Discretization-Invariant Operator Learning: Algorithms and Theory

Haizhao Yang
Department of Mathematics
Purdue University

Workshop of Scientific Computing meets Machine Learning and Life Sciences
Texas Tech University
March 5th, 2022

Conventional Solvers vs. Data-Driven Methods

New diagram for solutions and new opportunities for mathematics

Conventional solvers

- Years of design to solve
- Months of coding
- Accurate but maybe slow

Data-driven methods

■ Learning to solve from data
■ Days or months of training
■ Fair and fast solution

Learning Mathematical Operators

Notations

- Function spaces \mathcal{X} and \mathcal{Y}, e.g., \mathbb{R}-valued over domain $\Omega \subset \mathbb{R}^{D}$
- Operator $\Psi: \mathcal{X} \rightarrow \mathcal{Y}$
- Data samples $\mathcal{S}=\left\{u_{i}, v_{i}\right\}_{i=1}^{2 n}$ with

$$
v_{i}=\Psi\left(u_{i}\right)+\epsilon_{i},
$$

where $u_{i} \stackrel{\text { i.i.d. }}{\sim} \gamma$ and $\epsilon_{i} \stackrel{\text { i.i.d. }}{\sim} \mu$
Goal

- Learn Ψ from samples \mathcal{S}

Method

■ Deep neural networks $\Psi^{n}(u ; \theta)$ as parametrization
■ Supervised learning to find $\Psi^{n}\left(\cdot ; \theta^{*}\right) \approx \Psi(\cdot)$

Why Operator Learning?

Broad applications

- Reduced order modeling: learning operators in lower dim
- Solving parametric PDEs

■ Solving inverse problems

- Density function theory: potential function to density function

■ Phase retrieval: data to images
■ Image processing: image to image

- Predictive data science: historical states to future states

Probably most mappings are high-dim or even infinite-dim

Why Discretization-Invariant

Main concern in applications
■ Given accuracy, minimize cost

Key difficulties

- A nonlinear operator Ψ between infinite-dimensional \mathcal{X} and \mathcal{Y}
- Heterogeneous data structures

Part I: Operator Learning Algorithm

Deep neural network

$$
v=\Psi(u ; \theta):=T \circ h^{(L)} \circ h^{(L-1)} \circ \cdots \circ h^{(1)}(u)
$$

■ $h^{(i)}(u)=\sigma\left(W^{(i)^{T}} u+b^{(i)}\right)$
$■$ Activation function $\sigma(x)$, e.g. $\operatorname{ReLU}(x)=\max \{0, x\}$

- $T(v)=V^{T} v$

■ $\theta=\left(W^{(1)}, \cdots, W^{(L)}, b^{(1)}, \cdots, b^{(L)}, V\right)$

Operator Learning with Fixed Input and Output Sizes

Most methods:
Encoder-decoder of \mathcal{X}
$■ D_{\mathcal{Y}} \circ E_{\mathcal{X}} \approx I, E_{\mathcal{X}}: \mathcal{X} \rightarrow \mathbb{R}^{d_{\mathcal{X}}}, D_{\mathcal{Y}}: \mathbb{R}^{d_{\mathcal{X}}} \rightarrow c X$
■ Encoder $E_{\mathcal{X}}$: sampling, basis expansion, PCA, etc.
■ Decoder $D_{\mathcal{X}}$: interpolation, basis expansion, PCA, etc.
Encoder-decoder of \mathcal{Y}

- Similar

Learning

- A DNN $\Gamma \approx \bar{\psi}: \mathbb{R}^{d_{x}} \rightarrow \mathbb{R}^{d_{y}}$

■ $D_{\mathcal{Y}} \circ \Gamma \circ E_{\mathcal{X}} \approx \Psi: \mathcal{X} \rightarrow \mathcal{Y}$
Repeated and expensive re-training if d_{x} or d_{y} changes

Discretization Invariant Operator Learning

Ong, Shen, Y., preprint, 2022
Sparsity: Key to discretization-invariance
Our idea 1 of network construction

