
ReLU Network Approximation in Terms of
Intrinsic Parameters

Zuowei Shen∗ Haizhao Yang† Shijun Zhang‡

Abstract

This paper studies the approximation error of ReLU networks in terms of the
number of intrinsic parameters (i.e., those depending on the target function f).
First, we prove by construction that, for any Lipschitz continuous function f on
[0,1]d with a Lipschitz constant λ > 0, a ReLU network with n + 2 intrinsic pa-
rameters can approximate f with an exponentially small error 5λ

√
d2−n measured

in the Lp-norm for p ∈ [1,∞). More generally for an arbitrary continuous func-
tion f on [0,1]d with a modulus of continuity ωf(⋅), the approximation error is

ωf(
√
d2−n) + 2−n+2ωf(

√
d). Next, we extend these two results from the Lp-norm

to the L∞-norm at a price of 3dn + 2 intrinsic parameters. Finally, by using a
high-precision binary representation and the bit extraction technique via a fixed
ReLU network independent of the target function, we design, theoretically, a ReLU
network with only three intrinsic parameters to approximate Hölder continuous
functions with an arbitrarily small error.

Key words: ReLU Neural Networks; Intrinsic Parameters; Approximation Error; Ex-
ponential Convergence; Transfer Learning.

1 Introduction

Deep learning has been a powerful tool in science and engineering. As the workhorses
of deep learning, deep neural networks are treated as an important regression tool in
many successful applications. Understanding the approximation capacity of deep neural
networks has become a key question for revealing the power of deep learning. One of the
fundamental problems is the characterization of the approximation error of deep neural
networks in terms of the network size measured in the width, the depth, the number of
neurons, or the number of parameters.

It was shown in [38, 42, 45, 48] that the approximation error O(n−2/d) is (nearly)
optimal for ReLU networks with O(n) parameters to approximate Lipschitz continuous
functions on [0,1]d. To gain better approximation errors, existing results either consider
smaller target function spaces (e.g., [3, 11, 15, 25, 29, 44, 47]) or introduce new activation

∗Department of Mathematics, National University of Singapore (matzuows@nus.edu.sg).
†Department of Mathematics, Purdue University (haizhao@purdue.edu).
‡Department of Mathematics, National University of Singapore (zhangshijun@u.nus.edu).

1

ar
X

iv
:2

11
1.

07
96

4v
1

 [
cs

.L
G

]
 1

5
N

ov
 2

02
1

mailto:matzuows@nus.edu.sg?cc=
mailto:haizhao@purdue.edu?cc=
mailto:zhangshijun@u.nus.edu?cc=shijun.math@outlook.com

functions (e.g., [39, 40, 41, 46]). This paper proposes a new perspective to study the
approximation error in terms of the number of parameters depending on the target
function, which are called the intrinsic parameters, excluding those independent of
the target function.

1.1 Main results

Let C([0,1]d) denote the space of continuous functions defined on [0,1]d. For
simplicity, let HW (d1, d2) denote the function space consisting of all ReLU networks
with W parameters mapping from Rd1 to Rd2 , i.e.,

HW (d1, d2) ∶= {g ∶ g ∶ Rd1 → Rd2 is realized by a ReLU network with W parameters}.

Let H(d1, d2) ∶= ⋃∞
W=1HW (d1, d2).

For any f ∈ C([0,1]d), our goal is to construct two f -independent functions φ1 ∈
H(d,1) and φ2 ∈ H(n,1), and use s ⋅ (φ2 ○φf ○φ1)+ b to approximate f , where s ∈ [0,∞),
b ∈ R, and φf ∈ Hn(1, n) are learned from f . Under these settings, an approximation

error ωf(
√
d2−n) + 2−n+2ωf(

√
d) is attained as shown in the theorem below, where the

modulus of continuity of a continuous function f ∈ C([0,1]d) is defined as

ωf(r) ∶= sup{∣f(x) − f(y)∣ ∶ ∥x − y∥2 ≤ r, x,y ∈ [0,1]d} for any r ≥ 0.

Theorem 1.1. Given any n ∈ N+ and p ∈ [1,∞), there exist φ1 ∈ H2dn+4(d,1) and
φ2 ∈ H2dn+5n(n,1) such that: For any f ∈ C([0,1]d), there exists a linear map L ∶ R→ Rn

satisfying

∥s ⋅ (φ2 ○L ○ φ1) + b − f∥Lp([0,1]d) ≤ ωf(
√
d2−n) + 2−n+2ωf(

√
d),

where s = 2ωf(
√
d), b = f(0)−ωf(

√
d), and L is a linear map given by L(t) = (a1t, a2t,⋯, ant)

with a1, a2,⋯, an ∈ [0, 1
3) determined by f and n.

In Theorem 1.1, s is a scale factor, b is the bias for a vertical shift, and a1, a2,⋯, an ∈
[0, 1

3) are the key intrinsic parameters storing most of information of f . Clearly, s ⋅ (φ2 ○
L ○ φ1) + b can be implemented by a ReLU network with n + 2 intrinsic parameters. We
call φ1 and φ2 inner-function and outer-function, respectively. They are independent
of the target function f and can be implemented by ReLU networks.

Note that the approximation error in Theorem 1.1 is characterized by the Lp-norm
for p ∈ [1,∞). In fact, we can extend such a result to a similar one measured in the
L∞-norm.

Theorem 1.2. Given any n ∈ N+, there exist φ1 ∈ H3d2dn+5(d,3d) and φ2 ∈ H3d2dn+8n(3dn,1)
such that: For any f ∈ C([0,1]d), there exists a linear map L ∶ R3d → R3dn satisfying

∥s ⋅ (φ2 ○L ○φ1) + b − f∥L∞([0,1]d) ≤ ωf(
√
d2−n) + 2−n+2ωf(

√
d),

where s = 2ωf(
√
d), b = f(0) − ωf(

√
d), and L is given by

L(x1,⋯, x3d) = (L0(x1),⋯,L0(x3d)) for any x = (x1,⋯, x3d) ∈ R3d ,

where L0 ∶ R → Rn is a linear map given by L0(t) = (a1t, a2t,⋯, ant) with a1, a2,⋯, an ∈
[0, 1

3) determined by f and n.

2

Simplifying the implicit approximation error in Theorem 1.1 (or 1.2) to make it
explicitly depending on n is challenging in general, since the modulus of continuity ωf(⋅)
may be complicated. However, if f is a Hölder continuous function on [0,1]d of order
α ∈ (0,1] with a Hölder constant λ > 0. That is, f satisfies

∣f(x) − f(y)∣ ≤ λ∥x − y∥α2 for any x,y ∈ [0,1]d,

implying ωf(r) ≤ λrα for any r ≥ 0. This means we can get an exponentially small
approximation error 5λdα/22−αn. In particular, in the special case of α = 1, i.e., f is a
Lipschitz continuous function with a Lipschitz constant λ > 0, then the approximation
error is simplified to 5λ

√
d2−n.

Though the linear map L in Theorem 1.2 is essentially determined by n key pa-
rameters a1, a2,⋯, an, these n key parameters are repeated 3d times in the final network
architecture as shown in Figure 3. Therefore, s ⋅ (φ2 ○ L ○ φ1) + b can be implemented
by a ReLU network with 3dn + 2 intrinsic parameters. Remark that we can reduce the
number of intrinsic parameters to n + 2 via using a fixed ReLU network to copy n key
parameters 3d times. The idea is similar to that of Theorem 1.3 introduced later.

Furthermore, the number of intrinsic parameters can be reduced to three in the case
of Hölder continuous functions. In fact, three intrinsic parameters are enough to achieve
an arbitrary pre-specified error if sufficiently high precision is provided, as shown in the
theorem below.

Theorem 1.3. Given any ε > 0, α ∈ (0,1], and λ > 0, there exists φ ∈ H(d + 1,1) such
that: For any Hölder continuous function f on [0,1]d of order α ∈ (0,1] with a Hölder
constant λ > 0, there exist three parameters s ∈ [0,∞), v ∈ [0,1), and b ∈ R satisfying

∣sφ(x, v) + b − f(x)∣ ≤ ε for any x ∈ [0,1]d.

In Theorem 1.3, s is a scale factor, b is the bias for a vertical shift, and v is the key
intrinsic parameter storing sufficient information of the target function f . Clearly, s, b,
and v are learned from f , while φ is independent of f . Let φ2 = φ, φ1 be the identity
map on Rd, and Lv ∶ Rd → Rd+1 be an affine linear transform mapping x to (x, v). Then
sφ(x, v) + b can also be represented as sφ2 ○Lv ○φ1(x) + b.

Remark that Theorem 1.3 is just a theoretical result since the key intrinsic parameter
“v” requires extremely high precision, which is necessary for storing the values of f at
sufficiently many points within a sufficiently small error. Via the idea of the binary
representation, we can extract the values of f stored in “v” via an f -independent ReLU
network (as a sub-network of the final network realizing φ in Theorem 1.3). In fact, there
is a balance between the precision requirement and the number of intrinsic parameters.
For example, if we store the values of f in two intrinsic parameters (not one), then the
precision requirement is greatly lessened.

1.2 Contributions and further interpretation

Our key contributions can be summarized as follows.

