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Abstract

The problem of solving partial differential equations (PDEs) can be formulated into a least-
squares minimization problem, where neural networks are used to parametrize PDE solutions.
A global minimizer corresponds to a neural network that solves the given PDE. In this paper,
we show that the gradient descent method can identify a global minimizer of the least-squares
optimization for solving second-order linear PDEs with two-layer neural networks under the as-
sumption of over-parametrization. We also analyze the generalization error of the least-squares
optimization for second-order linear PDEs and two-layer neural networks, when the right-hand-
side function of the PDE is in a Barron-type space and the least-squares optimization is regu-
larized with a Barron-type norm, without the over-parametrization assumption.

Keywords. Deep learning, over-parametrization, partial differential equations, optimization
convergence, generalization error.

AMS subject classifications: 68U99, 65N30 and 65N25.

1 Introduction

Deep learning, originated in computer science, has revolutionized many fields of science and engi-
neering recently. This revolution also includes broad applications of deep learning in computational
and applied mathematics, e.g., many breakthroughs in solving partial differential equations (PDEs)
[8, 28, 40, 5, 20, 12, 2, 27, 39, 47, 24, 19]. The key idea of these approaches is to reformulate the
PDE solution into a global minimizer of an expectation minimization problem, where deep neu-
ral networks (DNNs) are applied for discretization and the stochastic gradient descent (SGD) is
adopted to solve the minimization problem. These methods probably date back to the 1990s (e.g.,
see [8, 28]) and were revisited recently [40, 20, 12, 2, 27, 47, 39] due to the significant development
of GPU computing that accelerates DNN computation. Though these approaches have remarkable
empirical successes, their theoretical justification remains vastly open.

For simplicity, let us use a PDE defined on a domain Ω in a compact form with equality
constrains to illustrate the main idea, e.g.,{

Lu = f in Ω,

Bu = g on ∂Ω,
(1.1)
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where L is a differential operator and B is the operator for specifying an appropriate boundary
condition. In the least squares-type methods, DNNs, denoted as φ(x;θ) with a parameter set θ,
are applied to parametrize the solution space of the PDE and a best parameter set θD is identified
via minimizing an expectation called the population risk (also known as the population loss):

θD = arg min
θ

RD(θ) := Ex∼U(Ω) [`(Lφ(x;θ), f(x))] + γEx∼U(∂Ω) [`(Bφ(x;θ), g(x))] , (1.2)

with a positive parameter γ and a loss function typically taken as `(y, y′) = 1
2 |y − y

′|2, where the
expectation are taken with uniform distributions U(Ω) and U(∂Ω) over Ω and ∂Ω, respectively. To
implement the expectation minimization above using the gradient descent method (GD), a discrete
set of samples are randomly drawn to obtain an empirical risk (or empirical loss) function

RS(θ) :=
1

n

∑
{xi}ni=1⊂Ω

`(Lφ(xi;θ), f(xi)) + γ
1

n

∑
{xi}ni=1⊂∂Ω

`(Bφ(xi;θ), g(xi)) (1.3)

used in each GD iteration to update θ. The set of random samples is usually renewed per iteration
resulting in the SGD algorithm for minimizing (1.2). In this paper, we will focus on the case when
these samples are fixed in all iterations. There are mainly three theoretical point of view to study
the above deep learning-based PDE solver:

1. Approximation theory: given a budget of the size of DNNs, e.g. width m and depth
L, or a budget of the total number of parameters Npara, what is the accuracy of φ(x;θD)
approximating the solution of the PDE?

2. Optimization convergence: under what condition can gradient descent converges to a
global minimizer of (1.2) and (1.3)?

3. Generalization analysis: if only finitely many samples are available, how good is the global
minimizer of (1.3) compared to the global minimizer of (1.2)?

Deep network approximation theory has shown that DNNs admit powerful approximation ca-
pacity. First, DNNs can approximate high-dimensional functions with an appealing approximation
rate, e.g., Barron spaces [1, 14, 13], Korobov spaces [34], band-limited functions [6, 36], composi-
tional functions [38, 48], smooth functions [51, 31, 35], solution spaces of certain PDEs [25], and
even general continuous functions [45, 44]. Second, DNNs can achieve exponential approximation
rates, i.e., the approximation error exponentially decays when the number of parameters increases,
for target functions in the polynomial spaces [50, 36, 31], the smooth function spaces [36, 29], the
analytic function space [16], the function space admitting a holomorphic extension to a Bernstein
polyellipse [37], and even general continuous functions [45]. Theories in deep network approxima-
tion have provided attractive upper bounds of the accuracy of φ(x;θD) approximating the solution
of the PDE in various function spaces. In realistic applications, it might be more interesting to
characterize deep network approximation in terms of m and L simultaneously than the character-
ization in terms of Npara. We refer reader to [42, 43, 31, 45, 49] for examples in terms of m and
L.

Though DNNs are powerful in terms of approximation theory, obtaining the best DNN φ(x;θD)
in (1.2) to approximate the PDE solution is still challenging. It is conjectured that, under certain
conditions, SGD is able to identify an approximate global minimizer of (1.2) with accuracy de-
pending on Npara and the sample size n. Though deep learning-based PDE solvers have been
proposed since the 1990s, there might be no existing literature to investigate this conjecture, to the
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best of our knowledge. In this paper, assuming that the same set of random samples are used in
minimizing (1.3), it is shown that GD can converge to a global minimizer of (1.3), denoted as θS ,
for second-order linear PDEs and two-layer neural networks, as long as Npara is sufficiently large
depending on n, i.e., in the over-parametrization regime. Furthermore, we will quantify how good
the global minimizer θS of the empirical loss in (1.3) is compared to the global minimizer θD of the
population loss in (1.2), when the empirical loss is regularized with a penalty term using the path
norm of θ and the PDE solution is in a Barron- type space, a variant of the Barron-type space in
[1, 14]. Our analysis is an extension of the seminal work of neural tangent kernels [26, 9, 10] and
the generalization analysis in [1, 14] for function regression problems to the case of PDE solvers.

Though the convergence of deep learning-based regression under the over-parametrization as-
sumption has been proposed recently [26, 9, 33, 10, 32], we would like to emphasize that the min-
imization of solving a PDE via (1.2) is more difficult and techinical. In the case of solving PDEs,
differential operators have changed the optimization objective function considered in the literature.
Balancing between the differential operator and the boundary operator makes it more challenging
to solve the optimization problem. For example, we consider a second order elliptic equation with
variable coefficients, i.e., Lu = f where Lu =

∑d
α,β=1Aαβ(x)uxαxβ . Given a two-layer neural net-

work φ(x;θ) =
∑m

k=1 akσ(wᵀ
kx) with an activation function σ(z) = max{0, 1

6z
3} to parametrize

the PDE solution, solving the original PDE via deep learning is equivalent to solving a regression
problem with another type of neural network f(x;θ) := Lφ(x;θ) =

∑m
k=1 akw

ᵀ
kA(x)wkσ

′′(wᵀ
kx)

to fit f(x). Note that σ′′(z) = ReLU(z) = max{0, z}. Thus, the dependence of f(x;θ) on wk is
essentially cubic rather than linear (more precisely, positive homogeneous).

The generalization analysis of deep learning-based regression under the over-parametrization as-
sumption was studied recently in [26, 4, 7]. The generalization analysis with a regularization term
based on the path norm without the over-parametrization assumption was proposed in [14, 13, 15].
In the case of PDE solvers, differential operators have enhanced the nonlinearity of the general-
ization analysis and hence make it more difficult to analyze. In the case of Linear Kolmogorov
Equations and parabolic PDEs, examples of generalization analysis of PDE solvers were presented
in [3, 21]. In the case of linear second-order elliptic and parabolic type PDEs, the generalization
error of the physics-informed neural network was analyzed in [46]. However, the generalization anal-
ysis for generic PDEs is vastly open. Our attempt is for second-order linear PDEs with variable
coefficients. Let us consider the second order elliptic equation with variable coefficients in the above
paragraph again. The variable coefficients Aαβ(x) lead to highly nonlinearity in the network f(x;θ)
depending on x, since we do not make any assumption on the smoothness of A(x). We develop new
analysis of the Rademacher complexity to overcome these difficulties. Unlike existing work, our a
priori estimates do not require any truncation on f(x;θ) (or φ(x;θ)). This is important because a
common truncation trick does not lead to the boundedness of f(x;θ) in our PDE solver. In fact,
if one considers the standard truncation on φ(x;θ), e.g., T[0,1]φ(x;θ) := min{max{φ(x;θ), 0}, 1},
then L[T[0,1]φ(x;θ)] might still be unbounded because L is a second order differential operator.
Another naive trick is to truncate f(x;θ), i.e., T[0,1]f(x;θ) := min{max{f(x;θ), 0}, 1}. But
this does not make sense since we want to find a solution satisfying Lφ(x;θ) ≈ f(x) instead
of T[0,1]Lφ(x;θ) ≈ f(x).

This paper will be organized as follows. In Section 2, deep learning-based PDE solvers will
be introduced in detail. In Section 3, our main theorems for the convergence and generalization
analysis of GD for minimizing (1.3) will be presented. In Section 4, the proof of the GD convergence
theorems will be shown. In Section 5, the proof of the generalization bound will be given. Finally,
we conclude our paper in Section 6.
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2 Deep Learning-based PDE Solvers

We will introduce deep learning-based PDE solvers with necessary notations in this paper in prepa-
ration for our main theorems in Section 3.

2.1 Notations, Definitions, and Basic Lemmas

The main notations of this paper are listed as follows.

• Vectors and matrices are denoted in bold font. All vectors are column vectors.

• For a parameter set Θ, vec{Θ} denotes the vector consists of all the elements of Θ.

• [n] denotes {1, 2, . . . , n}.

• ‖ · ‖1 and ‖ · ‖∞ represent the `1 and `∞ norms of a vector, respectively.

• Big “O” notation: for any functions g1, g2 : R → R+, g1(z) = O(g2(z)) as z → +∞ means
that g1(z) ≤ Cg2(z) for some constants C, z0 and any z ≥ z0.

• Small “o” notation: for any functions g1, g2 : R → R+, g1(z) = o(g2(z)) as z → +∞ means

that limz→∞
f(z)
g(z) = 0.