Encoder and decoder

- Discretization-invariant
- Capture intrinsic dimension (sparsity)

Fixed discretization model

- Powerful expressivity

■ Deep neural network (DNN)

Discretization Invariant Operator Learning

Ong, Shen, Y., preprint, 2022
Our integral-kernel-based encoder

$$
v(y)=\int_{\Omega_{X}} \phi_{1}\left(x, y ; \theta_{1}\right) u(x) d x
$$

- Mapping $u \in \mathcal{X}$ to $v(y) \in \mathcal{Y}$ defined for $y \in \Omega_{\mathcal{Y}}$
- Kernel ϕ_{1} is a DNN parametrized by θ_{1}
- $\int_{\Omega_{X}}$ is discretized according to the discrete $u(x)$

Our integral-kernel-based decoder

$$
u(x)=\int_{\Omega_{y}} \phi_{2}\left(x, y ; \theta_{2}\right) v(y) d y
$$

- Mapping $v \in \mathcal{Y}$ to $u(x) \in \mathcal{X}$ defined for $x \in \Omega_{\mathcal{X}}$
- Kernel ϕ_{2} is a DNN parametrized by θ_{2}
- $\int_{\Omega_{y}}$ is discretized according to the discrete $v(y)$

Discretization Invariant Operator Learning

Ong, Shen, Y., preprint, 2022
Why integral-kernel-based encoder and decoder?

$$
v(y)=\int_{\Omega} \phi(x, y ; \theta) u(x) d x
$$

■ DNN expressivity: Fourier, Wavelet, other integral operators
■ Data driven sparsity, i.e., DNN-based PCA

Discretization Invariant Operator Learning

Our idea 2 of network construction

- Parallel blocks (e.g., spatial and frequency domains)
- Post-processing ReLU NN

■ Deep network via densely connected composition

Discretization Invariant Operator Learning

Our idea 3 for randomized data augmentation Loss function

$$
\min _{\theta} \mathbb{E}_{(u, v) \sim p_{\text {data }}} \mathbb{E}_{S}[\mathcal{L}(\Psi(u ; \theta), v)+\lambda \mathcal{L}(\Psi(S(u) ; \theta), S(v))]
$$

■ $\Psi(u ; \theta)$ discretization-invariant neural network
■ $\mathcal{L}(\cdot, \cdot)$: typical loss function, e.g., $\mathcal{L}(x, y)=\|x-y\|^{2}$

- Random interpolation operator S

■ $p_{\text {data }}$: joint distribution of (u, v) in $\mathcal{X} \times \mathcal{Y}$
■ $\lambda>0$

Numerical Comparison

Existing methods

■ UNet, Ronneberger et al., MICCAI, 2015
■ DeepOnet, Lu et al., Nature Machine Intelligence, 2021
■ FNO (Fourier Neural Operator), Li et al., ICLR 2021
■ FT (Fourier Transformer) and GT (Galerkin Transformer), S. Cao, NeurIPS, 2021

Examples

- Prediction
- Forward problems
- Inverse problems

■ Signal processing

Numerical Comparison

Prediction of future states
Example 1: Burgers equation:

$$
\begin{aligned}
\partial_{t} u(x, t)+\partial_{x}\left(u^{2}(x, t) / 2\right) & =\nu \partial_{x x} u(x, t), \quad x \in(0,1), t \in(0,1] \\
u(x, 0) & =u_{0}(x)
\end{aligned}
$$

■ Periodic boundary conditions
■ $\nu=0.1$: a given viscosity coefficient

- Applications in fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow
- Goal: learn the mapping from $u_{0}(x)$ to $u(x, 1)$.

Numerical Comparison

Example 1: Burgers equation:

Figure: $L 2$ relative error with $\nu=1 e^{-1}$ (Left) and its closeup (Right). Models are trained with $s=1024$ and tested on the other resolutions.

Numerical Comparison

Example 1: Burgers equation:

Figure: $L 2$ relative error with $\nu=1 e^{-4}$ (Left) and its closeup (Right). Models are trained with $s=1024$ and tested on the other resolutions.

