A Few Thoughts on Deep Network Approximation

Haizhao Yang
Department of Mathematics
Purdue University
Joint work with Zuowei Shen and Shijun Zhang
National University of Singapore

Mini-Symposium on Approximation Theory of Neural Networks
SIAM Annual Meeting
July 23rd, 2021

Deep neural networks

$$
y=h(x ; \theta):=T \circ \phi(x):=T \circ h^{(L)} \circ h^{(L-1)} \circ \cdots \circ h^{(1)}(x)
$$

where
$\square h^{(i)}(x)=\sigma\left(W^{(i)^{T}} x+b^{(i)}\right)$;
■ $T(x)=V^{\top} x$;
$\square \theta=\left(W^{(1)}, \cdots, W^{(L)}, b^{(1)}, \cdots, b^{(L)}, V\right)$.

Deep Network Approximation

Goals

■ Approximation error in terms of width and depth
■ The curse of dimensionality exist? e.g., \# parameters not $\left(\frac{1}{\epsilon}\right)^{d}$
■ Is exponential approximation rate available? e.g., \# parameters $\log \left(\frac{1}{\epsilon}\right)$

Literature Review

Functions spaces

- Continuous functions
- Smooth functions
- Functions with integral representations

ReLU DNNs, continuous functions $C\left([0,1]^{d}\right)$

ReLU; Fixed network width $O(N)$ and depth $O(L)$
■ Nearly tight error rate $5 \omega_{f}\left(8 \sqrt{d} N^{-2 / d} L^{-2 / d}\right)$ simultaneously in N and L with L^{∞}-norm. Shen, Y., and Zhang (CiCP, 2020)

- ω_{f} is the modulas of continuity
- Improved to a tight rate $O\left(\sqrt{d} \omega_{f}\left(\left(N^{2} L^{2} \log _{3}(N+2)\right)^{-1 / d}\right)\right)$. Shen, Y., and Zhang (J Math Pures Appl, 2021)

Curse of dimensionality exists!

ReLU DNNs, smooth functions $C^{s}\left([0,1]^{d}\right)$

Does smoothness help?
ReLU; Fixed network width $O(N)$ and depth $O(L)$
$■$ Nearly tight rate $85(s+1)^{d} 8^{s}\|f\|_{C^{s}\left([0,1]^{d}\right)} N^{-2 s / d} L^{-2 s / d}$ simultaneously in N and L with L^{∞}-norm
■ Lu, Shen, Y., and Zhang (SIMA, 2021)
The curse of dimensionality exists if s is fixed.

DNNs with advanced activation function

Sine-ReLU; Fixed width $O(d)$, varying depth L
■ $\exp \left(-c_{r, d} \sqrt{L}\right)$ with L^{∞}-norm for $C^{r}\left([0,1]^{d}\right)$

- Root exponential approximation rate achieved

■ Curse of dimensionality is not clear
■ Yarotsky and Zhevnerchuk, NeurIPS 2020

Floor and ReLU activation, width $O(N)$ and depth $O(d L), C\left([0,1]^{d}\right)$
■ Error rate $\omega_{f}\left(\sqrt{d} N^{-\sqrt{L}}\right)+2 \omega_{f}(\sqrt{d}) N^{-\sqrt{L}}$ with L^{∞}-norm
■ NO curse of dimensionality for many continuous functions

- Root exponential approximation rate

■ Merely based on the compositional structure of DNNs and depth is the key
■ Shen, Y., and Zhang (Neural Computation, 2020)

DNNs with advanced activation function

Can width be as powerful as depth?
Floor, Sign, and 2^{x} activation, width $O(N)$ and depth $3, C\left([0,1]^{d}\right)$
■ Error rate $\omega_{f}\left(\sqrt{d} 2^{-N}\right)+2 \omega_{f}(\sqrt{d}) 2^{-N}$ with L^{∞}-norm

- NO curse of dimensionality for many continuous functions

■ Exponential approximation rate
■ Merely based on the compositional structure of DNNs and width is the key
■ Shen, Y., and Zhang (Neural Networks, 2021)

Further interpretation of our result

Explicit error bound
Floor, Sign, and 2^{x} activation, width $O(N)$ and depth 3 , Hölder([0, 1] $\left.{ }^{d}, \alpha, \lambda\right)$

■ Error rate $3 \lambda(2 \sqrt{d})^{\alpha} 2^{-\alpha N}$ with L^{∞}-norm

- NO curse of dimensionality
- Exponential approximation rate

■ Shen, Y., and Zhang (Neural Networks, 2021)