• Let σ : R → R denote the activation function, e.g., σ(x) = max{0, 1
6x

3} is the activa-
tion function used in this paper. With the abuse of notations, we define σ : Rd → Rd
as σ(x) = (max{0, x1}, . . . ,max{0, xd})ᵀ for any x = (x1, . . . , xd)

ᵀ ∈ Rd, where ᵀ denotes
the transpose of a matrix. Similarly, for any function f defined on R and vector x ∈ Rd,
f(x) = [f(x1), . . . , f(xd)]

ᵀ.

Mathematically, DNNs are a form of function parametrization via the compositions of simple
non-linear functions [17]. Let us focus on the so-called fully connected feed-forward neural network
(FNN) defined below. The FNN is a general DNN structure that includes other advanced structures
as its special cases, e.g., convolutional neural network [17], ResNet [22], and DenseNet [23].

Definition 2.1 (Fully connected feed-forward neural network (FNN)). An FNN of depth L defined
on Rd is the composition of L simple nonlinear functions as follows:

φ(x;θ) := aᵀh[L] ◦ h[L−1] ◦ · · · ◦ h[1](x),

where h[l](x) = σ
(
W [l]x+ b[l]

)
with W [l] ∈ Rml×ml−1, bl ∈ Rml for l = 1, . . . , L, a ∈ RmL,

m0 = d, and σ is a non-linear activation function. Each h[l] is referred as a hidden layer, ml is the
width of the l-th layer, and L is called the depth of the FNN. θ := vec{a, {W [l], b[l]}Ll=1} denotes
the set of all parameters in φ.

Without loss of generality, we consider FNNs omitting b[l]’s. In fact, for a network with
b[l]’s, one can simply set x̃ = (xᵀ, 1)ᵀ and W̃ [l] = (W [l], b[l]) for each l ∈ [L], and work on
θ = vec{a, {W̃ [l]}Ll=1} by noting that W̃ [l]x̃ = W [l]x + b[l]. In this paper, we will focus on
networks with L = 1.

To analyze PDE solvers, we introduce a new kind of Barron functions with their associated
Barron norm, and a path norm defined below.
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Definition 2.2 (Path norm). The path norm of a two-layer neural network

φ(x;θ) =
m∑
k=1

akσ(wᵀ
kx),

with an activation function σ and a parameter set θ is defined as

‖θ‖P :=
m∑
j=1

|aj |‖wj‖31.

Definition 2.3. A function f : Ω → R is called a Barron-type function if f has an integral
representation

f(x) = E(a,w)∼ρa[wᵀA(x)wσ′′(wᵀx) + bᵀ(x)wσ′(wᵀx) + c(x)σ(wᵀx)] for all x ∈ Ω,

where ρ is a probability distribution over Rd+1. The associated Barron norm of a Barron-type
function is defined as

‖f‖B := inf
ρ∈Pf

(
E(a,w)∼ρ|a|2‖w‖61

)1/2
,

where Pf = {ρ | f(x) = E(a,w)∼ρa[wᵀA(x)wσ′′(wᵀx) + bᵀ(x)wσ′(wᵀx) + c(x)σ(wᵀx)],x ∈ Ω}.
The Barron-type space is defined as B(Ω) = {f : Ω→ R | ‖f‖B <∞}.

Since RD(θ) cannot be realized in realistic applications due to the fact that the empirical loss
RS(θ) of finitely many samples is actually used in the computation, an immediate question is:
how well φ(x;θS) ≈ φ(x;θD)? Here θS is a global minimizer when we minimize the empirical
loss of RS(θ). This is the generalization error analysis of deep learning-based PDE solvers and
we will use the Rademacher complexity below to estimate the generalization error in terms of
|RD(θS)−RS(θS)|.

Definition 2.4 (The Rademacher complexity of a function class F). Given a sample set S =
{z1, . . . , zn} on a domain Z, and a class F of real-valued functions defined on Z, the empirical
Rademacher complexity of F on S is defined as

RadS(F) =
1

n
Eτ

[
sup
f∈F

n∑
i=1

τif(zi)

]
,

where τ1, . . . , τn are independent random variables drawn from the Rademacher distribution, i.e.,
P(τi = +1) = P(τi = −1) = 1

2 for i = 1, . . . , n.

The Rademacher complexity is a basic tool for generalization analysis. In our analysis, we will
use several important lemmas and theorems related to it. For the purpose of being self-contained,
they are listed as follows.

First, we recall a well-known contraction lemma for the Rademacher complexity.

Lemma 2.1 (Contraction lemma [41]). Suppose that ψi : R → R is a CL-Lipschitz function for
each i ∈ [n]. For any y ∈ Rn, let ψ(y) = (ψ1(y1), · · · , ψn(yn))ᵀ. For an arbitrary set of functions
F on an arbitrary domain Z and an arbitrary choice of samples S = {z1, . . . ,zn} ⊂ Z, we have

RadS(ψ ◦ F) ≤ CLRadS(F).
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Second, the Rademacher complexity of linear predictors can be characterized by the lemma
below.

Lemma 2.2 (Rademacher complexity for linear predictors [41]). Let Θ = {w1, · · · ,wm} ∈ Rd.
Let G = {g(w) = wᵀx : ‖x‖1 ≤ 1} be the linear function class with parameter x whose `1 norm is
bounded by 1. Then

RadΘ(G) ≤ max
1≤k≤m

‖wk‖∞

√
2 log(2d)

m
.

Finally, let us state a general theorem concerning the Rademacher complexity and generalization
gap of an arbitrary set of functions F on an arbitrary domain Z, which is essentially given in [41].

Theorem 2.1 (Rademacher complexity and generalization gap [41]). Suppose that f ’s in F are
non-negative and uniformly bounded, i.e., for any f ∈ F and any z ∈ Z, 0 ≤ f(z) ≤ B. Then
for any δ ∈ (0, 1), with probability at least 1 − δ over the choice of n i.i.d. random samples
S = {z1, . . . ,zn} ⊂ Z, we have

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(zi)− Ezf(z)

∣∣∣∣∣ ≤ 2ESRadS(F) +B

√
log(2/δ)

2n
,

sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(zi)− Ezf(z)

∣∣∣∣∣ ≤ 2RadS(F) + 3B

√
log(4/δ)

2n
.

2.2 Expectation Minimization

We will focus on the least-squares method in (1.2) for the boundary value problem (BVP) in
(1.1) to discuss the expectation minimization, though the expectation minimization can either be
formulated from the least-squares method [2, 47, 39] or the variational formulation [11, 30]. As we
shall see in the next subsection, an initial value problem (IVP) can also be formulated into a BVP
and solved by the expectation minimization in this subsection.

The objective function in (1.2) consists of two parts: one part for the PDE operator in the
domain interior and another part for the boundary condition at the boundary. Therefore, GD has
to balance between these two parts and its performance heavily relies on the choice of the parameter
γ in (1.2). To remove the hyper-parameter γ and solve the balancing issue, we will introduce special
DNNs in [19, 18] satisfying various boundary conditions by design, i.e., Bφ(x;θ) = g(x) is always
fulfilled on ∂Ω. Then the expectation minimization in (1.2) is reduced to

θD = arg min
θ

RD(θ) := Ex∈Ω [`(Lφ(x;θ), f(x))] . (2.1)

Special neural networks for three types of boundary conditions will be introduced. Without loss of
generality, we will take the example of one-dimensional problems on the domain Ω = [a, b]. Net-
works for more complicated boundary conditions in high-dimensional domains can be constructed
similarly.

Case 1. Dirichlet Boundary Conditions: u(a) = a0, u(b) = b0.
In this case, two special functions h1(x) and h2(x) are used to augment a neural network φ̃(x;θ)

to construct the final neural network φ(x;θ) as the solution network:

φ(x;θ) = h1(x)φ̃(x;θ) + h2(x).
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h1(x) and h2(x) are chosen such that φ(x;θ) automatically satisfies the Dirichlet boundary condi-
tions no matter what θ is. Then φ(x;θ) is trained to satisfy the differential operator in the interior
of the domain Ω by solving (2.1).

To achieve this goal, h1(x) and h2(x) are constructed for two purposes: 1) construct h1(x) such
that h1(x)φ̃(x;θ) satisfies the homogeneous Dirichlet boundary condition; 2) construct h2(x) such
that h2(x) satisfies the given inhomogeneous Dirichlet boundary conditions. Therefore, h1(x) can
be set as

h1(x) = (x− a)pa(x− b)pb ,

where 0 < pa, pb ≤ 1, and h2(x) can be chosen as

h2(x) = (b0 − a0)(x− a)/(b− a) + a0.

Note that pa and pb should be chosen appropriately to avoid introducing a singular function that
φ̃(x;θ) needs to approximate. For instance, if the exact PDE solution is u(x) = (x − a)s(x −
b)sv(x) + h1(x) with v(x) as a smooth function and s > 0, pa = pb > s results in φ̃(x;θ) ≈
(x− a)s−pa(x− b)s−pbv(x), which makes the approximation very challenging.

Case 2. Mixed Boundary Conditions: u′(a) = a0, u(b) = b0.
Similar to Case 1, two special functions h1(x) and h2(x) are used to augment a neural network

φ̃(x;θ) to construct the final neural network φ(x;θ) as the solution network:

φ(x;θ) = h1(x)φ̃(x;θ) + h2(x).

h1(x) and h2(x) are chosen such that φ(x;θ) automatically satisfies the mixed boundary conditions
no matter what θ is. Then φ(x;θ) is trained to satisfy the differential operator in the interior of
the domain Ω by solving (2.1).

To achieve this goal, h1(x) and h2(x) are constructed as

h1(x) = (x− a)pa

with 1 < pa ≤ 2 and h2(x) can be chosen as

h2(x) = −(b− a)pa φ̃(b;θ) + a0x+ b0 − a0b.

Case 3. Neumann Boundary Conditions: u′(a) = a0, u′(b) = b0.
Similar to Case 1 and 2, we augment a neural network φ̃(x;θ) to construct the final neural

network φ(x;θ, c1, c2) as the solution network:

φ(x;θ, c1, c2) = exp(
pax

a− b
)(x− a)pa

(
(x− b)pb φ̃(x;θ) + c2

)
+ c1 +

(b0 − a0)

2(b− a)
(x− a)2 + a0x.

where 1 < pa, pb ≤ 2, c1 and c2 are two parameters to be trained together with θ. Then φ(x;θ, c1, c2)
automatically satisfies the Neumann boundary conditions no matter what parameters are and
φ(x;θ, c1, c2) is trained to satisfy the differential operator in the interior of the domain Ω by solving
(2.1).

