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Deep neural networks

y=h(x;0) :=Top(x):=TohPohltVo...

where
m h0)(x) = (WO x 4 b);
mT(x)=V'x;



Deep Network Approximation

Goals

m Approximation error in terms of width and depth
m The curse of dimensionality exist? e.g., # parameters not (%)d

m Is exponential approximation rate available? e.g., # parameters
log(1)



Literature Review

Functions spaces

m Continuous functions
m Smooth functions
m Functions with integral representations



RelLU DNNSs, continuous functions C([0, 1]9)

RelLU; Fixed network width O(N) and depth O(L)

m Nearly tight error rate 5w(8v/dN—2/9L~2/4) simultaneously in N
and L with L>°-norm. Shen, Y., and Zhang (CiCP, 2020)

m wy is the modulas of continuity
® Improved to a tight rate O (\/abdf ((NZL2 logg(N + 2))71/‘1)).
Shen, Y., and Zhang (J Math Pures Appl, 2021)

Curse of dimensionality exists!



RelLU DNNs, smooth functions C5([0, 1]9)

Does smoothness help?
RelLU; Fixed network width O(N) and depth O(L)

m Nearly tight rate 85(s + 1)d83||f||Cs([oJ]d)N*Zs/dL*s/d
simultaneously in N and L with L>-norm

m Lu, Shen, Y., and Zhang (SIMA, 2021)

The curse of dimensionality exists if s is fixed.



DNNs with advanced activation function

Sine-ReLU; Fixed width O(d), varying depth L

m exp(—cr gV/L) with L>-norm for C([0, 1]9)

m Root exponential approximation rate achieved
m Curse of dimensionality is not clear

m Yarotsky and Zhevnerchuk, NeurlPS 2020

Floor and ReLU activation, width O(N) and depth O(dL), C(]0, 1]¢)

m Error rate wi(vVAN—VL) + 2w;(v/d)N~VE with L>°-norm
m NO curse of dimensionality for many continuous functions
m Root exponential approximation rate

m Merely based on the compositional structure of DNNs and depth
is the key

m Shen, Y., and Zhang (Neural Computation, 2020)



DNNs with advanced activation function

Can width be as powerful as depth?
Floor, Sign, and 2 activation, width O(N) and depth 3, C(]0, 1]¢)

m Error rate wr(v/d2™N) + 2wy (v/d)2~N with L>-norm
m NO curse of dimensionality for many continuous functions
m Exponential approximation rate

m Merely based on the compositional structure of DNNs and width
is the key

m Shen, Y., and Zhang (Neural Networks, 2021)



Further interpretation of our result

Explicit error bound
Floor, Sign, and 2* activation, width O(N) and depth 3,
Holder([0, 1]9, a, A)

m Error rate 3)\(2v/d)*2~N with L>-norm

m NO curse of dimensionality

m Exponential approximation rate

m Shen, Y., and Zhang (Neural Networks, 2021)



Key ideas of our approximation

For x € Qg:
X = ¢1(X) = B — ¢2(B) = kg — ¢3(kg) = f(xg) ~ f(x)

m Piecewise constant approximation:
f(X) = fo(X) = ¢3 0 ¢2 0 P1(X)
m 2N pieces per dim and 29 pieces with accuracy
27N
m Floor NN ¢1(x) s.t. ¢1(x) = 3 for x € Qz and
B ezl
m Linear NN ¢> mapping 3 to an integer
kg S {1,...,2Nd}
m Key difficulty: NN ¢3 of width O(N) and depth O(1)
fitting 2N samples in 1D with accuracy O(2—N)
m ReLU NN fails
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Key ideas of our approximation

Binary representation and approximation
0 =55, 6,2~ with 6, € {0,1} is approximated by >°)' , 6,2 with
an error 2N,

Bit extraction via a floor NN of width 2 and depth 1
ok(0) == |2K0| — 2|2K19) = oy

Bit extraction via a floor NN of width 2N and depth 1
Given 6 =", 0,27*
$1(0) 01
o0 = + |=|1]ez"

on(0) On



Key ideas of our approximation
Encoding K numbers to one number
m Extract bits {6\, ... 60} from () = 52 K2~ for

k=1.. . .K
= sum up to g(?)t o "0
a=Y, 000270+ Na1 0027 e kg O 27

Decoding one number to get the k-th numbers

m Extract bits {9(k) ...,9%‘)} from avia
(k) = (2K MNa— |20-DNa))
of width O(N) and depth O(1).
m sumupto get 00 ~ SN 02—t = 21 2Ny (k) := ~(k),
m (k) is an NN of width O(N) and depth O(1).

Key Lemma
There exists an NN ~ of width O(N) and depth O(1) that can
memorize arbitrary samples {(k, %) }%_. with a precision 2-N.



Key ideas of our approximation

For x € Qg:
X = §1(X) = B — $2(B) = ks — ¢3(ks) = f(xs) ~ f(x)

m Piecewise constant approximation:
f(x) = fo(X) = ¢3 0 2 0 P1(X)

m 2" pieces per dim and 29 pieces with accuracy
2—N

m Floor NN ¢1(x) s.t. ¢1(x) = 3 for x € Qg and
B ezl

m Linear NN ¢», mapping 3 to an integer
kﬁ € {1,...72Nd}

m Key difficulty: NN ¢3 of width O(N) and depth O(1)
fitting 2 samples in 1D with accuracy O(2~N)

m Key Lemma: There exists an NN ~ of width O(N)
and depth O(1) that can memorize arbitrary
samples {(k,0%)}K_. with a precision 2=V,
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Further interpretation of our result

Realistic consideration

m Constructive approximation requires f or exponentially many
samples given
m Constructed parameters require high precision computation

m Floor and Sign are discontinuous functions leading to gradient
vanishing



DNNs with advanced activation function

A continuous activation function without gradient vanishing
o1(x) = |x —2[ X
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Figure: An illustration of o on [—10, 10].



DNNs with advanced activation function

Arbitrarily small error with a fixed number of neurons for C([0, 1]9)

m For any € > 0, there exists ¢ of width 36d(2d + 1) and depth 11
s.t.

(%) = d(X) | o= (p0,170) < €
m Shen, Y., and Zhang (arXiv:2107.02397)



DNNs with advanced activation function

Exact representation with a fixed number of neurons for classification
functions

m For any classification function f(x) with K classes, there exists ¢
of width 36d(2d + 1) and depth 12 s.t.

f(x) = ¢(x)
on the supports of each class.
m Shen, Y., and Zhang (arXiv:2107.02397)



DNNs with advanced activation function

Two main ideas
m Kolmogorov-Arnold Superposition Theorem.

Theorem
vf(x) € C([0,1]9), there exist yp(x) and ¢(x) in C(R) and bpq € R s.t.

2d-+1

f(x) = Z aq9( prqu Xp))

m NNs with width 36 and depth 5 is dense in C([0, 1]) (Shen, Y.,
and Zhang (arXiv:2107.02397).
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