Key ideas of our approximation

For $\boldsymbol{x} \in Q_{\boldsymbol{\beta}}$:
$\boldsymbol{x} \rightarrow \phi_{1}(\boldsymbol{x})=\boldsymbol{\beta} \rightarrow \phi_{2}(\boldsymbol{\beta})=k_{\boldsymbol{\beta}} \rightarrow \phi_{3}\left(k_{\boldsymbol{\beta}}\right)=f\left(\boldsymbol{x}_{\boldsymbol{\beta}}\right) \approx f(\boldsymbol{x})$
■ Piecewise constant approximation:
$f(\boldsymbol{x}) \approx f_{p}(\boldsymbol{x}) \approx \phi_{3} \circ \phi_{2} \circ \phi_{1}(\boldsymbol{x})$

- 2^{N} pieces per dim and $2^{N d}$ pieces with accuracy 2^{-N}
\square Floor NN $\phi_{1}(\boldsymbol{x})$ s.t. $\phi_{1}(\boldsymbol{x})=\boldsymbol{\beta}$ for $\boldsymbol{x} \in Q_{\boldsymbol{\beta}}$ and $\beta \in \mathbb{Z}^{d}$.
- Linear NN ϕ_{2} mapping $\boldsymbol{\beta}$ to an integer $k_{\beta} \in\left\{1, \ldots, 2^{N d}\right\}$
\square Key difficulty: NN ϕ_{3} of width $O(N)$ and depth $O(1)$ fitting $2^{N d}$ samples in 1D with accuracy $O\left(2^{-N}\right)$
- ReLU NN fails

Figure: ReLU function.

Key ideas of our approximation

Binary representation and approximation
$\theta=\sum_{\ell=1}^{\infty} \theta_{\ell} 2^{-\ell}$ with $\theta_{\ell} \in\{0,1\}$ is approximated by $\sum_{\ell=1}^{N} \theta_{\ell} 2^{-\ell}$ with an error 2^{-N}.

Bit extraction via a floor NN of width 2 and depth 1

$$
\phi_{k}(\theta):=\left\lfloor 2^{k} \theta\right\rfloor-2\left\lfloor 2^{k-1} \theta\right\rfloor=\theta_{k}
$$

Bit extraction via a floor NN of width 2 N and depth 1
Given $\theta=\sum_{\ell=1}^{\infty} \theta_{\ell} 2^{-\ell}$

$$
\phi(\theta):=\left(\begin{array}{c}
\phi_{1}(\theta) \\
\vdots \\
\phi_{N}(\theta)
\end{array}\right)=\left(\begin{array}{c}
\theta_{1} \\
\vdots \\
\theta_{N}
\end{array}\right) \in \mathbb{Z}^{N}
$$

Key ideas of our approximation

Encoding K numbers to one number

- Extract bits $\left\{\theta_{1}^{(k)}, \ldots, \theta_{N}^{(k)}\right\}$ from $\theta^{(k)}=\sum_{\ell=1}^{\infty} \theta_{\ell}^{(k)} 2^{-\ell}$ for

$$
k=1, \ldots, k
$$

- sum up to get

$$
a=\sum_{\ell=1}^{N} \theta_{\ell}^{(1)} 2^{-\ell}+\sum_{\ell=N+1}^{2 N} \theta_{\ell}^{(2)} 2^{-\ell}+\cdots+\sum_{\ell=(K-1) N+1}^{K N} \theta_{\ell}^{(K)} 2^{-\ell}
$$

Decoding one number to get the k-th numbers

■ Extract bits $\left\{\theta_{1}^{(k)}, \ldots, \theta_{N}^{(k)}\right\}$ from a via

$$
\psi(k):=\phi\left(2^{(k-1) N} a-\left\lfloor 2^{(k-1) N} a\right\rfloor\right)
$$

of width $O(N)$ and depth $O(1)$.
■ sum up to get $\theta^{(k)} \approx \sum_{\ell=1}^{N} \theta_{\ell}^{(k)} 2^{-\ell}=\left[2^{-1}, \ldots, 2^{-N}\right] \psi(k):=\gamma(k)$,

- $\gamma(k)$ is an NN of width $O(N)$ and depth $O(1)$.

Key Lemma
There exists an NN γ of width $O(N)$ and depth $O(1)$ that can memorize arbitrary samples $\left\{\left(k, \theta^{(k)}\right\}_{k=1}^{K}\right.$ with a precision 2^{-N}.

