas of α(x, ξ) and Φ(x, ξ) are known, it takes O(N) operations to evaluate one263

column or one row of A and Φ. Hence, the randomized SVD in Section 2.1 is able to construct the264

low-rank matrix factorization of A and Φ in O(N) operations.265

When the explicit formulas are unknown but they are solutions of certain PDE’s as in Scenario266

3 in Table 3. In this paper, we simply assume that O(1) columns and rows of the amplitude and267

phase functions are available and the randomized SVD in Section 2.1 can be applied to construct268

the low-rank factorization in O(N) operations. In practical applications like solving wave equations269

[12], this assumption for the phase function is reasonable since it can be obtained via interpolating270

the solution of the PDE’s on a coarse grid of size independent of N . However, obtaining the271

amplitude function might take expensive computation for solving PDE’s on a grid depending on272

N . Optimizing this complexity will be left as interesting future work.273

In the case of indirect access in Scenario 1 and 2 in Table 3, it takes O(N) or O(N logN)274

operations to evaluate one column or one row of the kernel matrix K. By taking the absolute275

value of K, we obtain one column or one row of A. Hence, the low-rank factorization of A can276

be constructed via the randomized SVD in Section 2.1 in O(N logN) operations. Dividing the277

amplitude from the kernel, we have the access of the phase in the form of e2πıΦ(x,ξ). Hence, the low-278

rank factorization of Φ can be constructed by Algorithm 4 in Section 2.2 in O(N logN) operations.279

13



1 Input: Scenario 1: an algorithm for evaluating an arbitrary entry of the kernel matrix K in
O(1) operations; Scenario 2: an O(N logN) algorithm for applying K and its transpose to
a vector. A rank parameter r, an over-sampling parameter q, and the matrix size N .

2 Output: U ∈ CN×r and V ∈ CN×r such that e2πıUV ∗ = e2πıΦ.
3 if Scenario 1 then
4 Evaluate rq randomly selected columns and rows of K.
5 else if Scenario 2 then
6 Apply the kernel matrix K and its transpose to rq randomly selected natural basis

vectors in RN to obtain the columns and rows of K.
7 Apply Algorithm 3 with the columns and rows of K to obtain rq columns and rows of a

matrix Ψ such that e2πıΨ = e2πıΦ.
8 Apply the randomized SVD with the columns and rows of Ψ to obtain the low-rank

factorization of Ψ ≈ UV ∗ such that e2πıUV ∗ = e2πıΦ, U ∈ CN×r, and V ∈ CN×r.
Algorithm 4: Low-rank matrix factorization for indirect access. The computational com-
plexity in Scenario 1 is O(N) and that in Scenario 2 is O(N logN).

280

3 NUFFT and dimension lifting281

This section introduces a new NUFFT approach by dimension lifting to evaluate the oscillatory282

integral transform283

g(x) =

∫
α(x, ξ)e2πıΦ(x,ξ)f(ξ)dξ. (16)

If we could find {pj(x)}1≤j≤r and {qj(ξ)}1≤j≤r such that e2πı(Φ(x,ξ)−
∑r
j=1 pj(x)qj(ξ)) is numerically284

low-rank, then (16) is reduced to O(1) r-dimensional NUFFT’s:285

g(x) ≈
rε∑
k=1

ak(x)

∫
e2πı

∑r
j=1 pj(x)qj(ξ) (bk(ξ)f(ξ)) dξ, (17)

where ak(x) and bk(ξ) are the low-rank approximation of286

α(x, ξ)e2πı(Φ(x,ξ)−
∑r
j=1 pj(x)qj(ξ)) ≈

rε∑
k=1

ak(x)bk(ξ).

Note that the prefactor of an r-dimensional NUFFT increases as r increases. Hence, the key con-287

dition for deciding whether NUFFT is suitable for evaluating (16) is the existence of {pj(x)}1≤j≤r288

and {qj(ξ)}1≤j≤r to ensure a small r and rε.289

The choice of {pj(x)}1≤j≤r and {qj(ξ)}1≤j≤r is related to but different from classical low-290

rank approximation problems that can be solved by the SVD. In fact, we have a new low-rank291

approximation problem for fixed rank parameters r and rε as follows:292

min
P,Q∈RN×r,U,V ∈RN×rε

‖Ae2πı(Φ−PQ∗) − UV ∗‖2, (18)

where A represents the amplitude matrix for α(x, ξ), and Φ is the phase matrix for Φ(x, ξ). An293

immediate idea is to set reasonable r and rε, and solve the minimization problem in (18). If294

the minimum value of the objective function is sufficiently small, then we can use the NUFFT295

to evaluate (16) via (17). However, solving the optimization problem in (18) could be much more296

expensive than O(N). This motivates Algorithm 5 below for deciding whether we could use NUFFT297

in O(N) operations.298

14



1 Input: the low-rank factorization of the phase matrix Φ ≈ U1V
∗

1 , where U1 ∈ CN×r1 and
V1 ∈ CN×r1 ; the low-rank factorization of the amplitude matrix A ≈ U2V

∗
2 , where

U2 ∈ CN×r2 and V2 ∈ CN×r2 ; rank parameters r < r1 and rε, an over-sampling parameter
q > 1, an accuracy parameter ε ≈ 0, and the matrix size N .

2 Output: y ∈ {0, 1}; if y = 1, return P,Q ∈ RN×r, U, V ∈ RN×rε satisfying the low-rank
factorization

(U2V
∗

2 )� e2πı(U1V ∗1 −PQ∗) ≈ UV ∗,

where � means the entry-wise dot product of two matrices.
3 Compute the approximate r-leading SVD of the rank-r1 matrix U1V

∗
1 using the randomized

truncated SVD algorithm in [16, 18]a and denote it as PΣQ∗. Update PΣ→ P .
4 Let M be a matrix consisting of rq randomly selected columns of (U2V

∗
2 )� e2πı(U1V ∗1 −PQ∗).

Perform a pivoted QR decomposition of M and let R be the resulting rq × rq upper
triangular matrix.

5 Let n be the number of diagonal entries of R that are larger than R(1, 1)ε. If n < r, let
y = 1; otherwise, let y = 0.

6 if y = 1 then
7 Apply the randomized SVD to compute the low-rank factorization UV ∗ of

(U2V
∗

2 )� e2πı(U1V ∗1 −PQ∗) with the rank parameter rε and the over-sampling parameter q.

Algorithm 5: An O(N) algorithm for deciding whether NUFFT is applicable; if NUFFT is
applicable, returns the low-rank factorization for the evaluation in (17).

aIn the computation of the leading singular pair, since we have the rank-r1 factorization, the computational cost
is O(N), the convergence to the ground true singular pair is very fast if a test matrix with a number of columns
larger than r1 is applied [16], and the probability to obtain high accuracy is very close to 1.

