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Abstract

This paper proposes a novel non-oscillatory pattern (NOP) learning scheme for
several oscillatory data analysis problems including signal decomposition, super-
resolution, and signal sub-sampling. To the best of our knowledge, the proposed
NOP is the first algorithm for these problems with fully non-stationary oscillatory
data with close and crossover frequencies, and general oscillatory patterns. NOP is
capable of handling complicated situations while existing algorithms fail; even in
simple cases, e.g., stationary cases with trigonometric patterns, numerical examples
show that NOP admits competitive or better performance in terms of accuracy and
robustness than several state-of-the-art algorithms.

1 Introduction
This paper concerns oscillatory data defined on a time domain [0, T ] of the form:

f(t) =

K∑
k=1

fk(t) =

K∑
k=1

ak(t)sk(φk(t)) =

K∑
k=1

∑
n

ŝk(n)ak(t)einφk(t)). (1)

Here ak and φk are the latent instantaneous amplitude and phase functions of the kth component,
which are assumed to be smooth over time. The derivative of a phase function φk is called an
instantaneous frequency function and denoted as ωk. sk is a periodic shape function with periodicity
one satisfying

∫
sk(t)dt = 0 and it has a unit L2-norm on [0, 1].

Oscillatory data in Model (1) arise in numerous applications [36, 25, 1, 44, 22, 18, 46, 43, 5, 32, 45,
19, 3, 21, 20, 16, 4, 28] and data analysis of this kind has been an active research field for decades.
Usually only f(t) (and sometimes K) is available and the goal is to estimate ak, φk (or ωk), and sk
from f(t). Hence, this is a general problem including and generalizing sub-problems like adaptive
time-frequency analysis [2, 8, 42], empirical mode decomposition [17, 38, 37], super-resolution
[21, 20, 16, 4, 28], pattern recognition [47], etc. In spite of many successful algorithms for solving
these sub-problems, to the best of our knowledge, there is no existing algorithm fulfilling the ultimate
goal of estimating ak, φk (or ωk), and sk when f(t) is fully non-stationary with close and crossover
frequencies, and general shape functions. Many existing algorithms require high sampling rate for
better accuracy and robustness, which is not practical due to the limit of battery capacity of mobile
devices that collect oscillatory data, e.g. portable health monitors.

Fig. 1 shows a synthetic example of Model (1) when K = 2, ak ≡ 1, φ1(t) = 15t − cos(t),
φ2(t) = 20t+ sin(t), s1(t) = seg1 (t), and s2(t) = seg2 (t). f(t) is in fact a superposition of infinitely
many deformed planewaves due to the Fourier series expansion of shape functions. Hence, close
and crossover frequencies are unavoidable. In terms of frequencies, due to Heisenberg uncertainty
principle, time-frequency analysis methods [2, 8, 42] are not able to estimate these instantaneous
frequencies; due to the fully non-stationary nature of f(t), existing super-resolution methods [21, 20,
16, 4, 28] are not able to estimate frequencies ωk(t). Moreover, existing GP based methods [35, 23,
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24, 34, 26] cannot produce reliable source separation in Model (1). Non-compact support of sk in the
Fourier domain (Fig. 2(b)) creates particular challenges. Some other regression methods have also
been designed to estimate shape functions [39, 41, 31], but they assume phase functions are known.
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Figure 1: An example of
Model (1) with shape functions
sk = segk . (a) Shapes segk . (b)
instantaneous frequencies nφ′1(t)
(green) and nφ′2(t) (red) for all
positive n.

In order to solve the challenging inverse problem implicit to
Model (1), it is natural to choose priors within a Bayesian model
for the latent components. While there are many possible stochastic
process choices, Guassian Processes (GPs) are appealing in en-
forcing smoothness providing easy inclusion of prior information
and leading to computational tractability. This paper proposes a
non-oscillatory pattern (NOP) learning. scheme, the first frame-
work that can estimate ak, φk (or ωk), and sk simultaneously from
f(t). NOP repeatedly applies a two-stage iteration until conver-
gence. In the first stage, fixing rough estimates of shapes, a novel
non-stationary GP regression is proposed to estimate amplitude and
phase functions. A novel set of auxiliary points, referred to as the
pattern inducing points, are introduced for this purpose. As oppose
to traditional stationary kernels, non-stationary kernel functions in
our GP model approximately transform a non-stationary data anal-
ysis problem into a stationary one, greatly reducing the regression
difficulty. Furthermore, we propose to embed the information of
rough shape estimates into the GP regression model, reducing a deep
GP regression problem [47, 7, 6] with a composition of two latent variables (e.g. the composition of
a shape function and a phase function) into a simpler problem with only one latent variable, the phase
functions. This significantly reduces the computational cost and difficulty in the regression.

