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Abstract4

This paper establishes optimal approximation error characterization of deep5

ReLU networks for smooth functions in terms of both width and depth simulta-6

neously. To that end, we first prove that multivariate polynomials can be approx-7

imated by deep ReLU networks of width O(N) and depth O(L) with an approx-8

imation error O(N−L). Through local Taylor expansions and their deep ReLU9

network approximations, we show that deep ReLU networks of width O(N lnN)10

and depth O(L lnL) can approximate f ∈ Cs([0,1]d) with a nearly optimal ap-11

proximation rate O(∥f∥Cs([0,1]d)N−2s/dL−2s/d). Our estimate is non-asymptotic in12

the sense that it is valid for arbitrary width and depth specified by N ∈ N+ and13

L ∈ N+, respectively.14

Key words. ReLU network, Smooth Function, Polynomial Approximation, Function15

Composition.16

1 Introduction17

Deep neural networks have made significant impacts in many fields of computer18

science and engineering especially for large-scale and high-dimensional learning prob-19

lems. Well-designed neural network architectures, efficient training algorithms, and20

high-performance computing technologies have made neural-network-based methods very21

successful in tremendous real applications. Especially in supervised learning, e.g., im-22

age classification and objective detection, the great advantages of neural-network-based23

methods have been demonstrated over traditional learning methods. Mathematically24

speaking, supervised learning is essentially a regression problem where the problem of25

function approximation plays a fundamental role. Understanding the approximation ca-26

pacity of deep neural networks has become a key question for revealing the power of27

deep learning. A large number of experiments in real applications have shown the large28

capacity of deep network approximation from many empirical points of view, motivating29
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much effort in establishing the theoretical foundation of deep network approximation.30

One of the fundamental problems is the characterization of the optimal approximation31

rate of deep neural networks of arbitrary depth and width.32

Previously, the quantitative characterization of the approximation power of deep33

feed-forward neural networks (FNNs) with ReLU activation functions is provided in [27].34

For ReLU FNNs with width O(N) and depth O(L), the deep network approximation35

of f ∈ C([0,1])d admits an approximation rate 5ωf(8
√
dN−2/dL−2/d) in the Lp-norm for36

p ∈ [1,∞), where ωf(⋅) is the modulus of continuity of f . In particular, for the class37

of Lipschitz continuous functions, the approximation rate is nearly optimal. 1○ The next38

question is whether the smoothness of functions can improve the approximation rate.39

In this paper, we investigate the deep network approximation of smaller function space,40

such as the smooth function space Cs([0,1]d). Instead of discussing the approximation41

rate in the Lp-norm for p ∈ [1,∞) as in [27], we measure the approximation rate here in42

the L∞-norm. As we are only interested in functions in Cs([0,1]d), the approximation43

rates in the L∞-norm implies the ones in the Lp-norm for p ∈ [1,∞). To be precise, the44

main theorem of the present paper, Theorem 1.1 below, shows that ReLU FNNs with45

width O(N lnN) and depth O(L lnL) can approximate f ∈ Cs([0,1]d) with a nearly46

optimal approximation rate O(∥f∥Cs([0,1]d)N−2s/dL−2s/d), where the norm ∥ ⋅ ∥Cs([0,1]d) is47

defined as48

∥f∥Cs([0,1]d) ∶= max{∥∂αf∥L∞([0,1]d) ∶ ∥α∥1 ≤ s, α ∈ Nd}, for any f ∈ Cs([0,1]d).49

Theorem 1.1 (Main Theorem). Given a function f ∈ Cs([0,1]d) with s ∈ N+, for50

any N,L ∈ N+, there exists a ReLU FNN φ with width C1d(N + 2) log2(4N) and depth51

C2(L + 2) log2(2L) + 2d such that52

∥f − φ∥L∞([0,1]d) ≤ C3∥f∥Cs([0,1]d)N−2s/dL−2s/d,53

where C1 = 22sd+13d, C2 = 18s2, and C3 = 85(s + 1)d8s.54

As we can see from Theorem 1.1, the smoothness improves the approximation ef-55

ficiency. When functions are sufficiently smooth (e.g., s ≥ d), since O(N−2s/dL−2s/d) ≤56

O(N−2L−2), the approximation rate is independent of d. This means that the curse of57

dimensionality can be reduced for sufficiently smooth functions. The proof of Theorem58

1.1 will be presented in Section 2.2 and its tightness will be discussed in Section 2.3. In59

fact, the logarithm terms in width and depth in Theorem 1.1 can be further reduced if60

the approximation rate is weaken. Note that61

O(N lnN) = O(Ñ) ⇐⇒ O(N) = O(Ñ/ln Ñ).62

Applying Theorem 1.1 with Ñ = O(N logN) and L̃ = O(L logL) and the fact that63

(N/ lnN)−2s/d(L/ lnL)−2s/d ≤ O (N−2(s−ρ)/dL−2(s−ρ)/d)64

for any ρ ∈ (0, s), we have the following corollary.65

1○“nearly optimal” up to a logarithm factor.
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Corollary 1.2. Given a function f ∈ Cs([0,1]d) with s ∈ N+, for any N,L ∈ N+ and66

ρ ∈ (0, s), there exist C1(s, d), C2(s, d), C3(s, d, ρ), 2○ and a ReLU FNN φ with width67

C1N and depth C2L such that68

∥f − φ∥L∞([0,1]d) ≤ C3∥f∥Cs([0,1]d)N−2(s−ρ)/dL−2(s−ρ)/d.69

Theorem 1.1 and Corollary 1.2 characterize the approximation rate in terms of total70

number of neurons (with an arbitrary distribution in width and depth) and smoothness71

order of the function to be approximated. In other words, for arbitrary width O(N) and72

depth O(L), Theorem 1.1 and Corollary 1.2 provide nearly optimal approximation rates73

O(( N
lnN )−2s/d( L

lnL)−2s/d) and O(N−2(s−ρ)/dL−2(s−ρ)/d) for ρ ∈ (0, s) (see Theorem 2.3 for the74

optimality). The only result in this direction we are aware of in literature is Theorem 4.175

of [32]. It shows that ReLU networks with width 2d + 10 and depth L achieve an nearly76

optimal rate O(( L
lnL)−2s/d) for sufficiently large L when approximating functions in the77

unit ball of Cs([0,1]d). This result can be considered as a special case of Theorem 1.178

by setting N = O(1) and L sufficiently large.79

The results obtained in [32] and this paper are for Cs([0,1]d) functions. For Lip-80

schitz continuous functions, it is proved in [31] that the optimal rate for ReLU FNNs81

with width 2d + 10 and depth O(L) to approximate Lipschitz continuous functions on82

[0,1]d in the L∞-norm is O(L−2/d). For the purpose of deep network approximation with83

arbitrary width and depth, the last three authors demonstrated in [27] that the optimal84

approximation rate for ReLU FNNs with width O(N) and depth O(L) to approximate85

Lipschitz continuous functions on [0,1]d in the Lp-norm for p ∈ [1,∞) is O(N−2/dL−2/d).86

We remark that, combined with the proof technique of Theorem 2.1 in this work, the87

norm characterizing error of [27] can be improved to L∞-norm; it will also remove the88

log factors in the case of C1 functions in our results here.89

The expressiveness of deep neural networks has been studied extensively from many90

perspectives, e.g., in terms of combinatorics [22], topology [5], Vapnik-Chervonenkis91

(VC) dimension [4, 25, 13], fat-shattering dimension [16, 1], information theory [24],92

classical approximation theory [9, 15, 3, 31, 30, 6, 33, 8, 11, 12, 29, 23, 7, 2, 17, 20],93

etc. In the early works of approximation theory for neural networks, the universal94

approximation theorem [9, 14, 15] without approximation rates showed that, given any95

ε > 0, there exists a sufficiently large neural network approximating a target function96

in a certain function space within the ε-accuracy. For one-hidden-layer neural networks97

and sufficiently smooth functions, Barron [3] showed an asymptotic approximation rate98

O( 1√
N
) in the L2-norm, leveraging an idea that is similar to Monte Carlo sampling for99

high-dimensional integrals. All these related works are summarized in Table 1.100

In literature, the approximation rate is often described in terms of the number of101

parameters of neural networks. Most existing works aims at studying the connection102

between the number of parameters (weights) and the approximation rates, e.g., smooth103

functions [19, 18, 30, 10], piecewise smooth functions [24], band-limited functions [21],104

continuous functions [31]. The key difference between these works and the results of105

this paper is the variable of characterizing approximation rates. To be precise, results106

in the papers mentioned above characterize the approximation rates in terms of the107

number of parameters. To optimize the number of parameters for a given error, these108

2○Ci, for i = 1,2,3, can be specified explicitly and we leave the detailed discussion to reader.
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Table 1: A summary of existing approximation rates of ReLU FNNs for Lipschitz con-
tinuous functions and smooth functions.

paper function class width depth accuracy Lp([0,1]d)-norm tightness valid for

[30] polynomial O(1) O(L) O(2−L) p = ∞ any L ∈ N+

this paper polynomial O(N) O(L) O(N−L) p = ∞ any N,L ∈ N+

[26] Lip([0,1]d) O(N) 3 O(N−2/d) p ∈ [1,∞) nearly tight in N any N ∈ N+

[31] Lip([0,1]d) 2d + 10 O(L) O(L−2/d) p = ∞ nearly tight in L large L ∈ N+

[27] Lip([0,1]d) O(N) O(L) O(N−2/dL−2/d) p = [1,∞] nearly tight in N and L any N,L ∈ N+

[28] Lip([0,1]d) O(N) O(L) O((N2L2 lnN)−1/d) p = [1,∞] tight in N and L any N,L ∈ N+

[32] Cs([0,1]d) 2d + 10 O(L) O((L/ lnL)−2s/d) p = ∞ neatly tight in L large L ∈ N+

this paper Cs([0,1]d) O(N lnN) O(L lnL) O(N−2s/dL−2s/d) p = ∞ nearly tight in N and L any N,L ∈ N+

this paper Cs([0,1]d) O(N) O(L) O((N/ lnN)−2s/d(L/ lnL)−2s/d) p = ∞ nearly tight in N and L any N,L ∈ N+

papers construct very special network architectures, such as very deep but very narrow109

networks, complicated networks generated by compositing shallow-wide sub-networks110

and deep-narrow sub-networks, etc, while our approximation rates in Theorem 1.1 and111

