## A Few Thoughts on Deep Network Approximation

Haizhao Yang

Department of Mathematics Purdue University

Joint work with Zuowei Shen and Shijun Zhang National University of Singapore

Mini-Symposium on Approximation Theory of Neural Networks SIAM Annual Meeting July 23rd, 2021

# Deep neural networks

$$y = h(x; \theta) := T \circ \phi(x) := T \circ h^{(L)} \circ h^{(L-1)} \circ \cdots \circ h^{(1)}(x)$$
 where

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ - のへで 2/19

$$h^{(i)}(x) = \sigma(W^{(i)^{T}}x + b^{(i)});$$
  

$$T(x) = V^{T}x;$$
  

$$\theta = (W^{(1)}, \cdots, W^{(L)}, b^{(1)}, \cdots, b^{(L)}, V).$$

#### Goals

- Approximation error in terms of width and depth
- The curse of dimensionality exist? e.g., # parameters not  $(\frac{1}{\epsilon})^d$
- Is exponential approximation rate available? e.g., # parameters  $\log(\frac{1}{\epsilon})$

<ロト < 回 ト < 三 ト < 三 ト 三 の Q (P 3/19

## Literature Review

## **Functions spaces**

- Continuous functions
- Smooth functions
- Functions with integral representations

# ReLU DNNs, continuous functions $C([0, 1]^d)$

#### ReLU; Fixed network width O(N) and depth O(L)

- Nearly tight error rate 5ω<sub>f</sub>(8√dN<sup>-2/d</sup>L<sup>-2/d</sup>) simultaneously in N and L with L<sup>∞</sup>-norm. Shen, Y., and Zhang (CiCP, 2020)
- $\omega_f$  is the modulas of continuity
- Improved to a tight rate  $O\left(\sqrt{d}\omega_f\left(\left(N^2L^2\log_3(N+2)\right)^{-1/d}\right)\right)$ . Shen, Y., and Zhang (J Math Pures Appl, 2021)

<ロト < 回 > < 三 > < 三 > 、 三 の へ の 5/19

Curse of dimensionality exists!

# ReLU DNNs, smooth functions $C^{s}([0, 1]^{d})$

Does smoothness help?

ReLU; Fixed network width O(N) and depth O(L)

Nearly tight rate  $85(s+1)^d 8^s ||f||_{C^s([0,1]^d)} N^{-2s/d} L^{-2s/d}$ simultaneously in N and L with  $L^{\infty}$ -norm

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の Q ↔ 6/19

■ Lu, Shen, Y., and Zhang (SIMA, 2021)

The curse of dimensionality exists if s is fixed.

## Sine-ReLU; Fixed width O(d), varying depth L

- $\exp(-c_{r,d}\sqrt{L})$  with  $L^{\infty}$ -norm for  $C^{r}([0,1]^{d})$
- Root exponential approximation rate achieved
- Curse of dimensionality is not clear
- Yarotsky and Zhevnerchuk, NeurIPS 2020

## Floor and ReLU activation, width O(N) and depth O(dL), $C([0, 1]^d)$

- Error rate  $\omega_f(\sqrt{d}N^{-\sqrt{L}}) + 2\omega_f(\sqrt{d})N^{-\sqrt{L}}$  with  $L^{\infty}$ -norm
- NO curse of dimensionality for many continuous functions
- Root exponential approximation rate
- Merely based on the compositional structure of DNNs and depth is the key
- Shen, Y., and Zhang (Neural Computation, 2020)

Can width be as powerful as depth?

Floor, Sign, and  $2^{x}$  activation, width O(N) and depth 3,  $C([0, 1]^{d})$ 

- Error rate  $\omega_f(\sqrt{d}2^{-N}) + 2\omega_f(\sqrt{d})2^{-N}$  with  $L^{\infty}$ -norm
- NO curse of dimensionality for many continuous functions
- Exponential approximation rate
- Merely based on the compositional structure of DNNs and width is the key

<ロト < 回 ト < 三 ト < 三 ト 三 の Q (P 8/19

Shen, Y., and Zhang (Neural Networks, 2021)

## Further interpretation of our result

## Explicit error bound

Floor, Sign, and  $2^x$  activation, width O(N) and depth 3, Hölder( $[0, 1]^d, \alpha, \lambda$ )

- Error rate  $3\lambda(2\sqrt{d})^{\alpha}2^{-\alpha N}$  with  $L^{\infty}$ -norm
- NO curse of dimensionality
- Exponential approximation rate
- Shen, Y., and Zhang (Neural Networks, 2021)