In the second stage, fixing rough estimates of amplitudes and phases, a non-stationary GP regression
is proposed or other iterative regression methods in [31, 39–41] is applied to estimate shapes. The
main difference of the proposed non-stationary GP regression in the second stage to existing methods
is that, the variance of the point estimate of shape functions is simple to derive.

The first and second stages of the algorithm are introduced in Sections 2 and 3, respectively. Section 4
summarizes NOP. As we shall see in the numerical examples in Section 5, NOP works for a wide
range of signals in Model (1) and the performance is not sensitive to initialization.

2 Estimation of the instantaneous information
In this section, we assume the shape functions {sk}1≤k≤K are known and aim at estimating the phase
and amplitude functions {φk}1≤k≤K and {ak}1≤k≤K , respectively.

2.1 Main ideas
We start with a simple case when the signal f(t) = s ◦ φ(t). Assume a non-stationary GP f(t) ∼
GP(0,k(t, t′)), and a stationary GP s(t) ∼ GP(0,k(t, t′)), where k(·, ·) is the automatic relevance
determination (ARD) [27] squared exponential (SE) kernel:

k(x, x′) = βSE exp

(
−1

2
αSE(x− x′)2

)
, (2)

with kernel parameters βSE and αSE. Now we consider the phase function φ as the latent variable
of the GP f , and claim the resulting GP is periodic and stationary in the domain φ. This is because
f(t) = f(φ−1 ◦ φ(t)) = s(φ(t)), by plugging in the new input x = φ(t), the corresponding output
is f(t) = f ◦ φ−1(x) = s(x), i.e., any point (φ(t), f(t)) lies on the curve s(·). t 7→ φ 7→ f seems to
be a deep/hierarchical GP model [6], but in fact this ‘unwarping’ process directly removes the first
GP layer while keeping the second layer stationary. This is a crucial idea for success of our NOP.
And we write the one layer GP with input φ as f(φt) ∼ GP(0,k(φt, φt′)) for φt = φ(t).

Next, we introduce a point estimate of the phase function φ(t) as a latent variable. Suppose y ∈ RN 1

is the observations (contaminated by white-noise with standard deviation σ) of f(t) at time locations
t ∈ RN . Denote φ = φ(t) ∈ RN and f = s(φ) ∈ RN . As can be seen, a direct inference of the
latent φ, even when s is given, is not trivial. This motivates us to introduce a new set of auxiliary
points for the GP to retrieve the latent input variable φ, and to reveal the underlying patterns for

1We will use bold font for vectors.
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Model (1) when s is not known. We refer to this novel set of auxiliary points as the pattern inducing
points, denoted as (z,u), where z ∈ RM is the input variable and u ∈ RM is the respective output
evaluated at the inducing locations z. Usually we uniformly discretize and fix z at M phase locations
in [0, L), generally L > 1.

(�, y) for

wrong �

(�, y) for

right �

(a) � updates to correct value (b) u and final KNMK�1
MMu

Figure 2: The pattern driven model. (a) the
data points are driven and finally match to
the underlying pattern s. (b)KNMK

−1
MMu.

Similar to sparse inducing points [30, 33], the pattern in-
ducing points are treated as variational parameters, and can
be updated. They possess the benefits of both sparse induc-
ing points and training points [27], but aim to reveal the
true underlying pattern of Model (1) and are endowed with
specific meanings. The intuition behind the pattern induc-
ing points (z,u) is that they serve as certain landmarks,
shown as the green dots (input z as the green triangles) in
Fig. 2, of the true underlying pattern s (shaded green line).
The latent input φ (red right triangle in Fig. 2) can drive the
dataset (φ,y) (red dots in Fig. 2) across the phase domain
(in Fig. 2(a) from (top) the initial wrong φ to (middle) to
(bottom) the correct φ), to match the underlying pattern
s(t) (in green) by these landmarks. The φ that matches
the dataset (φ,y) with the landmark points (z,u) is the
correct φ since (φ(t), f(t)) = (x, s(x)) for x = φ(t). So
this process is also referred to as a pattern driven method
for Model (1). Note that setting of L > 1 with the SE
kernel, is much more stable than the setting of L = 1 with the periodic kernel [27], which is highly
non-convex and can be trapped at much more local minima validated by our numerical result.

Let q(u) be the variational distribution to approximate the posterior distribution of the inducing
variable u. For the purpose of computational efficiency, we adopt q(u) ∼ N (αu,Σu), where
αu ∈ RM is the mean of u and the variance matrix Σu ∈ RM×M of u is diagonal. In this section
since s(t) has been observed, αu = u and Σu = 0. When the auxiliary pattern inducing points are
ready, we design the following data-pattern matching process in a standard GP setting by encoding
the latent variable φ in the GP kernel. Conditioning on u and φ, the likelihood of f becomes

p(f |u,φ) =
p(f ,u|φ)

p(u)
= N (KNMK

−1
MMu,KNN −KNMK

−1
MMKMN ), (3)

By further marginalizing out f and u out, we have

p(y|φ) = N (KNMK
−1
MMαu,KNN −KNMK

−1
MMKMN + Σu + σ2IN ). (4)

Here, IN is an identity matrix of size N ×N , KNN is an N ×N covariance matrix, (KNN )ij =
k((φ)i, (φ)j)

2 for φ ∈ RN , and similarly (KMM )ij = k((z)i, (z)j) for z ∈ RM , (KMN )ij =
k((z)i, (φ)j) = (KNM )ji. Hence, a point estimate of the latent variable φ conditioning on q(u) can
be computed by Bayesian approach using Eqn. (4).

