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Conventional Solvers vs. Data-Driven Methods

New diagram for solutions and new opportunities for mathematics

Conventional solvers

Years of design to solve

Months of coding

Accurate but maybe slow

Data-driven methods

Learning to solve from data

Days or months of training

Fair and fast solution



Learning Mathematical Operators

Notations

Function spaces X and Y, e.g., R-valued over domain Ω ⊂ RD

Operator Ψ : X → Y
Data samples S = {ui , vi}2n

i=1 with

vi = Ψ(ui ) + εi ,

where ui
i.i.d.∼ γ and εi

i.i.d.∼ µ

Goal

Learn Ψ from samples S

Method

Deep neural networks Ψn(u; θ) as parametrization

Supervised learning to find Ψn(·; θ∗) ≈ Ψ(·)



Why Operator Learning?

Broad applications

Reduced order modeling: learning operators in lower dim

Solving parametric PDEs

Solving inverse problems

Density function theory: potential function to density function

Phase retrieval: data to images

Image processing: image to image

Predictive data science: historical states to future states

Probably most mappings are high-dim or even infinite-dim



Why Discretization-Invariant

Main concern in applications

Given accuracy, minimize cost

Key difficulties

A nonlinear operator Ψ between infinite-dimensional X and Y
Heterogeneous data structures



Part I: Operator Learning Algorithm



Deep neural network

v = Ψ(u; θ) := T ◦ h(L) ◦ h(L−1) ◦ · · · ◦ h(1)(u)

h(i)(u) = σ(W (i)T
u + b(i))

Activation function σ(x), e.g. ReLU(x) = max{0, x}
T (v) = V T v

θ = (W (1), · · · ,W (L), b(1), · · · , b(L),V )



Operator Learning with Fixed Input and Output Sizes

Most methods:

Encoder-decoder of X
DY ◦ EX ≈ I, EX : X → RdX , DY : RdX → cX

Encoder EX : sampling, basis expansion, PCA, etc.

Decoder DX : interpolation, basis expansion, PCA, etc.

Encoder-decoder of Y
Similar

Learning

A DNN Γ ≈ Ψ̄ : RdX → RdY

DY ◦ Γ ◦ EX ≈ Ψ : X → Y

Repeated and expensive re-training if dX or dY changes



Discretization Invariant Operator Learning

Ong, Shen, Y., preprint, 2022
Sparsity: Key to discretization-invariance

Our idea 1 of network construction

Encoder and decoder

Discretization-invariant

Capture intrinsic dimension (sparsity)

Fixed discretization model

Powerful expressivity

Deep neural network (DNN)



Discretization Invariant Operator Learning

Ong, Shen, Y., preprint, 2022

Our integral-kernel-based encoder

v(y) =

∫
ΩX

φ1(x , y ; θ1)u(x)dx

Mapping u ∈ X to v(y) ∈ Y defined for y ∈ ΩY

Kernel φ1 is a DNN parametrized by θ1∫
ΩX

is discretized according to the discrete u(x)

Our integral-kernel-based decoder

u(x) =

∫
ΩY

φ2(x , y ; θ2)v(y)dy

Mapping v ∈ Y to u(x) ∈ X defined for x ∈ ΩX

Kernel φ2 is a DNN parametrized by θ2∫
ΩY

is discretized according to the discrete v(y)



Discretization Invariant Operator Learning

Ong, Shen, Y., preprint, 2022

Why integral-kernel-based encoder and decoder?

v(y) =

∫
Ω

φ(x , y ; θ)u(x)dx

DNN expressivity: Fourier, Wavelet, other integral operators

Data driven sparsity, i.e., DNN-based PCA



Discretization Invariant Operator Learning

Our idea 2 of network construction

Parallel blocks (e.g., spatial and frequency domains)

Post-processing ReLU NN

Deep network via densely connected composition



Discretization Invariant Operator Learning

Our idea 3 for randomized data augmentation
Loss function

min
θ

E(u,v)∼pdataES [L (Ψ(u; θ), v) + λL (Ψ(S(u); θ),S(v))]