2.3 Scope of Analysis and Applications

In Section 2.2, we have simplified the optimization problem from (1.2) to (2.1) for BVP in (1.1).
Now we will show that various initial/boundary value problems can be formulated as a BVP in the
form of (1.1). This helps us to simplify the optimization convergence and generalization analysis
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of deep learning-based PDE solvers to the case of BVP in (1.1) solved by (2.1). The analysis of a
larger scope of applications has been naturally included in the analysis of BVPs.

Let us assume that the domain Ω ⊂ Rd is bounded. Typical PDE problems of interest can be
summerized as:

• Elliptic equation:

Lu(x) = f(x) in Ω,

Bu(x) = g0(x) on ∂Ω.
(2.2)

• Parabolic equation:

∂u(x, t)

∂t
− Lu(x, t) = f(x, t) in Ω× (0, T ),

Bu(x, t) = g0(x, t) on ∂Ω× (0, T ),

u(x, 0) = h0(x) in Ω.

(2.3)

• Hyperbolic equation:

∂2u(x, t)

∂t2
− Lu(x, t) = f(x, t) in Ω× (0, T ),

Bu(x, t) = g0(x, t) on ∂Ω× (0, T ),

u(x, 0) = h0(x),
∂u(x, 0)

∂t
= h1(x) in Ω.

(2.4)

In the above equations, u is the unknown solution function; f , g0, h0, h1 are given data functions;
L is a spatial differential operator with respect to x; B is a boundary operator specifying a certain
type of boundary conditions.

As discussed in [19], when the temporal variable t is treated as an extra spatial coordinate, we
can unify the above initial/boundary value problems in (2.2)-(2.4) in the following form

Lu(y) = f(y) in Q,

Bu(y) = g(y) in Γ,
(2.5)

where y includes the spatial variable x and possibly the temporal variable t; Lu = f represents a
generic time-independent PDE; Bu = g specifies the original boundary condition on x and possibly
the initial condition of t; Q and Γ are the corresponding new domains of the equations. For the
purpose of convenience, we will still use the BVP in (1.1) instead of (2.5) afterwards.

Though deep learning-based PDE solvers work for high-order differential equations in general
domains, we consider second order differential equations with variable coefficients in Ω = [0, 1]d

in our analysis. The generalization to high-order differential equations and other domains follows
straightforwardly and we leave it as future work. We will use the second order differential operator
L in a non-divergence form

Lu =

d∑
α,β=1

Aαβ(x)uxαxβ +

d∑
α=1

bα(x)uxα + c(x)u. (2.6)

If L is in a divergence form, e.g.,

Lu =

d∑
α,β=1

(Aαβ(x)uxα)xβ +

d∑
α=1

bα(x)uxα + c(x)u,
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then we can represent it in a non-divergence form as

Lu =
d∑

α,β=1

Aαβ(x)uxαxβ +
d∑

α=1

b̂α(x)uxα + c(x)u

with

b̂α = bα +

d∑
β=1

∂Aαβ
∂xβ

.

Recall that we introduce two functions h1(x) and h2(x) to augment a neural network φ̃(x;θ)
to construct the final neural network

φ(x;θ) = h1(x)φ̃(x;θ) + h2(x)

as the solution network that automatically satisfies given Dirichlet boundary conditions, which
makes it sufficient to solve the optimization problem in (2.1) to get the desired neural network. In
this case, Lφ(x;θ) = f(x) is equivalent to L̃φ̃(x;θ) = f̃(x), where

L̃ =
d∑

α,β=1

Ãαβ(x)uxαxβ +
d∑

α=1

b̃α(x)uxα + c̃(x),

Ãαβ(x) = Aαβ(x)h1(x),

b̃α(x) = bα(x)h1(x) +
d∑

β=1

(Aαβ(x) +Aβα(x)) ∂xβh1(x),

c̃(x) =

d∑
α,β=1

Aαβ(x)∂xα∂xβh1(x) +

d∑
α=1

bα(x)∂xαh1(x) + c(x)h1(x),

and
f̃(x) = f(x)− L(h2(x)).

Therefore, the optimization convergence and generalization analysis of (2.1) is equivalent to

θD = arg min
θ

RD(θ) := Ex∈Ω

[
`(L̃φ̃(x;θ), f̃(x))

]
, (2.7)

which gives
φ(x;θD) = h1(x)φ̃(x;θD) + h2(x)

as a best solution to the PDE in (1.1) parametrized by DNNs. The corresponding empirical risk is

RS(θ) :=
1

n

∑
{xi}ni=1⊂Ω

`(L̃φ̃(xi;θ), f̃(xi)), (2.8)

which gives θS = arg minθ RS(θ) and

φ(x;θS) = h1(x)φ̃(x;θS) + h2(x).

Similarly, in the case of other two types of boundary conditions, the corresponding optimization
problem in (1.2) can also be transformed to (2.7) and its discretization in (2.8) with an appropriate
differential operator L̃ and a right-hand-side function f̃ .
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In sum, the discussion in Section 2.2 and here indicates that the optimization and generalization
analysis of deep learning-based PDE solvers for various IVPs and BVPs with different boundary
conditions can be reduced to the analysis of (2.7) and (2.8) with L̃ in a non-divergence form. In
the next section, we will present our main theorems for this analysis. For simplicity, we will still
use the notation of L and f instead of L̃ and f̃ in our analysis afterwards.

3 Main Results

In this section, we introduce our main results on the convergence of GD and the generalization
error of neural network-based least-squares solvers for PDEs using two-layer neural networks on
Ω = [0, 1]d. Throughout our analysis, we we assume |f | ≤ 1 and focus on second-order differential
operators L given in (2.6) satisfying the assumption below.

Assumption 3.1 (Symmetry and boundedness of L). Throughout the analysis of this paper, we
assume L in (2.6) satisfies the condition: there exists M ≥ 1 1○ such that for all x ∈ Ω = [0, 1]d,
α, β ∈ [d], we have Aαβ = Aβα

|Aαβ(x)| ≤M, |bα(x)| ≤M, and |c(x)| ≤M. (3.1)

First, we show that, under suitable assumptions, the emprical risk RS(θ) of the PDE solution
represented by an over-parametrized two-layer neural network converges to zero, i.e., achieving a
global minimizer, with a linear convergence rate by GD. In particular, as discussed in Section 2, it
is sufficient to prove the convergence for minimizing the empirical loss

θS = arg min
θ

RS(θ) :=
1

n

∑
S={xi}ni=1⊂Ω

`(Lφ(xi;θ), f(xi)), (3.2)

where S := {xi}ni=1 is a given set of i.i.d. samples with the uniform distribution D over Ω = [0, 1]d,
and the two-layer neural network used here is constructed as

φ(x;θ) =
m∑
k=1

akσ(wᵀ
kx), (3.3)

where for k ∈ [m], ak ∈ R, wk ∈ Rd, θ = vec{ak,wk}mk=1, and σ(x) = max{1
6x

3, 0}. Our main
result of the linear convergence rate is summarized in Theorem 3.1 below.

Theorem 3.1 (Linear convergence rate). Let θ0 := vec{a0
k,w

0
k}
m
k=1 at the GD initialization for

solving (3.2), where a0
k ∼ N (0, γ2) and w0

k ∼ N (0, Id) with any γ ∈ (0, 1). Let Cd := E‖w‖12
1 < +∞

with w ∼ N (0, Id) and λS be a positive constant in Assumption 4.1. For any δ ∈ (0, 1), if

m ≥ max

{
512n4M4Cd

λ2
Sδ

,
200
√

2Md3n log(4m(d+ 1)/δ)
√
RS(θ0)

λS
, (3.4)

223M3d9n2(log(4m(d+ 1)/δ))4
√
RS(θ0)

λ2
S

}
, (3.5)

then with probability at least 1− δ over the random initialization θ0, we have, for all t ≥ 0,

RS(θ(t)) ≤ exp

(
−mλSt

n

)
RS(θ0).

1○The upper bound M is not necessarily greater than 1. We set this for simplicity.
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Remark 3.1. For the estimate of RS(θ0), see Lemma 4.2. In particular, if γ = O( 1√
m(logm)2

),

then RS(θ0) = O(1). One may also use the Anti-Symmetrical Initialization (ASI) [52], a general
but simple trick that ensures RS(θ0) ≤ 1

2 .

Second, we prove that the a posteriori generalization error |RD(θ) − RS(θ)| is bounded by

O
(
‖θ‖2P log‖θ‖P√

n

)
, where ‖θ‖P is the path norm introduced in Definition 2.2, and the a priori

generalization error RD(θS,λ) is bounded by O
(
‖f‖2B
m

)
+O

(
‖f‖2B log‖f‖B√

n

)
, where ‖f‖B is the Barron

norm for Barron-type functions f(x) introduced in Definition 2.3, and θS,λ is a global minimizer
of a regularized empirical loss using the path norm. Our results of the generalization errors can be
summarized in Theorems 3.2 and 3.3 below.

Theorem 3.2 (A posteriori generalization bound). For any δ ∈ (0, 1), with probability at least
1 − δ over the choice of random samples S := {xi}ni=1 in (3.2), for any two-layer neural network
φ(x;θ) in (3.3), we have

|RD(θ)−RS(θ)| ≤ (‖θ‖P + 1)2

√
n

2M2(14d2
√

2 log(2d) + log[π(‖θ‖P + 1)] +
√

2 log(1/3δ)).

Theorem 3.3 (A priori generalization bound). Suppose that f(x) is in the Barron-type space
B([0, 1]d) and λ ≥ 4M2[2 + 14d2

√
2 log(2d) +

√
2 log(2/3δ)]. Let

θS,λ = arg min
θ
JS,λ(θ) := RS(θ) +

λ√
n
‖θ‖2P log[π(‖θ‖P + 1)].

