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Conventional Solvers vs. Data-Driven Methods

New diagram for solutions and new opportunities for mathematics

Conventional solvers

m Years of design to solve
m Months of coding

m Accurate but maybe slow

Data-driven methods

m Learning to solve from data

m Days or months of training
m Fair and fast solution



Learning Mathematical Operators

Notations

m Function spaces X and ), e.g., R-valued over domain Q c R?
m Operator¥v : X — Y
m Data samples S = {u;, vi}2"; with

vi = V() + €,
where u; & v and €; e I

Goal

m Learn V¥ from samples S

Method

m Deep neural networks W"(u; 0) as parametrization
m Supervised learning to find W"(+; 6*) ~ W(.)



Why Operator Learning?

Broad applications

m Reduced order modeling: learning operators in lower dim

m Solving parametric PDEs

m Solving inverse problems

m Density function theory: potential function to density function
m Phase retrieval: data to images

m Image processing: image to image

m Predictive data science: historical states to future states

Probably most mappings are high-dim or even infinite-dim



Why Discretization-Invariant

Main concern in applications

m Given accuracy, minimize cost

Key difficulties

m A nonlinear operator W between infinite-dimensional X and Y
m Heterogeneous data structures



Part I: Operator Learning Algorithm



Deep neural network

v=w(u;0):=TohYoho...0 \V(u)

m HO(u) = o(WO y+ b))

m Activation function o(x), e.g. ReLU(x) = max{0, x}
mT(v)=V'v

m)= (W(1),--- , W(L),b(1),-~- ,b(L), V)

u € R% =




Operator Learning with Fixed Input and Output Sizes

ued Ey R% DNN I R% €Y
Fixed [::lscreuzallon D -
Encoded Data is independent of Processed Data is independent of
Input Data Input Data size Output Data size Output Data

Most methods:
Encoder-decoder of X
B DyoEx~ I Ex:X— R Dy :R% - cX
m Encoder Ex: sampling, basis expansion, PCA, etc.
m Decoder Dy : interpolation, basis expansion, PCA, etc.

Encoder-decoder of
m Similar
Learning

m ADNNT ~ V¥ :R% — R%
] DyorOEXz\UZX%y

Repeated and expensive re-training if dx or dy changes



Discretization Invariant Operator Learning

Ong, Shen, Y., preprint, 2022
Sparsity: Key to discretization-invariance

Our idea 1 of network construction

uex Eq Réx DNN T R Dy, vEY
Fixed lﬂzcdr:ltization D "
Input Data Encodedh?:l:?[i)sai?:se;zndent of Processgiul?:lt: g;;\::i;peendem of Output Data
Encoder and decoder Fixed discretization model
m Discretization-invariant m Powerful expressivity

m Capture intrinsic dimension (sparsity) m Deep neural network (DNN)



Discretization Invariant Operator Learning
Ong, Shen, Y., preprint, 2022
Our integral-kernel-based encoder

v(y) = | o1(x,yi01)u(x)dx

Qx

®m Mapping u € X to v(y) € Y defined for y € Qy
m Kernel ¢1 is a DNN parametrized by 64
] fQX is discretized according to the discrete u(x)

Our integral-kernel-based decoder

ux) = [ ¢a(x,y;02)v(y)dy
2y
m Mapping v € Y to u(x) € X defined for x € Qx
m Kernel ¢, is a DNN parametrized by 6,
[ ny is discretized according to the discrete v(y)



Discretization Invariant Operator Learning

Ong, Shen, Y., preprint, 2022
Why integral-kernel-based encoder and decoder?

v(y) = / 6(x, y; 0)u(x)0x

m DNN expressivity: Fourier, Wavelet, other integral operators
m Data driven sparsity, i.e., DNN-based PCA



Discretization Invariant Operator Learning

Our idea 2 of network construction
m Parallel blocks (e.g., spatial and frequency domains)
m Post-processing ReLU NN
m Deep network via densely connected composition

H- Block 1 H» I Block L 'I

ﬁ - Discretization Length Operation Originaloutm / Width Length \

Operation

Fixed Discretization
Encoder }—ﬂ— Model ]—ﬂ—{ Decoder
Two Layer
ReLU NN
Encoder Fixed Discretization Doder
Model