In the case of multi-components as in Model (1), we denote φk ∈ RN , zk ∈ RM , and uk ∈ RM for
the kth component, and f =

∑K
k=1 fk =

∑K
k=1 sk(φk) ∈ RN . Assuming the independence among

variables of the same type, e.g., among {φk}, among {uk}, etc., Eqn. (4) can be generalized to

p(y|Φ) = N

(
K∑
k=1

KNM,kK
−1
MM,kαuk

,

K∑
k=1

(KNN,k −KNM,kK
−1
MM,kKMN,k + Σuk

) + σ2IN

)
,

(5)
where Φ ∈ RN×K consists of latent variables φk as the kth column, KNN,k, KNM,k, KMM,k,
and KMN,k are defined for covariance matrices of the kth component similarly to the case of one
component.

When we have time-varying smooth amplitude functions ak(t) as in Model (1), let ak = ak(t), then
{ak} are a new set of latent variables of f . In this case, Eqn. (5) takes the form:

p(y|A,Φ) = N
(

K∑
k=1

ak �KNM,kK−1
MM,kαuk ,

K∑
k=1

aka
T
k � (KNN,k −KNM,kK−1

MM,kKMN,k + Σuk ) + σ2IN

)
,

(6)
2Denote (·)i as the ith entry of a vector, and (·)ij as the ijth entry of a matrix.
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where A ∈ RN×K consists of ak as its k-th column.

To accelerate the computation, instead of applying the Bayesian approach with Eqn. (6), we directly
fit the mean value of the Gaussian process with the observations y via a least square (LS) problem:

min
A,Φ

∥∥∥∥y − K∑
k=1

ak �KNM,kK
−1
MM,kαuk

∥∥∥∥2

2

, (7)

where Φ has been encoded in the kernel matrices in the minimization objective function.

2.2 Adaptive local estimation
The optimization problem in (7) is non-convex and there is no strong prior of φk and ak to provide a
good initialization. Note that in most applications, φk and ak usually smoothly vary in time. This
motivates us to generate signal patches and locally parametrize the phase and amplitude functions
with low-degree polynomials in Eqn. (7). Within each patch, the non-stationary signal becomes
much more stationary. As we shall see later, our numerical experiments show that degree d 6 2 is
sufficiently good.

For each observation patch (also denoted as y), let B and C ∈ R(d+1)×K be the matrices consisting
of the coefficients of the d-degree polynomials representing the K amplitude and phase functions,
respectively. Then we can specify the amplitude and phase functions with B and C by the following
LS problem:

min
B,C

∥∥∥∥y − K∑
k=1

(

d∑
j=0

(B)jkt
j)�KNM,kK

−1
MM,kαuk

∥∥∥∥2

2

, (8)

where � is the entry-wise dot product, and C has been absorbed in the covariance matrices.

Once the polynomial coefficients B and C of the amplitudes and phases in Eqn. (8) have been
specified, they provide a local point estimate of the amplitude and phase functions, which can be used
to obtain a global point estimate via a robust curve fitting algorithm [10, 11]. A standard moving
average can be applied to estimate the variance of the point estimate.

3 Estimation of shape functions
In this section, we assume the phase and amplitude functions {φk}1≤k≤K and {ak}1≤k≤K are
known and estimate the shape functions {sk}1≤k≤K . We do not aim at closed formulas for sk(t). As
introduced in Section 2, it is sufficient to estimate the pattern inducing variables zk and uk ∈ RM to
represent sk(t).

When amplitude and phase functions are given, shape function estimation methods have been studied
previously in [31, 39–41]. These methods achieves high accuracy when amplitude and phase function
estimates are close to the ground truth. There is no quantitative criteria to measure how well the shape
function estimate performs when the amplitude and phase function estimate is not very good. This
motivates us to apply variational inference, following [33], that explicitly expresses the distribution of
the pattern inducing variables in a joint form. Please refer to Supplemental Material (SM) Section A
and Section B for details of these three well-established approaches.

4 Overview of NOP
NOP repeatedly applies a two-stage iteration until convergence. We have introduced the first stage
in Section 2: given rough estimates of shapes, a non-stationary GP regression is applied to estimate
amplitude and phase functions. The second stage has been introduced in Section 3: given rough
estimates of amplitudes and phases, several regression methods can be adopted to estimate shapes.
Hence, a complete algorithm description can be summarized in Algorithm 1 below. The respective
prediction formulation of Algorithm 1 is derived in SM Section C.