For  $\boldsymbol{x} \in \boldsymbol{Q}_{\boldsymbol{\beta}}$ :  $\boldsymbol{x} \to \phi_1(\boldsymbol{x}) = \boldsymbol{\beta} \to \phi_2(\boldsymbol{\beta}) = \boldsymbol{k}_{\boldsymbol{\beta}} \to \phi_3(\boldsymbol{k}_{\boldsymbol{\beta}}) = f(\boldsymbol{x}_{\boldsymbol{\beta}}) \approx f(\boldsymbol{x})$ 

- Piecewise constant approximation:  $f(\mathbf{x}) \approx f_{\rho}(\mathbf{x}) \approx \phi_3 \circ \phi_2 \circ \phi_1(\mathbf{x})$
- 2<sup>N</sup> pieces per dim and 2<sup>Nd</sup> pieces with accuracy 2<sup>-N</sup>
- Floor NN  $\phi_1(\boldsymbol{x})$  s.t.  $\phi_1(\boldsymbol{x}) = \beta$  for  $\boldsymbol{x} \in Q_\beta$  and  $\beta \in \mathbb{Z}^d$ .
- Linear NN  $\phi_2$  mapping  $\beta$  to an integer  $k_{\beta} \in \{1, \dots, 2^{Nd}\}$
- Key difficulty: NN  $\phi_3$  of width O(N) and depth O(1) fitting  $2^{Nd}$  samples in 1D with accuracy  $O(2^{-N})$
- ReLU NN fails



Figure: Uniform domain partitioning.



Figure: Floor function.



Figure: ReLU function.

<ロト < 回 ト < 三 ト < 三 ト 三 の へ で 10/19

#### Binary representation and approximation

 $\theta = \sum_{\ell=1}^{\infty} \theta_{\ell} 2^{-\ell}$  with  $\theta_{\ell} \in \{0, 1\}$  is approximated by  $\sum_{\ell=1}^{N} \theta_{\ell} 2^{-\ell}$  with an error  $2^{-N}$ .

Bit extraction via a floor NN of width 2 and depth 1

$$\phi_k( heta) := \lfloor 2^k heta 
floor - 2 \lfloor 2^{k-1} heta 
floor = heta_k$$

Bit extraction via a floor NN of width 2*N* and depth 1 Given  $\theta = \sum_{\ell=1}^{\infty} \theta_{\ell} 2^{-\ell}$ 

$$\phi(\theta) := \begin{pmatrix} \phi_1(\theta) \\ \vdots \\ \phi_N(\theta) \end{pmatrix} = \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_N \end{pmatrix} \in \mathbb{Z}^N$$

< ロ ト < 団 ト < 臣 ト < 臣 ト 三 の < で 11/19</p>

Encoding K numbers to one number

- Extract bits  $\{\theta_1^{(k)}, \dots, \theta_N^{(k)}\}$  from  $\theta^{(k)} = \sum_{\ell=1}^{\infty} \theta_{\ell}^{(k)} 2^{-\ell}$  for  $k = 1, \dots, K$
- sum up to get  $a = \sum_{\ell=1}^{N} \theta_{\ell}^{(1)} 2^{-\ell} + \sum_{\ell=N+1}^{2N} \theta_{\ell}^{(2)} 2^{-\ell} + \dots + \sum_{\ell=(K-1)N+1}^{KN} \theta_{\ell}^{(K)} 2^{-\ell}$

Decoding one number to get the k-th numbers

• Extract bits 
$$\{\theta_1^{(k)}, \dots, \theta_N^{(k)}\}$$
 from *a* via  
 $\psi(k) := \phi(2^{(k-1)N}a - \lfloor 2^{(k-1)N}a \rfloor)$ 

of width O(N) and depth O(1).

• sum up to get  $\theta^{(k)} \approx \sum_{\ell=1}^{N} \theta_{\ell}^{(k)} 2^{-\ell} = [2^{-1}, \dots, 2^{-N}] \psi(k) := \gamma(k)$ , •  $\gamma(k)$  is an NN of width O(N) and depth O(1).