Ψ(u; θ) discretization-invariant neural network

L(·, ·): typical loss function, e.g., L(x , y) = ||x − y ||2

Random interpolation operator S

pdata: joint distribution of (u, v) in X × Y
λ > 0



Numerical Comparison

Existing methods

UNet, Ronneberger et al., MICCAI, 2015

DeepOnet, Lu et al., Nature Machine Intelligence, 2021

FNO (Fourier Neural Operator), Li et al., ICLR 2021

FT (Fourier Transformer) and GT (Galerkin Transformer), S. Cao,
NeurIPS, 2021

Examples

Prediction

Forward problems

Inverse problems

Signal processing



Numerical Comparison

Prediction of future states
Example 1: Burgers equation:

∂tu(x , t) + ∂x (u2(x , t)/2) = ν∂xx u(x , t), x ∈ (0, 1), t ∈ (0, 1]

u(x , 0) = u0(x)

Periodic boundary conditions

ν = 0.1: a given viscosity coefficient

Applications in fluid mechanics, nonlinear acoustics, gas dynamics, and
traffic flow

Goal: learn the mapping from u0(x) to u(x , 1).



Numerical Comparison

Example 1: Burgers equation:

Figure: L2 relative error with ν = 1e−1 (Left) and its closeup (Right). Models are
trained with s = 1024 and tested on the other resolutions.



Numerical Comparison

Example 1: Burgers equation:

Figure: L2 relative error with ν = 1e−4 (Left) and its closeup (Right). Models are
trained with s = 1024 and tested on the other resolutions.



Numerical Comparison

Example 1: Burgers equation:



Numerical Comparison

Forward problem
Example 2: the steady-state of the 2D Darcy Flow equation:

−∇ · (a(x)∇u(x)) = f (x), x ∈ (0, 1)2

u(x) = 0, x ∈ ∂(0, 1)2

f : a given forcing function

Applications in modeling the pressure of subsurface flow, the
deformation and the electric potential of materials

Goal: learn the forward mapping from a(x) to u(x).



Numerical Comparison

Example 2: the steady-state of the 2D Darcy Flow equation:

Figure: L2 relative error. Models are trained with s = 141 size training data and tested
on the other resolutions.



Numerical Comparison
Inverse problem
Example 3: inverse scattering.

Applications: non-destructive testing, medical imaging, seismic imaging,
etc.
Helmholtz equation (

−∇− ω2

c(x)2

)
u(x) = 0

with a given frequency ω and unknown speed c(x)

Introduce

ω2

c(x)2 =
ω2

c0(x)2 + η(x), L0 = −∇− ω2

c0(x)2

with c0(x) given in applications
Helmholtz equation:(

−∇− ω2

c(x)2

)
u(x) = (L0 − η(x))u(x) = 0

as a parametric PDE with parameter η
Goal: learn the mapping from u(x) at sensor locations to η(x)



Numerical Comparison

Inverse problem
Example 3: inverse scattering.

Figure: L2 relative error for the forward (Left) and inverse (Right) problem. Model is
trained with s = 81 and tested on different resolutions.



Numerical Comparison

Image/signal processing
Example 4: blind source separation.

Applications in image processing, medical imaging, audio signal, health
measurement

Figure: Extracting fetal ECG from mother’s measurement plays an important role in
diagnosing fetus’s health. Figure credited to Bensafia et al.



Numerical Comparison

Example 4: blind source separation.

Table: Trained with size s = 2000 and tested on different resolutions for zero-shot
generalization.

Model Name 250 500 1000 2000 4000
FNO 45.07% 24.75% 16.76% 15.97% 18.23%
GT 45.30% 27.24% 18.97% 17.75% 19.2%

DeepONet† 99.99%
Unet 112% 101% 68.78% 8.274% 69.85%

ResNet + Interpolation 66.37% 43.73% 32.13% 31.16% 31.92%
IAE-Net (No Skip) 15.36% 10.68% 8.723% 7.904% 8.153%
IAE-Net (ResNet) 14.08% 9.924% 7.925% 7.15% 7.192%

IAE-Net 12.08% 8.638% 7.048% 6.802% 6.848%



Part II: Operator Learning theory



Literature

Existing theory

A posteriori error analysis for DeepOnet1

Non-DNN approach for linear operators2

Our goal

A priori error analysis

Nonlinear operators

Discretization-invariant

1S. Lanthaler, S. Mishra, and G. E. Karniadakis. Error estimates for deepOnets: A deep learning
framework in infinite dimensions. arXiv:2102.09618, 2021.