In many applications, e.g. ECG and photoplethysmogram data analysis, heuristic properties of the
physical system are available and we know the rough range of instantaneous frequencies ωk. Hence,
we can apply a band-pass filter to f(t) =

∑K
k=1 ak(t)sk(φk(t)), and then estimate ak and φk of

ŝk(1)ak(t)eiφk(t) in a certain frequency band using traditional time-frequency analysis methods [?
8, 42] to initialize {ak} and {φk} following the method in [40].

4



Algorithm 1 NOP
Input: N measurements of (t,y), the number of components K, the maximum iteration number J ,
and the accuracy parameter ε.
Output: estimates of the pattern inducing variables uk representing sk(t), and the latent variables
φk and ak representing φk(t) and ak(t), respectively.
Initialization: ε1 = ε2 = 1, ε0 = 2, the current iteration number j = 0. Initialize the estimates of
{ak} and {φk}, and let h = 0; or initialize the estimate of {uk} and let h = 1.
while j < J , ε1 > ε, ε2 > ε, and |ε1 − ε0| > ε do

if h = 0 then
Given {ak} and {φk} in the previous iteration, compute {uk} by the method in Section 3.

else
Given {uk} in the previous iteration, compute {ak} and {φk} by the method in Section 2.

if h = 0 then
Given {uk} in the last step just above, compute {ak} and {φk} by the method in Section 2.

else
Given {ak} and {φk} in the last step just above, compute {uk} by the method in Section 3.

Update ε0 = ε1, ε1 and ε2 are set to be the `2-norm of the difference of the amplitude and phase
estimates in the previous and current iteration.

Another simple initialization is to let uk = sin(zk). Since we adopt local patch analysis in Section 2,
components after Fourier series expansion , {ŝk(1)ak(t)eiφk(t)}k, become approximately orthogonal
to each other in a short time domain. Hence, the LS in (7) is able to recover the amplitude and phase
functions corresponding to {ŝk(1)} since they usually have the largest K magnitude.

The LS problems are non-convex and hence we cannot guarantee convergence to the global minimizer.
However, the iterative scheme seems to provide very good results and the algorithm generally
converges after only a few iterations. The good performance of NOP might come from the fact
that once the amplitude and phase function estimates are roughly good (might not be the global
minimizer of LS problems), the shape estimation step can quickly provide very good estimate of
shape functions, which can be guaranteed if we adopt methods in [31, 39, 41]. h in Algorithm 1
specifies whether we update shape functions first or not; if the initialization of shape functions are
better than those of amplitude and phase functions, we choose h = 1; otherwise, we choose h = 0.
The global convergence analysis would be an interesting future work.

5 Experiments
In this section, we provide numerical examples to demonstrate the performance of NOP3, especially
in the case of super-resolution and adaptive time-frequency analysis. LS problems in all examples
are solved by Adam [14] aiming at better local minimizers. We choose degree-1(or degree-2 when
specified) polynomials to approximate local amplitude and phase functions in these LS problems. The
hyperparameters of NOP are set as follows: noise level σ = 10−0.8, αSE = 2× 103, and βSE = 1. In
the local patch analysis, we generate signal patches such that each patch contains approximately 3 to
10 periods. In the tests for super-resolution, we repeat the same test with 10 noise realizations for
the purpose of using the expectation and variance of estimation error to measure the performance of
different algorithms. ∆ω and ∆φ denote the point-wise estimation error.
5.1 Super-resolution spectral estimation
There has been substantial research for the super-resolution problem that aims at estimating time-
invariant amplitudes and frequencies in a signal f(t) =

∑K
k=1 ake

iωkt with ak > 0, ωk > 0, and
{ωk} are very close. Among many possible choices, the baseline models might be MUSIC [29],
ME [4, 12, 13], and ESPRIT [28]. Hence, we will compare NOP with these methods4 to show the
advantages of NOP. Although the Fourier transform usually fails [29] to identify {ak} and {ωk}, we
use its results as the initialization for NOP.
Accuracy and robustness with different spectral gaps In this experiment, we use f{1}(t) =
s1(2πω1t)+s2(2πω2t)+N (0, σ2), where the two instantiations of s1(·)/s2(·) are (i) s1 = cos/s2 =

3Code to be appear in https://github.com/david-dunson.
4Code from http://people.ece.umn.edu/~georgiou/files/HRTSA/SpecAn.html.
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Figure 3: Frequency estimate (absolute) error of f{1}(t) = cos(2πω1t) + sin(2πω2t), where ω1 = 38.8/1024
and ω2 = (38.8+δ0)/1024 with different δ0 and white noiseN (0, σ2).
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Figure 4: Left: results of f{2} with different number of samples N = 64, 128, 256, and 1024 from top to
bottom, and by different methods in an order of NOP, ME, ESPRIT, and MUSIC from left to right. The ground
truth frequencies are (2πω1, 2πω2) = (0.1, 0.15). 100 tests with different noise realization were performed
and the estimated frequencies are visualized in a 2D domain centered at the ground truth. Right: the expectation
and variance of estimation errors for different methods and numbers of samples.