(i) First, we prove by construction in Theorem 1.1 that a ReLU network with n + 2
intrinsic parameters can approximate a continuous function f on [0,1]d with an

3

error ωf(
√
d2−n)+2−n+2ωf(

√
d) measured in the Lp-norm for p ∈ [1,∞). In the case

of Hölder continuous functions, the approximation error is simplified to 5λdα/22−αn,
where α ∈ (0,1] and λ > 0 are the Hölder order and constant, respectively.

(ii) Next, we generalize the approximation error in Theorem 1.1 from the Lp-norm for
p ∈ [1,∞) to the L∞-norm, as shown in Theorem 1.2. Such an generalization is at a
price of more intrinsic parameters. To be precise, the final network in Theorem 1.2
has 3dn + 2 intrinsic parameters, compared to n + 2 ones in Theorem 1.1.

(iii) Finally, we show in Theorem 1.3 that the number of intrinsic parameters in The-
orems 1.1 and 1.2 can be further reduced to three in the case of Hölder continu-
ous functions. To be precise, ReLU networks with three intrinsic parameters can
achieve an arbitrary error for approximating Hölder continuous function on [0,1]d.
In this scenario, extremely high precision is required as we shall see later.

Approximation with inner-function and outer-function

The composition architecture φ2 ○L ○φ1 is the key part of the final ReLU-network-
realized function s ⋅ (φ2 ○ L ○ φ1) + b in Theorem 1.1 (or 1.2). Given a target function
f , the composition architecture φ2 ○ L ○ φ1 can be generalized to φout ○ φθ ○ φin, where
φθ an f -dependent function parameterized by θ = θ(f) ∈ Rn, and φin and φout are two
f -independent functions, called the inner-function and the outer-function, respectively.

Let Γn(d1, d2) denote a general space consisting of vector-valued functions mapping
from Rd1 to Rd2 and pamameterized with n parameters. Each element of Γn(d1, d2) can
be denoted by φθ ∶ Rd1 → Rd2 , parameterized with θ ∈ Rn. Existing literature uses
φθ ∈ Γn(d1, d2) with proper d1 and d2 to directly approximate the target function f in
a given function space. This paper proposes a new perspective to study the function
approximation for f ∶ [0,1]d → R. To be precise, we design an inner-function φin ∶ Rd →
Rd1 and an outer-function φout ∶ Rd2 → R, both of which are independent of f , and use
s ⋅ (φout ○φθ ○φin)+ b with φθ ∈ Γn(d1, d2) to approximate the target function f . Here, s
is a scale factor, b is the bias for a vertical shift, and θ ∈ Rn is the key parameter vector
learned from f .

In particular, let Γn denote the function of all functions realized by a ReLU network
with n parameters and a pre-specified architecture. It is proved in [38, 45] that, when
using elements in Γn to approximate Hölder continuous functions on [0,1]d, the (nearly)
optimal approximation error is O(λn−2α/d), where α ∈ (0,1] and λ > 0 are the Hölder
order and constant, respectively. Clearly, an error like O(λn−2α/d) suffers from the curse
of dimensionaltiy. However, with inner-function φin and outer-function φout in hand, we
can use s ⋅ (φout ○φθ ○φin)+ b with φθ ∈ Γn to approximate a Hölder continuous function
on [0,1]d with an exponentially small error 5λdα/22−αn, where α ∈ (0,1] and λ > 0 are the
Hölder order and constant, respectively. This means that the approximation error can
be greatly improved by pre-designing two (vector-valued) functions φin and φout, which
are independent of f and can be implemented by ReLU networks.

4

Connection with transfer learning

Transfer learning dates back to 1970s [9, 10]. It is a research direction in machine
learning that applies knowledge gained in one problem to solve a different but related
problem. Typically in deep learning, transfer learning uses a pre-trained neural network
obtained for one task as an initial guess of the neural network for another task to achieve
a short training time. Our theory in this paper could provide insights into the success
of transfer learning using neural networks, though the setting of our theory is different
from realistic transfer learning. In our theory, φin and φout are universally useful for
all learning tasks for continuous functions, which can be understood as the part of
networks that can be transferred to different tasks. Suppose f1 and f2 are the target
functions for two different but related tasks. If f1 has been learned via an architecture
s1 ⋅ (φout ○φθ1 ○φin)+ b1, then we can “transfer” the knowledge (φout and φin) to another
task. This means that, by only learning s2, b2,θ2 from f2, we can use s2⋅(φout○φθ2○φin)+b2

to approximate f2 well. Therefore, the total number of parameters that need to be
learned again is not large. Our theory may provide a certain theoretical understanding
in the spirit of transfer learning from a network approximation perspective. To gain a
deeper understanding, one can refer to [6,22,26,27,32,34,35]. It would be interesting to
test the proposed network architecture in the context of transfer learning in the future.

Error analysis of deep learning

In supervised learning, an unknown target function f defined on a domain X is
learned through its finitely many samples {(xi, f(xi))}ni=1. For simplicity, denote φ(x;θ)
as a network-generated function with θ ∈ Θ as the set of parameters, where Θ is the
parameter domain typically taken as [−M,M]W for two pre-specified constants M > 0
and W ∈ N+. If φ(x;θ) is used to infer f(x) for unseen data samples x, then we need
to identify the empirical risk minimizer θS , which is given by

θS ∈ arg min
θ∈Θ

RS(θ), where RS(θ) ∶=
1

n

n

∑
i=1

`(φ(xi;θ), f(xi)) (1.1)

with a loss function typically taken as `(y, y′) = 1
2 ∣y − y′∣2.

In fact, the best network-generated function to infer f(x) is φ(x;θD), but not
φ(x;θS), where θD is the expected risk minimizer given by

θD ∈ arg min
θ∈Θ

RD(θ), where RD(θ) ∶= Ex∼U(X) [`(φ(x;θ), f(x))] ,

where U is a unknown data distribution over X . The best possible inference error is
RD(θD). In real applications, U(X) is unknown and only finitely many samples from
this distribution are available. Hence, the empirical risk RS(θ) is minimized, hoping
to obtain φ(x;θS), instead of minimizing the expected risk RD(θ) to obtain φ(x;θD).
In practice, a numerical optimization method to solve (1.1) may result in a numerical
solution (denoted as θN) that may not be a global minimizer θS . Therefore, the actually
learned network-generated function to infer f(x) is φ(x;θN) and the corresponding

5

inference error is measured by RD(θN), which is bounded by

RD(θN) = [RD(θN) −RS(θN)]
´¹¹¸¹¹¹¶

GE

+ [RS(θN) −RS(θS)]
´¹¹¹¸¹¹¹¶

OE

+ [RS(θS) −RS(θD)]
´¹¹¸¹¹¶

≤ 0 by (1.1)

+ [RS(θD) −RD(θD)]
´¹¹¸¹¹¶

GE

+RD(θD)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

AE

≤ RD(θD)
´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

Approximation error (AE)

+ [RS(θN) −RS(θS)]
´¹¹¹¸¹¹¹¶
Optimization error (OE)

+ [RD(θN) −RS(θN)] + [RS(θD) −RD(θD)]
´¹¹¸¹¹¹¶

Generalization error (GE)

. (1.2)

The constructive approximation established in this paper and the literature provides an
upper bound ofRD(θD). The second term of (1.2) is bounded by the optimization error of
the numerical algorithm applied to solve the empirical risk minimization problem in (1.1).
If the numerical algorithm can find a global minimizer, the second term is equal to zero.
The theoretical guarantee of the convergence of an optimization algorithm to a global
minimizer θS and the characterization of the convergence belong to the optimization
analysis of neural networks. The study of the bounds for the third and fourth terms of
(1.2) is referred to as the generalization error analysis of neural networks.

Theorems 1.1, 1.2, and 1.3 provide upper bounds of RD(θD). These bounds only
depends on the number of intrinsic parameters of ReLU networks and the modulus of
continuity ωf(⋅). Hence, these bounds are independent of the empirical risk minimiza-
tion in (1.1) and the optimization algorithm used to compute the numerical solution
of (1.1). In other words, Theorems 1.1, 1.2, and 1.3 quantify the approximation power
of ReLU networks in terms of the nubmer of intrinsic parameters. Designing efficient
optimization algorithms and analyzing the generalization erre for ReLU networks are
two other separate future directions.