2M. V. de Hoop, N. B. Kovachki, N. H. Nelsen, and A. M. Stuart. Convergence rates for learning
linear operators from noisy data. arXiv:2108.12515, 2021.



An Abstract Basic Framework

Encoder-decoder

Most methods X ≈ RdX → RdY ≈ Y; finite basis expansion

PCA-Net3 X ≈ RdX → RdY ≈ Y; PCA

DeepOnet X ≈ RdX → Y; EX : function sampling; DY : DNN basis
functions

Our algorithm with one block, X → Y; DNN kernels

3Bhattacharya, Hosseini, Kovachki, Stuart, 2019



Problem Statement

Learning Ψ ≈ DY ◦ Γ ◦ EX

Target Lip. operator Ψ : X → Y

Samples S = {ui , vi}2n
i=1 with vi = Ψ(ui ) + εi , ui

i.i.d.∼ γ, and εi
i.i.d.∼ µ

Step 1: use {ui , vi}n
i=1 to learn encoder-decoder s.t.

DX ◦ EX≈I and DY ◦ EY≈I

Step 2: use {ui , vi}2n
i=n+1 to learn DNN Γθ via empirical risk

min
Γθ∈FNN

RS(θ) := min
Γθ∈FNN

1
n

2n∑
i=n+1

‖DY ◦ Γθ ◦ EX (ui )− vi‖2
Y

Population risk (accuracy) of Ψθ := DY ◦ Γθ ◦ EX ≈ Ψ

RD(θ) := ESEu∼γ‖Ψθ(u)−Ψ(u)‖2
Y

Question: How good is the empirical solution Ψθ∗ with θ∗ ∈ argmin RS(θ)?



Problem Statement

The goal of error analysis
Quantify

RD(θ∗) := ESEu∼γ‖Ψθ∗(u)−Ψ(u)‖2
Y

in terms of DNN width, depth, and #samples

Key questions

Practical guidance on the choice of DNNs and samples

Curse of dimensionality (in #parameters and #samples)

Zero/few-shot generalization for different data structures



Problem Statement

Error analysis of RD(θ∗)

Error decomposition

RD(θ∗) = ESEu∼γ

[
‖DY ◦ Γθ∗ ◦ EX (u)−Ψ(u)‖2

Y

]
= T1 + T2

Bias (approximation)

T1 = 2ES

[
1
n

2n∑
i=n+1

‖DY ◦ Γθ∗ ◦ EX (ui )−Ψ(ui )‖2
2

]

Variance (generalization)

T2 = ESEu∼γ

[
‖DY ◦ Γθ∗ ◦ EX (u)−Ψ(u)‖2

Y

]
− 2ES

[
1
n

2n∑
i=n+1

‖DY ◦ Γθ∗ ◦ EX (ui )−Ψ(ui )‖2
2

]



First step: estimation of T1 via DNN approximation

T1 = 2ES

[
1
n

2n∑
i=n+1

‖DY ◦ Γθ∗ ◦ EX (ui )−Ψ(ui )‖2
2

]

Our goals in approximation

Approximation error in terms of width and depth

Does curse of dim (e.g., # parameters ( 1
ε

)d ) exist?



Literature Review

Active research directions
Cybenko, 1989; Hornik et al., 1989; Barron, 1993; Montufar, Ay, 2011; Liang
and Srikant, 2016; Yarotsky, 2017; Poggio et al., 2017; Schmidt-Hieber, 2017;
E and Wang, 2018; Petersen and Voigtlaender, 2018; Chui et al., 2018;
Yarotsky, 2018; Nakada and Imaizumi, 2019; Gribonval et al., 2019; Gühring
et al., 2019; Chen et al., 2019; Li et al., 2019; Suzuki, 2019; Bao et al., 2019;
E et al., 2019; Opschoor et al., 2019; Merkh, Montufar, 2019; Yarotsky and
Zhevnerchuk, 2019; Bölcskei et al., 2019; Montanelli and Du, 2019; Chen
and Wu, 2019; Zhou, 2020; Montanelli et al., 2020, etc.