Corollary 1.2 are valid for arbitrary width and depth up to an absolute constant. This112

gives us much more freedom to design neural networks for a good approximation. In113

other words, it means the shape of our network architectures is a rectangle with free114

choice of width and length, which is of more practical interest in real applications and115

requires innovative constructive proofs.116

The approaches characterizing approximation rates in terms of the number of pa-117

rameters are unable to characterize the approximation rate of FNNs in terms of width118

and depth simultaneously. Theorem 1.1 and the results in [26, 27] give an explicit119

characterization of the approximation rate of FNNs in terms of width and depth, in120

the non-asymptotic regime. Furthermore, applying Theorem 1.1, we have the following121

corollary.122

Corollary 1.3. Given any ε > 0 and a function f in the unit ball of Cs([0,1]d) with123

s ∈ N+, there exists a ReLU FNN φ with O(ε−d/(2s) ln 1
ε) parameters such that124

∥f − φ∥L∞([0,1]d) ≤ ε.125

This corollary is followed by setting N = O(1) and ε = O(L−2s/d) in Theorem126

1.1, which characterizes the approximation rate in terms of the number of parame-127

ters. It is essentially equivalent to Theorem 4.1 of [32] by setting ε = O(W −2s/d ln2s/dW ),128

which presents that ReLU networks with W parameters achieve an approximation rate129

O(W −2s/d ln2s/dW ) when approximating functions in the unit ball of Cs([0,1]d). As130

shown here, we can straightforwardly deduce Corollary 1.3 and Theorem 4.1 of [32] from131

Theorem 1.1. However, Theorem 1.1 can not be derived from any existing result that132

characterizes approximation rates in terms of the number of parameters. Therefore,133

Theorem 1.1 goes beyond existing results on the approximation of deep neural networks.134

Finally, in a completely different approach, the authors of [17] establish the approx-135

imation capabilities of deep learning models in the form of dynamical systems. This136

approach focuses on the continuous-time idealization. The key advantage of this view-137

point is that a variety of tools from the continuous-time analysis can be used to an-138

alyze the approximation of deep neural networks. Furthermore, approximation results139

in continuous-time have immediate consequences for its discrete counterpart, which can140

be viewed as a deep, residual, fully-connected neural network, by a forward Euler dis-141

cretization in time.142
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The rest of the present paper is organized as follows. In Section 2, we prove Theorem143

1.1 by combining two theorems (Theorems 2.1 and 2.2) that will be proved later. We144

will also discuss the optimality of Theorem 1.1 in Section 2. Next, Theorem 2.1 will145

be proved in Section 3 while Theorem 2.2 will be shown in Section 4. Several lemmas146

supporting Theorem 2.2 will be presented in Section 5. Finally, Section 6 concludes this147

paper with a short discussion.148

2 Approximation of smooth functions149

In this section, we will prove the quantitative approximation rate in Theorem 1.1 by150

construction and discuss its tightness. Notations throughout the proof will be summa-151

rized in Section 2.1. The proof of Theorem 1.1 is mainly based on Theorem 2.1 and 2.2,152

which will be proved in Section 3 and 4, respectively. To show the tightness of Theorem153

1.1, we will introduce the VC-dimension in Section 2.3.154

2.1 Notations155

Now let us summarize the main notations of the present paper as follows.156

• Let 1S be the characteristic function on a set S, i.e., 1S equals to 1 on S and 0157

outside of S.158

• Let B(x, r) ⊆ Rd be the closed ball with a center x ⊆ Rd and a radius r.159

• Similar to “min” and “max”, let mid(x1, x2, x3) be the middle value of three inputs160

x1, x2, and x3
3○. For example, mid(2,1,3) = 2 and mid(3,2,3) = 3.161

• The set difference of two sets A and B is denoted by A/B ∶= {x ∶ x ∈ A, x ∉ B}.162

• For any x ∈ R, let ⌊x⌋ ∶= max{n ∶ n ≤ x, n ∈ Z} and ⌈x⌉ ∶= min{n ∶ n ≥ x, n ∈ Z}.163

• Assume n ∈ Nn, then f(n) = O(g(n)) means that there exists positive C indepen-164

dent of n, f , and g such that f(n) ≤ Cg(n) when all entries of n go to +∞.165

• The modulus of continuity of a continuous function f ∈ C([0,1]d) is defined as166

ωf(r) ∶= sup{∣f(x) − f(y)∣ ∶ ∥x − y∥2 ≤ r, x,y ∈ [0,1]d}, for any r ≥ 0.167

• A d-dimensional multi-index is a d-tuple α = [α1, α2,⋯, αd]T ∈ Nd. Several related168

notations are listed below.169

– ∥α∥1 = ∣α1∣ + ∣α2∣ + ⋯ + ∣αd∣;170

– xα = xα1
1 x

α2
2 ⋯xαdd , where x = [x1, x2,⋯, xd]T ;171

– α! = α1!α2!⋯αd!;172

3○“mid” can be defined via mid(x1, x2, x3) = x1 +x2 +x3 −max(x1, x2, x3)−min(x1, x2, x3), which can
be implemented by a ReLU FNN.
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– ∂α = ∂α1

∂x
α1
1

∂α2

∂x
α2
2

⋯ ∂αd

∂x
αd
d

.173

• Given K ∈ N+ and δ > 0 with δ < 1
K , define a trifling region Ω(K,δ, d) of [0,1]d as174

4○175

Ω(K,δ, d) ∶=
d

⋃
i=1

{x = [x1, x2,⋯, xd]T ∶ xi ∈ ∪K−1
k=1 ( kK − δ, kK )}. (2.1)176

In particular, Ω(K,δ, d) = ∅ if K = 1. See Figure 1 for two examples of trifling177

regions.

(a) (b)

Figure 1: Two examples of trifling regions. (a) K = 5, d = 1. (b) K = 4, d = 2.

178

• We will use NN as a ReLU neural network for short and use Python-type notations179

to specify a class of NNs, e.g., NN(c1; c2; ⋯; cm) is a set of ReLU FNNs satisfying180

m conditions given by {ci}1≤i≤m, each of which may specify the number of inputs181

(#input), the total number of nodes in all hidden layers (#node), the number182

of hidden layers (depth), the number of total parameters (#parameter), and the183

width in each hidden layer (widthvec), the maximum width of all hidden layers184

(width), etc. For example, if φ ∈ NN(#input = 2; widthvec = [100,100]), then φ185

satisfies186

– φ maps from R2 to R.187

– φ has two hidden layers and the number of nodes in each hidden layer is 100.188

• The expression “a network with width N and depth L” means189

– The maximum width of all hidden layers is no more than N .190

– The number of hidden layers is no more than L.191

• For x ∈ [0,1), suppose its binary representation is x = ∑∞
`=1 x`2

−` with x` ∈ {0,1},192

we introduce a special notation Bin0.x1x2⋯xL to denote the L-term binary repre-193

sentation of x, i.e., ∑L
`=1 x`2

−`.194

4○The trifling region here is similar to the “don’t care” region in our previous paper [27].
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2.2 Proof of Theorem 1.1195

The introduction of the trifling region Ω(K,δ, d) is due to the fact that ReLU FNNs196

cannot approximate a step function uniformly well (as ReLU activation function is con-197

tinuous), which is also the reason for the main difficulty of obtaining approximation198

rates in the L∞([0,1]d)-norm in our previous papers [26, 27]. The trifling region is a key199

technique to simplify the proofs of theories in [26, 27] as well as the proof of Theorem 1.1.200

First, we present Theorem 2.1 showing that, as long as good uniform approximation by a201

ReLU FNN can be obtained outside the trifling region, the uniform approximation error202

can also be well controlled inside the trifling region when the network size is increased.203

Second, as a simplified version of Theorem 1.1 ignoring the approximation error in the204

trifling region Ω(K,δ, d), Theorem 2.2 shows the existence of a ReLU FNN approximat-205

ing a target smooth function uniformly well outside the trifling region. Finally, Theorem206

2.1 and 2.2 immediately lead to Theorem 1.1. Theorem 2.2 can be applied to improve207

the theories in [26, 27] to obtain approximation rates in the L∞([0,1]d)-norm.208

Theorem 2.1. Given ε > 0, N,L,K ∈ N+, and δ ∈ (0 1
3K ], assume f ∈ C([0,1]d) and φ̃209

is a ReLU FNN with width N and depth L. If210

∣f(x) − φ̃(x)∣ ≤ ε, for any x ∈ [0,1]d/Ω(K,δ, d),211

then there exists a new ReLU FNN φ with width 3d(N + 4) and depth L + 2d such that212

∣f(x) − φ(x)∣ ≤ ε + d ⋅ ωf(δ), for any x ∈ [0,1]d.213

Theorem 2.2. Assume that f ∈ Cs([0,1]d) satisfies ∥∂αf∥L∞([0,1]d) ≤ 1 for any α ∈ Nd214

with ∥α∥1 ≤ s. For any N,L ∈ N+, there exists a ReLU FNN φ with width 21sd+1d(N +215

2) log2(4N) and depth 18s2(L + 2) log2(2L) such that216

∥f − φ∥L∞([0,1]d/Ω(K,δ,d)) ≤ 84(s + 1)d8sN−2s/dL−2s/d,217

where K = ⌊N1/d⌋2⌊L2/d⌋ and 0 < δ ≤ 1
3K .218

We first prove Theorem 1.1 assuming Theorem 2.1 and 2.2 are true. The proofs of219

Theorem 2.1 and 2.2 can be found in Section 3 and 4, respectively.220

Proof of Theorem 1.1. Define f̄ = f
∥f∥

Cs([0,1]d)
, set K = ⌊N−2/d⌋⌊L−1/d⌋2, and choose δ ∈221

(0, 1
K ) such that ωf(δ) ≤ N−2s/dL−2s/d. By Theorem 2.2, there exists a ReLU FNN φ̃222

with width 21sd+1d(N + 2) log2(4N) and depth 18s2(L + 2) logs(2L) such that223

∥f̄ − φ̃∥L∞([0,1]d/Ω(K,δ,d)) ≤ 84(s + 1)d8sN−2s/dL−2s/d.224

By Theorem 2.1, there exists a ReLU FNN φ̄ with width 3d(21sd+1d(N+2) log2(4N)+3) ≤225