Foutiey Fourier
Transformed

Transformed
Input Output K j




Discretization Invariant Operator Learning

Our idea 3 for randomized data augmentation
Loss function

M0 E 1) pags B [£ (W(U; 0), V) + AL (W(S(0); 0), S(V))]

m W(u; ) discretization-invariant neural network

m L(-,-): typical loss function, e.g., £(x,y) = ||x — y||?
m Random interpolation operator S

B Puaa: joint distribution of (u, v) in X x Y

EA>0



Numerical Comparison

Existing methods

m UNet, Ronneberger et al., MICCAI, 2015
m DeepOnet, Lu et al., Nature Machine Intelligence, 2021
m FNO (Fourier Neural Operator), Li et al., ICLR 2021

m FT (Fourier Transformer) and GT (Galerkin Transformer), S. Cao,
NeurlPS, 2021

Examples

m Prediction

m Forward problems
m Inverse problems
m Signal processing



Numerical Comparison

Prediction of future states
Example 1: Burgers equation:

au(x, t) + Ox(LP(x, 1)/2) = vdwu(x,t), x e (0,1),te (0,1]
u(x,0) = up(x)

m Periodic boundary conditions
m v = 0.1: a given viscosity coefficient

m Applications in fluid mechanics, nonlinear acoustics, gas dynamics, and
traffic flow

m Goal: learn the mapping from up(x) to u(x,1).



Numerical Comparison

Example 1: Burgers equation:
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Figure: L2 relative error with v = 1e—' (Left) and its closeup (Right). Models are
trained with s = 1024 and tested on the other resolutions.



Numerical Comparison

Example 1: Burgers equation:
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Figure: L2 relative error with v = 1e—* (Left) and its closeup (Right). Models are
trained with s = 1024 and tested on the other resolutions.



Numerical Comparison

Example 1: Burgers equation:
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(a) Comparison of relative error for burgers
equation with varying v.



Numerical Comparison

Forward problem
Example 2: the steady-state of the 2D Darcy Flow equation:
—V - (a(x)Vu(x)) = f(x), x€(0,1)
u(x)=0, xed0,1)?

m f: a given forcing function

m Applications in modeling the pressure of subsurface flow, the
deformation and the electric potential of materials

m Goal: learn the forward mapping from a(x) to u(x).



Numerical Comparison

Example 2: the steady-state of the 2D Darcy Flow equation:
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Figure: L2 relative error. Models are trained with s = 141 size training data and tested
on the other resolutions.



Numerical Comparison
Inverse problem
Example 3: inverse scattering.

Applications: non-destructive testing, medical imaging, seismic imaging,
etc.

Helmholtz equation

(fv — %:)2) u(x)=0

with a given frequency w and unknown speed c(x)
Introduce
w2 w2 w2
v v Lo= -V — —
O £ e ¢

with ¢y(x) given in applications
Helmholtz equation:

2
(-7~ g ) U = (Lo — 1)) 0

as a parametric PDE with parameter n
Goal: learn the mapping from u(x) at sensor locations to n(x)



Numerical Comparison

Inverse problem
Example 3: inverse scattering.
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Figure: L2 relative error for the forward (Left) and inverse (Right) problem. Model is
trained with s = 81 and tested on different resolutions.



Numerical Comparison

Image/signal processing
Example 4: blind source separation.
m Applications in image processing, medical imaging, audio signal, health
measurement

Mixed signals
frishbdedepitritfptrt — | Blind
AULARRNEI, = Source fECG

| / Separation ]
Nmse_:

[ A A R

Figure: Extracting fetal ECG from mother's measurement plays an important role in
diagnosing fetus’s health. Figure credited to Bensafia et al.



Numerical Comparison

Example 4: blind source separation.

Table: Trained with size s = 2000 and tested on different resolutions for zero-shot

generalization.