Numerical Comparison

Example 1: Burgers equation:

(a) Comparison of relative error for burgers equation with varying ν.

Numerical Comparison

Forward problem
Example 2: the steady-state of the 2D Darcy Flow equation:

$$
\begin{aligned}
-\nabla \cdot(a(x) \nabla u(x)) & =f(x), \quad x \in(0,1)^{2} \\
u(x) & =0, \quad x \in \partial(0,1)^{2}
\end{aligned}
$$

■ f : a given forcing function

- Applications in modeling the pressure of subsurface flow, the deformation and the electric potential of materials
■ Goal: learn the forward mapping from $a(x)$ to $u(x)$.

Numerical Comparison

Example 2: the steady-state of the 2D Darcy Flow equation:

Figure: $L 2$ relative error. Models are trained with $s=141$ size training data and tested on the other resolutions.

Numerical Comparison

Inverse problem

Example 3: inverse scattering.

■ Applications: non-destructive testing, medical imaging, seismic imaging, etc.
■ Helmholtz equation

$$
\left(-\nabla-\frac{\omega^{2}}{c(x)^{2}}\right) u(x)=0
$$

with a given frequency ω and unknown speed $c(x)$
■ Introduce

$$
\frac{\omega^{2}}{c(x)^{2}}=\frac{\omega^{2}}{c_{0}(x)^{2}}+\eta(x), \quad L_{0}=-\nabla-\frac{\omega^{2}}{c_{0}(x)^{2}}
$$

with $c_{0}(x)$ given in applications
■ Helmholtz equation:

$$
\left(-\nabla-\frac{\omega^{2}}{c(x)^{2}}\right) u(x)=\left(L_{0}-\eta(x)\right) u(x)=0
$$

as a parametric PDE with parameter η
■ Goal: learn the mapping from $u(x)$ at sensor locations to $\eta(x)$

Numerical Comparison

Inverse problem
Example 3: inverse scattering.

Figure: L2 relative error for the forward (Left) and inverse (Right) problem. Model is trained with $s=81$ and tested on different resolutions.

Numerical Comparison

Image/signal processing
Example 4: blind source separation.
■ Applications in image processing, medical imaging, audio signal, health measurement

Figure: Extracting fetal ECG from mother's measurement plays an important role in diagnosing fetus's health. Figure credited to Bensafia et al.

Numerical Comparison

Example 4: blind source separation.

Table: Trained with size $s=2000$ and tested on different resolutions for zero-shot generalization.

Model Name	$\mathbf{2 5 0}$	$\mathbf{5 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{2 0 0 0}$	$\mathbf{4 0 0 0}$
FNO	45.07%	24.75%	16.76%	15.97%	18.23%
GT	45.30%	27.24%	18.97%	17.75%	19.2%
DeepONet †				99.99%	
Unet	112%	101%	68.78%	8.274%	69.85%
ResNet + Interpolation	66.37%	43.73%	32.13%	31.16%	31.92%
IAE-Net (No Skip)	15.36%	10.68%	8.723%	7.904%	8.153%
IAE-Net (ResNet)	14.08%	9.924%	7.925%	7.15%	7.192%
IAE-Net	12.08%	8.638%	7.048%	6.802%	6.848%

Part II: Operator Learning theory

Literature

Existing theory

- A posteriori error analysis for DeepOnet ${ }^{1}$
- Non-DNN approach for linear operators ${ }^{2}$

Our goal

- A priori error analysis

■ Nonlinear operators
■ Discretization-invariant

[^0]
An Abstract Basic Framework

Encoder-decoder

$■$ Most methods $\mathcal{X} \approx \mathbb{R}^{d_{\mathcal{X}}} \rightarrow \mathbb{R}^{d_{\mathcal{y}}} \approx \mathcal{Y}$; finite basis expansion
\square PCA-Net ${ }^{3} \mathcal{X} \approx \mathbb{R}^{d_{\mathcal{X}}} \rightarrow \mathbb{R}^{d_{\mathcal{y}}} \approx \mathcal{Y} ; \mathrm{PCA}$
$■$ DeepOnet $\mathcal{X} \approx \mathbb{R}^{d_{\mathcal{X}}} \rightarrow \mathcal{Y} ; E_{\mathcal{X}}$: function sampling; $D_{\mathcal{Y}}:$ DNN basis functions