1.3 Related work

The expressiveness of deep neural networks has been studied extensively from many
perspectives, e.g., in terms of combinatorics [30], topology [7], Vapnik-Chervonenkis (VC)
dimension [5, 18, 36], fat-shattering dimension [1, 23], information theory [33], classical
approximation theory [2, 3, 8, 12, 13, 14, 16, 17, 20, 24, 25, 28, 31, 37, 38, 43, 44, 45, 48, 49],
etc. In the early works of approximation theory for neural networks, the universal
approximation theorem [14,19,20] without approximation errors showed that, given any
ε > 0, there exists a sufficiently large neural network approximating a target function
in a certain function space within an error ε. For one-hidden-layer neural networks and
sufficiently smooth functions, Barron [3, 4] showed an asymptotic approximation error
O(1√

N
) in the L2-norm, leveraging an idea that is similar to Monte Carlo sampling for

high-dimensional integrals.
Recently, it is proved in [38, 45, 48] that the (nearly) optimal approximation error

would be O(n−2/d) when using ReLU networks with n parameters to approximate func-
tions in the unit ball of Lipschitz continuous function space. Clearly, such an error suffers
from the curse of dimensionality. To bridge this gap, one could either consider smaller
function spaces, e.g., smooth functions [25,47] and band-limited functions [29], or intro-
ducing new networks, e.g., Floor-ReLU networks [40], Floor-Exponential-Step (FLES)
networks [41], and (Sin, ReLU, 2x)-activated networks [21]. This paper proposes a new
perspective to characterize the approximation error in terms of the number of intrinsic
parameters. Such a method is inspired by an observation that most parameters of the

6

ReLU network approximating a target function are independent of the target function.
Thus, most parameters can be assigned or computed in advance. As shown in Theo-
rem 1.1, we can first design an inner-function φ1 and an outer-function φ2, both of which
can be implemented by ReLU networks. Then, for any continuous function f ∈ C([0,1]d),
s ⋅ (φ2 ○ L ○ φ1) + b can approximate f with an error ωf(

√
d2−n) + 2−n+2ωf(

√
d) by the

following two steps: 1) determining s and b, 2) designing a linear map L defined by
L(t) = (a1t,⋯, ant), where a1,⋯, an are determined by the target function f . Therefore,
we overcome the curse of dimensionality in the sense of the approximation error char-
acterized by the number of intrinsic parameters when the variation of ωf(r) as r → 0 is
moderate (e.g., ωf(r) ≲ rα for Hölder continuous functions).

Organization: The rest of this paper is organized as follows. In Section 2, we
prove Theorems 1.1, 1.2, and 1.3 based on an auxiliary theorem, Theorem 2.1. Next, the
auxiliary theorem is proved in Section 3 based on Proposition 3.1, which is proved later
at the end of Section 3. Finally, Section 4 concludes this paper with a short discussion.

2 Constructive proof

In this section, we first list all notations used throughout this paper. Then, we prove
Theorems 1.1, 1.2, and 1.3 based on an auxiliary theorem, Theorem 2.1, which will be
proved in Section 3.

2.1 Notations

Firstly, let us summarize the main notations of this paper as follows.

• Let R, Q, and Z denote the set of real numbers, rational numbers, and integers,
respectively.

• Let N and N+ denote the set of natural numbers and positive natural numbers,
respectively. That is, N+ = {1,2,3,⋯} and N = N+⋃{0}.

• Vectors and matrices are denoted in a bold font. Standard vectorization is adopted
in the matrix and vector computation. For example, adding a scalar and a vector
means adding the scalar to each entry of the vector.

• For θ ∈ [0,1), suppose its binary representation is θ = ∑∞
`=1 θ`2

−` with θ` ∈ {0,1}, we
introduce a special notation bin0.θ1θ2⋯θL to denote the L-term binary represen-
tation of θ, i.e., bin0.θ1θ2⋯θL ∶=∑L

`=1 θ`2
−`.

• For any p ∈ [1,∞), the p-norm of a vector x = (x1, x2,⋯, xd) ∈ Rd is defined by

∥x∥p ∶= (∣x1∣p + ∣x2∣p +⋯ + ∣xd∣p)
1/p
.

• The expression “a network with width N and depth L” means

– The maximum width of this network for all hidden layers is no more than
N .

7

– The number of hidden layers of this network is no more than L.

• Similar to “min” and “max”, let mid(x1, x2, x3) be the middle value of three inputs
x1, x2, and x3. For example, mid(2,1,3) = 2 and mid(3,2,3) = 3.

• Given any K ∈ N+ and δ ∈ (0, 1
K], define a trifling region Ω([0,1]d,K, δ) of [0,1]d

as

Ω([0,1]d,K, δ) ∶=
d

⋃
i=1

{x = (x1, x2,⋯, xd) ∶ xi ∈ ∪K−1
k=1 (kK − δ, kK)}. (2.1)

In particular, Ω([0,1]d,K, δ) = ∅ if K = 1. See Figure 1 for two examples of trifling
regions.

0.0 0.2 0.4 0.6 0.8 1.0

δ δ δ δ

Ω([0, 1]d, K, δ) for K = 5, d = 1

(a)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Ω([0, 1]d, K, δ) for K = 4, d = 2

(b)

Figure 1: Two examples of trifling regions. (a) K = 5, d = 1. (b) K = 4, d = 2.

• Given a univariate activation function σ, let us introduce the architecture of a
σ-activated network, i.e., a network with each hidden neuron activated by σ. To
be precise, a σ-activated network with a vector input x ∈ Rd, an output φ(x) ∈ R,
and L ∈ N+ hidden layers can be briefly described as follows:

x = h̃0
A0, b0
L0

h1
σ h̃1 ⋯ AL−1, bL−1

LL−1
hL

σ h̃L
AL, bL
LL

hL+1 = φ(x), (2.2)

where N0 = d ∈ N+, N1,N2,⋯,NL ∈ N+, NL+1 = 1, Ai ∈ RNi+1×Ni and bi ∈ RNi+1

are the weight matrix and the bias vector in the i-th affine linear transform Li,
respectively, i.e.,

hi+1 =Ai ⋅ h̃i + bi =∶ Li(h̃i) for i = 0,1,⋯, L

and
h̃i,j = σ(hi,j) for j = 1,2,⋯,Ni and i = 1,2,⋯, L.

Here, h̃i,j and hi,j are the j-th entry of h̃i and hi, respectively, for j = 1,2,⋯,Ni

and i = 1,2,⋯, L. If σ is applied to a vector entrywisely, i.e.,

σ(y) = (σ(y1),⋯, σ(yd)) for any y = (y1,⋯, yd) ∈ Rd,

then φ can be represented in a form of function compositions as follows:

φ(x) = LL ○ σ ○ ⋯ ○ σ ○L1 ○ σ ○L0(x) for any x ∈ Rd.

See Figure 2 for an example.

8

x1

x2
ϕ(x1, x2)L0 L1 L2

σ

σ

σ

σ

σ

σ

σ

σ

σ

1-nd hidden layer 2-nd hidden layer output layer

Figure 2: An example of a σ-activated network with width 5 and depth 2.

2.2 Proof of Theorem 1.1

To prove Theorems 1.1 and 1.2, we introduce an auxiliary theorem below with a
similar result ignoring the approximation inside the trifling region.

Theorem 2.1. Given any n ∈ N+, there exist φ1 ∈ H2dn+4(d,1) and φ2 ∈ H2dn+5n(n,1)
such that: For any continuous function f ∶ [0,1]d → [0,1], there exists a linear map
L ∶ R→ Rn satisfying ∥φ2 ○L ○ φ1∥L∞(Rd) ≤ 1 and

∣φ2 ○L ○ φ1(x) − f(x)∣ ≤ ωf(
√
d2−n) + 2−n for any x ∈ [0,1]d/Ω([0,1]d,K, δ),

where K = 2n, δ is an arbitrary number in (0, 1
3K], and L is given by L(t) = (a1t, a2t,⋯, ant).

Here, ai ∈ [0, 1
3) is determined by f and n, and 2mai ∈ N for i = 1,2,⋯, n, where m = 2dn+1.

The proof of Theorem 2.1 can be found later in Section 3. Let us first prove Theo-
rem 1.1 based on Theorem 2.1.

Proof of Theorem 1.1. We may assume f is not a constant function since it is a trivial
case. Then ωf(r) > 0 for any r > 0. Set s = 2ωf(

√
d) > 0 and b = f(0) − ωf(

√
d). Then,

by defining

f̃ ∶= f − b
s

= f − f(0) + ωf(
√
d)

2ωf(
√
d)

,

we have f̃(x) ∈ [0,1] for any x ∈ [0,1]d. By applying Theorem 2.1 to f̃ , there exist two
functions, φ1 ∶ Rd → R and φ2 ∶ Rn → R, both of which are independent of f and can be
implemented by ReLU networks with ≤ 2dn+4 and ≤ 2dn+5n parameters, respectively, and
a linear map L ∶ R→ Rn satisfying ∥φ2 ○L ○ φ1∥L∞(Rd) ≤ 1 and

∣φ2 ○L ○ φ1(x) − f̃(x)∣ ≤ ωf̃(
√
d2−n) + 2−n for any x ∈ [0,1]d/Ω([0,1]d,K, δ),

whereK = 2n, δ is an arbitrary number in (0, 1
3K], and L is given by L(t) = (a1t, a2t,⋯, ant)

with a1, a2,⋯, an ∈ [0, 1
3) determined by f̃ and n. Since f̃ is derived from f , a1, a2,⋯, an

are essentially determined by f and n.
Then choose a small δ satisfying

dKδ2p ≤ 2−pn = (2−n)p.

9

Note that the Lebesgue measure of Ω([0,1]d,K, δ) is bounded by dKδ and

∣φ2 ○L ○ φ1(x) − f̃(x)∣ ≤ ∣φ2 ○L ○ φ1(x)∣ + ∣f̃(x)∣ ≤ 1 + 1 = 2 for any x ∈ [0,1]d.