299

The stability and probability analysis of the main components of this algorithm can be found in300

[16, 18, 27]. If the output of Algorithm 5 is y = 1, then the low-rank factorization of Ae2πı(Φ−PQ∗) is301

incorporated into (17) to evaluate (16) with rε r-dimensional NUFFT’s. Note that r is a parameter302

less than or equal to 3 according to the current development of NUFFT, and rε usually can be303

as large as O(100) since N is usually very large. If the output of Algorithm 5 is y = 0, then the304

NUFFT approach is not applicable and we use the IBF-MAT introduced below to evaluate (16).305

4 IBF-MAT306

This section introduces the IBF-MAT for evaluating the oscillatory integral transform if NUFFT is307

not applicable. Recall that after computing the low-rank factorization of the amplitude function,308

our target is to evaluate (3). If NUFFT is not applicable, we compute the IBF-MAT of e2πıΦ(x,ξ),309

where the phase function is given in a form of low-rank matrix factorization. Then the evaluation310

of (3) is reduced to the application of IBF-MAT to O(1) vectors. Hence, we only focus on the311

IBF-MAT of e2πıUV ∗ , where U and V ∈ RN×r. To simplify the discussion, we also assume that x312

and ξ are one-dimensional variables. It is easy to extend the IBF-MAT to multi-dimensional cases313

following the ideas in [9, 22, 24, 25].314

K := e2πıUV ∗ is a complementary low-rank matrix that has been widely studied in [13, 14, 23,315

25, 28, 30, 39]. Let X and Ω be the row and column index sets of e2πıUV ∗ . Two trees TX and TΩ316

of the same depth L = O(logN), associated with X and Ω respectively, are constructed by dyadic317

partitioning. Denote the root level of the tree as level 0 and the leaf one as level L. Such a matrix318

K of size N ×N is said to satisfy the complementary low-rank property if for any level `, any319

15



node A in TX at level `, and any node B in TΩ at level L − `, the submatrix KA,B, obtained by320

restricting K to the rows indexed by the points in A and the columns indexed by the points in B, is321

numerically low-rank. See Figure 4 for an illustration of low-rank submatrices in a complementary322

low-rank matrix of size 16× 16.323

Column Index

R
o

w
 I

n
d

e
x

Column Index

R
o

w
 I

n
d

e
x

Column Index

R
o

w
 I

n
d

e
x

Column Index

R
o

w
 I

n
d

e
x

Column Index

R
o

w
 I

n
d

e
x

Figure 4: Hierarchical decomposition of the row and column indices of a one-dimensional comple-
mentary low-rank matrix of size 16× 16. The trees TX (TΩ) has a root containing 16 column (row)
indices and leaves containing a single column (row) index. The rectangles above indicate some of
the low-rank submatrices.

In a special case when K has an explicit formula, [9] proposed an O(N logN) butterfly algo-324

rithm to construct a data-sparse representation of K using the low-rank factorizations of low-rank325

submatrices in the complementary low-rank structure. [22] further optimized this algorithm and326

formulated it into the form of BF:327

K ≈ ULGL−1 · · ·GhMh(Hh)∗ . . . (H1)∗(V 0)∗, (19)

where the depth L = O(logN) is assumed to be even, h = L/2 is a middle-level index, and all328

factors are sparse matrices with O(N) nonzero entries. Storing and applying the BF requires only329

O(N logN) complexity. However, in a general case when only the low-rank factorization of the330

phase matrix Φ ≈ UV ∗ is available, the state-of-the-art purely algebraic approach to constructing331

the BF requires at least O(N1.5) computational complexity [23]. Though the application of the BF332

is highly efficient, the precomputation of the factorization is still not practical when N is large.333

The IBF-MAT in this paper admits O(N logN) construction and application complexity, which334

would be a useful tool in developing nearly linear scaling algorithms to solve a wide class of differ-335

ential and integral equations when incorporated into the schemes in [17, 21, 26, 32, 33]. The main336

difference between IBF-MAT and the BF in [9, 22] is that we apply Algorithm 1 in Section 2.1 to337

construct the low-rank factorization of low-rank submatrices, instead of the interpolative low-rank338

approximation in Section 2.1 in [22]. Hence, to reduce the length of this paper, we only illustrate339

how Algorithm 1 in this paper is applied to design an O(N logN) butterfly algorithm. The reader340

is referred to [22] for the routines that construct the data-sparse representation in the form of (19)341

using the new butterfly algorithm.342

With no loss of generality, we assume that K = e2πıUV ∗ coming from the discretization of343

K(x, ξ) = e2πıΦ(x,ξ) with a uniform grid. Given an input vector {f(ξ), ξ ∈ Ω}, the goal is to344

compute the potential vector {g(x), x ∈ X} defined by345

g(x) =
∑
ξ∈Ω

K(x, ξ)f(ξ), x ∈ X.

The main data structure of the butterfly algorithm is a pair of dyadic trees TX and TΩ. Recall346

that for any pair of intervals A×B ∈ TX × TΩ obeying the condition `A + `B = L, the submatrix347

16



{K(x, ξ)}x∈A,ξ∈B is approximately of a constant rank. An explicit method to construct its low-rank348

approximation is given by Algorithm 1. More precisely, for any ε > 0, there exists a constant rε349

independent of N and two sets of functions {αABt (x)}1≤t≤rε and {βABt (ξ)}1≤t≤rε given in (11) or350

(12) such that351 ∣∣∣∣∣K(x, ξ)−
rε∑
t=1

αABt (x)βABt (ξ)

∣∣∣∣∣ ≤ ε, ∀x ∈ A,∀ξ ∈ B. (20)

For a given interval B in Ω, define uB(x) to be the restricted potential over the sources ξ ∈ B352

uB(x) =
∑
ξ∈B

K(x, ξ)g(ξ).

The low-rank property gives a compact expansion for {uB(x)}x∈A. Summing (20) over ξ ∈ B with353

coefficients g(ξ) gives354 ∣∣∣∣∣∣uB(x)−
rε∑
t=1

αABt (x)

∑
ξ∈B

βABt (ξ)g(ξ)

∣∣∣∣∣∣ ≤
∑
ξ∈B
|g(ξ)|

 ε, ∀x ∈ A.

Therefore, if one can find coefficients {λABt }1≤t≤rε obeying355

λABt ≈
∑
ξ∈B

βABt (ξ)g(ξ), 1 ≤ t ≤ rε, (21)

then the restricted potential {uB(x)}x∈A admits a compact expansion356 ∣∣∣∣∣uB(x)−
rε∑
t=1

αABt (x)λABt

∣∣∣∣∣ ≤
∑
ξ∈B
|g(ξ)|

 ε, ∀x ∈ A.