■ Our algorithm with one block, $\mathcal{X} \rightarrow \mathcal{Y}$; DNN kernels

[^1]
Problem Statement

Learning $\Psi \approx D_{\mathcal{Y}} \circ \Gamma \circ E_{\mathcal{X}}$
■ Target Lip. operator $\Psi: \mathcal{X} \rightarrow \mathcal{Y}$
■ Samples $\mathcal{S}=\left\{u_{i}, v_{i}\right\}_{i=1}^{2 n}$ with $v_{i}=\Psi\left(u_{i}\right)+\epsilon_{i}, u_{i} \stackrel{\text { i.i.d. }}{\sim} \gamma$, and $\epsilon_{i} \stackrel{\text { i.i.d. }}{\sim} \mu$
■ Step 1: use $\left\{u_{i}, v_{i}\right\}_{i=1}^{n}$ to learn encoder-decoder s.t.

$$
D_{\mathcal{X}} \circ E_{\mathcal{X}} \approx I \text { and } D_{\mathcal{Y}} \circ E_{\mathcal{Y}} \approx I
$$

- Step 2: use $\left\{u_{i}, v_{i}\right\}_{i=n+1}^{2 n}$ to learn DNN Γ_{θ} via empirical risk

$$
\min _{\Gamma_{\theta} \in \mathcal{F}_{\mathrm{NN}}} R_{S}(\theta):=\min _{\Gamma_{\theta} \in \mathcal{F}_{\mathrm{NN}}} \frac{1}{n} \sum_{i=n+1}^{2 n}\left\|D_{\mathcal{Y}} \circ \Gamma_{\theta} \circ E_{\mathcal{X}}\left(u_{i}\right)-v_{i}\right\|_{\mathcal{Y}}^{2}
$$

- Population risk (accuracy) of $\Psi_{\theta}:=D_{\mathcal{Y}} \circ \Gamma_{\theta} \circ E_{\mathcal{X}} \approx \psi$

$$
R_{D}(\theta):=\mathbb{E}_{\mathcal{S}} \mathbb{E}_{u \sim \gamma}\left\|\Psi_{\theta}(u)-\Psi(u)\right\|_{\mathcal{Y}}^{2}
$$

Question: How good is the empirical solution $\Psi_{\theta^{*}}$ with $\theta^{*} \in \operatorname{argmin} R_{S}(\theta)$?

Problem Statement

The goal of error analysis
Quantify

$$
R_{D}\left(\theta^{*}\right):=\mathbb{E}_{\mathcal{S}} \mathbb{E}_{u \sim \gamma}\left\|\Psi_{\theta^{*}}(u)-\Psi(u)\right\|_{\mathcal{Y}}^{2}
$$

in terms of DNN width, depth, and \#samples
Key questions

- Practical guidance on the choice of DNNs and samples
- Curse of dimensionality (in \#parameters and \#samples)
- Zero/few-shot generalization for different data structures

Problem Statement

Error analysis of $R_{D}\left(\theta^{*}\right)$

- Error decomposition

$$
\begin{aligned}
R_{D}\left(\theta^{*}\right) & =\mathbb{E}_{\mathcal{S}} \mathbb{E}_{u \sim \gamma}\left[\left\|D_{\mathcal{Y}} \circ \Gamma_{\theta^{*}} \circ E_{\mathcal{X}}(u)-\Psi(u)\right\|_{\mathcal{Y}}^{2}\right] \\
& =T_{1}+T_{2}
\end{aligned}
$$