Then, ∥φ2 ○L ○ φ1 − f̃∥pLp([0,1]d) is bounded by

∫
[0,1]d/Ω([0,1]d,K,δ)

∣φ2 ○L ○ φ1(x) − f̃(x)∣pdx + ∫
Ω([0,1]d,K,δ)

∣φ2 ○L ○ φ1(x) − f̃(x)∣pdx

≤ (ωf̃(
√
d2−n) + 2−n)p + dKδ2p ≤ (ωf̃(

√
d2−n) + 2−n)p + (2−n)p ≤ (ωf̃(

√
d2−n) + 2−n+1)p,

implying ∥φ2 ○ L ○ φ1 − f̃∥Lp([0,1]d) ≤ ωf̃(
√
d2−n) + 2−n+1. Note that ωf(r) = s ⋅ ωf̃(r) for

any r ≥ 0. Therefore, we have

∥s ⋅ (φ2 ○L ○ φ1) + b − f∥Lp([0,1]d) = ∥s ⋅ (φ2 ○L ○ φ1) + b − (s ⋅ f̃ + b)∥
Lp([0,1]d)

= s∥φ2 ○L ○ φ1 − f̃∥Lp([0,1]d) ≤ s ⋅ ωf̃(
√
d2−n) + 2−n+1s = ωf(

√
d2−n) + 2−n+2ωf(

√
d).

So we finish the proof.

2.3 Proof of Theorem 1.2

Next, let us prove Theorem 1.2. To this end, we need to introduce the following
lemma, which is actually Lemma 3.4 of [25] (or Lemma 3.11 of [48]).

Lemma 2.2 (Lemma 3.4 of [25]). Given any ε > 0, K ∈ N+, and δ ∈ (0, 1
3K], assume

f ∈ C([0,1]d) and g ∶ Rd → R is a general function with

∣g(x) − f(x)∣ ≤ ε for any x ∈ [0,1]d/Ω([0,1]d,K, δ).

Then
∣φ(x) − f(x)∣ ≤ ε + d ⋅ ωf(δ) for any x ∈ [0,1]d,

where φ ∶= φd is defined by induction through

φi+1(x) ∶= mid(φi(x − δei+1), φi(x), φi(x + δei+1)) for i = 0,1,⋯, d − 1,

where φ0 = g and {ei}di=1 is the standard basis in Rd.

With Lemma 2.2 in hand, we are ready to present the proof of Theorem 1.2.

Proof of Theorem 1.2. We may assume f is not a constant function since it is a trivial
case. Then ωf(r) > 0 for any r > 0. Set s = 2ωf(

√
d) > 0 and b = f(0) − ωf(

√
d). Then,

by defining

f̃ ∶= f − b
s

= f − f(0) + ωf(
√
d)

2ωf(
√
d)

,

we have f̃(x) ∈ [0,1] for any x ∈ [0,1]d. By applying Theorem 2.1 to f̃ , there exist
two functions, ψ1,0 ∶ Rd → R and ψ2,0 ∶ Rn → R, both of which are independent of f̃ (or

10

f) and can be implemented by ReLU networks with ≤ 2dn+4 and ≤ 2dn+5n parameters,
respectively, and a linear map La,0 ∶ R→ Rn satisfying ∥ψ0∥L∞(Rd) ≤ 1 and

∣ψ0(x) − f̃(x)∣ ≤ ωf̃(
√
d2−n) + 2−n =∶ ε for any x ∈ [0,1]d/Ω([0,1]d,K, δ),

where ψ0 ∶= ψ2,0 ○La,0 ○ψ1,0, K = 2n, δ is an arbitrary number in (0, 1
3K], and La,0 is given

by La,0(t) = (a1t, a2t,⋯, ant) with a = (a1, a2,⋯, an) determined by f and n. Moreover,
ai ∈ [0, 1

3) and 2mai ∈ N for i = 1,2,⋯, n, where m = 2dn+1. 1○

Choose a small δ satisfying d ⋅ ωf̃(δ) ≤ 2−n. With ψ0 = ψ2,0 ○ La,0 ○ ψ1,0 in hand, we
can define ψ1,⋯, ψd by induction via

ψi+1(x) ∶= mid(ψi(x − δei+1), ψi(x), ψi(x + δei+1)) for i = 0,1,⋯, d − 1.

The detailed iterative equations for ψi ∶ Rd → R, ψ1,i ∶ Rd → R3i , La,i ∶ R3i → R3id, and
ψ2,i ∶ R3id → R, for i = 1,2,⋯, d, are listed as follows.

• ψi = ψ2,i ○La,i ○ψ1,i.

• ψ1,i(y) = (ψ1,i−1(y − δei), ψ1,i−1(y), ψ1,i−1(y + δei)) for any y ∈ Rd.

• La,i(y1,y2,y3) = (La,i−1(y1), La,i−1(y2), La,i−1(y3)) for any y1,y2,y3 ∈ R3i−1 .

• ψ2,i(y1,y2,y3) = mid(ψ2,i−1(y1), ψ2,i−1(y2), ψ2,i−1(y3)) for any y1,y2,y3 ∈ R3i−1d.

See the illustrations in Figure 3.
By Lemma 2.2, we have

∣φ(x) − f̃(x)∣ ≤ ε + d ⋅ ωf̃(δ) ≤ ωf̃(
√
d2−n) + 2−n+1 for any x ∈ [0,1]d,

where φ ∶= ψd = ψ2,d ○La,d ○ψ1,d. By defining L ∶= La,d, φ1 ∶= ψ1,d, and φ2 ∶= ψ2,d, we have

∣φ2 ○L ○φ1(x) − f̃(x)∣ ≤ ωf̃(
√
d2−n) + 2−n+1 for any x ∈ [0,1]d,

As shown in Figure 3, L ∶= La,d is a linear map from R3d to R3dn determined by a =
(a1, a2,⋯, an) ∈ [0, 1

3)n, which depends on f and n. Moreover, as shown in Figure 3,
φ1 ∶= ψ1,d and φ2 ∶= ψ2,d are independent of f and can be implemented by ReLU networks
with

≤ 3d(2dn+4) + 3d(d + 1)(3d−1 + 3d−2 +⋯ + 30) ≤ 3d2dn+5

and
≤ 3d(2dn+5n) + 280(3d−1 + 3d−2 +⋯ + 30) ≤ 3d2dn+8n 2○

parameters, respectively.
Note that ωf(r) = s ⋅ ωf̃(r) for any r ≥ 0. Therefore, we have

∥s ⋅ (φ2 ○L ○φ1) + b − f∥L∞([0,1]d) = ∥s ⋅ (φ2 ○L ○φ1) + b − (s ⋅ f̃ + b)∥
L∞([0,1]d)

= s∥φ2 ○L ○φ1 − f̃∥L∞([0,1]d) ≤ s ⋅ ωf̃(
√
d2−n) + 2−n+1s = ωf(

√
d2−n) + 2−n+2ωf(

√
d).

So we finish the proof.
1○This property will be used in the proof of Theorem 1.3.
2○As shown Lemma 3.1 of [25], “mid(⋅, ⋅, ⋅)” can be implemented by a ReLU network with width 14

and depth 2, which has ≤ (3 + 1) × 14 + (14 + 1) × 14 + (14 + 1) = 280 parameters.

11

x

x

x− δe1

x

x+ δe1

ψ0(x− δe1)

ψ0(x)

ψ0(x+ δe1)

mid
(
ψ0(x− δe1), ψ0(x), ψ0(x+ δe1)

)
=: ψ1(x)

ψ1(x)

d 3d 3 3W 3 1

ψ1,0 La,0 ψ2,0

ψ1,0 La,0 ψ2,0

ψ1,0 La,0 ψ2,0

ψ1,1 La,1 ψ2,1

mid

(a) An illustration of the network architecture implementing ψ1 = ψ2,1 ○La,1 ○ψ1,1 based
on ψ0 = ψ2,0 ○La,0 ○ψ1,0. The top architecture is in detail, while the bottom one is just a
sketch of the top one. The orange numbers indicate the number of neurons in each layer.

x

x

x− δe2

x

x+ δe2

ψ1(x− δe2)

ψ1(x)

ψ1(x+ δe2)

mid
(
ψ1(x− δe2), ψ1(x), ψ1(x+ δe2)

)
=: ψ2(x)

ψ2(x)

d 3d 32 32W 3 1

ψ1,1 La,1 ψ2,1

ψ1,1 La,1 ψ2,1

ψ1,1 La,1 ψ2,1

ψ1,2 La,2 ψ2,2

mid

(b) An illustration of the network architecture implementing ψ2 = ψ2,2 ○La,2 ○ψ1,2 based
on ψ1 = ψ2,1 ○La,1 ○ψ1,1. The top architecture is in detail, while the bottom one is just a
sketch of the top one. The orange numbers indicate the number of neurons in each layer.

x

x

x− δe3

x

x+ δe3

ψ2(x− δe3)

ψ2(x)

ψ2(x+ δe3)

mid
(
ψ2(x− δe3), ψ2(x), ψ2(x+ δe3)

)
=: ψ3(x)

ψ3(x)

d 3d 33 33W 3 1

ψ1,2 La,2 ψ2,2

ψ1,2 La,2 ψ2,2

ψ1,2 La,2 ψ2,2

ψ1,3 La,3 ψ2,3

mid

(c) An illustration of the network architecture implementing ψ3 = ψ2,3 ○La,3 ○ψ1,3 based
on ψ2 = ψ2,2 ○La,2 ○ψ1,2. The top architecture is in detail, while the bottom one is just a
sketch of the top one. The orange numbers indicate the number of neurons in each layer.

Figure 3: Illustrations of the implementations of φ1, φ2, and φ3. The inductive imple-
mentations of φ4,⋯, φd are similar.