22sd+13dd(N + 2) log2(4N) and depth 18s2(L + 2) logs(2L) + 2d such that226

∥f̄ − φ̄∥L∞([0,1]d) ≤ 84(s + 1)d8sN−2s/dL−2s/d + d ⋅ ωf(δ) ≤ 85(s + 1)d8sN−2s/dL−2s/d.227

Finally, set φ = ∥f∥Cs([0,1]d) ⋅ φ̄, then228

∥f − φ∥L∞([0,1]d) = ∥f∥Cs([0,1]d)∥f̄ − φ̄∥L∞([0,1]d) ≤ 85(s + 1)d8s∥f∥Cs([0,1]d)N−2s/dL−2s/d,229

which finishes the proof.230
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2.3 Optimality of Theorem 1.1231

In this section, we will show that the approximation rate in Theorem 1.1 is asymp-232

totically nearly tight. In particular, the approximation rate O(N−(2s/d+ρ)L−(2s/d+ρ)) for233

any ρ > 0 is not attainable, if we use ReLU FNNs with width O(N lnN) and depth234

O(L lnL) to approximate functions in Fs,d, where Fs,d is the unit ball of Cs([0,1]d)235

defined via236

Fs,d ∶= {f ∈ Cs([0,1]d) ∶ ∥∂αf∥L∞([0,1]d) ≤ 1, for all α ∈ Nd with ∥α∥1 ≤ s}.237

Theorem 2.3. Given any ρ,C1,C2,C3 > 0 and s, d ∈ N+, there exists f ∈ Fs,d such that,238

for any J0 > 0, there exist N,L ∈ N+ with NL ≥ J0 satisfying239

inf
φ∈NN(width≤C1N lnN ; depth≤C2L lnL)

∥φ − f∥L∞([0,1]d) ≥ C3N
−(2s/d+ρ)L−(2s/d+ρ).240

Theorem 2.3 will be proved by contradiction. Assuming Theorem 2.3 is not true, we241

have the following claim, which can be disproved using the VC dimension upper bound242

in [13].243

Claim 2.4. There exist ρ,C1,C2,C3 > 0 and s, d ∈ N+ such that, for any f ∈ Fs,d, there244

exists J0 = J0(ρ,C1,C2,C3, s, d, f) > 0 satisfying245

inf
φ∈NN(width≤C1N lnN ; depth≤C2L lnL)

∥φ − f∥L∞([0,1]d) ≤ C3N
−(2s/d+ρ)L−(2s/d+ρ),246

for all N,L ∈ N+ with NL ≥ J0.247

What remaining is to show that Claim 2.4 is not true.248

Disproof of Claim 2.4. Recall that the VC dimension of a class of functions is defined249

as the cardinality of the largest set of points that this class of functions can shatter.250

Denote the VC dimension of a function set F by VCDim(F). Set Ñ = C1N lnN and251

L̃ = C2L lnL. Then by [13], there exists C4 > 0 such that252

VCDim(NN(#input = d; width ≤ Ñ ; depth ≤ L̃))
≤ C4(ÑL̃ + d + 2)(Ñ + 1)L̃ ln ((ÑL̃ + d + 2)(Ñ + 1)) ∶= bu(N,L),

(2.2)253

which comes from the fact the number of parameter of a ReLU FNN in NN(#input =254

d; width ≤ Ñ ; depth ≤ L̃) is less than (ÑL̃ + d + 2)(Ñ + 1).255

Then we will use Claim 2.4 to estimate a lower bound b`(N,L) = ⌊(NL) 2
d
+ ρ

2s ⌋d of256

VCDim(NN(#input = d; width ≤ Ñ ; depth ≤ L̃)),257

and this lower bound is asymptotically larger than bu(N,L), which leads to a contradic-258

tion.259

More precisely, we will construct {fβ ∶ β ∈ B} ⊆ Fs,d, which can shatter b`(N,L) =260

Kd points, where B is a set defined later and K = ⌊(NL) 2
d
+ ρ

2s ⌋. Then by Claim 2.4,261

we will show that there exists a set of ReLU FNNs {φβ ∶ β ∈ B} with width bounded262

by Ñ and depth bounded by L̃ such that this set can shatter b`(N,L) points. Finally,263
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b`(N,L) = Kd = ⌊(NL) 2
d
+ ρ

2s ⌋d is asymptotically larger than bu(N,L), which leads to a264

contradiction. More details can be found below.265

Step 1∶ Construct {fβ ∶ β ∈ B} ⊆ Fs,d that scatters b`(N,L) points.266

First, there exists g̃ ∈ C∞([0,1]d) such that g̃(0) = 1 and g̃(x) = 0 for ∥x∥2 ≥ 1/3. 5○267

And we can find a constant C5 > 0 such that g ∶= g̃/C5 ∈ Fs,d.268

Divide [0,1]d into Kd non-overlapping sub-cubes {Qθ}θ as follows:269

Qθ ∶= {x = [x1, x2,⋯, xd]T ∈ [0,1]d ∶ xi ∈ [ θi−1
K , θiK ], i = 1,2,⋯, d},270

for any index vector θ = [θ1, θ2,⋯, θd]T ∈ {1,2,⋯,K}d. Denote the center of Qθ by xθ271

for all θ ∈ {1,2,⋯,K}d. Define272

B ∶= {β ∶ β is a map from {1,2,⋯,K}d to {−1,1}}.273

For each β ∈ B, we define, for any x ∈ Rd,274

fβ(x) ∶= ∑
θ∈{1,2,⋯,K}d

K−sβ(θ)gθ(x), where gθ(x) = g(K ⋅ (x −xθ)).275

We will show fβ ∈ Fs,d for each β ∈ {1,2,⋯,K}d. We denote the support of a function h276

by supp(h) ∶= {x ∶ h(x) ≠ 0}. Then by the definition of g, we have277

supp(gθ) ⊆ 2
3Qθ, for any θ ∈ {1,2,⋯,K}d,278

where 2
3Qθ denotes the cube satisfying two conditions: 1) the sidelength is 2/3 of Qθ’s;279

2) the center is the same as Qθ’s.280

Now fix θ ∈ {1,2,⋯,K}d and β ∈ B, for any x ∈ Qθ and α ∈ Nd, we have281

∂αfβ(x) =K−sβ(θ)∂αgθ(x) =K−sβ(θ)K∥α∥1∂αg(K(x −xθ)),282

which implies ∣∂αfβ(x)∣ = ∣K−(s−∥α∥1)∂αg(K(x−xθ))∣ ≤ 1 if ∥α∥1 ≤ s. Since θ is arbitrary283

and [0,1]d = ∪θ∈{1,2,⋯,K}dQθ, we have fβ ∈ Fs,d for each β ∈ B. And it is easy to check284

that {fβ ∶ β ∈ B} can shatter {xθ ∶ θ ∈ {1,2,⋯,K}d}, which has b`(N,L) =Kd elements.285

Step 2∶ Construct {φβ ∶ β ∈ B} based on {fβ ∶ β ∈ B} to scatter b`(N,L) points.286

By Claim 2.4, for each fβ ∈ {fβ ∶ β ∈ B}, there exists Jβ > 0 such that, for all287

N,L ∈ N with NL ≥ Jβ, there exists φβ ∈ NN(width ≤ Ñ ; depth ≤ L̃)288

∣fβ(x) − φβ(x)∣ ≤ C3(NL)−s(
2
d
+ ρ
s
), for any x ∈ [0,1]d.289

Set J1 = max{Jβ ∶ β ∈ B}. Note that there exists J2 > 0 such that, for N,L ∈ N+290

with NL ≥ J2,291
K−s
C5

= 1
C5

⌊(NL) 2
d
+ ρ

2s ⌋−s > C3(NL)−s(
2
d
+ ρ
s
).292

Now fix β ∈ B and θ ∈ {1,2,⋯,K}d, for N,L ∈ N+ with NL ≥ max{J1, J2}, we have293

∣fβ(xθ)∣ =K−sgθ(xθ) = K−s
C5

> C3(NL)−s(
2
d
+ ρ
s
) ≥ ∣fβ(xθ) − φβ(xθ)∣.294

5○For example, we can set g̃(x) = C exp( 1
∥3x∥22−1

) if ∥x∥2 < 1/3 and g̃(x) = 0 if ∥x∥2 ≥ 1/3, where C is

a proper constant such that g̃(0) = 1.
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In other words, for any β ∈ B and θ ∈ {1,2,⋯,K}d, fβ(xθ) and φβ(xθ) have the295

same sign. Then {φβ ∶ β ∈ B} shatters {xθ ∶ θ ∈ {1,2,⋯,K}d} since {fβ ∶ β ∈ B} shatters296

{xθ ∶ θ ∈ {1,2,⋯,K}d} as discussed in Step 1. Hence,297

VCDim({φβ ∶ β ∈ B}) ≥Kd = b`(N,L), (2.3)298

for N,L ∈ N+ with NL ≥ max{J1, J2}.299

Step 3∶ Contradiction.300

By Equation (2.2) and (2.3), for any N,L ∈ N with NL ≥ max{J1, J2}, we have301

b`(N,L) ≤ VCDim({φβ ∶ β ∈ B}) ≤ VCDim(NN(width ≤ Ñ ; depth ≤ L̃)) ≤ bu(N,L),302

implying that303

⌊(NL)2/d+ρ/(2α)⌋d ≤ C4(L̃Ñ + d + 2)(Ñ + 1)L̃ ln ((L̃Ñ + d + 2)(Ñ + 1))
= O(Ñ2L̃2 ln(Ñ2L̃))

= O((C1N lnN)2(C2L lnL)2 ln ((C1N lnN)2C2L lnL)),
304

which is a contradiction for sufficiently large N,L ∈ N. So we finish the proof.305

We would like to remark that the approximation rate O(N−(2s/d+ρ1)L−(2s/d+ρ2)) for306

ρ1, ρ2 ≥ 0 with ρ1 + ρ2 > 0 is not achievable either. The argument follows similar ideas as307

in the proof above.308

3 Proof of Theorem 2.1309

Intuitively speaking, Theorem 2.1 shows that: if a ReLU FNN g approximates f310

well except for a trifling region, then we can extend g to approximate f well on the whole311

domain. For example, if g approximates a one-dimensional continuous function f well312

except for a region in R with a sufficiently small measure δ, then mid(g(x+δ), g(x), g(x−313