Then for any δ ∈ (0, 1), with probability at least 1−δ over the choice of random samples S := {xi}ni=1

in (3.2), we have

RD(θS,λ) := Ex∼D 1
2(Lφ(x;θS,λ)− f(x))2

≤
6M2‖f‖2B

m
+
‖f‖2B + 1√

n
(4λ+ 16M2)

{
log[π(2‖f‖B + 1)] + 14d2

√
log(2d) +

√
log(2/3δ)

}
.

(3.6)

The proof of Theorem 3.1 will be given in Section 4 and the proofs of Theorems 3.2 and 3.3
will be presented in Section 5.

4 Global Convergence of Gradient Descent

In this section, we will prove the global convergence of GD with a linear convergence rate for deep
learning-based PDE solvers as stated in Theorem 3.1. We will first summarize the notations and
assumptions for the proof of Theorem 3.1 in Section 4.1. Several important lemmas will be proved
in Section 4.2. Finally, Theorem 3.1 is proved in Section 4.3.

4.1 Notations and Main Ideas

Let us first summarize the notations and assumptions used in the proof of Theorem 3.1.
Recall that we use the two-layer neural network φ(x;θ) in (3.3) with θ = vec{ak,wk}mk=1. In

the GD iteration, we use t to denote the iteration or the artificial time variable in the gradient flow.
Hence, we define the following notations for the evolution of parameters at time t:

atk := ak(t), wt
k := wk(t), θt := θ(t) := vec{atk,wt

k}
m
k=1.
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In the analysis, we also use ātk := āk(t) := γ−1ak(t) with 0 < γ < 1, e.g., γ = 1√
m

or γ = 1
m . θ̄(t)

means vec{ātk,wt
k}
m
k=1. Similarly, we can introduce t to other functions or variables depending on

θ(t). When the dependency of t is clear, we will drop the index t. In the initialization of GD, we
set

a0
k := ak(0) ∼ N (0, γ2), w0

k := wk(0) ∼ N (0, Id), θ0 := θ(0) := vec{a0
k,w

0
k}
m
k=1. (4.1)

Note that we use σ(x) = max{1
6x

3, 0} as the activation of our two-layer neural network. There-
fore, σ′(x) = max{1

2x
2, 0}, and σ′′(x) = ReLU(x) = max{x, 0}. For simplicity, we define

fθ(x) := f(x;θ) := Lφ(x;θ)

=

m∑
k=1

ak[w
ᵀ
kA(x)wkσ

′′(wᵀ
kx) + bᵀ(x)wkσ

′(wᵀ
kx) + c(x)σ(wᵀ

kx)], (4.2)

which can be treated as a special two-layer neural network for a regression problem fθ(x) ≈ f(x).
For simplicity, we denote ei = fθ(xi) − f(xi) for i ∈ [n] and e = (e1, e2, . . . , en)ᵀ. Then the

empirical risk can be written as

RS(θ) =
1

2n

n∑
i=1

(fθ(xi)− f(xi))
2 =

1

2n
eᵀe.

Hence, the GD dynamics is
θ̇ = −∇θRS(θ), (4.3)

or equivalently in terms of ak and wk as follows:

ȧk = −∇akRS(θ) = − 1

n

n∑
i=1

ei
[
wᵀ
kA(xi)wkσ

′′(wᵀ
kxi) + bᵀ(xi)wkσ

′(wᵀ
kxi) + c(xi)σ(wᵀ

kxi)
]
,

ẇk = −∇wkRS(θ) = − 1

n

n∑
i=1

eiak

[
2A(xi)wkσ

′′(wᵀ
kxi) +wᵀ

kA(xi)wkσ
(3)(wᵀ

kxi)xi

+ σ′(wᵀ
kxi)b(xi) + bᵀ(xi)wkσ

′′(wᵀ
kxi)xi + c(xi)σ

′(wᵀ
kxi)xi

]
.

Adopting the neuron tangent kernel point of view [26], in the case of a two-layer neural network
with an infinite width, the corresponding kernels k(a) for parameters in the last linear transform
and k(w) for parameters in the first layer are functions from Ω× Ω to R defined by

k(a)(x,x′) := Ew∼N (0,Id)g
(a)(w;x,x′),

k(w)(x,x′) := E(a,w)∼N (0,Id+1)g
(w)(a,w;x,x′),

where

g(a)(w;x,x′) :=
[
wᵀA(x)wσ′′(wᵀx) + bᵀ(x)wσ′(wᵀx) + c(x)σ(wᵀx)

]
·
[
wᵀA(x′)wσ′′(wᵀx′) + bᵀ(x′)wσ′(wᵀx′) + c(x′)σ(wᵀx′)

]
,

g(w)(a,w;x,x′) := a2
[
2A(x)wσ′′(wᵀx) +wᵀA(x)wσ(3)(wᵀx)x+ σ′(wᵀx)b(x)

+ bᵀ(x)wσ′′(wᵀx)x+ c(x)σ′(wᵀx)x
]
·
[
2A(x′)wσ′′(wᵀx′)

+wᵀA(x′)wσ(3)(wᵀx′)x′ + σ′(wᵀx′)b(x′)

+ bᵀ(x′)wσ′′(wᵀx′)x′ + c(x)σ′(wᵀx′)x′
]
.
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These kernels evaluated at n × n pairs of samples lead to n × n Gram matrices K(a) and K(w)

with K
(a)
ij = k(a)(xi,xj) and K

(w)
ij = k(w)(xi,xj), respectively. Our analysis requires the matrix

K(a) to be positive definite, which has been verified for regression problems under mild conditions
on random training data S = {xi}ni=1 and can be generalized to our case. Hence, we assume this
as follows for simplicity.

Assumption 4.1. We assume that

λS := λmin

(
K(a)

)
> 0.

For a two-layer neural network withm neurons, the n×nGram matrixG(θ) = G(a)(θ)+G(w)(θ)
is given by the following expressions for the (i, j)-th entry

G
(a)
ij (θ) :=

1

m

m∑
k=1

g(a)(wk;xi,xj),

G
(w)
ij (θ) :=

1

m

m∑
k=1

g(w)(ak,wk;xi,xj).

Clearly, G(a)(θ) and G(w)(θ) are both positive semi-definite for any θ. By using the Gram matrix
G(θ), we have the following evolution equations to understand the dynamics of GD:

d

dt
fθ(xi) = − 1

n

n∑
j=1

Gij(θ)(fθ(xj)− f(xj))

and
d

dt
RS(θ) = −‖∇θRS(θ)‖22 = −m

n2
eᵀG(θ)e ≤ −m

n2
eᵀG(a)(θ)e. (4.4)

Our goal is to show that the above evolution equation has a solution fθ(xi) converging to f(xi)
for all training samples xi, or equivalently, to show that RS(θ) converges to zero. These goals are
true if the smallest eigenvalue λmin

(
G(a)(θ)

)
of G(a)(θ) has a positive lower bound uniformly in

t, since in this case we can solve (4.4) and bound RS(θ) with a function in t converging to zero
when t→∞ as shown in Lemma 4.4. In fact, a uniform lower bound of λmin

(
G(a)(θ)

)
can be 1

2λS ,
which can be proved in the following three steps:

• (Initial phase) By Assumption 4.1 of K(a), we can show λmin

(
G(a)(θ(0))

)
≈ λS in Lemma

4.3 using the observation that K
(a)
ij is the mean of g(w;xi,xj) over the normal random

variable w, while G
(a)
ij (θ(0)) is the mean of g(w;xi,xj) with m independent realizations.

• (Evolution phase) The GD dynamics results in θ(t) ≈ θ(0) under the assumption of over-
parametrization as shown in Lemma 4.5, which indicates that

λmin

(
G(a)(θ(0))

)
≈ λmin

(
G(a)(θ(t))

)
.

• (Final phase) To show the uniform bound λmin

(
G(a)(θ(t))

)
≥ 1

2λS for all t ≥ 0, we introduce
a stopping time t∗ via

t∗ = inf{t | θ(t) /∈M(θ0)}, (4.5)

where

M(θ0) :=

{
θ | ‖G(a)(θ)−G(a)(θ0)‖F ≤

1

4
λS

}
, (4.6)

and show that t∗ is in fact equal to infinity in the final proof of Theorem 3.1 in Section 4.3.
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4.2 Proofs of Lemmas for Theorem 3.1

In this subsection, we will prove several lemmas in preparation for the proof of Theorem 3.1.

Lemma 4.1. For any δ ∈ (0, 1) with probability at least 1 − δ over the random initialization in
(4.1), we have

max
k∈[m]

{
|ā0
k|, ‖w0

k‖∞
}
≤
√

2 log
2m(d+ 1)

δ
,

max
k∈[m]

{
|a0
k|
}
≤ γ

√
2 log

2m(d+ 1)

δ
.

(4.7)

Proof. If X ∼ N (0, 1), then P(|X| > ε) ≤ 2e−
1
2
ε2 for all ε > 0. Since ā0

k ∼ N (0, 1), (w0
k)α ∼ N (0, 1)

for k ∈ [m], α ∈ [d], and they are all independent, by setting

ε =

√
2 log

2m(d+ 1)

δ
,

one can obtain

P
(

max
k∈[m]

{
|ā0
k|, ‖w0

k‖∞
}
> ε

)
= P

 ⋃
k∈[m]

{
|ā0
k| > ε

}⋃ ⋃
k∈[m],α∈[d]

{
|(w0

k)α| > ε
}

≤
m∑
k=1

P
(
|ā0
k| > ε

)
+

m∑
k=1

d∑
α=1

P
(
|(w0

k)α| > ε
)

≤ 2me−
1
2
ε2 + 2mde−

1
2
ε2

= 2m(d+ 1)e−
1
2
ε2

= δ,

which implies the conclusions of this lemma.

Lemma 4.2. For any δ ∈ (0, 1) with probability at least 1 − δ over the random initialization in
(4.1), we have

RS(θ0) ≤ 1

2

(
1 + 32γ

√
mMd3

(
log

4m(d+ 1)

δ

)2 (√
2 log(2d) +

√
2 log(8/δ)

))2

,

Proof. From Lemma 4.1 we know that with probability at least 1− δ/2,

|ā0
k| ≤

√
2 log

4m(d+ 1)

δ
and ‖w0

k‖1 ≤ d
√

2 log
4m(d+ 1)

δ
.