12

2.4 Proof of Theorem 1.3

To simplify the proof of Theorem 1.3, we introduce two lemmas below. First, we need
to establish a lemma showing how to store many parameters in one intrinsic parameter
via a fixed network.

Lemma 2.3. Given any m,n ∈ N, there exists a vector-valued function φ ∶ R → Rn

realized by a ReLU network such that: For any ai ∈ [0,1) with 2mai ∈ N for i = 0,1,⋯, n,
there exists a real number v ∈ [0,1) such that

φ(v) = (a1, a2,⋯, an).

Next, we establish another lemma using a ReLU network to uniformly approximate
multiplication operation ψ(x, y) = xy well.

Lemma 2.4. For any M > 0 and η > 0, there exists a function ψη ∶ R2 → R realized by a
ReLU network such that

ψη(x, y)⇉ ψ(x, y) = xy on [−M,M]2 as η → 0+,

where ⇉ denotes the uniform convergence.

The proof of Lemma 2.3 is placed later in this section. Lemma 2.4 is just a direct
result of Lemma 4.2 of [25]. With Lemmas 2.3 and 2.4 in hand, we are ready to prove
Theorem 1.3.

Proof of Theorem 1.3. For any ε > 0, choose a large n = n(ε,α, λ) ∈ N+ such that

5λdα/22−αn ≤ ε/2.

Since f is a Hölder continuous function on [0,1]d of order α ∈ (0,1] with a Hölder constant
λ > 0, we have ωf(r) ≤ λrα for any r ≥ 0. By Theorem 1.2, there exist two functions
φ1 ∶ Rd → R3d and φ2 ∶ R3dn → R, implemented by f -independent ReLU networks, such
that

∥s(φ2 ○L ○φ1) + b − f∥L∞([0,1]d) ≤ ωf(
√
d2−n) + 2−n+2ωf(

√
d) ≤ 5λdα/22−αn ≤ ε/2, (2.3)

where s = 2ωf(
√
d) ≤ 2λdα/2, b = f(0)−ωf(

√
d), and L ∶ R3d → R3dn is a linear map given

by

L(y1,⋯, y3d) = (L0(y1),⋯,L0(y3d)) for any y = (y1,⋯, y3d) ∈ R3d ,

where L0 ∶ R → Rn is a linear map given by L0(t) = (a1t, a2t,⋯, ant) with a1, a2,⋯, an ∈
[0, 1

3) determined by f and n. Since a1, a2,⋯, an are repeated 3d times in the definition of
L, there are 3dn parameters in total. We will show how to store these 3dn parameters in
one intrinsic parameter v via an f -independent ReLU network as shown in the following
two steps.

• Regard a1, a2,⋯, an as inputs, but not parameters. See the difference in Figure 4.
Then, we only need to store a1, a2,⋯, an one time by copying them 3d times.

13

• As stated in the proof of Theorem 1.2, a1, a2,⋯, an have finite binary representa-
tions. Then, we can store them in a key parameter v and use an f -independent
ReLU network to extract them from v.

The details of these two steps can be found below.

Step 1∶ Regard a1, a2,⋯, an as inputs and copy them 3d times.

Since a1, a2,⋯, an are regraded as inputs, the implementation of L0(t) = (a1t, a2t,⋯, ant)
requires multiplication operations. This means that we need to approximate ψ(x, y) = xy
well via an f -independent ReLU network. See Figure 4 for illustrations.

Denote a = (a1, a2,⋯, an) and

φ1(x) = (φ1,1(x), φ1,2(x), ⋯, φ1,3d(x)) for any x ∈ [0,1]d.

Then define
M ∶= 1 + sup{∣φ1,j(x)∣ ∶ x ∈ [0,1]d, j = 1,2,⋯,3d}.

By Lemma 2.4, there exists a function ψη ∶ R2 → R realized by a ReLU network such
that

ψη(x, y)⇉ ψ(x, y) = xy on [−M,M]2 as η → 0+.

t ait
ai · t

(a)

t

ai

ψη(ai, t)
η→0+

⇒ aitψη(·, ·)

(b)

Figure 4: Illustrations of two methods getting/approximating ait for i = 1,2,⋯, n and
t ∈ {φ1,j(x) ∶ x ∈ [0,1]d, j = 1,2,⋯,3d}. (a) By regarding ai as a parameter, one can
easily get the product of an input t and an parameter ai. (b) By regarding ai as an
input, one needs to use a ReLU network to approximate the multiplication operation for
approximating ait well.

Note that L and L0 depend on a = (a1, a2,⋯, an). For clarity, we denote La = L and
La,0 = L0. For any a1, a2,⋯, an ∈ [0, 1

3) ⊆ [−M,M] and

t ∈ {φ1,j(x) ∶ x ∈ [0,1]d, j = 1,2,⋯,3d} ⊆ [−M,M],

we can use
La,0,η(t) ∶= (ψη(a1, t), ψη(a2, t), ⋯, ψη(an, t))

to approximate

La,0(t) = (a1t, a2t,⋯, ant) = (ψ(a1, t), ψ(a2, t), ⋯, ψ(an, t)).

Then
La,η(y1,⋯, y3d) ∶= (La,0,η(y1), ⋯, La,0,η(y3d))

14

can also approximate

La(y1,⋯, y3d) = (La,0(y1), ⋯, La,0(y3d))

well. Define φ̃η ∶ Rn+3d → R3dn and φ̃ ∶ Rn+3d → R3dn via

φ̃η(y,a) ∶= La,η(y1,⋯, y3d) for any a ∈ [0, 1
3)n and y = (y1,⋯, y3d) ∈ [−M,M]3d

and

φ̃(y,a) ∶= La(y1,⋯, y3d) for any a ∈ [0, 1
3)n and y = (y1,⋯, y3d) ∈ [−M,M]3d .

Since
ψη(x, y)⇉ ψ(x, y) = xy on [−M,M]2 as η → 0+,

it is easy to verify that

φ̃η(y,a)⇉ φ̃(y,a) for y ∈ [−M,M]3d and a ∈ [0, 1
3)n as η → 0+.

Note that φ1(x) ∈ [−M,M]3d for any x ∈ [0,1]d. Then,

φ2 ○ φ̃η(φ1(x),a)⇉ φ2 ○ φ̃(φ1(x),a) for x ∈ [0,1]d and a ∈ [0, 1
3)n as η → 0+.

The fact φ̃(y,a) = La(y) = L(y) implies φ2 ○ φ̃(φ1(x),a) = φ2 ○L ○φ1(x). Therefore,

φ2 ○ φ̃η(φ1(x),a)⇉ φ2 ○L ○φ1(x) for x ∈ [0,1]d and a ∈ [0, 1
3)n as η → 0+.

Choose a small η = η(n) > 0 such that

∣φ2 ○ φ̃η(φ1(x),a) − φ2 ○L ○φ1(x)∣ ≤ 2−n for any x ∈ [0,1]d and a ∈ [0, 1
3)n . (2.4)

Recall that ψη can be realized by an f -independent ReLU network. It is easy to

verify that φ̃η can also be realized by an f -independent ReLU network.

Step 2∶ Store a1, a2,⋯, an in a key parameter v.

As we can see from the proof of Theorem 1.2, ai ∈ [0, 1
3) with 2mai ∈ N for i =

1,2,⋯, n, where m = 2dn+1. That is,

ai ∈ {bin0.θ1⋯θm ∶ θ` ∈ {0,1}, ` = 1,2,⋯,m}.

Then, by Lemma 2.3, there exists a real number v ∈ [0,1) and a vector function φ0 ∶ R→
Rn implemented by a ReLU network independent of a1, a2,⋯, an such that

φ0(v) = (a1, a2,⋯, an) = a.

Next, we can define

φ(x, v) ∶= φ2 ○ φ̃η(φ1(x),φ0(v)) = φ2 ○ φ̃η(φ1(x),a)

15

for any x ∈ [0,1]d and v ∈ [0,1).
Since the ReLU network realizing φ0 is independent of a1, a2,⋯, an, and hence inde-

pendent of f . Recall that φ1, φ2, and φ̃η can be implemented by f -independent ReLU
networks. Hence,

φ(x, v) = φ2 ○ φ̃η(φ1(x),φ0(v))

can also implemented by an f -independent ReLU network. It remains to estimate the
error. By Equations (2.3) and (2.4), we have

∣sφ(x, v) + b − f(x)∣ ≤ ∣sφ(x, v) + b − (sφ2 ○L ○φ1(x) + b)∣ + ∣sφ2 ○L ○φ1(x) + b − f(x)∣

≤ s∣φ(x, v) − φ2 ○L ○φ1(x)∣ + ε/2

≤ 2λdα/2∣φ2 ○ φ̃η(φ1(x),a) − φ2 ○L ○φ1(x)∣ + ε/2

≤ 2λdα/22−n + ε/2 ≤ 5λdα/22−αn + ε/2 ≤ ε/2 + ε/2 = ε.

So we finish the proof.

Finally, let us prove Lemma 2.3 to end this section.

Proof of Lemma 2.3. Since ai ∈ [0,1) with 2mai ∈ N for i = 1,2,⋯, n, ai can be repre-
sented as a binary form

ai = bin0.ai,1ai,2⋯ai,m.
Denote

v =
n

∑
i=1

2−m(i−1)ai = bin0. a1,1⋯a1,m

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
store a1

a2,1⋯a2,m

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
store a2

⋯ an,1⋯an,m
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

store an

,

which requires pretty high precision. It is easy to extract ai from v via the floor function
(⌊⋅⌋), i.e.,

ai = ⌊2miv⌋/2m − ⌊2m(i−1)v⌋ for i = 1,2,⋯, n.