Key ideas of our approximation

For $\boldsymbol{x} \in Q_{\boldsymbol{\beta}}$:
$\boldsymbol{x} \rightarrow \phi_{1}(\boldsymbol{x})=\boldsymbol{\beta} \rightarrow \phi_{2}(\boldsymbol{\beta})=k_{\boldsymbol{\beta}} \rightarrow \phi_{3}\left(k_{\boldsymbol{\beta}}\right)=f\left(\boldsymbol{x}_{\boldsymbol{\beta}}\right) \approx f(\boldsymbol{x})$

- Piecewise constant approximation:

$$
f(\boldsymbol{x}) \approx f_{p}(\boldsymbol{x}) \approx \phi_{3} \circ \phi_{2} \circ \phi_{1}(\boldsymbol{x})
$$

$\square 2^{N}$ pieces per dim and $2^{N d}$ pieces with accuracy 2^{-N}
\square Floor NN $\phi_{1}(\boldsymbol{x})$ s.t. $\phi_{1}(\boldsymbol{x})=\boldsymbol{\beta}$ for $\boldsymbol{x} \in Q_{\boldsymbol{\beta}}$ and $\beta \in \mathbb{Z}^{d}$.

- Linear NN ϕ_{2} mapping $\boldsymbol{\beta}$ to an integer $k_{\boldsymbol{\beta}} \in\left\{1, \ldots, 2^{\text {Nd }}\right\}$
\square Key difficulty: NN ϕ_{3} of width $O(N)$ and depth $O(1)$ fitting $2^{N d}$ samples in 1D with accuracy $O\left(2^{-N}\right)$
- Key Lemma: There exists an NN γ of width $O(N)$ and depth $O(1)$ that can memorize arbitrary samples $\left\{\left(k, \theta^{(k)}\right\}_{k=1}^{K}\right.$ with a precision 2^{-N}.

Figure: Uniform domain partitioning.

Figure: Floor function.

Figure: ReLU function.

Further interpretation of our result

Realistic consideration

- Constructive approximation requires f or exponentially many samples given
- Constructed parameters require high precision computation
- Floor and Sign are discontinuous functions leading to gradient vanishing

DNNs with advanced activation function

A continuous activation function without gradient vanishing

$$
\begin{gathered}
\sigma_{1}(x)=\left|x-2\left\lfloor\frac{x+1}{2}\right\rfloor\right|, \\
\sigma_{2}(x):=\frac{x}{|x|+1}, \\
\sigma(x):= \begin{cases}\sigma_{1}(x) & \text { for } x \in[0, \infty), \\
\sigma_{2}(x) & \text { for } x \in(-\infty, 0) .\end{cases}
\end{gathered}
$$

Figure: An illustration of σ on $[-10,10]$.

DNNs with advanced activation function

Arbitrarily small error with a fixed number of neurons for $C\left([0,1]^{d}\right)$
■ For any $\epsilon>0$, there exists ϕ of width $36 d(2 d+1)$ and depth 11 s.t.

$$
\|f(x)-\phi(x)\|_{L^{\infty}\left([0,1]^{d}\right)} \leq \epsilon
$$

■ Shen, Y., and Zhang (arXiv:2107.02397)

DNNs with advanced activation function

Exact representation with a fixed number of neurons for classification functions

■ For any classification function $f(x)$ with K classes, there exists ϕ of width $36 d(2 d+1)$ and depth 12 s.t.

$$
f(x)=\phi(x)
$$

on the supports of each class.
■ Shen, Y., and Zhang (arXiv:2107.02397)

DNNs with advanced activation function

Two main ideas
■ Kolmogorov-Arnold Superposition Theorem.
Theorem
$\forall f(\mathbf{x}) \in C\left([0,1]^{d}\right)$, there exist $\psi_{p}(x)$ and $\phi(x)$ in $C(\mathbb{R})$ and $b_{p q} \in \mathbb{R}$ s.t.

$$
f(\mathbf{x})=\sum_{q=1}^{2 d+1} a_{q} \phi\left(\sum_{p=1}^{d} b_{p q} \psi_{p}\left(x_{p}\right)\right) .
$$

■ NNs with width 36 and depth 5 is dense in $C([0,1])$ (Shen, Y., and Zhang (arXiv:2107.02397).

Acknowledgment

Collaborators
Qiang Du, Sean Hon, Jianfeng Lu, Hadrien Montanelli, Zuowei Shen, Shijun Zhang

Funding
National Science Foundation under the grant award 1945029