sin (red lines in Fig. 3) and (ii) s1 = seg1 /s2 = seg2 as in Fig. 1 (pink lines in Fig. 3). Here
ω1 = 38.8/1024 and ω2 = (38.8+δ0)/1024, δ0 varies from 0.05/1024 to 10/1024, and different noise
variance are σ2. The sampling rate is 1 Hz and the number of samples is N = 100 in this example.
Fig. 3 shows the frequency estimation accuracy of NOP, MUSIC, ESPRIT, and ME. As we can
see, NOP achieves machine accuracy in the noiseless case and is much more accurate than other
methods in all noisy cases. It also reaches almost the same accuracy for the trigonometric (red) and
shaped(pink) instantiations in (i) and (ii). Baseline methods are not applicable to instantiation (ii).

Accuracy and robustness with different sampling rates In this experiment, we set f{2}(t) =∑2
k=1 ak sin(ωkt) with a1 = 0.5, a2 = 1, ω1 = 0.1, and ω2 = 0.15. The sampling rate of this

signal is still 1Hz and the numbers of samples are N = 64, 128, 256, and 1024 to generate four sets
of test data. There are two different kinds of noise to generate noisy test data: 1) white Gaussian
noise N (0, 0.35) is directly added to f(t); 2) a stochastic process in t with i.i.d. uniform distribution
in [0, 2π] is added to phase functions {ωkt}1≤k≤2. Fig. 4 summarizes the results of frequency
estimates in this experiment. ESPRIT and MUSIC lose accuracy in all tests. NOP and ME achieve
high accuracy when the number of samples is large and NOP is slightly better than ME in terms of
accuracy and estimation bias.

5.2 Estimation of time-variant frequencies

In this section, we show the capacity of NOP for estimating close and crossover time-varying
instantaneous frequencies. An adaptive time-frequency analysis algorithm, ConceFT [9]), is used as
a comparison. And local approximation degree is set to d = 2 in this section.

6



0.2 0.4 0.6 0.8 1
Time (sec)

0

1

2

3

4

5

6

Fr
eq

 (H
z)

 

Mode 1
Mode 2 (with 10 different 0)

-2 0 2
2 0 (rad) 

-7

-6

-5

-4

-3

-2

-1

lo
g 

(E
 [

]) 

Clean
 = 0.2
 = 0.5
 = 1.0

-2 0 2
2 0 (rad) 

-7

-6

-5

-4

-3

-2

lo
g 

(E
 [

] )

Clean
 = 0.2
 = 0.5
 = 1.0-2 0 2

2 0 (rad) 

-7

-6

-5

-4

-3

-2

-1

lo
g 

(E
 [

]) 

Clean
 = 0.2
 = 0.5
 = 1.0

-2 0 2
2 0 (rad) 

-7

-6

-5

-4

-3

-2

-1

lo
g 

(E
 [

]) 

Clean
 = 0.2
 = 0.5
 = 1.0

-2 0 2
2 0 (rad) 

-7

-6

-5

-4

-3

-2

lo
g 

(E
 [

] )

Clean
 = 0.2
 = 0.5
 = 1.0

-2 0 2
2 0 (rad) 

-7

-6

-5

-4

-3

-2

lo
g 

(E
 [

] )

Clean
 = 0.2
 = 0.5
 = 1.0

-2 0 2
2 0 (rad) 

-7

-6

-5

-4

-3

lo
g 

(E
 [

] )

Clean
 = 0.2
 = 0.5
 = 1.0

-2 0 2
2 0 (rad) 

-7

-6

-5

-4

-3

-2

lo
g 

(E
 [

]) 

-2 0 2
2 0 (rad) 

-7

-6

-5

-4

-3

lo
g 

(E
 [

] )

-2 0 2
2 0 (rad) 

-8

-7

-6

-5

-4

-3

lo
g 

(E
 [

])

-2 0 2
2 0 (rad) 

-5.5

-5

-4.5

-4

-3.5

-3

lo
g 

(E
 [

] )

(a) ω1(t) and ω2(t) in time-frequency domain (b) Error for sk = sin (c) Error for sk = segk

Figure 5: Short signal f{3}(N = 100) with linear frequencies. (a) visualizes all the instantaneous frequencies
of our synthetic components as the spectral gap parameter δ0 takes the values (i− 5)/10.24 for i = 0, 1, ..., 9.
(b) is the estimation error for frequency (top) and phase (bottom) estimates when sk = sin; (c) is for sk = segk .