δ)) can approximate f well on the whole domain, where mid(⋅, ⋅, ⋅) is a function returning314

the middle value of three inputs and can be implemented via a ReLU FNN as shown in315

Lemma 3.1. This key idea is called the horizontal shift (translation) of g in this paper.316

Lemma 3.1. There exists a ReLU FNN φ with width 14 and depth 2 such that317

mid(x1, x2, x3) = φ(x1, x2, x3).318

Proof. Let σ be the ReLU activation function, i.e., σ(x) = max{0, x}. Recall the fact319

x = σ(x) − σ(−x) and ∣x∣ = σ(x) + σ(−x), for any x ∈ R.320

Therefore,321

max(x1, x2) = x1+x2+∣x1−x2∣
2 = 1

2σ(x1 + x2) − 1
2σ(−x1 − x2) + 1

2σ(x1 − x2) + 1
2σ(x2 − x1).322
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So there exists a ReLU FNN ψ1 with width 4 and depth 1 such that ψ1(x1, x2) =323

max(x1, x2) for any x1, x2 ∈ R. So for any x1, x2, x3 ∈ R,324

max(x1, x2, x3) = max (max(x1, x2), x3) = ψ1(ψ1(x1, x2), σ(x3)−σ(−x3)) ∶= φ1(x1, x2, x3).325

So φ1 can be implemented by a ReLU FNN with width 6 and depth 2. Similarly, we can326

construct a ReLU FNN φ2 with width 6 and depth 2 such that327

φ2(x1, x2, x3) = min(x1, x2, x3), for any x1, x2, x3 ∈ R.328

Notice that329

mid(x1, x2, x3) = x1 + x2 + x3 −max(x1, x2, x3) −min(x1, x2, x3)
= σ(x1 + x2 + x3) − σ(−x1 − x2 − x3) − φ1(x1, x2, x3) − φ2(x1, x2, x3).

330

Hence, mid(x1, x2, x3) can be implemented by a ReLU FNN φ with width 14 and depth331

2, which means we finish the proof.332

The next lemma shows a simple but useful property of the mid(x1, x2, x3) function333

that helps to exclude poor approximation in the trifling region.334

Lemma 3.2. For any ε > 0, if at least two of {x1, x2, x3} are in B(y, ε), then mid(x1, x2, x3) ∈335

B(y, ε).336

Proof. Without loss of generality, we may assume x1, x2 ∈ B(y, ε) and x1 ≤ x2. Then the337

proof can be divided into three cases.338

1. If x3 < x1, then mid(x1, x2, x3) = x1 ∈ B(y, ε).339

2. If x1 ≤ x3 ≤ x2, then mid(x1, x2, x3) = x3 ∈ B(y, ε) since y − ε ≤ x1 ≤ x3 ≤ x2 ≤ y + ε.340

3. If x2 < x3, then mid(x1, x2, x3) = x2 ∈ B(y, ε).341

So we finish the proof.342

Next, given a function g approximating f well on [0,1] except for a trifling region,343

Lemma 3.3 below shows how to use the mid(x1, x2, x3) function to construct a new344

function φ uniformly approximating f well on [0,1], leveraging the useful property of345

mid(x1, x2, x3) in Lemma 3.2.346

Lemma 3.3. Given ε > 0, K ∈ N+, and δ > 0 with δ ≤ 1
3K , assume g is defined on R and347

f, g ∈ C([0,1]) with348

∣f(x) − g(x)∣ ≤ ε, for any x ∈ [0,1]/Ω(K,δ,1).349

Then350

∣φ(x) − f(x)∣ ≤ ε + ωf(δ), for any x ∈ [0,1],351

where352

φ(x) ∶= mid(g(x − δ), g(x), g(x + δ)), for any x ∈ R.353
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Proof. Divide [0,1] into K parts Qk = [ kK , k+1
K ] for k = 0,1,⋯,K −1. For each k, we write354

Qk = Qk,1 ∪Qk,2 ∪Qk,3 ∪Qk,4,355

where Qk,1 = [ kK , kK + δ], Qk,2 = [ kK + δ, k+1
K − 2δ], Qk,3 = [k+1

K − 2δ, k+1
K − δ], and Qk,4 =356

[k+1
K − δ, k+1

K ].357

Figure 2: Illustrations of Qk,i for i = 1,2,3,4.

Notice that Qk+1,4 ⊆ [0,1]/Ω(K,δ,1) and Qk,i ⊆ [0,1]/Ω(K,δ,1) for k = 0,1,⋯, k −358

1, i = 1,2,3. For any k ∈ {0,1,⋯,K − 1}, we consider the following four cases.359

Case 1∶ x ∈ Qk,1.360

If x ∈ Qk,1, then x ∈ [0,1]/Ω(K,δ,1) and x + δ ∈ Qk,2 ∪Qk,3 ⊆ [0,1]/Ω(K,δ,1). It361

follows that362

g(x) ∈ B(f(x), ε) ⊆ B(f(x), ε + ωf(δ))363

and364

g(x + δ) ∈ B(f(x + δ), ε) ⊆ B(f(x), ε + ωf(δ)).365

By Lemma 3.2, we get366

mid(g(x − δ), g(x), g(x + δ)) ∈ B(f(x), ε + ωf(δ)).367

Case 2∶ x ∈ Qk,2.368

If x ∈ Qk,2, then x − δ, x, x + δ ∈ [0,1]/Ω(K,δ,1). It follows that369

g(x − δ), g(x), g(x + δ) ∈ B(f(x), ε) ⊆ B(f(x), ε + ωf(δ)),370

which implies by Lemma 3.2 that371

mid(g(x − δ), g(x), g(x + δ)) ∈ B(f(x), ε + ωf(δ)).372

Case 3∶ x ∈ Qk,3.373

If x ∈ Qk,3, then x ∈ [0,1]/Ω(K,δ,1) and x − δ ∈ Qk,1 ∪Qk,2 ⊆ [0,1]/Ω(K,δ,1). It374

follows that375

g(x) ∈ B(f(x), ε) ⊆ B(f(x), ε + ωf(δ))376

and377

g(x − δ) ∈ B(f(x − δ), ε) ⊆ B(f(x), ε + ωf(δ)).378

By Lemma 3.2, we get379

mid(g(x − δ), g(x), g(x + δ)) ∈ B(f(x), ε + ωf(δ)).380

Case 4∶ x ∈ Qk,4.381

If x ∈ Qk,4, we can divide this case into two sub-cases.382
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• If k ∈ {0,1,⋯,K − 2}, then x − δ ∈ Qk,3 ∈ [0,1]/Ω(K,δ,1) and x + δ ∈ Qk+1,1 ⊆383

[0,1]/Ω(K,δ,1). It follows that384

g(x − δ) ∈ B(f(x − δ), ε) ⊆ B(f(x), ε + ωf(δ))385

and386

g(x + δ) ∈ B(f(x + δ), ε) ⊆ B(f(x), ε + ωf(δ)).387

By Lemma 3.2, we get388

mid(g(x − δ), g(x), g(x + δ)) ∈ B(f(x), ε + ωf(δ)).389

• If k = K − 1, then x ∈ QK−1,4 ⊆ [0,1]/Ω(K,δ,1) and x − δ ∈ Qk,3 ⊆ [0,1]/Ω(K,δ,1).390

It follows that391

g(x) ∈ B(f(x), ε) ⊆ B(f(x), ε + ωf(δ))392

and393

g(x − δ) ∈ B(f(x − δ), ε) ⊆ B(f(x), ε + ωf(δ)).394

By Lemma 3.2, we get395

mid(g(x − δ), g(x), g(x + δ)) ∈ B(f(x), ε + ωf(δ)).396

Since [0,1] = ∪K−1
k=0 ( ∪4

i=1 Q(k, i)), we have397

mid(g(x − δ), g(x), g(x + δ)) ∈ B(f(x), ε + ωf(δ)), for any x ∈ [0,1].398

Notice that φ(x) = mid(g(x − δ), g(x), g(x + δ)), it holds that399

∣φ(x) − f(x)∣ ≤ ε + ωf(δ), for any x ∈ [0,1].400

So we finish the proof.401

The next lemma below is an analog of Lemma 3.3.402

Lemma 3.4. Given ε > 0, K ∈ N+, and δ ∈ (0, 1
3K ], assume f, g ∈ C([0,1]d) with403

∣f(x) − g(x)∣ ≤ ε, for any x ∈ [0,1]d/Ω(K,δ, d).404

Let φ0 = g and {ei}di=1 be the standard basis in Rd. By induction, we define405

φi+1(x) ∶= mid(φi(x − δei+1), φi(x), φi(x + δei+1)), for i = 0,1,⋯, d − 1.406

Let φ ∶= φd, then407

∣f(x) − φ(x)∣ ≤ ε + d ⋅ ωf(δ), for any x ∈ [0,1]d.408
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Proof. For ` = 0,1,⋯, d, we denote409

E` ∶= {x = [x1, x2,⋯, xd]T ∶ xi ∈ [0,1] for i ≤ `, xj ∈ [0,1]/Ω(K,δ,1) for j > `}.410

Notice that E0 = [0,1]d/Ω(K,δ, d) and Ed = [0,1]d. See Figure 3 for the illustration of411

E`.412

Figure 3: Illustrations of E` for ` = 0,1,2 and K = 4.