The butterfly algorithm below provides an efficient way for computing {λABt }1≤t≤rε recursively. The357

general structure of the algorithm consists of a top-down traversal of TX and a bottom-up traversal358

of TΩ, carried out simultaneously. A schematic illustration of the data flow in this algorithm is359

provided in Figure 5.360

Algorithm 4.1. Butterfly algorithm361

1. Preliminaries. Construct the trees TX and TΩ.362

2. Initialization. Let A be the root of TX . For each leaf interval B of TΩ, construct the expansion363

coefficients {λABt }1≤t≤rε for the potential {uB(x)}x∈A by simply setting364

λABt =
∑
ξ∈B

βABt (ξ)g(ξ), 1 ≤ t ≤ rε. (22)

By the interpolative low-rank approximation in Algorithm 1 applied to e2πıΦ(A,B) in the vari-365

able ξ in B, we can define the expansion coefficients {λABt }1≤t≤rε by366

λABt := e−2πıΦ(cA,ξ
B
t )
∑
ξ∈B

(
MB
t (ξ)e2πıΦ(cA,ξ)g(ξ)

)
, (23)

where {ξBt }1≤t≤rε is the set of grid points adapted to B by (8).367

17



3. Recursion. For ` = 1, 2, . . . , L/2, visit level ` in TX and level L − ` in TΩ. For each pair368

(A,B) with `A = ` and `B = L− `, construct the expansion coefficients {λABt }1≤t≤rε for the369

potential {uB(x)}x∈A using the low-rank representation constructed at the previous level. Let370

P be A’s parent and C be a child of B. Throughout, we shall use the notation C � B when371

C is a child of B. At level ` − 1, the expansion coefficients {λPCs }1≤s≤rε of {uC(x)}x∈P are372

readily available and we have373 ∣∣∣∣∣uC(x)−
rε∑
s=1

αPCs (x)λPCs

∣∣∣∣∣ ≤
∑
ξ∈C
|g(ξ)|

 ε, ∀x ∈ P.

Since uB(x) =
∑

C�B u
C(x), the previous inequality implies that374 ∣∣∣∣∣uB(x)−
∑
C�B

rε∑
s=1

αPCs (x)λPCs

∣∣∣∣∣ ≤
∑
ξ∈B
|g(ξ)|

 ε, ∀x ∈ P.

Since A ⊂ P , the above approximation is of course true for any x ∈ A. However, since `A +375

`B = L, the sequence of restricted potentials {uB(x)}x∈A also has a low-rank approximation376

of size rε, namely,377 ∣∣∣∣∣uB(x)−
rε∑
t=1

αABt (x)λABt

∣∣∣∣∣ ≤
∑
ξ∈B
|g(ξ)|

 ε, ∀x ∈ A.

Combining the last two approximations, we obtain that {λABt }1≤t≤rε should obey378

rε∑
t=1

αABt (x)λABt ≈
∑
C�B

rε∑
s=1

αPCs (x)λPCs , ∀x ∈ A. (24)

This is an over-determined linear system for {λABt }1≤t≤rε when {λPCs }1≤s≤rε,C�B are avail-379

able. The butterfly algorithm uses an efficient linear transformation approximately mapping380

{λPCs }1≤s≤rε,C�B into {λABt }1≤t≤rε as follows381

λABt := e−2πıΦ(cA,ξ
B
t )
∑
C�B

rε∑
s=1

MB
t (ξCs )e2πıΦ(cA,ξ

C
s )λPCs , (25)

where {ξBt }1≤t≤rε (and {ξCt }1≤t≤rε) is the set of grid points adapted to B (and C) by (8).382

4. Switch. For the levels visited, interpolation is applied in variable ξ, while the interpolation is383

applied in variable x for levels ` > L/2. Hence, we are switching the interpolation variable in384

Algorithm 4 at this step. Now we are still working on level ` = L/2 and the same domain pairs385

(A,B) in the last step. Let λABs denote the expansion coefficients obtained by interpolative386

low-rank factorization using Algorithm 1 applied to e2πıΦ(A,B) in the variable ξ in B in the last387

step. Correspondingly, {ξBs }s are the interpolation grid points in B in the last step. We take388

advantage of the interpolation in variable x in A using Algorithm 1 applied to e2πıΦ(A,B) and389

generate grid points {xAt }1≤t≤rε in A by (7). Then we can define new expansion coefficients390

λABt :=

rε∑
s=1

e2πıΦ(xAt ,ξ
B
s )λABs .

18



TX TΩ

L
2

L
2

Figure 5: Trees of the row and column indices. Left: TX for the row indices X. Right: TΩ for the
column indices Ω. The interaction between A ∈ TX and B ∈ TΩ starts at the root of TX and the
leaves of TΩ.

5. Recursion. Similar to the discussion in Step 3, we go up in tree TΩ and down in tree TX391

at the same time until we reach the level ` = L. We construct the low-rank approximation392

functions by interpolation in variable x using Algorithm 1 as follows:393

αABt (x) = e2πıΦ(x,cB)MA
t (x)e−2πıΦ(xAt ,cB), βABt (ξ) = e2πıΦ(xAt ,ξ), (26)

where {xAt }1≤t≤rε is the set of grid points adapted to A by (7).394

Hence, the new expansion coefficients {λABt }1≤t≤rε can be defined as395

λABt :=
∑
C�B

e2πıΦ(xAt ,cC)
rε∑
s=1

(
MP
s (xAt )e−2πıΦ(xPs ,cC)λPCs

)
, (27)

where again P is A’s parent and C is a child interval of B.396

6. Termination. Finally, ` = L and set B to be the root node of TΩ. For each leaf interval397

A ∈ TX , use the constructed expansion coefficients {λABt }1≤t≤rε in (27) to evaluate uB(x) for398

each x ∈ A,399

u(x) = uB(x) =

rε∑
t=1

αABt (x)λABt

= e2πıΦ(x,cB)
rε∑
t=1

(
MA
t (x)e−2πıΦ(xAt ,cB)λABt

)
,

(28)

where {xAt }1≤t≤rε is the set of grid points adapted to A by (7).400

Like the butterfly algorithm in [9], Algorithm 4.1 is a direct approach that uses the low-rank401

matrix factorization by Algorithm 1 on-the-fly to evaluate the oscillatory integral transform402

g(x) =

∫
e2πıΦ(x,ξ)f(ξ)dξ

in O(N logN) operations without precomputation. If repeated applications of the integral trans-403

form to multiple functions f ’s are required, it is more efficient to keep the low-rank matrix factor-404

izations and arrange them into the form of BF in (19). Besides, the rank provided by interpolative405

factorization is far from optimal, which motivates the structure-preserving sweeping matrix com-406

pression technique in [22] to further compress the preliminary BF by interpolative factorization to407

obtain a sparser BF, which is the IBF-MAT of the kernel e2πıΦ(x,ξ) in this paper. The reader is408

referred to [22] for a complete re-compression algorithm.409

19



5 Numerical results410

This section presents several numerical examples to demonstrate the efficiency of the proposed411

unified framework. The numerical results were obtained on a computer with Intel R© Xeon R© CPU412