#### Key Lemma

There exists an NN  $\gamma$  of width O(N) and depth O(1) that can memorize arbitrary samples  $\{(k, \theta^{(k)})\}_{k=1}^{K}$  with a precision  $2^{-N}$ .

$$\begin{array}{l} \mathsf{For} \ \boldsymbol{x} \in \boldsymbol{Q}_{\boldsymbol{\beta}} \\ \boldsymbol{x} \rightarrow \phi_1(\boldsymbol{x}) = \boldsymbol{\beta} \rightarrow \phi_2(\boldsymbol{\beta}) = k_{\boldsymbol{\beta}} \rightarrow \phi_3(k_{\boldsymbol{\beta}}) = f(\boldsymbol{x}_{\boldsymbol{\beta}}) \approx f(\boldsymbol{x}_{\boldsymbol{\beta}}) \end{array}$$

Piecewise constant approximation:  

$$f(\mathbf{x}) \approx f_p(\mathbf{x}) \approx \phi_3 \circ \phi_2 \circ \phi_1(\mathbf{x})$$

2<sup>N</sup> pieces per dim and 2<sup>Nd</sup> pieces with accuracy 2<sup>-N</sup>

Floor NN 
$$\phi_1(\boldsymbol{x})$$
 s.t.  $\phi_1(\boldsymbol{x}) = \beta$  for  $\boldsymbol{x} \in Q_\beta$  and  $\beta \in \mathbb{Z}^d$ .

- Linear NN  $\phi_2$  mapping  $\beta$  to an integer  $k_{\beta} \in \{1, \dots, 2^{Nd}\}$
- Key difficulty: NN  $\phi_3$  of width O(N) and depth O(1) fitting  $2^{Nd}$  samples in 1D with accuracy  $O(2^{-N})$
- Key Lemma: There exists an NN  $\gamma$  of width O(N) and depth O(1) that can memorize arbitrary samples  $\{(k, \theta^{(k)})\}_{k=1}^{K}$  with a precision  $2^{-N}$ .



Figure: Uniform domain partitioning.



Figure: Floor function.



Figure: ReLU function.

## Further interpretation of our result

## Realistic consideration

- Constructive approximation requires f or exponentially many samples given
- Constructed parameters require high precision computation
- Floor and Sign are discontinuous functions leading to gradient vanishing

▲□▶▲□▶▲三▶▲三▶ 三 のへで 14/19

A continuous activation function without gradient vanishing

$$\sigma_1(x) = |x - 2\lfloor \frac{x+1}{2} \rfloor|,$$

$$\sigma_2(x) \coloneqq rac{x}{|x|+1},$$
 $\sigma(x) \coloneqq \left\{ egin{array}{l} \sigma_1(x) & ext{for } x \in [0,\infty), \ \sigma_2(x) & ext{for } x \in (-\infty,0). \end{array} 
ight.$ 



Figure: An illustration of  $\sigma$  on [-10, 10].

<ロト < 回 ト < 三 ト < 三 ト 三 の へ C 15/19

Arbitrarily small error with a fixed number of neurons for  $C([0, 1]^d)$ 

■ For any e > 0, there exists \u03c6 of width 36d(2d + 1) and depth 11 s.t.

$$\|f(\mathbf{x}) - \phi(\mathbf{x})\|_{L^{\infty}([0,1]^d)} \leq \epsilon$$

Shen, Y., and Zhang (arXiv:2107.02397)

# Exact representation with a fixed number of neurons for classification functions

For any classification function f(x) with K classes, there exists φ of width 36d(2d + 1) and depth 12 s.t.

$$f(\mathbf{x}) = \phi(\mathbf{x})$$

▲□▶▲□▶▲三▶▲三▶ 三 のへで 17/19

on the supports of each class.

Shen, Y., and Zhang (arXiv:2107.02397)

## Two main ideas

Kolmogorov-Arnold Superposition Theorem.

## Theorem

 $\forall f(\mathbf{x}) \in C([0,1]^d)$ , there exist  $\psi_p(x)$  and  $\phi(x)$  in  $C(\mathbb{R})$  and  $b_{pq} \in \mathbb{R}$  s.t.

$$f(\mathbf{x}) = \sum_{q=1}^{2d+1} a_q \phi(\sum_{\rho=1}^d b_{\rho q} \psi_\rho(x_\rho)).$$

NNs with width 36 and depth 5 is dense in C([0, 1]) (Shen, Y., and Zhang (arXiv:2107.02397).

<ロト < 回 ト < 三 ト < 三 ト 三 の < で 18/19

## Acknowledgment

## Collaborators

Qiang Du, Sean Hon, Jianfeng Lu, Hadrien Montanelli, Zuowei Shen, Shijun Zhang

## Funding

National Science Foundation under the grant award 1945029



▲□▶▲□▶▲三▶▲三▶ 三 のへで 19/19