Next, we need to use a ReLU network to replace the floor function. Let g ∶ R → R be
the continuous piecewise linear function with the following breakpoints:

(`, `) and (` + 1 − δ, `) for ` = 0,1,⋯,2mn − 1, where δ = 2−mn.

Clearly, g can be realized by a ReLU network independent of a1, a2,⋯, an. By defining

gi(t) ∶= g(2mit)/2m − g(2m(i−1)t) for i = 1,2,⋯, n and any t ∈ R,

we have
ai = g(2miv)/2m − g(2m(i−1)v) = gi(v) for i = 1,2,⋯, n.

Next, The target function φ can be defined via

φ(t) = (g1(t), g2(t), ⋯, gn(t)) for any t ∈ R.

Thus, we have

φ(v) = (g1(v), g2(v), ⋯, gn(v)) = (a1, a2,⋯, an).

and φ can be realized by a ReLU network independent of a1, a2,⋯, an. So we finish the
proof.

16

3 Proof of Theorem 2.1

In this section, we first present the proof sketch of Theorem 2.1 in Section 3.1, and
then give the detailed proof in Section 3.2 based on Proposition 3.1, which will be proved
later in Section 3.3.

3.1 Sketch of proof

Before proving Theorem 2.1, let us present the key steps as follows.

1. Set K = 2n, divide [0,1]d into Kd cubes Qβ for β ∈ {0,1,⋯,K − 1}d and the trifling
region Ω([0,1]d,K, δ), and denote xβ as the vertex of Qβ with minimum ∥ ⋅ ∥1 norm
for each β. See Figure 5 for illustrations.

2. Design a ReLU sub-network to implement a function φ1 ∶ Rd → R, independent of f ,
projecting the whole Qβ to a number determined by β in {4j ∶ j = 1,2,⋯,Kd} for
each β.

3. Design a linear map L ∶ R→ Rn, given by L(t) = (a1t, a2t,⋯, ant), for later use, where
a1, a2,⋯, an are determined by f and n.

4. Design a ReLU sub-network to implement a function φ2 ∶ Rn → R, independent of f ,
such that φ2 ○L ○ φ1(x) ≈ f(xβ) for any x ∈ Qβ and each β ∈ {0,1,⋯,K − 1}d. Then
φ2 ○L ○ φ1 approximates f well outside of Ω([0,1]d,K, δ).

5. Estimate the approximation error of φ2 ○L ○ φ1 ≈ f .

0.00 0.25 0.50 0.75 1.00

δ

Q0

δ

Q1

δ

Q2 Q3

Ω([0, 1]d, K, δ) for K = 4, d = 1

Qβ for β ∈ {0, 1, 2, 3}
xβ for β ∈ {0, 1, 2, 3}

(a)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Q0,0 Q1,0 Q2,0 Q3,0

Q0,1 Q1,1 Q2,1 Q3,1

Q0,2 Q1,2 Q2,2 Q3,2

Q0,3 Q1,3 Q2,3 Q3,3

Ω([0, 1]d, K, δ) for K = 4, d = 2

Qβ for β ∈ {0, 1, 2, 3}2

xβ for β ∈ {0, 1, 2, 3}2

(b)

Figure 5: Illustrations of Ω([0,1]d,K, δ), Qβ and xβ for β ∈ {0,1,⋯,K − 1}d. (a)
K = 4, d = 1. (b) K = 4, d = 2.

As we shall see later, the constructions of φ1 and L are not difficult. The most
technical part is to design φ2 implemented by a ReLU network, which relies on the
following proposition.

Proposition 3.1. Given any J ∈ N+, there exists a function φ implemented by a ReLU
network with width 2 and depth 2J + 2 such that: For any θ1, θ2,⋯, θJ ∈ {0,1}, we have
φ(x) ∈ [0,1] for any x ∈ R and

φ(4ja) = θj for j = 1,2,⋯, J, where a =
J

∑
j=1

θj4
−j. (3.1)

17

The proof of this proposition can be found in Section 3.3. We shall point out that
the function φ in this proposition is independent of θ1, θ2,⋯, θJ ∈ {0,1}.

3.2 Constructive proof

Now we are ready to give the detailed proof of Theorem 2.1.

Proof of Theorem 2.1. The proof consists of five steps.

Step 1∶ Set up.

Set K = 2n and let δ > 0 be a small number determined later. Then define xβ ∶=
β/K and divide [0,1]d into Kd cubes Qβ for β ∈ {0,1,⋯,K − 1}d and a small region
Ω([0,1]d,K, δ). Namely,

Qβ ∶= {x = (x1, x2,⋯, xd) ∶ xi ∈ [βiK ,
βi+1
K − δ] for i = 1,⋯, d},

for β = (β1, β2,⋯, βd) ∈ {0,1,⋯,K−1}d. Clearly, Ω([0,1]d,K, δ) = [0,1]d/(⋃β∈{0,1,⋯,K−1}d Qβ).
See Figure 5 for illustrations.

Step 2∶ Construct φ1.

Let g be a “step function” such that

• g(kK) = g(k+1
K − δ) = k for k = 0,1,⋯,K − 1 and g(1) =K − 1.

• g is linear between any two adjacent points of

{ k
K ∶ k = 0,1,⋯,K} ∪ {k+1

K − δ ∶ k = 0,1,⋯,K − 1}.

Then, for any x = (x1,⋯, xd) ∈ Qβ and β = (β1,⋯, βd) ∈ {0,1,⋯,K − 1}d, we have

g(xi) = βi for i = 1,2,⋯, d.

Also, such a function g can be easily realized by a one-hidden-layer ReLU network with
width 2K.

Let h be a function satisfying h(j) = 4j for j = 1,2,⋯,Kd. Such a function h can be
easily realized by a one-hidden-layer ReLU network with width Kd. Then the desired
function φ1 ∶ Rd → R can be defined via

φ1(x) ∶= h(1 +
d

∑
i=1

g(xi)Ki−1) = h ○ %(g(x1),⋯, g(xd)) for any x = (x1,⋯, xd) ∈ Rd,

where % ∶ Rd → R is a linear function defined by

%(y) = 1 +
d

∑
i=1

yiK
i−1 for any y = (y1,⋯, yd) ∈ Rd.

Clearly, % is a bijection (one-to-one map) from β ∈ {0,1,⋯,K − 1}d to %(β) = 1 +
∑d
i=1 βiK

i−1 ∈ {1,2,⋯,Kd}.

18

Then, for any x ∈ Qβ and β ∈ {0,1,⋯,K − 1}d, we have

φ1(x) = h ○ %(g(x1),⋯, g(xd)) = h ○ %(β1,⋯, βd) = 4%(β) = 41+∑d
i=1 βiK

i−1

. (3.2)

Apparently, φ1 is independent of f and it can be realized by a ReLU network with

≤ d(2K × 3 + 1) + (K + 1) + 3Kd + 1 ≤ 11Kd + 2 = 11 × 2dn + 2 ≤ 2dn+4

parameters.

Step 3∶ Construct L.

For each β ∈ {0,1,⋯,K−1}d, it follows from f(xβ) ∈ [0,1] that there exist ξβ,1,⋯, ξβ,n
such that

∣f(xβ) − bin0.ξβ,1⋯ξβ,n∣ ≤ 2−n. (3.3)

Given any j ∈ {1,2,⋯,Kd}, there exists a unique β ∈ {0,1,⋯,K − 1}d such that j =
1 +∑d

i=1 βiK
i−1 = %(β). Thus, for any ` ∈ {1,2,⋯, n}, we can define

θj,` ∶= ξβ,`, for j = %(β) and β ∈ {0,1,⋯,K − 1}d. (3.4)

Then the desired linear map L can be defined via

L(t) ∶= (a1t, a2t,⋯, ant) for any t ∈ R,

where a` = ∑Kd

j=1 θj,`4
−j for ` = 1,2,⋯, n. Clearly, for ` = 1,2,⋯, n, we have

a` =
Kd

∑
j=1

θj,`4
−j ∈ [0, 1

3)

and
2ma` = 22dn+1a` = 42dna` = 4K

d

a` ∈ N, where m = 2dn+1.

Step 4∶ Construct φ2.

Fix ` ∈ {1,2,⋯, n}, by Proposition 3.1 (set J =Kd and θj = θj,` therein), there exists
a function φ2,` implemented by a ReLU network with width 2 and depth 2Kd + 2 such
that φ2,`(t) ∈ [0,1] for any t ∈ R and

φ2,`(4ja`) = θj,` for j = 1,2,⋯,Kd, where a` =
Kd

∑
j=1

θj,`4
−j. (3.5)

Note that φ2,` is independent of θj,` for j = 1,2,⋯,Kd, so it is also independent of f .
Then the desired function φ2 ∶ Rn → R can be defined via

φ2(y) ∶=
n

∑
`=1

2−`φ2,`(y`) for any y = (y1,⋯, yn) ∈ Rn.