X5690 @ 3.47GHz (6 core/socket) and 128 GB RAM. All implementations are in MATLAB R©
413

and are available in the second version of ButterflyLab (https://github.com/ButterflyLab/414

ButterflyLab).415

Let {gd(x), x ∈ X}, {gb(x), x ∈ X}, and {gn(x), x ∈ X} denote the results given by the direct416

matrix-vector multiplication, IBF-MAT, and NUFFT, respectively. The accuracy of applying fast417

algorithms is estimated by the relative error defined as follows,418

εb =

√∑
x∈S |gb(x)− gd(x)|2∑

x∈S |gd(x)|2
and εn =

√∑
x∈S |gn(x)− gd(x)|2∑

x∈S |gd(x)|2
, (29)

where S is an index set containing 256 randomly sampled row indices of the kernel matrix K. The419

error for recovering the amplitude function is defined as420

εamp =
‖A(S, S)− U(S, :)V (:, S)∗‖2

‖A(S, S)‖2
, (30)

where A is the amplitude matrix and UV ∗ is its low-rank recovery. The error for recovering the421

phase and the kernel functions are defined similarly and denoted as εpha and εK , respectively.422

5.1 Accuracy and scaling of low-rank matrix recovery and IBF-MAT423

In the first part of the numerical section, we present numerical results of several examples to424

demonstrate the accuracy and asymptotic scaling of the proposed low-rank matrix recovery for425

amplitude and phase functions, and IBF-MAT. With no loss of generality, we only focus on Scenarios426

1 and 2 of indirect access. For the first scenario, we apply the proposed algorithms to evaluate an427

FIO in 1D and a Hankel matrix transform. For the second scenario, we compute the IBF-MAT of428

the composition of two FIO’s when we only have the BF representing each FIO.429

One-dimensional FIO430

Our first example is to evaluate a one-dimensional FIO [23] of the following form:431

g(x) =

∫
R
α(x, ξ)e2πıΦ(x,ξ)f̂(ξ)dξ, (31)

where f̂ is the Fourier transform of f , α(x, ξ) = 1, and Φ(x, ξ) is a phase function given by432

Φ(x, ξ) = x · ξ + c(x)|ξ|, c(x) = (2 + 0.2 sin(2πx))/16. (32)

The discretization of (31) is433

g(xi) =
∑
ξj

α(xi, ξj)e
2πıΦ(xi,ξj)f̂(ξj), i, j = 1, 2, . . . , N, (33)

where {xi} and {ξj} are points uniformly distributed in [0, 1) and [−N/2, N/2) following434

xi = (i− 1)/N and ξj = j − 1−N/2. (34)

20

https://github.com/ButterflyLab/ButterflyLab
https://github.com/ButterflyLab/ButterflyLab
https://github.com/ButterflyLab/ButterflyLab


This example is for Scenario 1 in Table 3. The unified framework is applied to recover the435

amplitude and phase functions in a form of low-rank matrix factorization, compute the IBF-MAT436

of the kernel function, and apply the IBF-MAT as in (3) to a randomly generated f in (31) to437

obtain g. Table 4 summarizes the results of this example for different grid sizes N and numbers438

of interpolation points rε. In the low-rank approximations of amplitude and phase functions, the439

rank parameter is 20 and the over-sampling parameter is 5.440

N, rε εb εK εpha εamp Trec(min) Tfac(min) Tapp(sec) Td/Tapp

4096, 8 3.16e-06 3.15e-11 3.15e-11 1.20e-15 4.21e-02 2.26e-01 1.62e-02 4.52e+01
4096,12 7.87e-11 2.23e-11 2.23e-11 1.31e-15 4.06e-02 2.11e-01 2.34e-02 3.53e+01

16384, 8 3.98e-06 4.77e-11 4.77e-11 1.22e-15 1.54e-01 1.13e+00 7.39e-02 1.08e+02
16384,12 1.87e-10 2.12e-10 2.12e-10 1.23e-15 1.47e-01 1.13e+00 1.14e-01 6.67e+01

65536, 8 5.35e-06 2.30e-09 2.30e-09 1.22e-15 5.77e-01 5.41e+00 3.07e-01 3.32e+02
65536,12 2.01e-09 3.47e-09 3.47e-09 1.22e-15 5.96e-01 5.92e+00 5.40e-01 2.63e+02

262144, 8 4.51e-06 7.31e-09 7.31e-09 1.14e-15 2.32e+00 2.73e+01 1.48e+00 1.12e+03
262144,12 7.70e-09 9.88e-09 9.88e-09 1.25e-15 2.33e+00 2.94e+01 2.55e+00 7.82e+02

Table 4: Numerical results for the one-dimensional FIO given in (33). Trec is the time for recovering
the amplitude and phase functions, Tfac is the time for computing the IBF-MAT, Tapp is the time
for applying the IBF-MAT, and Td is the time for a direct summation in (33).

Table 4 shows that for a fixed number of interpolation points rε, and a rank parameter for the441

amplitude and phase functions, the accuracy of the low-rank matrix recovery and the IBF-MAT442

stay in almost the same order. As for the computational complexity, both the factorization time443

and the application time of the IBF-MAT, and the reconstruction time of the amplitude and phase444

functions scales like N logN .445

Special function transform446

Next, we provide an example of a special function transform. Following the standard notation,447

we denote the Hankel function of the first kind of order m by H
(1)
m . When m is an integer, H

(1)
m448

has a singularity at the origin and a branch cut along the negative real axis. We are interested in449

evaluating the sum of Hankel functions over different orders,450

g(xi) =
N∑
j=1

H
(1)
j−1(xi)fj , i = 1, 2, . . . , N, (35)

which is analogous to expansion in orthogonal polynomials. The points xi are defined via the451

formula452

xi = N +
2π

3
(i− 1),

which are bounded away from zero. The entries of the matrix in the above matvec can be explicitly453

calculated on-the-fly in O(1) operations per entry using asymptotic formulas. The unified frame-454

work will work for many other orthogonal transforms in the oscillatory regime that admit smooth455

amplitude and phase functions. For more examples see [4, 3].456

This example is also for Scenario 1 in Table 3. The unified framework is applied to recover457

the amplitude and phase functions in a form of low-rank matrix factorization, compute the IBF-458