- Bias (approximation)

$$
T_{1}=2 \mathbb{E}_{\mathcal{S}}\left[\frac{1}{n} \sum_{i=n+1}^{2 n}\left\|D_{\mathcal{Y}} \circ \Gamma_{\theta^{*}} \circ E_{\mathcal{X}}\left(u_{i}\right)-\Psi\left(u_{i}\right)\right\|_{2}^{2}\right]
$$

- Variance (generalization)

$$
\begin{aligned}
T_{2}= & \mathbb{E}_{\mathcal{S}} \mathbb{E}_{u \sim \gamma}\left[\left\|D_{\mathcal{Y}} \circ \Gamma_{\theta^{*}} \circ E_{\mathcal{X}}(u)-\Psi(u)\right\|_{\mathcal{Y}}^{2}\right] \\
& -2 \mathbb{E}_{\mathcal{S}}\left[\frac{1}{n} \sum_{i=n+1}^{2 n}\left\|D_{\mathcal{Y}} \circ \Gamma_{\theta^{*}} \circ E_{\mathcal{X}}\left(u_{i}\right)-\Psi\left(u_{i}\right)\right\|_{2}^{2}\right]
\end{aligned}
$$

First step: estimation of T_{1} via DNN approximation

$$
T_{1}=2 \mathbb{E}_{\mathcal{S}}\left[\frac{1}{n} \sum_{i=n+1}^{2 n}\left\|D_{\mathcal{Y}} \circ \Gamma_{\theta^{*}} \circ E_{\mathcal{X}}\left(u_{i}\right)-\Psi\left(u_{i}\right)\right\|_{2}^{2}\right]
$$

Our goals in approximation

- Approximation error in terms of width and depth
- Does curse of dim (e.g., \# parameters $\left(\frac{1}{\epsilon}\right)^{d}$) exist?

Literature Review

Active research directions

Cybenko, 1989; Hornik et al., 1989; Barron, 1993; Montufar, Ay, 2011; Liang and Srikant, 2016; Yarotsky, 2017; Poggio et al., 2017; Schmidt-Hieber, 2017; E and Wang, 2018; Petersen and Voigtlaender, 2018; Chui et al., 2018; Yarotsky, 2018; Nakada and Imaizumi, 2019; Gribonval et al., 2019; Gühring et al., 2019; Chen et al., 2019; Li et al., 2019; Suzuki, 2019; Bao et al., 2019; E et al., 2019; Opschoor et al., 2019; Merkh, Montufar, 2019; Yarotsky and Zhevnerchuk, 2019; Bölcskei et al., 2019; Montanelli and Du, 2019; Chen and Wu, 2019; Zhou, 2020; Montanelli et al., 2020, etc.

ReLU DNNs, continuous functions $C\left([0,1]^{d}\right)$

ReLU; Fixed network width $O(N)$ and depth $O(L)$

■ Nearly tight error rate $5 \omega_{f}\left(8 \sqrt{d} N^{-2 / d} L^{-2 / d}\right)$ simultaneously in N and L with L^{∞}-norm. Shen, Y., and Zhang (CiCP, 2020)

- ω_{f} is the modulas of continuity
- Improved to a tight rate $O\left(\sqrt{d} \omega_{f}\left(\left(N^{2} L^{2} \log _{3}(N+2)\right)^{-1 / d}\right)\right)$. Shen, Y ., and Zhang (J Math Pures Appl, 2021)

Remark

- Curse of dim exists
- Smoothness cannot help (Lu, Shen, Y., Zhang, SIMA, 2021)
- Need special function structures or activation functions to lessen the curse

Second step: estimation of T_{2} via DNN generalization

$$
\begin{aligned}
T_{2}= & \mathbb{E}_{\mathcal{S}} \mathbb{E}_{u \sim \gamma}\left[\left\|D_{\mathcal{Y}} \circ \Gamma_{\theta^{*}} \circ E_{\mathcal{X}}(u)-\Psi(u)\right\|_{\mathcal{Y}}^{2}\right] \\
& -2 \mathbb{E}_{\mathcal{S}}\left[\frac{1}{n} \sum_{i=n+1}^{2 n}\left\|D_{\mathcal{Y}} \circ \Gamma_{\theta^{*}} \circ E_{\mathcal{X}}\left(u_{i}\right)-\Psi\left(u_{i}\right)\right\|_{2}^{2}\right]
\end{aligned}
$$