Let

H = {h(ā,w;x) | h(ā,w;x) = ā
[
wᵀA(x)wσ′′(wᵀx) + bᵀ(x)wσ′(wᵀx) + c(x)σ(wᵀx)

]
,x ∈ Ω}.

Note that A, b, and c are known functions of x. Each element in the above set is a function of ā
and w while x ∈ Ω = [0, 1]d is a parameter. Since ‖x‖∞ ≤ 1, we have

|h(ā0
k,w

0
k;x)| ≤ |ā0

k|
[
M‖w0

k‖31 +
1

2
M‖w0

k‖31 +
1

6
M‖w0

k‖31
]

≤ 2M |ā0
k|‖w0

k‖31

≤ 8Md3

(
log

4m(d+ 1)

δ

)2

.
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Then with probability at least 1 − δ/2, by the Rademacher-based uniform convergence theorem,
we have

1

γm
sup
x∈Ω
|fθ0(x)| = sup

x∈Ω

∣∣∣∣∣ 1

m

m∑
k=1

h(ā0
k,w

0
k;x)− E(ā,w)∼N (0,Id+1)h(ā,w;x)

∣∣∣∣∣
≤ 2Radθ̄0(H) + 24Md3

(
log

4m(d+ 1)

δ

)2
√

2 log(8/δ)

m
,

where

Radθ̄0(H) :=
1

m
Eτ

[
sup
x∈Ω

m∑
k=1

τkh(ā0
k,w

0
k;x)

]
≤ I1 + I2 + I3,

I1 =
1

m
Eτ

[
sup
x∈Ω

m∑
k=1

τkā
0
kw

0ᵀ
k A(x)w0

kσ
′′(w0ᵀ

k x)

]
,

I2 =
1

m
Eτ

[
sup
x∈Ω

m∑
k=1

τkā
0
kb

ᵀ(x)w0
kσ
′(w0ᵀ

k x)

]
,

I3 =
1

m
Eτ

[
sup
x∈Ω

m∑
k=1

τkā
0
kc(x)σ(w0ᵀ

k x)

]
,

where τ is a random vector in Nm with i.i.d. entries {τk}mk=1 following the Rademacher distribution.
We only prove for I1. It can be straightforwardly extended to I2 and I3.

I1 =
1

m
Eτ

[
sup
x∈Ω

m∑
k=1

τkā
0
kw

0ᵀ
k A(x)w0

kσ
′′(w0ᵀ

k x)

]

≤ 1

m
Eτ

[
sup
x,y∈Ω

m∑
k=1

τkā
0
kw

0ᵀ
k A(y)w0

kσ
′′(w0ᵀ

k x)

]

=
1

m
Eτ

 sup
x,y∈Ω

m∑
k=1

d∑
α,β=1

τkā
0
k(w

0ᵀ
k )αAαβ(y)(w0

k)βσ
′′(w0ᵀ

k x)


≤

d∑
α,β=1

1

m
Eτ

[
sup
x,y∈Ω

m∑
k=1

τkā
0
k(w

0ᵀ
k )αAαβ(y)(w0

k)βσ
′′(w0ᵀ

k x)

]
. (4.8)
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For any α, β ∈ [d], we have

Eτ

[
sup
x,y∈Ω

m∑
k=1

τkā
0
k(w

0ᵀ
k )αAαβ(y)(w0

k)βσ
′′(w0ᵀ

k x)

]

≤ Eτ

[
sup
x,y∈Ω

|Aαβ(y)|

∣∣∣∣∣
m∑
k=1

τkā
0
k(w

0ᵀ
k )α(w0

k)βσ
′′(w0ᵀ

k x)

∣∣∣∣∣
]

≤MEτ

[
sup
x∈Ω

∣∣∣∣∣
m∑
k=1

τkā
0
k(w

0ᵀ
k )α(w0

k)βσ
′′(w0ᵀ

k x)

∣∣∣∣∣
]

≤MEτ

[
sup
x∈Ω

m∑
k=1

τkā
0
k(w

0ᵀ
k )α(w0

k)βσ
′′(w0ᵀ

k x)

]
+MEτ

[
sup
x∈Ω

m∑
k=1

−τkā0
k(w

0ᵀ
k )α(w0

k)βσ
′′(w0ᵀ

k x)

]

= 2MEτ

[
sup
x∈Ω

m∑
k=1

τkā
0
k(w

0ᵀ
k )α(w0

k)βσ
′′(w0ᵀ

k x)

]
, (4.9)

where in the third inequality, we have used the fact that σ′′(w0ᵀ
k x) = 0 for x = 0 and for any w0

k.

Applying Lemma 2.1 with ψk(yk) = āk(w
0ᵀ
k )α(w0

k)βσ
′′(yk) for k ∈ [m], whose Lipschitz constant is(√

2 log 4m(d+1)
δ

)3

, we have for all α, β ∈ [d]

Eτ

[
sup
x∈Ω

m∑
k=1

τkā
0
k(w

0ᵀ
k )α(w0

k)βσ
′′(w0ᵀ

k x)

]
≤

(√
2 log

4m(d+ 1)

δ

)3

Eτ

[
sup
x∈Ω

m∑
k=1

τkw
0ᵀ
k x

]
. (4.10)

Therefore, combining (4.8), (4.9), and (4.10), we obtain

I1 ≤
2Md2

m

(√
2 log

4m(d+ 1)

δ

)3

Eτ

[
sup
x∈Ω

m∑
k=1

τkw
0ᵀ
k x

]

≤ 2Md3

√
m

(√
2 log

4m(d+ 1)

δ

)4√
2 log(2d)

≤
8Md3

√
2 log(2d)√
m

(
log

4m(d+ 1)

δ

)2

,

where the second inequality is by the Rademacher bound for linear predictors in Lemma 2.2. For
I2 and I3, we note that σ(z) = 1

6z
2σ′′(z) and σ′(z) = 1

2zσ
′′(z). Then by a similar argument, we

have

I2 ≤
4Md2

√
2 log(2d)√
m

(
log

4m(d+ 1)

δ

)2

,

I3 ≤
4Md

√
2 log(2d)

3
√
m

(
log

4m(d+ 1)

δ

)2

,

Radθ̄0(H) ≤
16Md3

√
2 log(2d)√
m

(
log

4m(d+ 1)

δ

)2

.
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So one can get

sup
x∈Ω
|fθ0(x)| ≤ 32γMd3√m

√
2 log(2d)

(
log

4m(d+ 1)

δ

)2

+ 24γ
√
mMd3

(
log

4m(d+ 1)

δ

)2√
2 log(8/δ)

≤ 32γ
√
mMd3

(
log

4m(d+ 1)

δ

)2 (√
2 log(2d) +

√
2 log(8/δ)

)
.

Then

RS(θ0) ≤ 1

2n

n∑
i=1

(1 + |fθ0(xi)|)2

≤ 1

2

(
1 + 32γ

√
mMd3

(
log

4m(d+ 1)

δ

)2 (√
2 log(2d) +

√
2 log(8/δ)

))2

,

where the first inequality comes from the fact that |f | ≤ 1 by our assumption of the PDE.

The following lemma shows the positive definiteness of G(a) at initialization.

Lemma 4.3. For any δ ∈ (0, 1), if m ≥ 256n4M4Cd
λ2Sδ

, then with probability at least 1 − δ over the

random initialization in (4.1), we have

λmin

(
G(a)(θ0)

)
≥ 3

4
λS ,

where Cd := E‖w‖12
1 < +∞ with w ∼ N (0, Id).

Proof. We define Ωij := {θ0 | |G(a)
ij (θ0)−K(a)

ij | ≤
λS
4n }. Note that

|g(a)(w0
k;xi,xj)| ≤

(
M‖w0

k‖31 +
1

2
M‖w0

k‖31 +
1

6
M‖w0

k‖31
)2

≤ 4M2‖w0
k‖61.

So

Var
(
g(a)(w0

k;xi,xj)
)
≤ E

(
g(a)(w0

k;xi,xj)
)2
≤ 16M4E‖w0

k‖12
1 = 16M4Cd,

and

Var
(
G

(a)
ij (θ0)

)
=

1

m2

m∑
k=1

Var
(
g(a)(w0

k;xi,xj)
)
≤ 16M4Cd

m
.

Then the probability of the event Ωij has the lower bound:

P(Ωij) ≥ 1−
Var

(
G

(a)
ij (θ0)

)
[λS/(4n)]2

≥ 1− 256M4n2Cd
λ2
Sm

.

Thus, with probability at least
(

1− 256M4n2Cd
λ2Sm

)n2

≥ 1 − 256M4n4Cd
λ2Sm

, we have all events Ωij for

i, j ∈ [n] happen. This implies that with probability at least 1− 256M4n4Cd
λ2Sm

, we have

‖G(a)(θ0)−K(a)‖F ≤
λS
4
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and

λmin

(
G(a)(θ0)

)
≥ λS − ‖G(a)(θ0)−K(a)‖F ≥

3

4
λS .

For any δ ∈ (0, 1), if m ≥ 256n4M4Cd
λ2Sδ

, then with probability at least 1− 256M4n4Cd
λ2Sm

≥ 1− δ over the

initialization θ0, we have λmin

(
G(a)(θ0)

)
≥ 3

4λS .

The following lemma estimates the empirical loss dynamics before the stopping time t∗ in (4.5).

Lemma 4.4. For any δ ∈ (0, 1), if m ≥ 256n4M4Cd
λ2Sδ

, then with probability at least 1 − δ over the

random initialization in (4.1), we have for any t ∈ [0, t∗)

RS(θ(t)) ≤ exp

(
−mλSt

n

)
RS(θ0).

Proof. From Lemma 4.3, for any δ ∈ (0, 1) with probability at least 1− δ over initialization θ0 and
for any t ∈ [0, t∗) with t∗ defined in (4.5), we have θ(t) ∈M(θ0) defined in (4.6) and

λmin

(
G(a)(θ)

)
≥ λmin

(
G(a)(θ0)

)
− ‖G(a)(θ)−G(a)(θ0)‖F

≥ 3

4
λS −

1

4
λS

=
1

2
λS .