MAT of the kernel function, and apply the IBF-MAT as in (3) to a randomly generated f to459

21



obtain g. Table 5 summarizes the results of this example for different grid sizes N and numbers460

of interpolation points rε. In the low-rank approximations of amplitude and phase functions, the461

rank parameter is 20 and the over-sampling parameter is 5.462

N, rε εb εK εpha εamp Trec(min) Tfac(min) Tapp(sec) Td/Tapp

4096, 8 9.03e-06 2.52e-09 1.42e-09 1.16e-10 6.68e-02 1.98e-01 8.72e-02 9.98e+01
4096,12 4.93e-07 9.66e-08 8.34e-08 3.05e-11 6.66e-02 1.64e-01 9.15e-02 1.01e+02

16384, 8 1.66e-04 7.16e-07 6.00e-07 9.17e-10 2.42e-01 1.02e+00 5.03e-01 2.04e+02
16384,12 2.43e-07 3.61e-08 2.16e-08 1.87e-10 2.49e-01 8.88e-01 5.01e-01 2.08e+02

65536, 8 7.15e-06 2.98e-06 1.24e-06 1.11e-07 9.61e-01 4.96e+00 3.57e+00 4.74e+02
65536,12 4.10e-05 1.99e-04 2.89e-06 3.12e-05 9.56e-01 4.67e+00 3.97e+00 4.69e+02

262144, 8 5.41e-06 9.77e-06 4.93e-06 1.26e-06 3.89e+00 2.42e+01 1.79e+01 1.38e+03
262144,12 5.94e-05 1.58e-04 4.27e-06 2.17e-05 3.89e+00 2.44e+01 2.08e+01 1.17e+03

Table 5: Numerical results for the Hankel function transform given in (35). Trec is the time for
recovering the amplitude and phase functions, Tfac is the time for computing the IBF-MAT, Tapp
is the time for applying the IBF-MAT, and Td is the time for a direct summation in (35).

The results in Table 5 agree with the O(N logN) complexity analysis and the speed-up factor463

over a direct summation is significant. The accuracy of the IBF-MAT becomes better if rε is larger464

and is almost independent of the problem size. Note that the recovery accuracy of the amplitude465

and phase functions becomes worse as N increases. This is due to the fact that there is a singularity466

point in the corner of the amplitude matrix (see Figure 6), leading to an increasing rank of the467

amplitude matrix as the problem size increases. Besides, the randomized sampling algorithm in468

the randomized SVD is not good in the presence of singularity, unless we know this singularity a469

prior so that we sample more at the corner. Hence, when N > 16384 the accuracy of the low-rank470

amplitude and phase recovery is not very good and this influences the accuracy of the IBF-MAT,471

since the accuracy of the IBF-MAT is bounded below by the recovery accuracy. It is easy to fix472

this issue. After reconstructing the amplitude and phase, we can check singularity and reconstruct473

these functions again with adjusted sampling strategies to improve the accuracy. This works well474

in practice and we don’t show the numerical results to save the space of the paper.475

Composition of two FIO’s in 1D476

The third example is to evaluate a composition of two FIO’s of the following form:477

g(x) = L ◦ L(f), (36)

where L is an FIO of the form478

g(x) =

∫
R
e2πıΦ(x,ξ)f̂(ξ)dξ, (37)

where Φ(x, ξ) is a phase function given by479

Φ(x, ξ) = x · ξ + c(x)ξ, c(x) = (2 + 0.2 sin(2πx))/16. (38)

The discretization of (37) is similar to (33).480

This example is for Scenario 2 in Table 3. The unified framework is applied to recover the481

amplitude and phase functions in a form of low-rank matrix factorization, compute the IBF-MAT482

of the kernel function, and apply the IBF-MAT as in (3) to a randomly generated f in (36) to483

22



Figure 6: The exact amplitude function of the example in (35). There is a singularity point in
the corner of the amplitude matrix, leading to an increasing rank of the amplitude matrix as the
problem size increases.

obtain g. Table 6 summarizes the results of this example for different grid sizes N and numbers484

of interpolation points rε. In the low-rank approximations of amplitude and phase functions, the485

rank parameter is 20 and the over-sampling parameter is 5.486

We would like to emphasize that the composition of two FIO’s results in an FIO with a phase487

function that is singular at the point ξ = 0. This leads to large-rank submatrices in the kernel488

matrix. In this case, we can adopt the multiscale butterfly algorithm/factorization in [24, 25] to deal489

with this singularity. We have implemented the multiscale version of the IBF-MAT and present its490

numerical performance in Table 6. For the purpose of reducing the length of this paper, we don’t491

introduce the multiscale IBF-MAT. The reader is referred to [24, 25] for a detailed description of492

the multiscale idea.493

N, rε εb Trec(min) Tfac(min) Tapp(sec)

4096, 8 4.59e-06 2.41e-01 1.81e-01 1.79e-01
4096,12 9.24e-10 2.45e-01 1.71e-01 3.14e-01

16384, 8 5.42e-06 1.80e+00 1.02e+00 1.69e+00
16384,12 1.69e-09 1.80e+00 1.08e+00 1.86e+00

65536, 8 6.29e-06 1.01e+01 5.36e+00 1.42e+01
65536,12 9.25e-09 1.01e+01 5.72e+00 2.68e+01

262144, 8 7.16e-06 3.29e+01 2.51e+01 8.35e+01
262144,12 2.45e-08 3.25e+01 3.00e+01 1.43e+02

Table 6: Numerical results for the composition of two FIO’s given in (36). Trec is the time for
recovering the amplitude and phase functions, Tfac is the time for computing the multiscale IBF-
MAT, and Tapp is the time for applying the multiscale IBF-MAT.

