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Deep neural networks

y = h(x ; θ) := T ◦ φ(x) := T ◦ h(L) ◦ h(L−1) ◦ · · · ◦ h(1)(x)

where
h(i)(x) = σ(W (i)T

x + b(i));
T (x) = V T x ;
θ = (W (1), · · · ,W (L),b(1), · · · ,b(L),V ).
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Deep Network Approximation

Goals

Approximation error in terms of width and depth
The curse of dimensionality exist? e.g., # parameters not ( 1

ε )
d

Is exponential approximation rate available? e.g., # parameters
log( 1

ε )
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Literature Review

Functions spaces

Continuous functions
Smooth functions
Functions with integral representations
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ReLU DNNs, continuous functions C([0,1]d)

ReLU; Fixed network width O(N) and depth O(L)

Nearly tight error rate 5ωf (8
√

dN−2/dL−2/d ) simultaneously in N
and L with L∞-norm. Shen, Y., and Zhang (CiCP, 2020)
ωf is the modulas of continuity

Improved to a tight rate O
(√

d ωf

((
N2L2 log3(N + 2)

)−1/d
))

.
Shen, Y., and Zhang (J Math Pures Appl, 2021)

Curse of dimensionality exists!
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ReLU DNNs, smooth functions Cs([0,1]d)

Does smoothness help?

ReLU; Fixed network width O(N) and depth O(L)

Nearly tight rate 85(s + 1)d8s‖f‖Cs([0,1]d )N−2s/dL−2s/d

simultaneously in N and L with L∞-norm
Lu, Shen, Y., and Zhang (SIMA, 2021)

The curse of dimensionality exists if s is fixed.



7/19

DNNs with advanced activation function

Sine-ReLU; Fixed width O(d), varying depth L

exp(−cr ,d
√

L) with L∞-norm for Cr ([0,1]d )
Root exponential approximation rate achieved
Curse of dimensionality is not clear
Yarotsky and Zhevnerchuk, NeurIPS 2020

Floor and ReLU activation, width O(N) and depth O(dL), C([0,1]d )

Error rate ωf (
√

dN−
√

L) + 2ωf (
√

d)N−
√

L with L∞-norm
NO curse of dimensionality for many continuous functions
Root exponential approximation rate
Merely based on the compositional structure of DNNs and depth
is the key
Shen, Y., and Zhang (Neural Computation, 2020)
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DNNs with advanced activation function

Can width be as powerful as depth?

Floor, Sign, and 2x activation, width O(N) and depth 3, C([0,1]d )

Error rate ωf (
√

d2−N) + 2ωf (
√

d)2−N with L∞-norm
NO curse of dimensionality for many continuous functions
Exponential approximation rate
Merely based on the compositional structure of DNNs and width
is the key
Shen, Y., and Zhang (Neural Networks, 2021)
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Further interpretation of our result

Explicit error bound

Floor, Sign, and 2x activation, width O(N) and depth 3,
Hölder([0,1]d , α, λ)

Error rate 3λ(2
√

d)α2−αN with L∞-norm
NO curse of dimensionality
Exponential approximation rate
Shen, Y., and Zhang (Neural Networks, 2021)
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Key ideas of our approximation

For x ∈ Qβ:
x → φ1(x) = β → φ2(β) = kβ → φ3(kβ) = f (xβ) ≈ f (x)

Piecewise constant approximation:
f (x) ≈ fp(x) ≈ φ3 ◦ φ2 ◦ φ1(x)
2N pieces per dim and 2Nd pieces with accuracy
2−N

Floor NN φ1(x) s.t. φ1(x) = β for x ∈ Qβ and
β ∈ Zd .
Linear NN φ2 mapping β to an integer
kβ ∈ {1, . . . ,2Nd}
Key difficulty: NN φ3 of width O(N) and depth O(1)
fitting 2Nd samples in 1D with accuracy O(2−N)

ReLU NN fails

Figure: Uniform domain
partitioning.

Figure: Floor function.

Figure: ReLU function.
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Key ideas of our approximation

Binary representation and approximation
θ =

∑∞
`=1 θ`2

−` with θ` ∈ {0,1} is approximated by
∑N
`=1 θ`2

−` with
an error 2−N .