Close frequencies and phase estimation error We use f{3}(t) = s1(2π(10/10.24t +
230/10.242t2))+s2(2π((10/10.24+δ0)t+250/10.242t2)), where the two instantiations of s1(·)/s2(·) are
(i) s1 = cos/s2 = sin (Fig. 5(b)) and (ii) s1 = seg1 /s2 = seg2 as in Fig. 1 (Fig. 5(c)). δ0 varies from
−5/10.24 to 5/10.24. The white noise σ0 has standard deviation {0, 0.2, 0.5, 1}. We apply short-time
Fourier transform [15] to identify rough estimates of instantaneous frequencies and use them as the
initialization in this test. When instantaneous frequencies are very close, the initialization is very
poor; however, NOP still can identify instantaneous frequencies and phases with a reasonably good
accuracy. Result is summarized in Fig. 5.

Fig. 5(a) is the ground truth time-frequency representation of ten tested signals with different value
of δ0 on ω2(t). The difference between ω2(t) (green line) and ω1(t) (red line) are pretty difficult to
be detected by existing time-frequency methods. The log error of the point-wise averaged frequency
estimate is shown in the first row of of Fig. 5 (b) and (c) on different noise levels σ0. The log error
of point-wise averaged phase estimate (bottom row) is consistently small as δ0 changes. Under
large noise case with σ0 = 1, NOP controls the phase error approximate or below the level of 0.05.
Existing time-frequency analysis methods usually estimate instantaneous frequencies first and then
integrate them to obtain instantaneous phases, which suffers from accumulated error. However, NOP
has no accumulated error.

Close and crossover frequencies In this experiment, we generate a signal consisting of two
components with close instantaneous frequencies and a signal with two crossover instantaneous
frequencies. Fig. 6 visualizes the ground truth instantaneous frequencies, the time-frequency distribu-
tion by ConceFT, the initialization and the estimation results of NOP. ConceFT cannot visualize the
instantaneous frequencies even if in the noiseless case. We average out the energy distribution of
ConceFT to obtain the initialization of NOP. Although the initialization is very poor, NOP is still able
to estimate the instantaneous frequencies with a reasonably good accuracy no matter in clean or noisy
cases. However, when the number of components K is known, we can average out the energy band
to obtain one instantaneous frequency function and initialize all instantaneous frequencies in NOP
using this function. We will show how to handle this special initialization in SM Section D.

5.3 Estimation of amplitudes, phases, and shapes simultaneously

Finally, we apply NOP to estimate amplitudes, phases, and shapes simultaneously from a single
record. First, we generate a synthetic example f{6}(t) =

∑2
k=1 s

eg
k (ωkt) + N (0, 0.2), where

ω1 = 3.88/1.024, ω2 = 4.88/1.024, and the shapes are visualized in Fig. 7. The sampling rate for this
signal is 100 Hz and we sample it at 100 locations. The shape estimates are initialized as cos and sin
for the first and second components, respectively (see Fig. 7 (b) and (c)). The frequency estimates are
initialized as one constant centered in the peak spectrogram by ConceFT (see Fig. 7 (a)). As we can
see in Fig. 7 (b) and (c), NOP is able to estimate shape functions with a reasonably good accuracy
and the reconstructed components match the ground truth components very well.
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Figure 6: Instantaneous frequency estimates for signals with close and crossover frequencies. (a) ground truth
instantaneous frequencies and initialization of NOP. (b) estimated instantaneous frequencies for clean signals.
(c) estimated instantaneous frequencies for noisy signals. (d) time-frequency distribution by ConceFT.
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Figure 7: NOP is applied to estimate the amplitude, phase, and shapes of a synthetic signal f{6}(t) consisting
of two components. (a) the time-frequency distribution of f{6}(t) by ConceFT in two different frequency ranges.
ConceFT cannot reveal the ground truth instantaneous frequencies (in red and green). But we can initialize NOP
by averaging out the distribution (see the dash pink line). (b) and (c) the ground truth shape functions and their
estimates. (d) the noisy signal f{6}(t) and the reconstructed components by NOP.

In the second example, we apply NOP to a real signal from photoplethysmogram (PPG) (see Fig. 8
(b)). The shape estimates are still initialized as cos and sin for the two components, and N = 100
samples are involved. The PPG signal contains two components corresponding to the health condition
of the heart and lung in a human body.

6 Conclusion

(a) PPG measurement
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0 2 4 6 8
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(b) Decomposition by NOP

Figure 8: (a) PPG signal. (b) reconstructed
components of the PPG signal. These two com-
ponents were reconstructed from only a small
portion of the samples of the original PPG raw
data as visuallized in the bottom figure.