Model Name 250 500 1000 2000 4000
FNO 45.07% 24.75% 16.76% 15.97% 18.23%
GT 45.30% 27.24% 18.97% 17.75% 19.2%
DeepONet! 99.99%
Unet 112% 101% 68.78% 8.274% 69.85%
ResNet + Interpolation | 66.37% 43.73% 32.13% 31.16% 31.92%
IAE-Net (No Skip) 15.36% 10.68% 8.723% 7.904% 8.153%
IAE-Net (ResNet) 14.08% 9.924% 7.925% 7.15%  7.192%
IAE-Net 12.08% 8.638% 7.048% 6.802% 6.848%



Part II: Operator Learning theory



Literature

Existing theory

m A posteriori error analysis for DeepOnet’
m Non-DNN approach for linear operators?®

Our goal

m A priori error analysis
m Nonlinear operators
m Discretization-invariant

'S. Lanthaler, S. Mishra, and G. E. Karniadakis. Error estimates for deepOnets: A deep learning
framework in infinite dimensions. arXiv:2102.09618, 2021.

2M. V. de Hoop, N. B. Kovachki, N. H. Nelsen, and A. M. Stuart. Convergence rates for learning
linear operators from noisy data. arXiv:2108.12515, 2021.



An Abstract Basic Framework

wued Ey R DNN T’ R% Dy vey
Fixed Discretization
[F_{ Model ]_‘H_{ Decwer ]—H
Encoded Data is independent of Processed Data is independent of
Input Data Input Data size Output Data size Output Data

Encoder-decoder
m Most methods X ~ R — R% ~ Y; finite basis expansion
m PCA-Net® ¥ ~ R% — RY> ~ Y; PCA

m DeepOnet X ~ R% — Y; Ex: function sampling; Dy: DNN basis
functions

m Our algorithm with one block, X — )’; DNN kernels

3Bhattacharya, Hosseini, Kovachki, Stuart, 2019



Problem Statement

Learning W ~ Dy ol o Ey

m Target Lip. operator ¥ : X —
m Samples S = {u;, v;}2, with v; = W(u) + ¢, 4 < v, and ¢ =
m Step 1: use {u;, vi}{_; to learn encoder-decoder s.t.
Dy o Ex~l and Dy o Ey=l
m Step 2: use {u;, v;}?",., to learn DNN Iy via empirical risk

2n

. 1 2
Rs(0) := - Dy oTgo Ex(u)— v
min As(0) rergpwnigﬂ 1Dy 0Ty 0 Ex(ui) = vill3

m Population risk (accuracy) of Wy := Dy olgo Ex =~ ¥

Rp(0) := EsEu~y[|Ws(u) = W(W)[5

Question: How good is the empirical solution Wy~ with 6" € argmin Rs(6)?



Problem Statement

The goal of error analysis
Quantify
Ro(0") := EsEuny|[Wo- (u) — W(W)]5

in terms of DNN width, depth, and #samples
Key questions

m Practical guidance on the choice of DNNs and samples
m Curse of dimensionality (in #parameters and #samples)
m Zero/few-shot generalization for different data structures



Problem Statement

Error analysis of Rp(6*)
m Error decomposition
Ro(6") = EsEunr [||IDy o o+ 0 Ex(u) — ()3 ]
=Ti+T
m Bias (approximation)
T, = 2Es {1 i Dy o Fg+ o Ex(uj) — \Il(u,v)||§}
n

m Variance (generalization)

To = EsEuns [ Dy o To- o Ex(u) = W(u)]3]

2n
1
—2Es [n Z [|[Dy o Ty« o Ex(u;) — \IJ(U;)|§:|

i=n+1



First step: estimation of T; via DNN approximation

2n
1
T, = 2Fs - Z [|Dy o Ty« o Ex(u;) — ‘U(Ui)Hg

i=n+1

Our goals in approximation

m Approximation error in terms of width and depth
m Does curse of dim (e.g., # parameters (%)d) exist?



Literature Review

Active research directions

Cybenko, 1989; Hornik et al., 1989; Barron, 1993; Montufar, Ay, 2011; Liang
and Srikant, 2016; Yarotsky, 2017; Poggio et al., 2017; Schmidt-Hieber, 2017;
E and Wang, 2018; Petersen and Voigtlaender, 2018; Chui et al., 2018;
Yarotsky, 2018; Nakada and Imaizumi, 2019; Gribonval et al., 2019; Glihring
et al., 2019; Chen et al., 2019; Li et al., 2019; Suzuki, 2019; Bao et al., 2019;
E et al.,, 2019; Opschoor et al., 2019; Merkh, Montufar, 2019; Yarotsky and
Zhevnerchuk, 2019; Bolcskei et al., 2019; Montanelli and Du, 2019; Chen
and Wu, 2019; Zhou, 2020; Montanelli et al., 2020, etc.