Bit extraction via a floor NN of width 2 and depth 1

φk (θ) := b2kθc − 2b2k−1θc = θk

Bit extraction via a floor NN of width 2N and depth 1
Given θ =

∑∞
`=1 θ`2

−`

φ(θ) :=

φ1(θ)
...

φN(θ)

 =

θ1
...
θN

 ∈ ZN
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Key ideas of our approximation

Encoding K numbers to one number

Extract bits {θ(k)1 , . . . , θ
(k)
N } from θ(k) =

∑∞
`=1 θ

(k)
` 2−` for

k = 1, . . . ,K
sum up to get
a =

∑N
`=1 θ

(1)
` 2−` +

∑2N
`=N+1 θ

(2)
` 2−` + · · ·+∑KN

`=(K−1)N+1 θ
(K )
` 2−`

Decoding one number to get the k -th numbers

Extract bits {θ(k)1 , . . . , θ
(k)
N } from a via

ψ(k) := φ(2(k−1)Na− b2(k−1)Nac)
of width O(N) and depth O(1).

sum up to get θ(k) ≈∑N
`=1 θ

(k)
` 2−` = [2−1, . . . ,2−N ]ψ(k) := γ(k),

γ(k) is an NN of width O(N) and depth O(1).

Key Lemma
There exists an NN γ of width O(N) and depth O(1) that can
memorize arbitrary samples {(k , θ(k)}K

k=1 with a precision 2−N .
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Key ideas of our approximation

For x ∈ Qβ:
x → φ1(x) = β → φ2(β) = kβ → φ3(kβ) = f (xβ) ≈ f (x)

Piecewise constant approximation:
f (x) ≈ fp(x) ≈ φ3 ◦ φ2 ◦ φ1(x)
2N pieces per dim and 2Nd pieces with accuracy
2−N

Floor NN φ1(x) s.t. φ1(x) = β for x ∈ Qβ and
β ∈ Zd .
Linear NN φ2 mapping β to an integer
kβ ∈ {1, . . . ,2Nd}
Key difficulty: NN φ3 of width O(N) and depth O(1)
fitting 2Nd samples in 1D with accuracy O(2−N)

Key Lemma: There exists an NN γ of width O(N)
and depth O(1) that can memorize arbitrary
samples {(k , θ(k)}K

k=1 with a precision 2−N .

Figure: Uniform domain
partitioning.

Figure: Floor function.

Figure: ReLU function.
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Further interpretation of our result

Realistic consideration

Constructive approximation requires f or exponentially many
samples given
Constructed parameters require high precision computation
Floor and Sign are discontinuous functions leading to gradient
vanishing
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DNNs with advanced activation function

A continuous activation function without gradient vanishing

σ1(x) =
∣∣x − 2b x+1

2 c
∣∣,

σ2(x) :=
x

|x |+ 1
,

σ(x) :=
{
σ1(x) for x ∈ [0,∞),
σ2(x) for x ∈ (−∞,0).
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Figure: An illustration of σ on [−10, 10].
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DNNs with advanced activation function

Arbitrarily small error with a fixed number of neurons for C([0,1]d )

For any ε > 0, there exists φ of width 36d(2d + 1) and depth 11
s.t.

‖f (x)− φ(x)‖L∞([0,1]d ) ≤ ε
Shen, Y., and Zhang (arXiv:2107.02397)
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DNNs with advanced activation function

Exact representation with a fixed number of neurons for classification
functions

For any classification function f (x) with K classes, there exists φ
of width 36d(2d + 1) and depth 12 s.t.

f (x) = φ(x)

on the supports of each class.
Shen, Y., and Zhang (arXiv:2107.02397)
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DNNs with advanced activation function

Two main ideas

Kolmogorov-Arnold Superposition Theorem.

Theorem
∀f (x) ∈ C([0,1]d ), there exist ψp(x) and φ(x) in C(R) and bpq ∈ R s.t.

f (x) =
2d+1∑
q=1

aqφ(
d∑

p=1

bpqψp(xp)).

NNs with width 36 and depth 5 is dense in C([0,1]) (Shen, Y.,
and Zhang (arXiv:2107.02397).



19/19

Acknowledgment

Collaborators
Qiang Du, Sean Hon, Jianfeng Lu, Hadrien Montanelli, Zuowei Shen,
Shijun Zhang

Funding
National Science Foundation under the grant award 1945029