This paper proposes a novel non-oscillatory pattern
(NOP) learning scheme for several oscillatory data anal-
ysis problems including signal decomposition, super-
resolution, and signal sub-sampling. To the best of our
knowledge, the proposed NOP is the first algorithm for
these problems with fully non-stationary oscillatory data
with close and crossover frequencies, and general oscil-
latory patterns. Numerical examples have shown the ad-
vantage of NOP over several state-of-the-art algorithms
and NOP is able to handle complicated examples for
which existing algorithms fail. NOP could be a very
useful tool for pattern analysis for oscillatory data. Al-
though we cannot prove the global convergence of NOP,
NOP seems to provide very good results in all of our
tests. It is interesting to study the global convergence of
NOP in the future.
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Figure 9: Pattern inducing points of a signal containing two shape functions s1(t) and s2(t) with z supported
and arranged in the one R2 block. (ab): are two views of these rearranged auxiliary points.

For method (iii), when the influence of the amplitude function is negligible, another natural approach
is to apply the variational inference, following [33]. We can explicitly express the distribution of the
pattern inducing points in a joint form (Z,u), where u ∈ RM , Z ∈ RM×K and M =

∏K
k=1Mk

with u, z ∈ RMk . The mth row of Z is denoted as Zm = ((z1)τ(m,1), . . . , (zK)τ(m,K)), and the
respective mth entry of the joint u =

∑K
k=1 uk is expected to approximate

∑K
k=1 sk((zk)τ(m,k)).

One exemplified (Z,u) is shown in Fig. 9. The goal is to maximize a lower bound of p(y|Φ) (Φ is
fixed and thus dropped for now) given as

log p(y) = log

∫
p(y,f ,u)dfdu = log

∫
q(f ,u)

p(y|f)p(u)

q(u)
dfdu (9)

>
∫
q(u) log

p(u) logN (y;KNMK
−1
MMu, σ2IN )

q(u)
du− 1

2σ2
Tr(KNN −KNMK

−1
MMKMN ). (10)

To reduce the unnecessary computational complexity, the periodic kernel takes the form of

k(x,x′) = βPeriod exp

(
−1

2

K∑
k=1

αPeriod
k sin2(π|xk − x′k|)

)
. (11)

By applying an inverse Jensen equality on Eqn. (10), we obtain the variational maximizer of the
lower bound as

q(u) ∝ N
(
σ−2KMMΣKMNy,KMMΣKMM

)
, (12)

where Σ = (KMM + σ−2KMNKNM )−1. Then we can further get αu = σ−2KMMΣKMNy and
Σu = KMMΣKMM . The mean field approximation and a K-dimensional ANOVA is applied to
retrieve q(uk) = N (αuk

,Σuk
), for k = 1, . . . ,K, in closed forms from the joint estimation of

q(u). The separated estimates of q(uk) can be approximated for the respective shape functions sk.
Computational details are listed in the following section.

B Update pattern inducing points

We start from (iii) under the situation that the influence of the amplitude function ak(t) is very weak
and a point estimate of the latent input Φ is given.

One natural approach is to apply the variational inference following [33], which explicitly expresses
the distribution of inducing points (Z,u) by maximizing a lower bound of p(y|Φ) (Φ is dropped in
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the rest part of this section) :

log p(y) = log

∫
p(y,f ,u)dfdu = log

∫
p(f ,u)p(y|f)dfdu. (13)

= log

∫
q(f ,u)

p(y|f)p(u)

q(u)
dfdu (14)

>
∫
q(f ,u) log

p(y|f)p(u)

q(u)
dfdu (15)

=

∫
q(u)

(∫
p(f |u,φ) log p(y|f)df +

p(u)

q(u)

)
du. (16)

which is

log p(y) =

∫
q(u) log

p(u) logN (y;KNMK
−1
MMu, σ2I)

q(u)
du− 1

2σ2
Tr(KNN −KNMK

−1
MMKMN ).

(17)

By applying the inverse Jensen Inequality on the first term, the variational maximizer of the lower
bound is derived as

q(u) ∝ p(u) exp logN (y;KNMK
−1
MMu, σ2IN ) (18)

∝ N
(
σ−2KMMΣKMNy.KMMΣKMM

)
(19)

In the above equations, Σ = (KMM + σ−2KMNKNM )−1, αu = σ−2KMMΣKMNy and Σu =
KMMΣKMM . The mean field approximation is applied to . Then, we optimizeαuk

and the diagonal
version of Σuk

, denoted as Σdiag
uk by

α̃u1 , . . . , α̃uK
= argmin

αu1
,...,αu1

M∑
m=1

‖(αu)m −
K∑
k=1

(αuk
)τ(m,k)‖2, (20)

and Σ̃diag
u1 , . . . , Σ̃

diag
uK = argmin

Σdiag
u1
,...,Σdiag

u1

M∑
m=1

‖(Σdiag
u )m −

K∑
k=1

(Σdiag
uk

)τ(m,k)‖2, (21)

The above optimization problem is essentially a K dimensional ANOVA and can be solved in closed
form.

The separated estimates of q(uk) serves as an approximation for the respective shape functions sk.