Deep Network Generalization

Active research directions Hamers and Kohler 2006; Jacot, Gabriel, and Hongler 2018; Bauer and Kohler 2019; Cao and Gu 2019; Chen et al. 2019; Schmidt-Hieber 2020; Kohler, Krzyzak, and Langer 2020; Nakada and Imaizumi 2020; Farrell, Liang, and Misra 2021; Jiao, Shen, Lin, and Huang 2021, etc

Remark

Very limited for operator learning

Deep Network Generalization

Road map (Liu, Y.*, Chen, Zhao, Liao*, arXiv:2201.00217, 2022)
■ Variance $T_{2} \rightarrow$ covering number of $\mathcal{F}_{\mathrm{NN}}$

- Covering number of $\mathcal{F}_{\mathrm{NN}} \rightarrow$ pseudo-dimension of $\mathcal{F}_{\mathrm{NN}}$

■ Pseudo-dimension of $\mathcal{F}_{\mathrm{NN}} \rightarrow \mathrm{NN}$ width and depth

Full Error Analysis

Theorem ((Liu, Y.*, Chen, Zhao, Liao*, arXiv:2201.00217))

Under certain assumptions. Let $\Gamma_{\theta^{*}}$ be the minimizer of the empirical loss with depth $L=O(\widetilde{L} \log \widetilde{L})$, width $N=O(\widetilde{p} \log \widetilde{p})$, magnitude bound $M=O\left(\sqrt{d_{y}}\right)$, where $\widetilde{L}, \widetilde{p}$ are positive integers satisfying

$$
\tilde{L} \tilde{p}=\left\lceil d_{y}^{-\frac{d x}{4+2 d x}} n^{\frac{d x}{4+2 d x}}\right\rceil .
$$

Then we have

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{S}} \mathbb{E}_{u \sim \gamma}\left\|D_{\mathcal{Y}} \circ \Gamma_{\theta^{*}} \circ E_{\mathcal{X}}(u)-\Psi(u)\right\|_{\mathcal{Y}}^{2} \\
& \leq \\
& \\
& \quad O\left(\left(\sigma^{2}+1\right) d_{\mathcal{Y}}^{\frac{4+d_{\mathcal{X}}}{2+d_{\mathcal{X}}}} n^{-\frac{2}{2+d_{\mathcal{X}}}} \log ^{6} n\right) \\
& \quad+O\left(\mathbb{E}_{\mathcal{S}} \mathbb{E}_{u \sim \gamma}\left\|D_{\mathcal{X}} \circ E_{\mathcal{X}}(u)-u\right\|_{\mathcal{X}}^{2}+\mathbb{E}_{\mathcal{S}} \mathbb{E}_{w \sim \Psi_{\# \gamma}}\left\|D_{\mathcal{Y}} \circ E_{\mathcal{Y}}(w)-w\right\|_{\mathcal{Y}}^{2}\right)
\end{aligned}
$$

Interpretation

- Curse of dim exists
- Require accurate encoding for zero/few-shot generalization

Additional Low-Dimensional Structures

Assumption (low-dimensional manifold)

$\left\{E_{\mathcal{X}}(u): u \sim \gamma\right\}$ lie on a d_{0}-dimensional manifold with $d_{0} \ll d_{\mathcal{X}}$
Theorem ((Liu, Y.*, Chen, Zhao, Liao*, arXiv:2201.00217))
In addition to the above assumption, we have