Then φ2(y) ∈ [0,1] for any y ∈ Rn and φ2 can be implemented by a ReLU network,
independent of f , with

≤ (6(2Kn + 2) + (2 + 1))n + n + 1 = 6n(2nd+1 + 2) + 4n + 1 ≤ 2nd+5n

19

parameters.

Step 5∶ Estimate the approximation error.

It remains to estimate the approximation error. By Equations (3.2), (3.4), and
(3.5), for ` ∈ {1,2,⋯, n}, x ∈ Qβ, j = %(β) = 1 + ∑d

i=1 βiK
i−1 ∈ {1,2,⋯,Kd}, and β ∈

{0,1,⋯,K − 1}d, we have

φ2 ○L ○ φ1(x) = φ2 ○L ○ h ○ %(g(x1),⋯, g(xd)) = φ2 ○L ○ h ○ %(β)

= φ2 ○L(4%(β)) = φ2 ○L(4j) = φ2(4ja1,4
ja2,⋯,4jan)

=
n

∑
`=1

2−`φ2,`(4ja`) =
n

∑
`=1

2−`θj,` =
n

∑
`=1

2−`ξβ,`.

Then by Equation (3.3), for any x ∈ Qβ and β ∈ {0,1,⋯,K − 1}d, we get

∣f(x) − φ2 ○L ○ φ1(x)∣ = ∣f(x) − f(xβ)∣ + ∣f(xβ) − φ2 ○L ○ φ1(x)∣

≤ ωf(
√
d
K) + ∣f(xβ) −

n

∑
`=1

2−`ξβ,`∣

≤ ωf(
√
d
K) + ∣f(xβ) − bin0.ξβ,1⋯ξβ,n∣ ≤ ωf(

√
d2−n) + 2−n.

That is,

∣f(x) − φ2 ○L ○ φ1(x)∣ ≤ ωf(
√
d2−n) + 2−n for any x ∈ [0,1]d/Ω([0,1]d,K, δ).

Moreover, the fact φ2(y) ∈ [0,1] for any y ∈ Rn implies ∥φ2 ○ L ○ φ1∥L∞(Rd) ≤ 1. So we
finish the proof.

3.3 Proof of Proposition 3.1

Before proving Proposition 3.1, let us introduce a notation to simplify the proof. We
use Tm for m ∈ N+ to denote a “sawtooth” function satisfying the following conditions.

• Tm ∶ [0,2m]→ [0,1] is linear between any two adjacent integers of {0,1,⋯,2m}.

• Tm(2j) = 0 for j = 0,1,⋯,m and Tm(2j + 1) = 1 for j = 0,1,⋯,m − 1.

0 1 2

0.0

0.5

1.0

T1

0 1 2 3 4

0.0

0.5

1.0

T2

0 1 2 3 4 5 6

0.0

0.5

1.0

T3

0 1 2 3 4 5 6 7 8

0.0

0.5

1.0

T4

Figure 6: Illustrations of teeth functions T1, T2, T3 and T4.

To simplify the proof of Proposition 3.1, we first introduce a lemma based on the
“sawtooth” function.

20

Lemma 3.2. Given any J ∈ N+ and θj ∈ {0,1} for j = 1,2,⋯, J , set a = ∑J
j=1 θj4

−j. Then

T4J (4ja) ∈ [0,1/3] if θj = 0 and T4J (4ja) ∈ [2/3,1] if θj = 1, (3.6)

where T4J ∶ [0,2×4J]→ [0,1] is a “sawtooth” function with 4J “teeth” defined just above.

Proof. Fix j ∈ {1,2,⋯, J}, we have

4ja = 4j
J

∑
i=1

θi4
−i =

j−1

∑
i=1

θi4
j−i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 4k for some k ∈ N with k ≤ 4J−1

3

+
0 or 1©
θj +

J

∑
i=j+1

θi4
j−i

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈ [0, 1

3
)

.
(3.7)

Clearly,

j−1

∑
i=1

θi4
j−i ∈ {4k ∶ k ∈ N, k ≤ 4J−1/3} and 0 ≤

J

∑
i=j+1

θi4
j−i ≤

J

∑
i=j+1

4j−i ≤ 1/3.

If θj = 0, then Equation (3.7) implies

4ja ∈ [4k,4k + 1/3] for some k ∈ N with k ≤ 4J−1/3 ≤ 4J − 1,

which implies T4J (4ja) ∈ [0,1/3].
Similarly, if θj = 1, then Equation (3.7) implies

4ja ∈ [4k + 1,4k + 1 + 1/3] for some k ∈ N with k ≤ 4J−1/3 ≤ 4J − 1,

which implies T4J (4ja) ∈ [2/3,1]. So we finish the proof.

It is worth mentioning that the “sawtooth” function Tm can be replaced by other
functions that also have a key property “the function values near even integers are much
larger than the ones near odd integers”.

With Lemma 3.2 in hand, we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. By Lemma 3.2, we have

T4J (4ja) ∈ [0,1/3] if θj = 0 and T4J (4ja) ∈ [2/3,1] if θj = 1.

Define g(x) ∶= 3σ(x − 1/3) − 3σ(x − 2/3) for any x ∈ R, where σ is ReLU, i.e., σ(x) =
max{0, x}. See an illustration of g in Figure 7. Clearly,

g(x) = 0 if x ≤ 1/3 and g(x) = 1 if x ≥ 2/3.

Hence, φ ∶= g ○ T4J is the desired function. Obviously, φ(x) ∈ [0,1] for any x ∈ R.
To verify Equation (3.1), we fix j ∈ {1,2,⋯, J}. If θj = 0, then T4J (4ja) ∈ [0,1/3],
implying φ(4ja) = g ○ T4J (4ja) = 0 = θj. If θj = 1, then T4J (4ja) ∈ [2/3,1], implying
φ(4ja) = g ○ T4J (4ja) = 1 = θj.

It remains to show φ = g ○T4J can be realized by a ReLU network with the expected
width and depth. Clearly, T4J is a continuous piecewise linear function, which means

21

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

(1/3, 0)

(2/3, 1)
g

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 (1/2, 1)h

Figure 7: Illustrations of g and h on [0,1].

it can be implemented by a one-hidden-layer ReLU network. To make our construction
more efficient, we introduce another method to implement φ.

Define h(x) ∶= 1 − 2σ(x − 1/2) − 2σ(1/2 − x) for any x ∈ [0,1]. See an illustration of
h in Figure 7. Then, it is easy to verify that T1(2x) = h(x) for any x ∈ [0,1] and h can
be implemented by a one-hidden-layer ReLU network with width 2. For any J ∈ N+, it
is easy to verify that

T4J (22J+1x) = h ○ h ○ ⋯ ○ h´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2J+1 times

(x), for any x ∈ [0,1].

So, T4J limited on [0,2 × 4J] = [0,22J+1] can be realized by a ReLU network with width
2 and depth 2J + 1. It follows that φ = g ○ T4J can be implemented by a ReLU network
with width 2 and depth 2J + 2, which means we finish the proof.

4 Conclusion

This paper studies the approximation error of ReLU networks in terms of the number
of intrinsic parameters. Theorem 1.1 implies that, for any Hölder continuous function
on [0,1]d, a ReLU network with n + 2 intrinsic parameters can approximate f with an
error 5λdα/22−αn measured in the Lp-norm for p ∈ [1,∞), where α ∈ (0,1] and λ > 0 are
the Hölder order and constant, respectively. Moreover, such a result can be generalized
from the Lp-norm to the L∞-norm with a price of adding O(n) intrinsic parameters, as
shown in Theorem 1.2. Finally, we show in Theorem 1.3 that three intrinsic parameters
are enough to achieve an arbitrary error in the case of Hölder continuous functions,
though this result requires high precision to encode these three parameters on computers.
Remark that this paper only focuses on the approximation error characterized by the
number of intrinsic parameters, the study of the optimization error and generalization
error will be left as future work.

Acknowledgments

Z. Shen is supported by Tan Chin Tuan Centennial Professorship. H. Yang was
partially supported by the US National Science Foundation under award DMS-1945029.

22

S. Zhang is supported by a Postdoctoral Fellowship under NUS ENDOWMENT FUND
(EXP WBS) (01 651).

References

[1] M. Anthony and P. L. Bartlett, Neural Network Learning: Theoretical Foun-
dations, Cambridge University Press, New York, NY, USA, 1st ed., 2009.

[2] C. Bao, Q. Li, Z. Shen, C. Tai, L. Wu, and X. Xiang, Approximation analysis
of convolutional neural networks, Semantic Scholar e-Preprint, (2019), p. Corpus ID:
204762668.

[3] A. R. Barron, Universal approximation bounds for superpositions of a sigmoidal
function, IEEE Transactions on Information Theory, 39 (1993), pp. 930–945.

[4] A. R. Barron and J. M. Klusowski, Approximation and estimation for high-
dimensional deep learning networks, 2018.

[5] P. Bartlett, V. Maiorov, and R. Meir, Almost linear VC-dimension bounds
for piecewise polynomial networks, Neural Computation, 10 (1998), pp. 217–3.

[6] J. Baxter, Theoretical models of learning to learn, in Learning to Learn, Springer,
1998.

[7] M. Bianchini and F. Scarselli, On the complexity of neural network classifiers:
A comparison between shallow and deep architectures, IEEE Transactions on Neural
Networks and Learning Systems, 25 (2014), pp. 1553–1565.