Method (i) can be implemented by a nonlinear band truncation on the respective time-frequency do-
main obtained by the ConceFT, STFT, etc. Fig. 10 shows an example of such nonlinear truncation. As
can be seen, after this adaptive frequency filtering, onlyK respective low frequency part of each mode
fk is kept. fk is transformed from the original fk =

∑K
k=1 sk(φk(t)) to f̃k ≈

∑K
k=1 cos(φk(t)+φk0),

or f̃k ≈
∑K
k=1 cos(φk(t) + φk0 + π/2). φ0

k denotes for unknown initial value of the phase function.

The general idea of the approaches in Method (ii) is to apply a nonlinear diffeomorphism on the
signal according to the updated latent phase function φk. Then apply adaptive regression to further
guarantee certain properties of the underlying pattern. We refer the readers to [39, 41, 31].

C Prediction

In this part, we introduce how to make predictions on the signals or to generate new samples by
NOP with updated output Ã, Φ̃, and (Z,u) or q(u|Z). Since the amplitude function ak(t) and the
frequency function ωk(t) are assumed to be smooth, we can put a GP prior on both of them and treat
the updated Ã, Φ̃ as respective learning points. The updated patterning inducing points (Z,u) are
directly plugged in for inference.

If we want to predict on d new time points t0 ∈ Rd, the respective predicted value of f0 ∈ Rd can be
obtained as following. The first sample of Φ0 ∈ RN×K with respect to t0 is drawn from p(Φ|t0,y).
A0 ∈ RN×K of t0 from p(A|t0,y) is drawn by the following equation
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Figure 10: Applying an adaptive filter to change
∑K
k=1 sk(φk(t)) into

∑K
k=1 cosk(φk(t) + φ0

k).
(ab): are the original and truncated time-frequency domain.

Φ0 ∼ N (KddKdN Φ̃,Kdd −KdNK
−1
NNKNd), (22)

and
A0 ∼ N (KddKdN Ã,Kdd −KdNK

−1
NNKNd), (23)

where(Kdd)ij = k((Φ0)i, (Φ0)j), (KNN )ij = k(Φ̃, Φ̃), and (KdN )ij = k((Φ0)i, Φ̃) = (KNd)ji.

Since

sk(φ0,k) ∼ N (KdM,kK
−1
MM,kuk,Kdd −KdM,kK

−1
MM,kKMd,k), for k = 1, . . . ,K, (24)

where (KMM,k)ij = k(zk, zk), and (KdM,k)ij = k(φ0,k, zk) = (KMd,k)ji, thus

ãk � sk(φ0,k) ∼ N
(
ãk �KdM,kK

−1
MM,kuk, ãkã

T
k �

(
Kdd −KdM,kK

−1
MM,kKMd,k

))
. (25)

Since different components are independent, we have

f =

K∑
k=1

ãk � sk(φ0,k) (26)

∼ N

(
K∑
k=1

ãk �KdM,kK
−1
MM,kuk,

K∑
k=1

(
ãkã

T
k �

(
Kdd −KdM,kK

−1
MM,kKMd,k

)))
.(27)

Therefore, f0 can be drawn from distribution (27).

Further, if q(u) is approximated by the mean field method, q(uk) can be simply integrated out from
distribution (27).

D Non-distinguishable Problem

In this section, we introduce an ad hoc approach to tackle the non-distinguishable problem arises
when the initialized instantaneous frequency of different components are set to a same function.
For the estimated frequencies (t,ω1) and (t,ω1), where t, ω1, ω2 ∈ RN , we want to distinguish
components with instantaneous frequency (ω1)i or (ω2)i for each time point ti.

The naive method is to sort (ω1)i and (ω2)i firstly. Then we cluster components by their values.
This actually works pretty well when no crossover happened for ω1(t) and ω2(t), which is shown
in Fig. 11 (a). However, when the crossover happens, as with the second row in Fig. 7, this simple
clustering method will fail, as shown in Fig. 11 (b).

One simple way to tackle this situation is stated as following, based on the smoothness assumption
placed on the frequency functions ωk(t). First we identify all the possible crossover points of ωk(t),
which is the robust local minimum of |ω1 −ω2|. Then the initial clustering obtained from the simple
sorting, as shown in Fig. 11 (a)(b), is switched whenever ti passes a potential crossover point, in the
order of increasing time. This simple reorder trick will output the new clustering as shown in Fig. 11
(c), which is satisfactory for a further refinement to get a point estimate of ωk(t).
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Figure 11: Solution for the non-distinguishable problem.(a)(b) are obtained by the simple ordering
clustering. (c) is obtained by the corrected ordering clustering based on the cross-over points
identification.

E Signals Plots

This section gives the plots of signals used in the main text.
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Figure 12: cos version of f{1}.
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Figure 13: Shape version of f{1}.
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Figure 14: 5 of the 100 random signals in form of f{2}.
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Figure 15: cos version f{3}.
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Figure 16: Shape version of f{3}.
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Figure 17: Top three for f{4} and bottom three for f{5}.
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