We would like to construct φ0, φ1,⋯, φd by induction such that, for each ` ∈ {0,1,⋯, d},413

414

φ`(x) ∈ B(f(x), ε + ` ⋅ ωf(δ)), for any x ∈ E`. (3.1)415

Let us first consider the case ` = 0. Notice that φ0 = g and E0 = [0,1]d/Ω(K,δ, d)416

for any θ ∈ {0,1,⋯, d}d. Then we have417

φ0(x) ∈ B(f(x), ε), for any x ∈ E0.418

That is, Equation (3.1) is true for ` = 0.419

Now assume Equation (3.1) is true for ` = i. We will prove that it also holds for420

` = i + 1. For any x[i] ∶= [x1,⋯, xi, xi+2,⋯, xd]T ∈ Rd−1, we set421

ψx[i](t) ∶= φi(x1,⋯, xi, t, xi+2,⋯, xd), for any t ∈ R,422

and423

fx[i](t) ∶= f(x1,⋯, xi, t, xi+2,⋯, xd), for any t ∈ R.424

Since Equation (3.1) holds for ` = i, by fixing x1,⋯, xi ∈ [0,1] and xi+2,⋯, xd ∈ [0,1]/Ω(K,δ,1),425

we have426

φi(x1,⋯, xi, t, xi+2,⋯, xd) ∈ B(f(x1,⋯, xi, t, xi+2,⋯, xd), ε + i ⋅ ωf(δ)),427

for any t ∈ [0,1]/Ω(K,δ,1). It holds that428

ψx[i](t) ∈ B(fx[i](t), ε + i ⋅ ωf(δ)), for any t ∈ [0,1]/Ω(K,δ,1).429

Then by Lemma 3.3, we get430

mid(ψx[i](t − δ), ψx[i](t), ψx[i](t + δ)) ∈ B(fx[i](t), ε + (i + 1)ωf(δ)), for any t ∈ [0,1].431
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That is, for any xi+1 = t ∈ [0,1],432

mid(φi(x1,⋯, xi, xi+1 − δ, xi+2,⋯, xd), φi(x1,⋯, xd), φi(x1,⋯, xi, xi+1 + δ, xi+2,⋯, xd))

∈ B(f(x1,⋯, xd), ε + (i + 1)ωf(δ)).
433

Since x1,⋯, xi ∈ [0,1] and xi+2,⋯, xd ∈ [0,1]/Ω(K,δ,1) are arbitrary, then for any x ∈434

Ei+1,435

mid(φi(x − δei+1), φi(x), φi(x + δei+1)) ∈ B(f(x), ε + (i + 1)ωf(δ)),436

which implies437

φi+1(x) ∈ B(f(x), ε + (i + 1)ωf(δ)), for any x ∈ Ei+1.438

So we show that Equation (3.1) is true for ` = i + 1.439

By the principle of induction, we have440

φ(x) ∶= φd(x) ∈ B(f(x), ε + d ⋅ ωf(δ)), for any x ∈ Ed = [0,1]d.441

Therefore,442

∣φ(x) − f(x)∣ ≤ ε + d ⋅ ωf(δ), for any x ∈ [0,1]d,443

which means we finish the proof.444

Now we are ready to prove Theorem 2.1.445

Proof of Theorem 2.1. Set φ0 = φ̃ and define φi for i = 1,2,⋯, d−1 by induction as follows:446

φi+1(x) ∶= mid(φi(x − δei+1), φi(x), φi(x + δei+1)), for i = 0,1,⋯, d − 1.447

Notice that φ0 = φ̃ is a ReLU FNN with width N and depth L and mid(x1, x2, x3) can be448

implemented by a ReLU FNN with width 14 and depth 2. Hence, by the above induction449

formula, φd can be implemented with a ReLU FNN with width 3d max{N,5} ≤ 3d(N +4)450

and depth L + 2d. Finally, let φ ∶= φd. Then by Lemma 3.4, we have451

∣f(x) − φ(x)∣ ≤ ε + d ⋅ ωf(δ), for any x ∈ [0,1]d.452

So we finish the proof.453

4 Proof of Theorem 2.2454

In this section, we prove Theorem 2.2, a weaker version of the main theorem of455

this paper (Theorem 1.1) targeting a ReLU FNN constructed to approximate a smooth456

function outside the trifling region. The main idea is to construct ReLU FNNs through457

Taylor expansions of smooth functions. We first discuss the sketch of the proof in Section458

4.1 and give the detailed proof in Section 4.2.459
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4.1 Sketch of the proof of Theorem 2.2460

Let K = O(N2/dL2/d). For any θ ∈ {0,1,⋯,K − 1}d and x ∈ {z ∶ θiK ≤ zi ≤ θi+1
K , i =461

1,2,⋯, d}, there exists ξx ∈ (0,1) such that462

f(x) = ∑
∥α∥1≤s−1

∂αf(θ/K)
α! hα + ∑

∥α∥1=s

∂αf(θ/K+ξxh)
α! hα ∶= T1 +T2, 6○463

where h(x) = x − θ
K . It is clear that the magnitude of T2 is bounded by O(K−s) =464

O(N−2s/dL−2s/d). So we only need to construct a ReLU FNN φ ∈ NN(width ≤ O(N); depth ≤465

O(L)) to approximate466

T1 = ∑
∥α∥1≤s−1

∂αf(θ/K)
α! hα467

with an error O(N−2s/dL−2s/d). To approximate T1 well by ReLU FNNs, we need three468

key steps as follows.469

• Construct a ReLU FNN Pα to approximate the polynomial hα for each α ∈ Nd470

with ∥α∥1 ≤ s − 1.471

• Construct a ReLU FNN ψ to approximate a step function that reduces the function472

approximation problem to a point fitting problem at fixed grid points. For example,473

a ReLU FNN mapping x to θ/K if xi ∈ [θi/K, (θi + 1)/K) for i = 1,2,⋯, d and474

θ ∈ {0,1,⋯,K − 1}d.475

• Construct a ReLU FNN φα to approximate ∂αf via solving the point fitting prob-476

lem in the last step, i.e., φα fits ∂αf on given grid points for each α ∈ Nd with477

∥α∥1 ≤ s − 1.478

We will establish three propositions corresponding to these three steps above. Before479

showing this construction, we first summarize several propositions as follows. They will480

be applied to support the construction of the desired ReLU FNNs. Their proofs will be481

available in the next section.482

First, we construct a ReLU FNN Pα to approximate hα according to Proposition483

4.1 below, a general proposition for approximating multivariable polynomials.484

Proposition 4.1. Assume P (x) = xα = xα1
1 x

α2
2 ⋯xαdd for α ∈ Nd with ∥α∥1 = k ≥ 2.485

For any N,L ∈ N+, there exists a ReLU FNN φ with width 9(N + 1) + k − 2 and depth486

7k(k − 1)L such that487

∣φ(x) − P (x)∣ ≤ 9(k − 1)(N + 1)−7kL, for any x ∈ [0,1]d.488

Proposition 4.1 shows that ReLU FNNs with width O(N) and depth O(L) is able489

to approximate polynomials with the rate O(N)−O(L). This reveals the power of depth in490

ReLU FNNs for approximating polynomials, from function compositions. The starting491

point of a good approximation of functions is to approximate polynomials with high492

accuracy. In classical approximation theory, approximation power of any numerical493

6○Notice that ∑∥α∥1=s is short for ∑∥α∥1=s,α∈Nd . For simplicity, we will use the same notation through-
out the present paper.
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scheme depends on the degree of polynomials that can be locally reproduced. Being494

able to approximate polynomials with high accuracy of deep ReLU FNNs plays a vital495

role in the proof of Theorem 1.1. It is interesting to study whether there is any other496

function space with reasonable size, besides polynomial space, having an exponential497

rate O(N)−O(L) when approximated by ReLU FNNs. Obviously, the space of smooth498

function is too big due to the optimality of Theorem 1.1 as shown in Theorem 2.3.499

Proposition 4.1 can be generalized to the case of polynomials defined on an arbitrary500

hypercube [a, b]d. Let us give an example for the polynomial xy below. Its proof will be501

provided later in Section 5.502

Lemma 4.2. For any N,L ∈ N+ and a, b ∈ R with a < b, there exists a ReLU FNN φ with503

width 9N + 1 and depth L such that504

∣φ(x, y) − xy∣ ≤ 6(b − a)2N−L, for any x, y ∈ [a, b].505

Second, we construct a step function ψ mapping x ∈ {z ∶ θiK ≤ zi < θi+1
K , i = 1,2,⋯, d}506

to θ
K . We only need to approximate one-dimensional step functions, because in the507

multidimensional case we can simply set ψ(x) = [ψ(x1), ψ(x2),⋯, ψ(xd)]T , where ψ is a508

one-dimensional step function. In particular, we shall construct ReLU FNNs with width509

O(N) and depth O(L) to approximate step functions with O(K) = O(N2/dL2/d) “steps”510

as in Proposition 4.3 below.511

Proposition 4.3. For any N,L, d ∈ N+ and δ > 0 with K = ⌊N1/d⌋2⌊L2/d⌋ and δ ≤ 1
3K ,512

there exists a one-dimensional ReLU FNN φ with width 4N + 5 and depth 4L + 4 such513

that514

φ(x) = k
K , if x ∈ [ kK , k+1

K − δ ⋅ 1{k<K−1}] for k = 0,1,⋯,K − 1.515

Finally, we construct a ReLU FNN φα to approximate ∂αf via solving a point fitting516

problem, i.e., we only need φα to approximate ∂αf well at grid points { θK } as follows517

∣φα( θK ) − ∂αf( θK )∣ ≤ O(N−2s/dL−2s/d), for any θ ∈ {0,1,⋯,K − 1}d.518

We can construct ReLU FNNs with width O(sN lnN) and depth O(L lnL) to fit519

O(N2L2) points with an error O(N−2sL−2s) by Proposition 4.4 below.520

Proposition 4.4. Given any N,L, s ∈ N+ and ξi ∈ [0,1] for i = 0,1,⋯,N2L2 − 1, there521

exists a ReLU FNN φ with width 8s(2N + 3) log2(4N) and depth (5L + 8) log2(2L) such522

that523

1. ∣φ(i) − ξi∣ ≤ N−2sL−2s, for i = 0,1,⋯,N2L2 − 1;524

2. 0 ≤ φ(t) ≤ 1, for any t ∈ R.525

The proofs of Proposition 4.1, 4.3, and 4.4 can be found in Section 5.1, 5.2, and526

5.3, respectively. Finally, let us summarize the main ideas of proving Theorem 1.1 in527

Table 2.528
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Table 2: A list of ReLU FNNs, their sizes, approximation targets, and approximation
errors. The construction of the final network φ(x) is based on a sequence of sub-networks
listed before φ(x). Recall that h(x) = x −ψ(x).