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{S}} \mathbb{E}_{u \sim \gamma}\left\|D_{\mathcal{Y}} \circ \Gamma_{\theta^{*}} \circ E_{\mathcal{X}}(u)-\Psi(u)\right\|_{\mathcal{Y}}^{2} \\
\leq & O\left(\left(\sigma^{2}+1\right) d_{\mathcal{Y}}^{\frac{4+d_{0}}{2+\sigma_{0}}} n^{-\frac{2}{2+\sigma_{0}}} \log ^{6} n\right) \\
& +O\left(\mathbb{E}_{\mathcal{S}} \mathbb{E}_{u \sim \gamma}\left\|D_{\mathcal{X}} \circ E_{\mathcal{X}}(u)-u\right\|_{\mathcal{X}}^{2}+\mathbb{E}_{\mathcal{S}} \mathbb{E}_{w \sim \Psi_{\# \gamma}}\left\|D_{\mathcal{Y}} \circ E_{\mathcal{Y}}(w)-w\right\|_{\mathcal{Y}}^{2}\right)
\end{aligned}
$$

Additional Low-Dimensional Structures

Assumption (low complexity)

$$
D_{\mathcal{Y}} \circ E_{\mathcal{Y}} \circ \Psi(u)=D_{\mathcal{Y}} \circ \mathbf{g} \circ E_{\mathcal{X}}(u)
$$

with $\mathbf{g}: \mathbb{R}^{d_{\mathcal{X}}} \rightarrow \mathbb{R}^{d_{\mathcal{X}}}$ in the form:

$$
\mathbf{g}(\mathbf{a})=\left[\begin{array}{lll}
g_{1}\left(V_{1}^{\top} \mathbf{a}\right) & \cdots & g_{d_{y}}\left(V_{d_{y}}^{\top} \mathbf{a}\right)
\end{array}\right]^{\top},
$$

for $V_{k} \in \mathbb{R}^{d_{\mathcal{X}} \times d_{0}}$, and $g_{k}: \mathbb{R}^{d_{0}} \rightarrow \mathbb{R}$ (multi-index models).
Theorem ((Liu, Y.*, Chen, Zhao, Liao*, arXiv:2201.00217))
In addition to the above assumption, we have

$$
\begin{aligned}
& \mathbb{E}_{\mathcal{S}} \mathbb{E}_{u \sim \gamma}\left\|D_{\mathcal{Y}} \circ \Gamma_{\theta^{*}} \circ E_{\mathcal{X}}(u)-\Psi(u)\right\|_{\mathcal{Y}}^{2} \\
& \leq O\left(\left(\sigma^{2}+1\right) d_{\mathcal{Y}}^{\frac{4+d_{0}}{2+d_{0}}} \max \left\{n^{-\frac{2}{2+\sigma_{0}}}, d_{\mathcal{X}} n^{-\frac{4+d_{0}}{4+2 d_{0}}}\right\} \log ^{6} n\right) \\
&+O\left(\mathbb{E}_{\mathcal{S}} \mathbb{E}_{u \sim \gamma}\left\|D_{\mathcal{X}} \circ E_{\mathcal{X}}(u)-u\right\|_{\mathcal{X}}^{2}+\mathbb{E}_{\mathcal{S}} \mathbb{E}_{w \sim \Psi_{\#} \gamma}\left\|D_{\mathcal{Y}} \circ E_{\mathcal{Y}}(w)-w\right\|_{\mathcal{Y}}^{2}\right)
\end{aligned}
$$

Acknowledgment

Collaborators
Minshuo Chen, Wenjing Liao, Hao Liu, Yong Zheng Ong, Zuowei Shen, Tuo Zhao

Funding

ExyonMobil

[^0]: ${ }^{1}$ S. Lanthaler, S. Mishra, and G. E. Karniadakis. Error estimates for deepOnets: A deep learning framework in infinite dimensions. arXiv:2102.09618, 2021.
 ${ }^{2}$ M. V. de Hoop, N. B. Kovachki, N. H. Nelsen, and A. M. Stuart. Convergence rates for learning linear operators from noisy data. arXiv:2108.12515, 2021.

[^1]: ${ }^{3}$ Bhattacharya, Hosseini, Kovachki, Stuart, 2019