Table 6 shows that for a fixed number of interpolation points rε, and a rank parameter for the494

amplitude and phase functions, the accuracy of the low-rank matrix recovery and the multiscale495

IBF-MAT stay in almost the same order, though the accuracy becomes slightly worse as the problem496

size increases. The slightly increasing error is due to the randomness of the proposed algorithm as497

explained previously. There is no explicit formula for the amplitude and phase functions in this498

23



example. Hence, we cannot estimate the accuracy of the recovery algorithm. Since the accuracy of499

the multiscale IBF-MAT is bounded below by the accuracy of amplitude and phase recovery. We500

see that the recovery accuracy should be very good.501

As for the computational complexity, both the factorization time and the application time of the502

IBF-MAT, and the reconstruction time of the amplitude and phase functions scales like N logN .503

5.2 Comparison of NUFFT and BF504

In the second part of the numerical section, we illustrate the O(N) strategy in Algorithm 5 for505

deciding whether we can use NUFFT in the oscillatory integral transform. We will show that once506

the NUFFT is applicable, it is more efficient than the BF considering that the prefactor of the507

factorization and application time of the BF is larger than that of the NUFFT approach, when we508

require an approximate matvec with high accuracy, no matter how many vectors in the matvec.509

To this end, we will provide an example of FIO’s in solving wave equations. In the case of low510

accuracy requirement, according to the comparison of BF and NUFFT in Table 1 and 2 in [22],511

our conclusion just above still valid.512

Fast algorithms for solving wave equations with variable coefficients based on FIO’s have been513

studied based on either the BF in [12] or the wave packet representation of the FIO’s in [7, 11]. [12]514

also proposed an approach to solve wave equations based on a carefully designed NUFFT according515

to the explicit formulas of FIO’s inspired by the work in [8].516

We propose to apply the new NUFFT approach with dimension lifting for the evaluation of517

FIO’s used in [12] in the one-dimensional case. This new method does not rely on the explicit518

formula of an FIO and can be applied to more general scenarios. Besides, the dimension lifting519

idea could lead to fewer applications of the NUFFT, since the rank rε in (17) could be smaller520

compared to the NUFFT approach in [12]. The application of the new NUFFT approach in higher521

dimensional spaces will be left as future work.522

In more particular, the FIO used in [12] arises from the solution of the one-dimensional wave523

equation as follows:524 
∂ttu(x, t)− ∂x(c2(x)∂xu(x, t)) = 0 t > 0, x ∈ [0, 1)

u(x, 0) = u0(x) x ∈ [0, 1)

∂tu(x, 0) = u1(x) x ∈ [0, 1),

(39)

where the boundary conditions are taken to be periodic. The theory of FIO’s states that for a given525

smooth and positive c(x) there exists a time t∗ that depends only on c(x) such that for any t < t∗,526

the general solution of (39) is given by a summation of two FIO’s [12]:527

u(x, t) =
∑
ξ∈Z

e2πıΦ+(x,ξ,t)α+(x, ξ, t)f̂+(ξ) +
∑
ξ∈Z

e2πıΦ−(x,ξ,t)α−(x, ξ, t)f̂−(ξ),

where f+ and f− are two functions depending on the initial conditions.528

In this example, we assume that c(x) = 2 + sin(2πx) and follow the ideas in [12] to construct529

the FIO’s in the solution operator of (39). Without loss of generality, we focus on the evaluation530

of the FIO531 ∑
ξ∈Z

e2πıΦ+(x,ξ,t)f̂+(ξ). (40)

The phase function Φ+(x, ξ, t) satisfies the Hamilton-Jacobi equation532 {
∂tΦ+(x, ξ, t)− c(x)|∂xΦ+(x, ξ, t)| = 0

Φ+(x, ξ, 0) = x · ξ.
(41)

24



Note that Φ+(x, ξ, t) is homogeneous of degree 1 in ξ, i.e., Φ+(x, λξ, t) = λΦ+(x, ξ, t) for λ > 0.533

Therefore, we only need to evaluate Φ+(x, ξ, t) at ξ = ±1. From the algebraic point of view, the534

phase matrix is piecewise rank-1, i.e.,535

Φ+(x, ξ, t) =

{
Φ+(x, 1, t)ξ, ∀ξ ≥ 0,

−Φ+(x,−1, t)ξ, ∀ξ < 0.
(42)

In fact, to make the boundary condition periodic in x, Ψ+(x, ξ, t) := Φ+(x, ξ, t)− xξ is introduced536

for ξ = ±1. Then we have537 {
∂tΨ+(x, ξ, t)− c(x)|∂xΨ+(x, ξ, t) + ξ| = 0,

Ψ+(x, ξ, 0) = 0.
(43)

When c(x) is a band-limited function, Ψ+(x, ξ, t) is a smooth function in x when t is sufficiently538

smaller than t∗. Hence, a small grid in x is enough to discretize (43). The value of Ψ+ on a finer539

grid in x can evaluated by spectral interpolation using FFT.540

In the numerical examples here, we adopt a uniform grid with 512 grid points for x in [0, 1),541

and a time step size 1
4096 to solve (43). The standard local Lax-Friedrichs Hamiltonian method is542

applied for x and the third order TVD Runge-Kutta method is used for t to solve (43). We vary543

the problem size N of the evaluation in (40) and discretize Φ+(x, ξ, t) with a uniform spacial grid544

with a step size 1
N for x ∈ [0, 1) and a uniform frequency grid with a step size 1 for ξ ∈ [−N

2 ,
N
2 ).545

By (42), we solve (43) and obtain a low-rank factorization of the phase matrix and apply IBF-546

MAT to evaluate (40). Note that the phase matrix is piecewise rank-1, we can split the summation547

in (40) into two parts:548 ∑
ξ∈{−N

2
,...,−1}

e2πıΦ+(x,ξ,t)f̂+(ξ) +
∑

ξ∈{0,1,··· ,N
2
−1}

e2πıΦ+(x,ξ,t)f̂+(ξ), (44)

and apply the one-dimensional NUFFT approach to evaluate the two summations in (44). Or we549

can also apply the two-dimensional NUFFT approach to compute the summation in (40). The550

numerical results are summarized in Table 7 and Table 8. To make the accuracy of the BF and551

the NUFFT approaches comparable, we choose the rank parameter rε in the IBF-MAT as 12, the552

accuracy tolerance ε in the IBF-MAT and the NUFFT as 1e− 12.553

Numerical results in Table 7 show that both the IBF-MAT and the one-dimensional NUFFT554

approach without dimension lifting admit O(N logN) factorization and application time. For555

almost the same evaluation accuracy, the one-dimensional NUFFT approach has a much smaller556

prefactor (about O(1000) times smaller considering the total cost) making it more preferable.557

Numerical results in Table 8 show that the two-dimensional NUFFT approach with dimension558

lifting also admits O(N logN) factorization and application time. Though the BF might be a559

few times more efficient in some cases in terms of the application time, the NUFFT approach is560

still more preferable considering the expensive factorization time of the BF. Although the two-561

dimensional NUFFT approach is more expensive than the one-dimensional NUFFT method, the562

two-dimensional NUFFT approach doesn’t rely on the piecewise rank-1 property of the phase563

function and therefore is applicable in more general situations.564

Although we know that the NUFFT approach is applicable to (40) and (44), we still apply565