Target function ReLU FNN Width Depth Approximation error

Step function ψ(x) O(N) O(L) No error out of Ω(K,δ, d)
x1x2 φ̃(x1, x2) O(N) O(L) E1 = O((N + 1)−2s(L+1))
hα Pα(h) O(N) O(L) E2 = O((N + 1)−7s(L+1))

∂αf(ψ(x)) φα(ψ(x)) O(N lnN) O(L lnL) E3 = O(N−2sL−2s)

∑
∥α∥≤s−1

∂αf(ψ(x))
α! hα ∑

∥α∥≤s−1
φ̃(φα(ψ(x))

α! , Pα(h)) O(N lnN) O(L lnL) O(E1 + E2 + E3)

f(x) φ(x) ∶= ∑
∥α∥≤s−1

φ̃(φα(ψ(x))
α! , Pα(x −ψ(x))) O(N lnN) O(L lnL) O(∥h∥−s2 + E1 + E2 + E3)

≤ O(K−s) = O(N−2s/dL−2s/d)

4.2 Constructive proof529

According to the key ideas of proving Theorem 2.2 we summarized in the previous530

sub-section, we are ready to present the detailed proof.531

Proof of Theorem 2.2. The detailed proof can be divided into three steps as follows.532

Step 1∶ Basic setting.533

Let Ω(K,δ, d) partition [0,1]d into Kd cubes Qθ for θ ∈ {0,1,⋯,K − 1}d. In partic-534

ular, for each θ = [θ1, θ2,⋯, θd]T ∈ {0,1,⋯,K − 1}d, we define535

Qθ = {x = [x1, x2,⋯, xd]T ∶ xi ∈ [ θiK ,
θi+1
K − δ ⋅ 1{θi<K−1}], i = 1,2,⋯, d}.536

It is clear that [0,1]d = Ω(K,δ, d)⋃( ∪θ∈{0,1,⋯,K−1}d Qθ). See Figure 4 for the illustration537

of Qθ.538

(a) (b)

Figure 4: Illustrations of Qθ for θ ∈ {0,1,⋯,K − 1}d. (a) K = 5, d = 1. (b) K = 4, d = 2..

By Proposition 4.3, there exists a ReLU FNN ψ with width 4N +5 and depth 4L+4539

such that540

ψ(x) = k
K , if x ∈ [ kK , k+1

K − δ ⋅ 1{k<K−1}] for k = 0,1,⋯,K − 1.541
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Then for each θ ∈ {0,1,⋯,K − 1}d, ψ(xi) = θi
K if x ∈ Qθ for i = 1,2,⋯, d.542

Define543

ψ(x) ∶= [ψ(x1), ψ(x2),⋯, ψ(xd)]T , for any x ∈ [0,1]d,544

then545

ψ(x) = θ
K if x ∈ Qθ, for θ ∈ {0,1,⋯,K − 1}d.546

Now we fix a θ ∈ {0,1,⋯,K − 1}d in the proof below. For any x ∈ Qθ, by the Taylor547

expansion, there exists a ξx ∈ (0,1) such that548

f(x) = ∑
∥α∥1≤s−1

∂αf(ψ(x))
α! hα + ∑

∥α∥1=s

∂αf(ψ(x)+ξxh)
α! hα, where h = x −ψ(x).549

Step 2∶ The construction of the target ReLU FNN.550

By Lemma 4.2, there exists φ̃ ∈ NN(width ≤ 9N + 10; depth ≤ 2sL + 2s) such that551

∣φ̃(x1, x2) − x1x2∣ ≤ 216(N + 1)−2s(L+1) ∶= E1, for any x1, x2 ∈ [−3,3]. (4.1)552

If 2 ≤ ∥α∥1 ≤ s − 1, by Proposition 4.1, there exist ReLU FNNs Pα with width553

9(N + 1) + ∥α∥1 − 2 ≤ 9N + s + 6 and depth 7s(∥α∥1 − 1)(L + 1) ≤ 7s2(L + 1) such that554

∣Pα(x) −xα∣ ≤ 9(∥α∥1 − 1)(N + 1)−7s(L+1) ≤ 9s(N + 1)−7s(L+1), for any x ∈ [0,1]d.555

And it is trivial to construct ReLU FNNs Pα to approximate xα when ∥α∥1 ≤ 1. Hence,556

for each α ∈ Nd with ∥α∥1 ≤ s−1, there always exists Pα ∈ NN(width ≤ 9N +s+6; depth ≤557

7s2(L + 1)) such that558

∣Pα(x) −xα∣ ≤ 9s(N + 1)−7s(L+1) ∶= E2, for any x ∈ [0,1]d. (4.2)559

For each i = 0,1,⋯,Kd − 1, define560

η(i) = [η1, η2,⋯, ηd]T ∈ {0,1,⋯,K − 1}d561

such that
d

∑
j=1
ηjKj−1 = i. We will drop the input i in η(i) later for simplicity. For each562

α ∈ Nd with ∥α∥1 ≤ s − 1, define563

ξα,i = (∂αf( ηK ) + 1)/2.564

Notice that Kd = (⌊N1/d⌋2⌊L2/d⌋)d ≤ N2L2 and ξα,i ∈ [0,1] for i = 0,1,⋯,Kd − 1. By565

Proposition 4.4, there exists φ̃α in566

NN(width ≤ 8s(2N + 3) log2(4N); depth ≤ (5L + 8) log2(2L))567

such that568

∣φ̃α(i) − ξα,i∣ ≤ N−2sL−2s, for i = 0,1,⋯,Kd − 1 and ∥α∥1 ≤ s − 1.569

Define570

φα(x) ∶= 2φ̃α(
d

∑
j=1

xjK
j) − 1, for any x = [x1, x2,⋯, xd]d ∈ Rd.571
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For each ∥α∥1 ≤ s − 1, it is clear that φα is also in572

NN(width ≤ 8s(2N + 3) log2(4N); depth ≤ (5L + 8) log2(2L)).573

Then for each η = [η1, η2,⋯, ηd]T ∈ {0,1,⋯,K − 1}d corresponding to i = ∑d
j=1 ηjK

j−1,574

each α ∈ Nd with ∥α∥1 ≤ s − 1, we have575

∣φα( ηK ) − ∂αf( ηK )∣ = ∣2φ̃α(
d

∑
j=1

ηjK
j−1) − 1 − (2ξα,i − 1)∣ = 2∣φ̃α(i) − ξα,i∣ ≤ 2N−2sL−2s.576

It follows from ψ(x) = θ
K for x ∈ Qθ that577

∣φα(ψ(x)) − ∂αf(ψ(x))∣ = ∣φα( θK ) − ∂αf( θK )∣ ≤ 2N−2sL−2s ∶= E3. (4.3)578

Now we are ready to construct the target ReLU FNN φ. Define579

φ(x) ∶= ∑
∥α∥1≤s−1

φ̃(φα(ψ(x))
α! , Pα(x −ψ(x))), for any x ∈ Rd. (4.4)580

Step 3∶ Approximation error estimation.581

Now let us estimate the error for any x ∈ Qθ. See Table 2 for a summary of the582

approximations errors. It is easy to check that ∣f(x) − φ(x)∣ is bounded by583

RRRRRRRRRRR
∑

∥α∥1≤s−1

∂αf(ψ(x))
α! hα + ∑

∥α∥1=s

∂αf(ψ(x)+ξxh)
α! hα − ∑

∥α∥1≤s−1

φ̃(φα(ψ(x)), Pα(x −ψ(x)))
RRRRRRRRRRR

≤ ∑
∥α∥1=s

∣∂
αf(ψ(x)+ξxh)

α! hα∣ + ∑
∥α∥1≤s−1

∣∂
αf(ψ(x))
α! hα − φ̃(φα(ψ(x)), Pα(h))∣ ∶= I1 +I2.

584

Recall the fact ∑∥α∥=s 1 = (s+ 1)d−1 and ∑∥α∥≤s−1 1 = ∑s−1
i=0 (i+ 1)d−1 ≤ sd. For the first part585

I1, we have586

I1 = ∑
∥α∥1=s

∣∂
αf(ψ(x)+ξxh)

α! hα∣ ≤ ∑
∥α∥1=s

∣ 1
α!h

α∣ ≤ (s + 1)d−1K−s.587

Now let us estimate the second part I2 as follows.588

I2 = ∑
∥α∥1≤s−1

∣∂
αf(ψ(x))
α! hα − φ̃(φα(ψ(x))

α! , Pα(h))∣

≤ ∑
∥α∥1≤s−1

∣∂
αf(ψ(x))
α! hα − φ̃(∂

αf(ψ(x))
α! , Pα(h))∣

+ ∑
∥α∥1≤s−1

∣φ̃(∂
αf(ψ(x))
α! , Pα(h)) − φ̃(φα(ψ(x)), Pα(h))∣

∶= I2,1 +I2,2.

589

By Equation (4.2), E2 ≤ 2, and xα ∈ [0,1] for any x ∈ [0,1]d, we have Pα(x) ∈590

[−2,3] ⊆ [−3,3], for any x ∈ [0,1]d and ∥α∥1 ≤ s − 1. Together with Equation (4.1), we591
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have, for any x ∈ Qθ,592

I2,1 = ∑
∥α∥1≤s−1

∣∂
αf(ψ(x))
α! hα − φ̃(∂

αf(ψ(x))
α! , Pα(h))∣

≤ ∑
∥α∥1≤s−1

(∣∂
αf(ψ(x))
α! hα − ∂αf(ψ(x))

α! Pα(h)∣ + ∣∂
αf(ψ(x))
α! Pα(h) − φ̃(∂

αf(ψ(x))
α! , Pα(h))∣)

≤ ∑
∥α∥1≤s−1

( 1
α!

∣hα − Pα(h)∣ + E1) ≤ ∑
∥α∥1≤s−1

(E2 + E1) ≤ sd(E1 + E2).

593

In order to estimate I2,2, we need the following fact: for any x1, x̄1, x2 ∈ [−3,3],594

∣φ̃(x1, x2) − φ̃(x̄1, x2)∣ ≤ ∣φ̃(x1, x2) − x1x2∣ + ∣φ̃(x̄1, x2) − x̄1x2∣ + ∣x1x2 − x̄1x2∣ ≤ 2E1 + 3∣x1 − x̄1∣.595

For each α ∈ Rd with ∥α∥1 ≤ s−1 and x ∈ Qθ, since E3 ∈ [0,2] and ∂αf(ψ(x))
α! ∈ [−1,1]596

in Equation (4.3), we have φα(ψ(x)) ∈ [−3,3]. Together with Pα(x) ∈ [−3,3], we have,597

for any x ∈ Qθ,598

I2,2 = ∑
∥α∥1≤s−1

∣φ̃(∂
αf(ψ(x))
α! , Pα(h)) − φ̃(φα(ψ(x)), Pα(h))∣

≤ ∑
∥α∥1≤s−1

(2E1 + 3∣∂
αf(ψ(x))
α! − φα(ψ(x))∣) ≤ ∑

∥α∥1≤s−1

(2E1 + 3E3) ≤ sd(2E1 + 3E3).
599

Therefore, for any x ∈ Qθ,600

∣f(x) − φ(x)∣ ≤ I1 +I2 ≤ I1 +I2,1 +I2,2

≤ (s + 1)d−1K−s + sd(E1 + E2) + sd(2E1 + 3E3)
≤ (s + 1)d(K−s + 3E1 + E2 + 3E3).