Note that Gij = 1
m∇θfθ(xi) · ∇θfθ(xj) and ∇θRS = 1

n

∑n
i=1 ei∇θfθ(xi), so

‖∇θRS(θ(t))‖22 =
m

n2
eᵀG(θ(t))e ≥ m

n2
eᵀG(a)(θ(t))e,

where the last equation is true by the fact that G(w)(θ(t)) is a Gram matrix and hence positive
semi-definite. Together with

m

n2
eᵀG(a)(θ(t))e ≥ 2m

n
λmin

(
G(a)(θ(t))

)
RS(θ(t)) ≥ m

n
λSRS(θ(t)),

then finally we get
d

dt
RS(θ(t)) = −‖∇θRS(θ(t))‖22 ≤ −

m

n
λSRS(θ(t)).

Integrating the above equation yields the conclusion in this lemma.

The following lemma shows that the parameters in the two-layer neural network is uniformly
bounded in time during the training before time t∗.

Lemma 4.5. For any δ ∈ (0, 1), if m ≥ max

{
512n4M4Cd

λ2Sδ
,

200
√

2Md3n log(4m(d+1)/δ)
√
RS(θ0)

λS

}
, then

with probability at least 1 − δ over the random initialization in (4.1), for any t ∈ [0, t∗) and any
k ∈ [m],

|ak(t)− ak(0)| ≤ q, ‖wk(t)−wk(0)‖∞ ≤ q,
|ak(0)| ≤ γη, ‖wk(0)‖∞ ≤ η,

where

q :=
320Md3(log 4m(d+1)

δ )3/2n
√
RS(θ0)

mλS
and

η :=

√
2 log

4m(d+ 1)

δ
.

18



Proof. Let ξ(t) = max
k∈[m],s∈[0,t]

{|ak(s)|, ‖wk(s)‖∞}. Note that

|∇akRS(θ)|2 =

{
1

n

n∑
i=1

ei
[
wᵀ
kA(xi)wkσ

′′(wᵀ
kxi) + bᵀ(xi)wkσ

′(wᵀ
kxi) + c(xi)σ(wᵀ

kxi)
]}2

≤ 8M2‖wk‖61RS(θ)

≤ 8M2d6(ξ(t))6RS(θ),

and

‖∇wkRS(θ)‖2∞ =
∥∥∥ 1

n

n∑
i=1

eiak

[
2A(xi)wkσ

′′(wᵀ
kxi) +wᵀ

kA(xi)wkσ
(3)(wᵀ

kxi)xi

+ σ′(wᵀ
kxi)b(xi) + bᵀ(xi)wkσ

′′(wᵀ
kxi)xi + c(xi)σ

′(wᵀ
kxi)xi

]∥∥∥2

∞

≤ |ak|22RS(θ)
(

2M‖wk‖21 +M‖wk‖21 +
1

2
M‖wk‖21 +M‖wk‖21 +M

1

2
‖wk‖21

)2

≤ 50M2‖wk‖41|ak|2RS(θ)

≤ 50M2d4(ξ(t))6RS(θ).

From Lemma 4.4, if m ≥ 512M4n4Cd
λ2sδ

, then with probability at least 1− δ/2 over initialization

|ak(t)− ak(0)| ≤
∫ t

0
|∇akRS(θ(s))|ds

≤ 2
√

2Md3

∫ t

0
ξ3(t)

√
RS(θ(s)) ds

≤ 2
√

2Md3ξ3(t)

∫ t

0

√
RS(θ0) exp

(
−mλSs

2n

)
ds

≤
4
√

2Md3n
√
RS(θ0)

mλS
ξ3(t)

≤ pξ3(t),

where p :=
10
√

2d3Mn
√
RS(θ0)

mλS
. Similarly,

‖wk(t)−wk(0)‖∞ ≤
∫ t

0
‖∇wkRS(θ(s))‖∞ ds

≤ 5
√

2Md2

∫ t

0
ξ3(t)

√
RS(θ(s)) ds

≤ 5
√

2Md2ξ3(t)

∫ t

0

√
RS(θ0) exp

(
−mλSs

2n

)
ds

≤
10
√

2Md2n
√
RS(θ0)

mλS
ξ3(t)

≤ pξ3(t).

So
ξ(t) ≤ ξ(0) + pξ3(t). (4.11)
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From Lemma 4.1 with probability at least 1− δ/2,

ξ(0) = max
k∈[m]

{|ak(0)|, ‖wk(0)‖∞} ≤ max

{
γ

√
2 log

4m(d+ 1)

δ
,

√
2 log

4m(d+ 1)

δ

}

≤
√

2 log
4m(d+ 1)

δ
= η. (4.12)

Since

m ≥
200
√

2Md3n log(4m(d+ 1)/δ)
√
RS(θ0)

λS
= 10mpη2,

then p ≤ 1
10

(
2 log 4m(d+1)

δ

)−1
= 1

10η
−2 and p(2η)2 ≤ 2

5 . Let

t0 := inf{t | ξ(t) > 2η}.

We will prove t0 ≥ t∗ by contradiction. Suppose that t0 < t∗. For t ∈ [0, t0), by (4.11), (4.12), and
ξ(t) ≤ 2η, we have

ξ(t) ≤ η + p(2η)2ξ(t) ≤ η +
2

5
ξ(t),

then

ξ(t) ≤ 5

3
η.

After letting t→ t0, the inequality just above contradicts with the definition of t0. So t0 ≥ t∗ and
then ξ(t) ≤ 2η for all t ∈ [0, t∗). Thus

|ak(t)− ak(0)| ≤ 8η3p

‖wk(t)−wk(0)‖∞ ≤ 8η3p.

Finally, notice that

8η3p = 8
√

8

(
log

4m(d+ 1)

δ

)3/2 10
√

2Md3n
√
RS(θ0)

mλS

=
320Md3

(
log 4m(d+1)

δ

)3/2
n
√
RS(θ0)

mλS
= q,

(4.13)

which ends the proof.

4.3 Proof of Theorem 3.1

Proof of Theorem 3.1. From Lemma 4.4, it is sufficient to prove that the stopping time t∗ in
Lemma 4.4 is equal to +∞. We will prove this by contradiction.

Suppose t∗ < +∞. Note that

|G(a)
ij (θ(t∗))−G(a)

ij (θ(0))| ≤ 1

m

m∑
k=1

|g(a)(wk(t
∗);xi,xj)− g(a)(wk(0);xi,xj)|. (4.14)
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By the mean value theorem,

|g(a)(wk(t
∗);xi,xj)− g(a)(wk(0);xi,xj)|

≤ ‖∇g(a) (cwk(t
∗) + (1− c)wk(0);xi,xj)‖∞‖wk(t

∗)−wk(0)‖1

for some c ∈ (0, 1). Further computation yields

∇g(a)(w;xi,xj) =
[
2A(xi)wσ

′′(wᵀxi) +wᵀA(xi)wσ
(3)(wᵀxi)xi + σ′(wᵀxi)b(xi)

+ bᵀ(xi)wσ
′′(wᵀxi)xi + c(xi)σ

′(wᵀxi)xi

]
×
[
wᵀA(xj)wσ

′′(wᵀxj) + bᵀ(xj)wσ
′(wᵀxj) + c(xj)σ(wᵀxj)

]
+
[
2A(xj)wσ

′′(wᵀxj) +wᵀA(xj)wσ
(3)(wᵀxj)xi + σ′(wᵀxi)b(xi)

+ bᵀ(xj)wσ
′′(wᵀxj)xj + c(xj)σ

′(wᵀxj)xj

]
×
[
wᵀA(xi)wσ

′′(wᵀxi) + bᵀ(xi)wσ
′(wᵀxi) + c(xi)σ(wᵀxi)

]
for all w. Hence, it holds for all w that

‖∇g(a)(w;xi,xj)‖∞ ≤ 2
[
2M‖w‖21 +M‖w‖21 +

1

2
M‖w‖21 +M‖w‖21 +

1

2
M‖w‖21

]
×
[
M‖w‖31 +

1

2
M‖w‖31 +

1

6
M‖w‖31

]
≤ 2(5M‖w‖21)(2M‖w‖31)

= 20M2‖w‖51.

Therefore, the bound in (4.14) becomes

|G(a)
ij (θ(t∗))−G(a)

ij (θ(0))| ≤ 20M2

m

m∑
k=1

‖cwk(t
∗) + (1− c)wk(0)‖51‖wk(t

∗)−wk(0)‖1. (4.15)

By Lemma 4.5,

‖cwk(t
∗) + (1− c)wk(0)‖1 ≤ ‖wk(0)‖1 + ‖wk(t

∗)−wk(0)‖1 ≤ d(η + q) ≤ 2dη,

where η and q are defined in Lemma 4.5. So, (4.15) and the above inequalities indicate

|G(a)
ij (θ(t∗))−G(a)

ij (θ(0))| ≤ 20M2(2dη)5dq = 640M2d6η5q,

and
‖G(a)(θ(t∗))−G(a)(θ(0))‖F ≤ 640M2d6nη5q

<
221M3d9n2(log 4m(d+1)

δ )4
√
RS(θ0)

mλS

≤ 1

4
λS ,

if we choose

m ≥
223M3d9n2(log(4m(d+ 1)/δ))4

√
RS(θ0)

λ2
S

.

The fact that ‖G(a)(θ(t∗)) − G(a)(θ(0))‖F ≤ 1
4λS above contradicts with the definition of t∗ in

(4.5). Hence, we have completed the proof.
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5 A priori Estimates of Generalization Error for Two-layer Neural
Networks

To obtain good generalization, instead of minimizing RS , we minimize the regularized risk of RS(θ):

JS,λ(θ) := RS(θ) +
λ√
n
‖θ‖3P (5.1)

to obtain
θS,λ = arg min

θ
JS,λ(θ). (5.2)

Our work is inspired by the seminal work in [14, 13] and the proof is a variant of the proof therein.
But as we shall see, the differential operator increases the technical difficulty in the analysis: extra
non-linearity in the parameters, which makes existing mean field analysis [33] not applicable. We
will use the path norm defined in Definition 2.2 adaptive to the PDE problem, instead of using
the path norm in [14, 13] for regression problems. We will show that the PDE solution network
φ(x;θS,λ) generalize well if the true solution is in the Barron-type space defined in Definition 2.3,
which is also a variance of the Barron-type space in [14, 13]. The generalization error is measured
in terms of how well f(x;θS,λ) := Lφ(x;θS,λ) ≈ f(x) generalizes from the random training samples
S = {xi}ni=1 ⊂ Ω to arbitrary samples in Ω.