RelLU DNNSs, continuous functions C([0, 1]9)

ReLU; Fixed network width O(N) and depth O(L)
m Nearly tight error rate 5ws(8v/dN~%/9L=2/9) simultaneously in N and L
with L>°-norm. Shen, Y., and Zhang (CiCP, 2020)
B wy is the modulas of continuity
m Improved to a tight rate O (\/awf ((NZL2 loga(N + 2))_1/d)). Shen, Y.,
and Zhang (J Math Pures Appl, 2021)

Remark
m Curse of dim exists
m Smoothness cannot help (Lu, Shen, Y., Zhang, SIMA, 2021)

m Need special function structures or activation functions to lessen the
curse



Second step: estimation of T, via DNN generalization

To = EsEuns [[Dy o Tor o Ex(u) = W(u)[3]

2n
1
—2Es [n Z ||[Dy o Tgx o Ex(ui) — \U(U,)||§:|

i=n+1



Deep Network Generalization

Active research directions

Hamers and Kohler 2006; Jacot, Gabriel, and Hongler 2018; Bauer and
Kohler 2019; Cao and Gu 2019; Chen et al. 2019; Schmidt-Hieber 2020;
Kohler, Krzyzak, and Langer 2020; Nakada and Imaizumi 2020; Farrell,
Liang, and Misra 2021; Jiao, Shen, Lin, and Huang 2021, etc

Remark
Very limited for operator learning



Deep Network Generalization

Road map (Liu, Y.*, Chen, Zhao, Liao*, arXiv:2201.00217, 2022)

m Variance T, — covering number of Fxn
m Covering number of Fxn — pseudo-dimension of Fan
m Pseudo-dimension of Fxy — NN width and depth



Full Error Analysis

Theorem ((Liu, Y.*, Chen, Zhao, Liao*, arXiv:2201.00217))

Under certain assumptions. Let 'y~ be the minimizer of the empirical loss
with depth L = O(Llog L), width N = O (plog p), magnitude bound
M = O(\/dy), where L, p are positive integers satisfying

d

_ _dx '
Lp= ’de 0 pEtay W :
Then we have

EsEy || Dy o Fo- 0 Ex(u) — W(u)|5

4tdy B
<O <(02 + 1)d32,+d" n~ 2y |og® n>
+ O (EsEuns IDx © Ex(u) = ulf% + EsEunv,, 1Dy o Ey(w) - i)

Interpretation

m Curse of dim exists
m Require accurate encoding for zero/few-shot generalization



Additional Low-Dimensional Structures

Assumption (low-dimensional manifold)
{Ex(u) : u ~ ~} lie on a dy-dimensional manifold with dy < dx

Theorem ((Liu, Y.*, Chen, Zhao, Liao*, arXiv:2201.00217))
In addition to the above assumption, we have

EsEu~s Dy 0 To+ 0 Ex(u) — W(u)|5
arep
<O ((02 + 1)d32,+d° n 2% log® n)

+0 (EsEuwllDX o Ex(U) = Ul|% + EsEw~v, | Dy 0 Ey(w) — W||§1)



Additional Low-Dimensional Structures

Assumption (low complexity)

Dy o Ey oW(u) =Dy ogo Ex(u)
with g : R% — R in the form:
g@)=[a(Vi'a) - ga(V4a)]",
for Vx € R *% and gy : R% — R (multi-index models).

Theorem ((Liu, Y.*, Chen, Zhao, Liao*, arXiv:2201.00217))
In addition to the above assumption, we have

BsBoms Dy o For 0 Ex(u) — W(u) 3
pas 2 _ 4y
<O|(o®+ 1)dy+  max {n 2% dyn 2% } log® n

+ O (EsEuns 1D 0 Ex() = tl% + EsBumv,- | Dy o Ev(w) - w|)
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