601

Since θ ∈ {0,1,⋯,K−1}d is arbitrary and the fact [0,1]d/Ω(K,δ, d) ⊆ ∪θ∈{0,1,⋯,K−1}dQθ,602

we have603

∣f(x) − φ(x)∣ ≤ (s + 1)d(K−s + 3E1 + E2 + 3E3), for any x ∈ [0,1]d/Ω(K,δ, d).604

Recall that (N + 1)−7s(L+1) ≤ (N + 1)−2s(L+1) ≤ (N + 1)−2s2−2sL ≤ N−2sL−2s and K =605

⌊N1/d⌋2⌊L2/d⌋ ≥ N2/dL2/d
8 . Then we have606

(s + 1)d(K−s + 3E1 + E2 + 3E3)

= (s + 1)d(K−s + 648(N + 1)−2s(L+1) + 9s(N + 1)−7s(L+1) + 6N−2sL−2s)

≤ (s + 1)d(8sN−2s/dL−2s/d + (654 + 9s)N−2sL−2s)

≤ (s + 1)d(8s + 654 + 9s)N−2s/dL−2s/d ≤ 84(s + 1)d8sN−2s/dL−2s/d.

607

What remaining is to estimate the width and depth of φ. Recall thatψ ∈ NN(width ≤608

d(4N + 5); depth ≤ 4(L + 1)), φ̃ ∈ NN(width ≤ 9N + 10; depth ≤ 2s(L + 1)), Pα ∈609

NN(width ≤ 9N+s+6; depth ≤ 7s2(L+1)), and φα ∈ NN(width ≤ 8s(2N+3) log2(4N); depth ≤610

(5L+8) log2(2L)) for α ∈ N with ∥α∥1 ≤ s−1. By Equation (4.4), φ can be implemented611

by a ReLU FNN with width 21sd+1d(N + 2) log2(4N) and depth 18s2(L+ 2) log2(2L) as612

desired. So we finish the proof.613
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5 Proofs of Propositions in Section 4.1614

In this section, we will prove all propositions in Section 4.1.615

5.1 Proof of Proposition 4.1 for polynomial approximation616

To prove Proposition 4.1, we will construct ReLU FNNs to approximate polynomials617

following the four steps below.618

• f(x) = x2. We approximate f(x) = x2 by the combinations and compositions of619

“teeth functions”.620

• f(x, y) = xy. To approximate f(x, y) = xy, we use the result of the previous step621

and the fact xy = 2((x+y2 )2 − (x2)2 − (y2)2).622

• f(x1, x2,⋯, xd) = x1x2⋯xd. We approximate f(x1, x2,⋯, xd) = x1x2⋯xd for any d623

via induction based on the result of the previous step.624

• General multivariable polynomials. Any one-term polynomial of degree k can be625

written as Cz1z2⋯zk, where C is a constant, then use the result of the previous626

step.627

The idea of using “teeth functions” (see Figure 5) was first raised in [30] for approxi-628

mating x2 using FNNs with width 6 and depth O(L) and achieving an error O(2−L); our629

construction is different to and more general than that in [30], working for ReLU FNNs630

of width O(N) and depth O(L) for any N and L, and achieving an error O(N−L). As631

discussed above below Proposition 4.1, this O(N)−O(L) approximation rate of polynomial632

functions shows the power of depth in ReLU FNNs via function composition.633

First, let us show how to construct ReLU FNNs to approximate f(x) = x2.634

Lemma 5.1. For any N,L ∈ N+, there exists a ReLU FNN φ with width 3N and depth635

L such that636

∣φ(x) − x2∣ ≤ N−L, for any x ∈ [0,1].637

Proof. Define a set of teeth functions Ti ∶ [0,1] → [0,1] by induction as follows. Let638

T1(x) = { 2x, x ≤ 1
2 ,

2(1 − x), x > 1
2 ,

639

and640

Ti = Ti−1 ○ T1, for i = 2,3,⋯.641

It is easy to check that Ti has 2i−1 teeth and642

Tm+n = Tm ○ Tn, for any m,n ∈ N+.643

See Figure 5 for more details of Ti.644
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Figure 5: Illustrations of teeth functions T1, T2, T3, and T4.

Define piecewise linear functions fs ∶ [0,1] → [0,1] for s ∈ N+ satisfying the following645

two requirements (see Figure 6 for several examples of fs).646

• fs( j
2s ) = ( j

2s
)2

for j = 0,1,2,⋯,2s.647

• fs(x) is linear between any two adjacent points of { j
2s ∶ j = 0,1,2,⋯,2s}.648

Figure 6: Illustrations of f1, f2, and f3.

It follows from the fact (x−h)2+(x+h)2
2 − x2 = h2 that649

∣x2 − fs(x)∣ ≤ 2−2(s+1), for any x ∈ [0,1] and s ∈ N+, (5.1)650

and651

fi−1(x) − fi(x) = Ti(x)
22i

, for any x ∈ [0,1] and i = 2,3,⋯.652

Then653

fs(x) = f1(x) +
s

∑
i=2

(fi − fi−1) = x − (x − f1(x)) −
s

∑
i=2

Ti(x)
22i

= x −
s

∑
i=1

Ti(x)
22i

,654

for any x ∈ [0,1] and s ∈ N+.655

Given N ∈ N+, there exists a unique k ∈ N+ such that (k − 1)2k−1 + 1 ≤ N ≤ k2k. For656

this k, we can construct a ReLU FNN φ as shown in Figure 7 to approximate fs. Notice657

that Ti can be implemented by a one-hidden-layer ReLU FNN with width 2i. Hence, φ658

in Figure 7 has width k2k + 1 ≤ 3N 7○ and depth 2L.659

In fact, φ in Figure 7 can be interpreted as a ReLU FNN with width 3N and660

depth L since half of the hidden layers have the identify function as their activation661

7○This inequality is clear for k = 1,2,3,4. In the case k ≥ 5, we have k2k + 1 ≤ k2k+1
N

N ≤ (k+1)2k

(k−1)2k−1
N ≤

2k+1
k−1

N ≤ 3N .
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Figure 7: An illustration of the target ReLU FNN for approximating x2. We drop the
ReLU activation function in this figure since Ti(x) is always positive for all i ∈ N+ and
x ∈ [0,1]. Each arrow with Tk means that there is a ReLU FNN approximating Tk and
mapping the function from the starting point of the arrow to generate a new function
at the end point of the arrow. Arrows without Tk means a multiplication with a scalar
contributing to one component of the linear combination in the bottom part of the
network sketch.

functions. If all activation functions in a certain hidden layer are identity, the depth can662

be reduced by one by combining adjacent two linear transforms into one. For example,663

suppose W1 ∈ RN1×N2 , W2 ∈ RN2×N3 , and σ is an identity map that can be applied664

to vectors or matrices elementwisely, then W1σ(W2x) = W3x for any x ∈ RN3 , where665

W3 =W1 ⋅W2 ∈ RN1×N3 .666

What remaining is to estimate the approximation error of φ(x) ≈ x2. By Equation667

(5.1), for any x ∈ [0,1], we have668

∣x2 − φ(x)∣ ≤ ∣x2 − fLk∣ ≤ 2−2(Lk+1) ≤ 2−2Lk ≤ N−L,669

where the last inequality comes from N ≤ k2k ≤ 22k. So we finish the proof.670

We have constructed a ReLU FNN to approximate f(x) = x2. By the fact xy =671

2((x+y2 )2−(x2)2−(y2)2), it is easy to construct a new ReLU FNN to approximate f(x, y) =672

xy as follows.673

Lemma 5.2. For any N,L ∈ N+, there exists a ReLU FNN φ with width 9N and depth674

L such that675

∣φ(x, y) − xy∣ ≤ 6N−L, for any x, y ∈ [0,1].676

Proof. By Lemma 5.1, there exists a ReLU FNN ψ with width 3N and depth L such677

that678

∣x2 − ψ(x)∣ ≤ N−L, for any x ∈ [0,1].679

Together with the fact680

xy = 2((x+y2 )2 − (x2)2 − (y2)2), for any x, y ∈ R,681

24



we construct the target function φ as682

φ(x, y) ∶= 2(ψ(x+y2 ) − ψ(x2) − ψ(
y
2)), for any x, y ∈ R.683

It follows that684

∣xy − φ(x, y)∣ = ∣2((x+y2 )2 − (x2)2 − (y2)2) − 2(ψ(x+y2 ) − ψ(x2) − ψ(
y
2))∣

≤ 2 ∣(x+y2 )2 − ψ(x+y2 )∣ + 2 ∣(x2)2 − ψ(x2)∣ + 2 ∣(y2)2 − ψ(y2)∣ ≤ 6N−L.
685

It is easy to check that φ is a network with width 9N and depth L. Therefore, we have686

finished the proof.687

Now let us prove Lemma 4.2 that shows how to construct a ReLU FNN to ap-688

proximate f(x, y) = xy on [a, b]2 with arbitrary a < b, i.e., a rescaled version of Lemma689

5.2.690

Proof of Lemma 4.2. By Lemma 5.2, there exists a ReLU FNN ψ with width 9N and691

depth L such that692

∣ψ(x̃, ỹ) − x̃ỹ∣ ≤ 6N−L, for any x̃, ỹ ∈ [0,1].693

Set x = a + (b − a)x̃ and y = a + (b − a)ỹ for any x̃, ỹ ∈ [0,1], we have694

∣ψ(x−ab−a ,
y−a
b−a ) − x−a

b−a
y−a
b−a ∣ ≤ 6N−L, for any x, y ∈ [a, b].695

It follows that696

∣(b − a)2ψ(x−ab−a ,
y−a
b−a ) + a(x + y) − a2 − xy∣ ≤ 6(b − a)2N−L, for any x, y ∈ [a, b].697