Recall that f(x;θ), also denoted as fθ(x), is the result of the differential operator L acting on a
two-layer neural network φ(x;θ) in the domain Ω. In fact, f(x;θ) is also a two-layer neural network
as explained in (4.2). Hence, the generalization error analysis of deep learning-based PDE solvers is
reduced to the generalization analysis of the special two-layer neural network f(x;θ) fitting f(x).
The special structure of f(x;θ) leads to significant difficulty in analyzing the generalization error
compared to traditional two-layer neural networks in the literature.

We will first summarize and prove several lemmas related to Rademacher complexity in Section
5.1. The proofs of our main theorems for the generalization bound in Theorems 3.2 and 3.3 are
presented in Section 5.2.

5.1 Preliminary Lemmas of Rademacher Complexity

First, we define the set of functions

FQ = {f(x;θ) =
m∑
k=1

ak[w
ᵀ
kA(x)wkσ

′′(wᵀ
kx) + bᵀ(x)wkσ

′(wᵀ
kx) + c(x)σ(wᵀ

kx)] | ‖θ‖P ≤ Q}.

Second, we estimate the Rademacher complexity of the class of special two-layer neural networks
FQ.

Lemma 5.1 (Rademacher complexity of two-layer neural networks). The Rademacher complexity
of FQ over a set of n uniform distributed random samples of Ω, denoted as S = {x1, . . . ,xn}, has
an upper bound

RadS(FQ) ≤
4MQd2

√
2 log(2d)√
n

,

where M is the upper bound of the differential operator L introduced in (3.1).

22



Proof. Let ŵk = wk/‖wk‖1 for k = 1, · · · ,m and τ be a random vector in Nd with i.i.d. entries
following the Rademacher distribution. Then

nRadS(FQ)

= Eτ

{
sup
‖θ‖P≤Q

n∑
i=1

τi

m∑
k=1

ak[w
ᵀ
kA(xi)wkσ

′′(wᵀ
kxi) + bᵀ(xi)wkσ

′(wᵀ
kxi) + c(xi)σ(wᵀ

kxi)]

}

≤ Eτ

[
sup
‖θ‖P≤Q

n∑
i=1

τi

m∑
k=1

akw
ᵀ
kA(xi)wkσ

′′(wᵀ
kxi)

]
+ Eτ

[
sup
‖θ‖P≤Q

n∑
i=1

τi

m∑
k=1

akb
ᵀ(xi)wkσ

′(wᵀ
kxi)

]

+ Eτ

[
sup
‖θ‖P≤Q

n∑
i=1

τi

m∑
k=1

akc(xi)σ(wᵀ
kxi)

]
=: I1 + I2 + I3. (5.3)

We first estimate I1 as follows

I1 = Eτ

[
sup
‖θ‖P≤Q

n∑
i=1

τi

m∑
k=1

ak‖wk‖31ŵ
ᵀ
kA(xi)ŵkσ

′′(ŵᵀ
kxi)

]

≤ Eτ

[
sup

‖θ‖P≤Q,‖uk‖1=1,∀k

n∑
i=1

τi

m∑
k=1

ak‖wk‖31u
ᵀ
kA(xi)ukσ

′′(uᵀ
kxi)

]

≤ Eτ

[
sup

‖θ‖P≤Q,‖uk‖1=1,∀k

m∑
k=1

∣∣ak‖wk‖31
∣∣ ∣∣∣∣∣

n∑
i=1

τiu
ᵀ
kA(xi)ukσ

′′(uᵀ
kxi)

∣∣∣∣∣
]

= Eτ

[
sup

‖θ‖P≤Q,‖u‖1=1

m∑
k=1

|ak|‖wk‖31

∣∣∣∣∣
n∑
i=1

τiu
ᵀA(xi)uσ

′′(uᵀxi)

∣∣∣∣∣
]

≤ QEτ

[
sup

‖u‖1≤1,‖p‖1≤1,‖q‖1≤1

∣∣∣∣∣
n∑
i=1

τip
ᵀA(xi)qσ

′′(uᵀxi)

∣∣∣∣∣
]

= QEτ

[
sup

‖u‖1≤1,‖p‖1≤1,‖q‖1≤1

∣∣∣∣∣pᵀ
(

n∑
i=1

τiA(xi)σ
′′(uᵀxi)

)
q

∣∣∣∣∣
]

= QEτ

 sup
‖u‖1≤1,‖p‖1≤1,‖q‖1≤1

d∑
α,β=1

|pα||qβ|

∣∣∣∣∣
n∑
i=1

τiAαβ(xi)σ
′′(uᵀxi)

∣∣∣∣∣


≤ QEτ

[
sup
‖u‖1≤1

max
α,β∈[d]

∣∣∣∣∣
n∑
i=1

τiAαβ(xi)σ
′′(uᵀxi)

∣∣∣∣∣
]

≤ QEτ

 sup
‖u‖1≤1

d∑
α,β=1

∣∣∣∣∣
n∑
i=1

τiAαβ(xi)σ
′′(uᵀxi)

∣∣∣∣∣


≤ QEτ

 d∑
α,β=1

sup
‖u‖1≤1

∣∣∣∣∣
n∑
i=1

τiAαβ(xi)σ
′′(uᵀxi)

∣∣∣∣∣


= Q

d∑
α,β=1

Eτ

[
sup
‖u‖1≤1

∣∣∣∣∣
n∑
i=1

τiAαβ(xi)σ
′′(uᵀxi)

∣∣∣∣∣
]
. (5.4)
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Note that σ′′(uᵀxi) = 0 for u = 0 and for any xi. For any α, β ∈ [d], we have

Eτ

[
sup
‖u‖1≤1

∣∣∣∣∣
n∑
i=1

τiAαβ(xi)σ
′′(uᵀxi)

∣∣∣∣∣
]
≤ Eτ

[
sup
‖u‖1≤1

n∑
i=1

τiAαβ(xi)σ
′′(uᵀxi)

]

+ Eτ

[
sup
‖u‖1≤1

n∑
i=1

−τiAαβ(xi)σ
′′(uᵀxi)

]

= 2Eτ

[
sup
‖u‖1≤1

n∑
i=1

τiAαβ(xi)σ
′′(uᵀxi)

]
. (5.5)

Applying Lemma 2.1 with ψi(yi) = Aαβ(xi)σ
′′(yi) for i ∈ [n], whose Lipschitz constant is M , we

have for all α, β ∈ [d]

Eτ

[
sup
‖u‖1≤1

n∑
i=1

τiAαβ(xi)σ
′′(uᵀxi)

]
≤MEτ

[
sup
‖u‖1≤1

n∑
i=1

τiu
ᵀxi

]
. (5.6)

Therefore, combining (5.4), (5.5), and (5.6), we obtain

I1 ≤ 2MQd2Eτ

[
sup
‖u‖1≤1

n∑
i=1

τiu
ᵀxi

]
≤ 2MQd2√n

√
2 log(2d),

where the last inequality comes from the Rademacher bound for linear predictors in Lemma 2.2.
For I2 and I3, we note that σ(z) = 1

6z
2σ′′(z) and σ′(z) = 1

2zσ
′′(z). Then by similar arguments,

we have

I2 ≤MQd
√
n
√

2 log(2d),

I3 ≤
1

3
MQ
√
n
√

2 log(2d).

These estimates for I1, I2, I3 combined with (5.3) complete the proof.

5.2 Proofs of Generalization Bounds

In the proofs of this section, we will first show in Proposition 5.1 that two-layer neural networks

f(x;θ) in (4.2) can approximate Barron-type functions with an approximation error O
(
‖f‖2B
m

)
.

Second, for an arbitrary f(x;θ) = Lφ(x;θ), we show its a posteriori generalization bound |RD(θ)−
RS(θ)| ≤ O

(
‖θ‖2P log‖θ‖P√

n

)
in Theorem 3.2. Finally, the a priori generalization bound RD(θS,λ) ≤

O
(
‖f‖2B
m +

‖f‖2B log‖f‖B√
n

)
is proved in Theorem 3.3, where the first and second terms comes from the

approximation error bound and the a posteriori generalization bound.
First, the approximation capacity of two-layer neural networks f(x;θ) can be characterized by

Proposition 5.1 below.

Proposition 5.1 (Approximation Error). For any f ∈ B(Ω), there exists a two-layer neural net-
work f(x; θ̃) of width m with ‖θ̃‖P ≤ 2‖f‖B,

RD(θ̃) := Ex∼D 1
2(f(x, θ̃)− f(x))2 ≤

6M2‖f‖2B
m

,

where M introduced in (3.1) controls the upper bound of the differential operator and m is the width
of the neural network.
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Proof. Without loss of generality, let ρ be the best representation, i.e., ‖f‖2B = E(a,w)∼ρ|a|2‖w‖61.

We set θ̄ = { 1
mak,wk}mk=1, where (ak,wk), k = 1, · · · ,m are independent sampled from ρ. Let

fθ̄(x) =
1

m

m∑
k=1

ak[w
ᵀ
kA(x)wkσ

′′(wᵀ
kx) + bᵀ(x)wkσ

′(wᵀ
kx) + c(x)σ(wᵀ

kx)].

Recall the definition RD(θ̄) = Ex∼D 1
2 |fθ̄(x)− f(x)|2. Then

2Eθ̄RD(θ̄)

= Ex∼DEθ̄|fθ̄(x)− f(x)|2

= Ex∼DVar{(ak,wk)}i.i.d.∼ρ

(
1

m

m∑
k=1

ak[w
ᵀ
kA(x)wkσ

′′(wᵀ
kx) + bᵀ(x)wkσ

′(wᵀ
kx) + c(x)σ(wᵀ

kx)]

)

= Ex∼D
1

m
Var(a,w)∼ρ

(
a[wᵀA(x)wσ′′(wᵀx) + bᵀ(x)wσ′(wᵀx) + c(x)σ(wᵀx)]

)
≤ 1

m
Ex∼DE(a,w)∼ρ

(
a[wᵀA(x)wσ′′(wᵀx) + bᵀ(x)wσ′(wᵀx) + c(x)σ(wᵀx)]

)2
≤ 1

m
Ex∼DE(a,w)∼ρ|a|2

(
M‖w‖31 + 1

2M‖w‖
3
1 + 1

6M‖w‖
3
1

)2
≤ 4M2

m
E(a,w)∼ρ|a|2‖w‖61

=
4M2‖f‖2B

m
.