[8] H. Bölcskei, P. Grohs, G. Kutyniok, and P. Petersen, Optimal approxi-
mation with sparsely connected deep neural networks, SIAM Journal on Mathematics
of Data Science, 1 (2019), pp. 8–45.

[9] S. Bozinovski, Reminder of the first paper on transfer learning in neural networks,
1976, Informatica, 44 (2020), pp. 291–302.

[10] S. Bozinovski and A. Fulgosi, The influence of pattern similarity and trans-
fer learning upon the training of a base perceptron B2. (original in croatian), in
Proceedings of the Symposium Informatica 3-121-5, Bled, Slovenia, 1976.

[11] L. Chen and C. Wu, A note on the expressive power of deep rectified linear
unit networks in high-dimensional spaces, Mathematical Methods in the Applied
Sciences, 42 (2019), pp. 3400–3404.

[12] M. Chen, H. Jiang, W. Liao, and T. Zhao, Efficient approximation of deep
relu networks for functions on low dimensional manifolds, in Advances in Neu-
ral Information Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, eds., vol. 32, Curran Associates, Inc.,
2019.

23

[13] C. K. Chui, S.-B. Lin, and D.-X. Zhou, Construction of neural networks for re-
alization of localized deep learning, Frontiers in Applied Mathematics and Statistics,
4 (2018), p. 14.

[14] G. Cybenko, Approximation by superpositions of a sigmoidal function, MCSS, 2
(1989), pp. 303–314.

[15] W. E, C. Ma, and L. Wu, A priori estimates of the population risk for two-layer
neural networks, Communications in Mathematical Sciences, 17 (2019), pp. 1407–
1425.

[16] R. Gribonval, G. Kutyniok, M. Nielsen, and F. Voigtlaender, Approxi-
mation spaces of deep neural networks, arXiv e-prints, (2019), p. arXiv:1905.01208.

[17] I. Gühring, G. Kutyniok, and P. Petersen, Error bounds for approxi-
mations with deep ReLU neural networks in W s,p norms, arXiv e-prints, (2019),
p. arXiv:1902.07896.

[18] N. Harvey, C. Liaw, and A. Mehrabian, Nearly-tight VC-dimension bounds
for piecewise linear neural networks, in Proceedings of the 2017 Conference on Learn-
ing Theory, S. Kale and O. Shamir, eds., vol. 65 of Proceedings of Machine Learning
Research, Amsterdam, Netherlands, 07–10 Jul 2017, PMLR, pp. 1064–1068.

[19] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural
Networks, 4 (1991), pp. 251–257.

[20] K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks
are universal approximators, Neural Networks, 2 (1989), pp. 359–366.

[21] Y. Jiao, Y. Lai, X. Lu, F. Wang, J. Zhijian Yang, and Y. Yang, Deep neu-
ral networks with ReLU-Sine-Exponential activations break curse of dimensionality
on hölder class, arXiv e-prints, (2021), p. arXiv:2103.00542.

[22] T. G. Karimpanal and R. Bouffanais, Self-organizing maps for storage and
transfer of knowledge in reinforcement learning, Adaptive Behavior, 27 (2019),
pp. 111–126.

[23] M. J. Kearns and R. E. Schapire, Efficient distribution-free learning of prob-
abilistic concepts, J. Comput. Syst. Sci., 48 (1994), pp. 464–497.

[24] Q. Li, T. Lin, and Z. Shen, Deep learning via dynamical systems: An approxi-
mation perspective, arXiv e-prints, (2019), p. arXiv:1912.10382.

[25] J. Lu, Z. Shen, H. Yang, and S. Zhang, Deep network approximation for
smooth functions, SIAM Journal on Mathematical Analysis, 53 (2021), pp. 5465–
5506.

[26] L. Mihalkova, T. Huynh, and R. J. Mooney, Mapping and revising markov
logic networks for transfer learning, in Proceedings of the 22nd Conference on Ar-
tificial Intelligence (AAAI-07), vol. 1, Vancouver, Canada, 2007, pp. 608–614.

24

[27] T. Mikolov, A. Joulin, and M. Baroni, A roadmap towards machine intelli-
gence, in Computational Linguistics and Intelligent Text Processing, A. Gelbukh,
ed., Cham, 2018, Springer International Publishing, pp. 29–61.

[28] H. Montanelli and H. Yang, Error bounds for deep ReLU networks using the
Kolmogorov-Arnold superposition theorem, Neural Networks, 129 (2020), pp. 1–6.

[29] H. Montanelli, H. Yang, and Q. Du, Deep ReLU networks overcome the curse
of dimensionality for bandlimited functions, Journal of Computational Mathematics,
(2020).

[30] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio, On the number of
linear regions of deep neural networks, in Advances in Neural Information Processing
Systems 27, Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, eds., Curran Associates, Inc., 2014, pp. 2924–2932.

[31] R. Nakada and M. Imaizumi, Adaptive approximation and generalization of deep
neural network with intrinsic dimensionality, Journal of Machine Learning Research,
21 (2020), pp. 1–38.

[32] A. Niculescu-Mizil and R. Caruana, Inductive transfer for bayesian network
structure learning, in Proceedings of the Eleventh International Conference on Ar-
tificial Intelligence and Statistics, M. Meila and X. Shen, eds., vol. 2 of Proceedings
of Machine Learning Research, San Juan, Puerto Rico, 21–24 Mar 2007, PMLR,
pp. 339–346.

[33] P. Petersen and F. Voigtlaender, Optimal approximation of piecewise smooth
functions using deep ReLU neural networks, Neural Networks, 108 (2018), pp. 296–
330.

[34] L. Y. Pratt, Discriminability-based transfer between neural networks, in Advances
in Neural Information Processing Systems, S. Hanson, J. Cowan, and C. Giles, eds.,
vol. 5, Morgan-Kaufmann, 1993.

[35] A. A. Rusu, M. Veceŕık, T. Rothörl, N. Heess, R. Pascanu, and R. Had-
sell, Sim-to-real robot learning from pixels with progressive nets, in 1st Annual Con-
ference on Robot Learning, CoRL 2017, Mountain View, California, USA, Novem-
ber 13-15, 2017, Proceedings, vol. 78 of Proceedings of Machine Learning Research,
PMLR, 2017, pp. 262–270.

[36] A. Sakurai, Tight bounds for the VC-dimension of piecewise polynomial networks,
in Advances in Neural Information Processing Systems, Neural information process-
ing systems foundation, 1999, pp. 323–329.

[37] Z. Shen, H. Yang, and S. Zhang, Nonlinear approximation via compositions,
Neural Networks, 119 (2019), pp. 74–84.

[38] , Deep network approximation characterized by number of neurons, Communi-
cations in Computational Physics, 28 (2020), pp. 1768–1811.

25

[39] , Deep network approximation: Achieving arbitrary accuracy with fixed number
of neurons, arXiv e-prints, (2021), p. arXiv:2107.02397.

[40] , Deep network with approximation error being reciprocal of width to power of
square root of depth, Neural Computation, 33 (2021), pp. 1005–1036.

[41] , Neural network approximation: Three hidden layers are enough, Neural Net-
works, 141 (2021), pp. 160–173.

[42] , Optimal approximation rate of ReLU networks in terms of width and depth,
Journal de Mathématiques Pures et Appliquées, (to appear).

[43] T. Suzuki, Adaptivity of deep ReLU network for learning in Besov and mixed
smooth Besov spaces: optimal rate and curse of dimensionality, in International
Conference on Learning Representations, 2019.

[44] D. Yarotsky, Error bounds for approximations with deep ReLU networks, Neural
Networks, 94 (2017), pp. 103–114.

[45] , Optimal approximation of continuous functions by very deep ReLU networks,
in Proceedings of the 31st Conference On Learning Theory, S. Bubeck, V. Perchet,
and P. Rigollet, eds., vol. 75 of Proceedings of Machine Learning Research, PMLR,
06–09 Jul 2018, pp. 639–649.

[46] D. Yarotsky, Elementary superexpressive activations, in Proceedings of the 38th
International Conference on Machine Learning, M. Meila and T. Zhang, eds.,
vol. 139 of Proceedings of Machine Learning Research, PMLR, 18–24 Jul 2021,
pp. 11932–11940.

[47] D. Yarotsky and A. Zhevnerchuk, The phase diagram of approximation rates
for deep neural networks, in Advances in Neural Information Processing Systems,
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, eds., vol. 33,
Curran Associates, Inc., 2020, pp. 13005–13015.

[48] S. Zhang, Deep neural network approximation via function compositions, PhD
Thesis, National University of Singapore, (2020). URL: https://scholarbank.

nus.edu.sg/handle/10635/186064.

[49] D.-X. Zhou, Universality of deep convolutional neural networks, Applied and Com-
putational Harmonic Analysis, 48 (2020), pp. 787–794.

26

https://scholarbank.nus.edu.sg/handle/10635/186064
https://scholarbank.nus.edu.sg/handle/10635/186064

	1 Introduction
	1.1 Main results
	1.2 Contributions and further interpretation
	1.3 Related work

	2 Constructive proof
	2.1 Notations
	2.2 Proof of Theorem 1.1
	2.3 Proof of Theorem 1.2
	2.4 Proof of Theorem 1.3

	3 Proof of Theorem 2.1
	3.1 Sketch of proof
	3.2 Constructive proof
	3.3 Proof of Proposition 3.1

	4 Conclusion