Algorithm 5 to test its time scaling. The results of TDEC in Table 8 also verify that Algorithm 5566

for deciding whether we can apply the NUFFT approach has a linear scaling.567

25



N t TFFT (sec) T bfac(sec) T bapp(sec) εb Tnfac(sec) Tnapp(sec) εn

4096 2.441e-04 2.07e-04 1.08e+01 1.14e-02 1.33e-12 9.26e-04 3.44e-03 4.22e-13
4096 1.562e-02 2.07e-04 1.03e+01 1.14e-02 1.52e-12 7.78e-04 3.36e-03 1.93e-13

16384 2.441e-04 3.21e-04 5.56e+01 5.63e-02 6.46e-12 8.95e-04 1.26e-02 1.02e-12
16384 1.562e-02 3.21e-04 5.61e+01 5.65e-02 5.29e-12 1.02e-03 1.48e-02 1.06e-12

65536 2.441e-04 2.91e-03 2.92e+02 2.70e-01 3.06e-12 9.89e-04 5.33e-02 7.89e-12
65536 1.562e-02 2.91e-03 2.93e+02 3.14e-01 3.78e-12 1.12e-03 6.05e-02 4.30e-12

262144 2.441e-04 5.41e-03 1.46e+03 1.23e+00 3.61e-12 8.45e-04 2.04e-01 6.33e-12
262144 1.562e-02 5.41e-03 1.56e+03 1.31e+00 1.04e-11 1.20e-03 2.00e-01 4.04e-11

Table 7: Numerical results for the evaluation of (44) for different problem sizes N at different time
t. TFFT is the runtime of a FFT on a vector of length N as comparison. T bfac, T

b
app, T

n
fac, and

Tnapp are the factorization time and the application time for the IBF-MAT and the one-dimensional

NUFFT, respectively. εb and εn are the relative evaluation error by the IBF-MAT and the NUFFT
approaches, respectively.

6 Conclusion and discussion568

This paper introduced a unified framework for O(N logN) evaluation of the oscillatory integral569

transform g(x) =
∫
α(x, ξ)e2πıΦ(x,ξ)f(ξ)dξ. This framework works for two cases: 1) explicit formulas570

for the amplitude and phase functions are known; 2) only indirect access of the amplitude and phase571

functions are available. In the case of indirect access, this paper proposed a novel fast algorithms for572

recovering the amplitude and phase functions in O(N logN) operations. Second, a new algorithm573

for the oscillatory integral transform based on the NUFFT and a dimension lifting technique is574

proposed. Finally, a new BF, the IBF-MAT, for amplitude and phase matrices in a form of a575

low-rank factorization is proposed. These two algorithms both require only O(N logN) operations576

to evaluate the oscillatory integral transform.577

N t Tdec(sec) T bfac(sec) T bapp(sec) εb Tnfac(sec) Tnapp(sec) εn

4096 2.441e-04 4.09e-02 1.08e+01 1.14e-02 1.33e-12 7.83e-04 1.96e-03 4.66e-13
4096 1.562e-02 3.87e-02 1.03e+01 1.14e-02 1.52e-12 1.66e-03 2.21e-02 8.89e-13

16384 2.441e-04 1.40e-01 5.56e+01 5.63e-02 6.46e-12 6.30e-04 7.41e-03 1.07e-12
16384 1.562e-02 1.47e-01 5.61e+01 5.65e-02 5.29e-12 4.16e-04 1.54e-01 1.62e-12

65536 2.441e-04 6.60e-01 2.92e+02 2.70e-01 3.06e-12 7.04e-04 3.25e-02 4.69e-12
65536 1.562e-02 6.76e-01 2.93e+02 3.14e-01 3.78e-12 5.01e-04 9.34e-01 3.92e-11

262144 2.441e-04 2.94e+00 1.46e+03 1.23e+00 3.61e-12 2.34e-03 1.18e-01 2.34e-11
262144 1.562e-02 3.15e+00 1.56e+03 1.31e+00 1.04e-11 4.51e-04 8.13e+00 3.02e-10

Table 8: Numerical results for the evaluation of (40) for different problem sizes N at different time
t. Tdec is the runtime of Algorithm 5. T bfac, T

b
app, T

n
fac, and Tnapp are the factorization time and

the application time for the IBF-MAT and the two-dimensional NUFFT approach by dimension
lifting, respectively. εb and εn are the relative evaluation error by the IBF-MAT and the NUFFT
approaches, respectively.

This unified framework would be very useful in developing efficient tools for fast special func-578

26



tion transforms, solving wave equations, and solving electromagnetic (EM) scattering problems. We579

have provided several examples to support these applications. For example, the state-of-the-art fast580

algorithm for computing the compositions of FIO’s, which could be applied as a preconditioner for581

certain classes of parabolic and hyperbolic equations [21, 32, 33]; a fast algorithm for solving wave582

equation via FIO’s. We have explored the potential applications of the proposed framework to: 1)583

fast evaluation of other special functions [5, 6] to develop nearly linear scaling polynomial trans-584

forms; 2) fast solvers developed in [17, 26] for nearly linear algorithms for solving high-frequency585

EM equations. Numerical results will be reported in forthcoming papers.586

Acknowledgments. The author thanks the fruitful discussion with Lexing Ying, the support587

of the start-up grant by the Department of Mathematics at the National University of Singapore,588

and the support of the Ministry of Education in Singapore under the grant MOE2018-T2-2-147.589

References590

[1] G. Bao and W. W. Symes. Computation of pseudo-differential operators. SIAM Journal on591

Scientific Computing, 17(2):416–429, 1996.592

[2] J. P. Boyd and F. Xu. Divergence (Runge Phenomenon) for least-squares polynomial approxi-593

mation on an equispaced grid and Mock Chebyshev subset interpolation. Applied Mathematics594

and Computation, 210(1):158 – 168, 2009.595

[3] J. Bremer. An algorithm for the numerical evaluation of the associated Legendre functions596

that runs in time independent of degree and order. Journal of Computational Physics, 360:15597

– 38, 2018.598

[4] J. Bremer. An algorithm for the rapid numerical evaluation of bessel functions of real orders599

and arguments. Advances in Computational Mathematics, 45(1):173–211, Feb 2019.600

[5] J. Bremer, Q. Pang, and H. Yang. Fast algorithms for the multi-dimensional jacobi polynomial601

transform. arXiv:1901.07275 [math.NA], 2019.602

[6] J. Bremer and H. Yang. Fast algorithms for Jacobi expansions via nonoscillatory phase func-603

tions. IMA Journal of Numerical Analysis, To appear.604

[7] P. Caday. Computing Fourier integral operators with caustics. Inverse Problems,605