Also, we have

Eθ̄‖θ̄‖P = E{(ak,wk)}i.i.d.∼ρ
1

m

m∑
k=1

|ak|‖wk‖31

= E(a,w)∼ρ|a|‖w‖31
≤ ‖f‖B.

Define two events E1 := {RD(θ̄) <
6M2‖f‖2B

m } and E2 := {‖θ̄‖P < 2‖f‖B}. By Markov inequality,
we have

P(E1) = 1− P
(
RD(θ̄) ≥

6M2‖f‖2B
m

)
≥ 1− Eθ̄RD(θ̄)

6M2‖f‖2B/m
≥ 2

3
,

P(E2) = 1− P(‖θ̄‖P ≥ 2‖f‖B) ≥ 1− Eθ̄‖θ̄‖P
2‖f‖B

≥ 1

2
.

Thus

P(E1 ∩ E2) ≥ P(E1) + P(E2)− 1 ≥ 2

3
+

1

2
− 1 > 0.

Second, we use Theorem 2.1 with F = HQ := {`(f(x), fθ(x)) | ‖θ‖P ≤ Q} and Z = Ω to show
the a posteriori generalization bound in Theorem 3.2.
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Proof of Theorem 3.2. Let HQ := {`(f(x), fθ(x)) | ‖θ‖P ≤ Q}, then H = ∪∞Q=1HQ. Note that

sup
x∈Ω
|fθ(x)| = sup

x∈Ω

∣∣∣∣∣
m∑
k=1

ak[w
ᵀ
kA(x)wkσ

′′(wᵀ
kx) + bᵀ(x)wkσ

′(wᵀ
kx) + c(x)σ(wᵀ

kx)]

∣∣∣∣∣
≤

m∑
k=1

|ak|‖wk‖31
[
M +

1

2
M +

1

6
M

]
≤ 5

3
M‖θ‖P .

Therefore, for functions in HQ, since |f(x)| ≤ 1 by assumption, we have

0 ≤ `(f(x), fθ(x)) ≤ 1

2
(1 + |fθ(x)|)2

≤ 1

2

(
1 +

5

3
M‖θ‖P

)2

≤ 32

9
M2Q2 ≤ 4M2Q2

for all x ∈ Ω and all Q ≥ 1. For ‖θ‖P ≤ Q, we note that `(y, ·) is a Lipschitz function with a
Lipschitz constant which is no larger than supx∈Ω|fθ(x)| ≤ 5

3M‖θ‖P + 1. Let S′ be an arbitrary
set of n samples of Ω, then

RadS′(HQ) ≤ (
5

3
M‖θ‖P + 1)RadS′(FQ) ≤ (

5

3
MQ+ 1)RadS′(FQ).

Let us assume MQ ≥ 3
5 without loss of generality. By Lemma 5.1 and Theorem 2.1, for any

δ given in Theorem 3.2 and any positive integer Q with probability at least 1 − δQ over S with
δQ = 6δ

π2Q2 , we have

sup
‖θ‖P≤Q

|RD(θ)−RS(θ)| ≤ (
5

3
MQ+ 1)2ES′RadS′(FQ) + 4M2Q2

√
log(2/δQ)

2n

≤ 27M2Q2d2

√
2 log(2d)

n
+ 4M2Q2

√
log(π2Q2/3δ)

2n
.

For any θ ∈ Rm(d+1) given in Theorem 3.2, choose the integer Q such that ‖θ‖P ≤ Q ≤ ‖θ‖P+1.
Then we have

|RD(θ)−RS(θ)| ≤ 27M2Q2d2

√
2 log(2d)

n
+ 4M2Q2

√
log(π2Q2/3δ)

2n

≤ 27M2(‖θ‖P + 1)2d2

√
2 log(2d)

n
+ 4M2(‖θ‖P + 1)2

√
log π(‖θ‖P + 1)

n
+

log(1/3δ)

2n

≤ 27M2(‖θ‖P + 1)2d2

√
2 log(2d)

n
+ 4M2(‖θ‖P + 1)2

{
log[π(‖θ‖P + 1)]√

n
+

√
log(1/3δ)

2n

}

≤ (‖θ‖P + 1)2

√
n

2M2(14d2
√

2 log(2d) + log[π(‖θ‖P + 1)] +
√

2 log(1/3δ)),

where we have used the facts that
√
a+ b ≤

√
a+
√
b for a, b > 0 and that

√
a ≤ a for a ≥ 1.

The bound just above holds with probability 1−δQ for any pair (θ, Q) as long as ‖θ‖P ≤ Q. By
the definition δQ = 6δ

π2Q2 , we have
∑∞

Q=1 δQ = δ. Therefore, for any θ ∈ Rm(d+1) given in Theorem
3.2, the above bound holds with probability 1− δ, which finishes the proof of Theorem 3.2.

26



Finally, based on the approximation bound in Proposition 5.1 and the a posteriori generalization
bound in Theorem 3.2, we show the a priori generalization bound in Theorem 3.3.

Proof of Theorem 3.3. Note that

RD(θS,λ) = RD(θ̃) + [RD(θS,λ)− JS,λ(θS,λ)] + [JS,λ(θS,λ)− JS,λ(θ̃)] + [JS,λ(θ̃)−RD(θ̃)].

By definition, JS,λ(θS,λ) − JS,λ(θ̃) ≤ 0. By Proposition 5.1, there exists θ̃ such that RD(θ̃) ≤
6M2‖f‖2B

m . Therefore,

RD(θS,λ) ≤
6M2‖f‖2B

m
+ [RD(θS,λ)− JS,λ(θS,λ)] + [JS,λ(θ̃)−RD(θ̃)]. (5.7)

By Theorem 3.2, we have with probability at least 1− δ/2,

RD(θS,λ)− JS,λ(θS,λ) = RD(θS,λ)−RS(θS,λ)− λ√
n
‖θS,λ‖2P log[π(‖θS,λ‖P + 1)]

≤ 1√
n

2M2(‖θS,λ‖P + 1)2{log[π(‖θS,λ‖P + 1)] + 14d2
√

2 log(2d) +
√

2 log(2/3δ)}

− λ√
n
‖θS,λ‖2P log[π(‖θS,λ‖P + 1)]

≤ 1√
n

4M2(‖θS,λ‖2P + 1){log[π(‖θS,λ‖P + 1)] + 14d2
√

2 log(2d) +
√

2 log(2/3δ)}

− λ√
n
‖θS,λ‖2P log[π(‖θS,λ‖P + 1)]

≤ 1√
n
‖θS,λ‖2P log[π(‖θS,λ‖P + 1)]

{
4M2[1 + 14d2

√
2 log(2d) +

√
2 log(2/3δ)]− λ

}
+

4M2

√
n

log[π(‖θS,λ‖P + 1)] +
1√
n

4M2(14d2
√

2 log(2d) +
√

2 log(2/3δ))

≤ 1√
n
‖θS,λ‖2P log[π(‖θS,λ‖P + 1)]

{
4M2[2 + 14d2

√
2 log(2d) +

√
2 log(2/3δ)]− λ

}
+

1√
n

4M2
[
log(2π) + 14d2

√
2 log(2d) +

√
2 log(2/3δ)

]
≤ 1√

n
4M2

[
log(2π) + 14d2

√
2 log(2d) +

√
2 log(2/3δ)

]
, (5.8)

where we have used the facts that (a + b)2 ≤ 2a2 + 2b2 for all a, b ≥ 0 and that λ ≥ 4M2[2 +
14d2

√
2 log(2d) +

√
2 log(2/3δ)] in the second and last inequalities, respectively. By Theorem 3.2

again, with probability at least 1− δ/2, we have

JS,λ(θ̃)−RD(θ̃) ≤ 1√
n

2M2(‖θ̃‖P + 1)2{log[π(‖θ̃‖P + 1)] + 14d2
√

2 log(2d) +
√

2 log(2/3δ)}

+
λ√
n
‖θ̃‖2P log[π(‖θ̃‖P + 1)]

≤ 1√
n

4M2(‖θ̃‖2P + 1){log[π(‖θ̃‖P + 1)] + 14d2
√

2 log(2d) +
√

2 log(2/3δ)}

+
λ√
n
‖θ̃‖2P log[π(‖θ̃‖P + 1)]. (5.9)
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Note that, by Proposition 5.1, we have ‖θ̃‖P ≤ 2‖f‖B. Hence, the inequality (5.9) becomes

JS,λ(θ̃)−RD(θ̃) ≤ 1√
n

4M2(4‖f‖2B + 1){log[π(2‖f‖B + 1)] + 14d2
√

2 log(2d) +
√

2 log(2/3δ)}

+
4λ√
n
‖f‖2B log[π(2‖f‖B + 1)]. (5.10)

Adding the estimates in (5.7), (5.8), and (5.9) together completes the proof.

6 Conclusion

In this paper, we theoretically analyzed the optimization problem arising in deep learning-based
PDE solvers for second-order linear PDEs and two-layer neural networks under the assumption of
over-parametrization (i.e., the network width is sufficiently large). In particular, we show that gra-
dient descent can identify a global minimizer of the least-squares optimization problem for solving
second-order linear PDEs. Note that we have fixed the samples in the least-squares optimization,
while practical algorithms would randomly sample the PDE domain and its boundaries in every
iteration of gradient descent. Hence, there is still a gap between the optimization problem ana-
lyzed in this paper and the practical algorithm. This gap can be filled by studying the convergence
behavior of stochastic gradient descent, which will be left as future work.

We have also analyzed the generalization error of deep learning-based PDE solvers for second-
order linear PDEs and two-layer neural networks, when the right-hand-side function of the PDE is
in a Barron-type space and the least-squares optimization is regularized with a Barron-type norm,
without the over-parametrization assumption. The Barron-type space and norm are adaptive to
PDE problems and are different from those for regression problems. The global minimizer of the
regularized least-squares problem can generalize well with a scaling of order 1

m + 1√
n

, where m is

the number of neurons and n is the number of data samples. Note that whether gradient descent
methods can identify a global minimizer of the regularized least-squares problem is still unknown.
This is left as interesting future work.
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