ReLU DNNs, continuous functions C([0,1]d )

ReLU; Fixed network width O(N) and depth O(L)

Nearly tight error rate 5ωf (8
√

dN−2/d L−2/d ) simultaneously in N and L
with L∞-norm. Shen, Y., and Zhang (CiCP, 2020)

ωf is the modulas of continuity

Improved to a tight rate O
(√

d ωf

((
N2L2 log3(N + 2)

)−1/d
))

. Shen, Y.,
and Zhang (J Math Pures Appl, 2021)

Remark

Curse of dim exists

Smoothness cannot help (Lu, Shen, Y., Zhang, SIMA, 2021)

Need special function structures or activation functions to lessen the
curse



Second step: estimation of T2 via DNN generalization

T2 = ESEu∼γ

[
‖DY ◦ Γθ∗ ◦ EX (u)−Ψ(u)‖2

Y

]
− 2ES

[
1
n

2n∑
i=n+1

‖DY ◦ Γθ∗ ◦ EX (ui )−Ψ(ui )‖2
2

]



Deep Network Generalization

Active research directions
Hamers and Kohler 2006; Jacot, Gabriel, and Hongler 2018; Bauer and
Kohler 2019; Cao and Gu 2019; Chen et al. 2019; Schmidt-Hieber 2020;
Kohler, Krzyzak, and Langer 2020; Nakada and Imaizumi 2020; Farrell,
Liang, and Misra 2021; Jiao, Shen, Lin, and Huang 2021, etc

Remark
Very limited for operator learning



Deep Network Generalization

Road map (Liu, Y.*, Chen, Zhao, Liao*, arXiv:2201.00217, 2022)

Variance T2 → covering number of FNN

Covering number of FNN → pseudo-dimension of FNN

Pseudo-dimension of FNN → NN width and depth



Full Error Analysis

Theorem ((Liu, Y.*, Chen, Zhao, Liao*, arXiv:2201.00217))
Under certain assumptions. Let Γθ∗ be the minimizer of the empirical loss
with depth L = O(L̃ log L̃), width N = O

(
p̃ log p̃

)
, magnitude bound

M = O(
√

dY), where L̃, p̃ are positive integers satisfying

L̃p̃ =

⌈
d
− dX

4+2dX
Y n

dX
4+2dX

⌉
.

Then we have

ESEu∼γ‖DY ◦ Γθ∗ ◦ EX (u)−Ψ(u)‖2
Y

≤ O

(
(σ2 + 1)d

4+dX
2+dX
Y n−

2
2+dX log6 n

)
+ O

(
ESEu∼γ‖DX ◦ EX (u)− u‖2

X + ESEw∼Ψ#γ‖DY ◦ EY(w)− w‖2
Y

)

Interpretation

Curse of dim exists

Require accurate encoding for zero/few-shot generalization



Additional Low-Dimensional Structures

Assumption (low-dimensional manifold)
{EX (u) : u ∼ γ} lie on a d0-dimensional manifold with d0 � dX

Theorem ((Liu, Y.*, Chen, Zhao, Liao*, arXiv:2201.00217))
In addition to the above assumption, we have

ESEu∼γ‖DY ◦ Γθ∗ ◦ EX (u)−Ψ(u)‖2
Y

≤ O

(
(σ2 + 1)d

4+d0
2+d0
Y n−

2
2+d0 log6 n

)
+ O

(
ESEu∼γ‖DX ◦ EX (u)− u‖2

X + ESEw∼Ψ#γ‖DY ◦ EY(w)− w‖2
Y

)



Additional Low-Dimensional Structures

Assumption (low complexity)

DY ◦ EY ◦Ψ(u) = DY ◦ g ◦ EX (u)

with g : RdX → RdX in the form:

g(a) =
[
g1(V>1 a) · · · gdY (V>dYa)

]>
,

for Vk ∈ RdX×d0 , and gk : Rd0 → R (multi-index models).

Theorem ((Liu, Y.*, Chen, Zhao, Liao*, arXiv:2201.00217))
In addition to the above assumption, we have

ESEu∼γ‖DY ◦ Γθ∗ ◦ EX (u)−Ψ(u)‖2
Y

≤ O

(
(σ2 + 1)d

4+d0
2+d0
Y max

{
n−

2
2+d0 , dXn−

4+d0
4+2d0

}
log6 n

)
+ O

(
ESEu∼γ‖DX ◦ EX (u)− u‖2

X + ESEw∼Ψ#γ‖DY ◦ EY(w)− w‖2
Y

)
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