32(12):125001, 2016.606

[8] E. Candès, L. Demanet, and L. Ying. Fast computation of Fourier integral operators. SIAM607

J. Sci. Comput., 29(6):2464–2493, 2007.608

[9] E. J. Candès, L. Demanet, and L. Ying. A fast butterfly algorithm for the computation of609

Fourier integral operators. Multiscale Modeling and Simulation, 7(4):1727–1750, 2009.610

[10] M. Costantin, A. Farina, and F. Zirilli. A fast phase unwrapping algorithm for sar inter-611

ferometry. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 37(1),612

1999.613

[11] M. V. de Hoop, G. Uhlmann, A. Vasy, and H. Wendt. Multiscale discrete approximations of614

Fourier integral operators associated with canonical transformations and caustics. Multiscale615

Modeling & Simulation, 11(2):566–585, 2013.616

27



[12] L. Demanet and L. Ying. Fast wave computation via Fourier integral operators. Math. Com-617

put., 81(279), 2012.618

[13] B. Engquist and L. Ying. Fast directional multilevel algorithms for oscillatory kernels. SIAM619

Journal on Scientific Computing, 29(4):1710–1737, 2007.620

[14] B. Engquist and L. Ying. A fast directional algorithm for high frequency acoustic scattering621

in two dimensions. Communications in Mathematical Sciences, 7(2):327–345, 06 2009.622

[15] L. Greengard and J.-Y. Lee. Accelerating the Nonuniform Fast Fourier Transform. SIAM623

Review, 46(3):443–454, 2004.624

[16] M. Gu. Subspace iteration randomization and singular value problems. SIAM Journal on625

Scientific Computing, 37(3):A1139–A1173, 2015.626

[17] H. Guo, Y. Liu, J. Hu, and E. Michielssen. A butterfly-based direct integral-equation solver627

using hierarchical lu factorization for analyzing scattering from electrically large conducting628

objects. IEEE Transactions on Antennas and Propagation, 65(9):4742–4750, Sep. 2017.629

[18] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic630

algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–288,631

2011.632

[19] P. Hoffman and K. Reddy. Numerical differentiation by high order interpolation. SIAM Journal633

on Scientific and Statistical Computing, 8(6):979–987, 1987.634

[20] J. Hu, S. Fomel, L. Demanet, and L. Ying. A fast butterfly algorithm for generalized Radon635

transforms. Geophysics, 78(4):U41–U51, June 2013.636

[21] H. Isozaki and J. L. Rousseau. Pseudodifferential multi-product representation of the solution637

operator of a parabolic equation. Communications in Partial Differential Equations, 34(7):625–638

655, 2009.639

[22] Y. Li and H. Yang. Interpolative butterfly factorization. SIAM Journal on Scientific Comput-640

ing, 39(2):A503–A531, 2017.641

[23] Y. Li, H. Yang, E. R. Martin, K. L. Ho, and L. Ying. Butterfly Factorization. Multiscale642

Modeling & Simulation, 13(2):714–732, 2015.643

[24] Y. Li, H. Yang, and L. Ying. A multiscale butterfly aglorithm for Fourier integral operators.644

Multiscale Modeling and Simulation, 13(2):614–631, 2015.645

[25] Y. Li, H. Yang, and L. Ying. Multidimensional butterfly factorization. Applied and Computa-646

tional Harmonic Analysis, 2017.647

[26] Y. Liu, H. Guo, and E. Michielssen. An HSS matrix-inspired butterfly-based direct solver for648

analyzing scattering from two-dimensional objects. IEEE Antennas and Wireless Propagation649

Letters, 16:1179–1183, 2017.650

[27] M. W. Mahoney. Lecture notes on randomized linear algebra. arXiv:1608.04481 [cs.DS], 2016.651

[28] E. Michielssen and A. Boag. A multilevel matrix decomposition algorithm for analyzing scatter-652

ing from large structures. Antennas and Propagation, IEEE Transactions on, 44(8):1086–1093,653

Aug 1996.654

28



[29] G. Nico, G. Palubinskas, and M. Datcu. Bayesian approaches to phase unwrapping: Theoretical655

study. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 48(9), 2000.656

[30] M. O’Neil, F. Woolfe, and V. Rokhlin. An algorithm for the rapid evaluation of special function657

transforms. Appl. Comput. Harmon. Anal., 28(2):203–226, 2010.658

[31] R. Platte, L. Trefethen, and A. Kuijlaars. Impossibility of fast stable approximation of analytic659

functions from equispaced samples. SIAM Review, 53(2):308–318, 2011.660

[32] J. L. Rousseau. Fourier-integral-operator approximation of solutions to first-order hyperbolic661

pseudodifferential equations I: Convergence in sobolev spaces. Communications in Partial662

Differential Equations, 31(6):867–906, 2006.663

[33] J. L. Rousseau and G. Hörmann. Fourier-integral-operator approximation of solutions to first-664

order hyperbolic pseudodifferential equations II: Microlocal analysis. Journal de Mathmatiques665

Pures et Appliquées, 86(5):403 – 426, 2006.666

[34] D. Ruiz-Antoln and A. Townsend. A nonuniform fast fourier transform based on low rank667

approximation. SIAM Journal on Scientific Computing, 40(1):A529–A547, 2018.668

[35] D. O. Trad, T. J. Ulrych, and M. D. Sacchi. Accurate interpolation with high-resolution669

time-variant Radon transforms. Geophysics, 67(2):644–656, 2002.670

[36] E. Trouvé, J.-M. Nicolas, and H. Mâıtre. Improving phase unwrapping techniques by the use671

of local frequency estimates. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE672

SENSING, 36(6), 1998.673

[37] M. Tygert. Fast algorithms for spherical harmonic expansions, {III}. Journal of Computational674

Physics, 229(18):6181 – 6192, 2010.675

[38] C. Van Loan. Computational Frameworks for the Fast Fourier Transform. Society for Industrial676

and Applied Mathematics, 1992.677

[39] L. Ying. Sparse Fourier transform via butterfly algorithm. SIAM J. Sci. Comput., 31(3):1678–678

1694, Feb. 2009.679

29


	Introduction
	Low-rank matrix factorization
	Existing low-rank matrix factorization
	New low-rank matrix factorization with indirect access
	Summary for the low-rank matrix factorization

	NUFFT and dimension lifting
	IBF-MAT
	Numerical results
	Accuracy and scaling of low-rank matrix recovery and IBF-MAT
	Comparison of NUFFT and BF

	Conclusion and discussion