Define698

φ(x, y) ∶= (b − a)2ψ(x−ab−a ,
y−a
b−a ) + a(x + y) − a2, for any x, y ∈ R.699

Hence,700

∣φ(x, y) − xy∣ ≤ 6(b − a)2N−L, for any x, y ∈ [a, b].701

Moreover, φ can be easily implemented by a ReLU FNN with width 9N + 1 and depth702

L. The result is proved.703

The next lemma constructs a ReLU FNN to approximate a multivariable function704

f(x1, x2,⋯, xk) = x1x2⋯xk on [0,1]k.705

Lemma 5.3. For any N,L ∈ N+, there exists a ReLU FNN φ with width 9(N +1)+k −2706

and depth 7k(k − 1)L such that707

∣φ(x) − x1x2⋯xk∣ ≤ 9(k − 1)(N + 1)−7kL, for any x = [x1, x2,⋯, xk]T ∈ [0,1]k, k ≥ 2.708

Proof. By Lemma 4.2, there exists a ReLU FNN φ1 with width 9(N + 1) + 1 and depth709

7kL such that710

∣φ1(x, y) − xy∣ ≤ 6(1.2)2(N + 1)−7kL ≤ 9(N + 1)−7kL, for any x, y ∈ [−0.1,1.1]. (5.2)711

Next, we construct φi ∶ [0,1]i+1 → [0,1] by induction for i = 1,2,⋯, k − 1 such that712
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• φi is a ReLU FNN with width 9(N+1)+i−1 and depth 7kiL for each i ∈ {1,2,⋯, k−713

1}.714

• The following inequality holds for any i ∈ {1,2,⋯, k − 1} and x1, x2,⋯, xi+1 ∈ [0,1]715

∣φi(x1,⋯, xi+1) − x1x2⋯xi+1∣ ≤ 9i(N + 1)−7kL. (5.3)716

Now let us show the induction process in more details as follows.717

1. When i = 1, it is obvious that the two required conditions are true: 1) 9(N+1)+i−1 =718

9(N + 1) and iL = L if i = 1; 2) Equation (5.2) implies Equation (5.3) for i = 1.719

2. Now assume φi has been defined, then define720

φi+1(x1,⋯, xi+2) ∶= φ1(φi(x1,⋯, xi+1), xi+2), for any x1,⋯, xi+2 ∈ R.721

Notice that the width and depth of φi are 9(N+1)+i−1 and 7kiL, respectively. Then722

φi+2 can be implemented via a ReLU FNN with width 9(N+1)+i−1+1 = 9(N+1)+i723

and depth 7kiL + 7kL = 7k(i + 1)L.724

By the hypothesis of induction, we have725

∣φi(x1,⋯, xi+1) − x1x2⋯xi+1∣ ≤ 9i(N + 1)−7kL.726

Recall the fact 9i(N + 1)−7kL ≤ 9k2−7k ≤ 9k 1
90k = 0.1 for any N,L, k ∈ N+ and727

i ∈ {1,2,⋯, k − 1}. It follows that728

φi(x1,⋯, xi+1) ∈ [−0.1,1.1], for any x1,⋯, xi+1 ∈ [0,1].729

Therefore, for any x1, x2,⋯, xi+2 ∈ [0,1],730

∣φi+1(x1,⋯, xi+2) − x1x2⋯xi+2∣ = ∣φ1(φi(x1,⋯, xi+1), xi+2) − x1x2⋯xi+2∣
≤ ∣φ1(φi(x1,⋯, xi+1), xi+2) − φi(x1,⋯, xi+1)xi+2∣ + ∣φi(x1,⋯, xi+1)xi+2 − x1x2⋯xi+2∣
≤ 9(N + 1)−7kL + 9i(N + 1)−7kL = 9(i + 1)(N + 1)−7kL.

731

Now let φ ∶= φk−1, by the principle of induction, we have732

∣φ(x1,⋯, xk) − x1x2⋯xk∣ ≤ 9(k − 1)(N + 1)−7kL, for any x1, x2,⋯, xk ∈ [0,1].733

So φ is the desired ReLU FNN with width 9(N + 1) + k − 2 and depth 7k(k − 1)L.734

Now we are ready to prove Proposition 4.1 for approximating general multivariable735

polynomials via ReLU FNNs.736

Proof of Proposition 4.1. Denoteα = [α1, α2,⋯, αd]T and let [z1, z2,⋯, zk]T be the vector737

such that738

z` = xj, if
j−1

∑
i=1

αi < ` ≤
j

∑
i=1

αi, for j = 1,2,⋯, d.739
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That is,740

[z1, z2,⋯, zk]T = [
α1 times

³¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ
x1,⋯, x1,

α2 times

³¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ
x2,⋯, x2,⋯,

αd times

³¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ
xd,⋯, xd]T ∈ Rk.741

Then we have P (x) = xα = z1z2⋯zk.742

We construct the target ReLU FNN in two steps. First, there exists a linear map743

φ1 that duplicates inputs in x to form a new vector [z1, z2,⋯, zk]T . Second, by Lemma744

5.3, there exists such a ReLU FNN φ2 with width 9(N + 1) + k − 2 and depth 7k(k − 1)L745

such that φ2 maps [z1, z2,⋯, zk]T to P (x) = z1z2⋯zk within the target accuracy. Hence,746

we can construct our final target ReLU FNN via φ2 ○ φ1(x) = φ(x). By incorporating747

the linear map in φ1 into the first linear map of φ, we can treat φ as a ReLU FNN with748

width 9(N + 1) + k − 2 and depth 7k(k − 1)L with a desired approximation accuracy. So,749

we finish the proof.750

5.2 Proof of Proposition 4.3 for step function approximation751

To prove Proposition 4.3 in this sub-section, we will discuss how to pointwisely752

approximate step functions by ReLU FNNs except for a trifling region. Before proving753

Proposition 4.3, let us first introduce a basic lemma about fitting O(N1N2) samples754

using a two-hidden-layer ReLU FNN with O(N1 +N2) neurons.755

Lemma 5.4. For any N1,N2 ∈ N+, given N1(N2 + 1) + 1 samples (xi, yi) ∈ R2 with756

x0 < x1 < ⋯ < xN1(N2+1) and yi ≥ 0 for i = 0,1,⋯,N1(N2+1), there exists φ ∈ NN(#input =757

1; widthvec = [2N1,2N2 + 1]) satisfying the following conditions.758

1. φ(xi) = yi for i = 0,1,⋯,N1(N2 + 1);759

2. φ is linear on each interval [xi−1, xi] for i ∉ {(N2 + 1)j ∶ j = 1,2,⋯,N1}.760

The above lemma is Proposition 2.1 of [27] and the reader is referred to [27] for its761

proof. Essentially, this lemma shows the equivalence of one-hidden-layer ReLU FNNs of762

size O(N2) and two-hidden-layer ones of size O(N) to fit O(N2) samples.763

The next lemma below shows that special shallow and wide ReLU FNNs can be764

represented by deep and narrow ones. This lemma was proposed as Proposition 2.2 in765

[27].766

Lemma 5.5. Given any N,L ∈ N+, for arbitrary φ1 ∈ NN(#input = 1; widthvec =767

[N,NL]), there exists φ2 ∈ NN(#input = 1; width ≤ 2N + 4; depth ≤ L + 2) such that768

φ1(x) = φ2(x) for any x ∈ R.769

Now, let us present the detailed proof of Proposition 4.3.770

Proof of Proposition 4.3. We divide the proof into two cases: d = 1 and d ≥ 2.771

Case 1∶ d = 1.772

In this case K = N2L2, and we denote M = N2L. Then we consider the sample set773

{(mM ,m) ∶m = 0,1,⋯,M − 1} ∪ {(m+1
M − δ,m) ∶m = 0,1,⋯,M − 2} ∪ {(1,M − 1), (2,0)}.774
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Its cardinality is 2M + 1 = N ⋅ ((2NL − 1) + 1) + 1. By Lemma 5.4 with N1 = N and775

N2 = 2NL − 1, there exist φ1 ∈ NN(widthvec = [2N,2(2NL − 1) + 1]) = NN(widthvec =776

[2N,4NL − 1]) such that777

• φ1(M−1
M ) = φ1(1) =M − 1 and φ1(mM ) = φ1(m+1

M − δ) =m for m = 0,1,⋯,M − 2;778

• φ1 is linear on [M−1
M ,1] and each interval [mM , m+1

M − δ] for m = 0,1,⋯,M − 2.779

Then780

φ1(x) =m, if x ∈ [mM , m+1
M − δ ⋅ 1{m<M−1}], for m = 0,1,⋯,M − 1. (5.4)781

Now consider the sample set782

{( `
ML , `) ∶ ` = 0,1,⋯, L − 1} ∪ {( `+1

ML − δ, `) ∶ ` = 0,1,⋯, L − 2} ∪ {( 1
M , L − 1), (2,0)}.783

Its cardinality is 2L+1 = 1 ⋅ ((2L−1)+1)+1. By Lemma 5.4 with N1 = 1 and N2 = 2L−1,784

there exists φ2 ∈ NN(widthvec = [2,2(2L−1)+1]) = NN(widthvec = [2,4L−1]) such that785

• φ2(L−1
ML) = φ2( 1

M ) = L − 1 and φ2( `
ML) = φ2( `+1

ML − δ) = ` for ` = 0,1,⋯, L − 2;786

• φ2 is linear on [L−1
ML ,

1
M ] and each interval [ `

ML ,
`+1
ML − δ] for ` = 0,1,⋯, L − 2.787

It follows that, for m = 0,1,⋯,M − 1, ` = 0,1,⋯, L − 1,788

φ2(x − 1
Mφ1(x)) = φ2(x − m

M ) = `, if x ∈ [mL+`ML ,
mL+`+1
ML − δ ⋅ 1{`<L−1}]. (5.5)789

Define790

φ(x) ∶= Lφ1(x)+φ2(x− 1
M φ1(x))

ML , for any x ∈ R.791

Notice that each k ∈ {0,1,⋯,ML − 1} = {0,1,⋯,K − 1} can be uniquely represented792

by k = mL + ` for m ∈ {0,1,⋯,M − 1} and ` ∈ {0,1,⋯, L − 1}. By Equation (5.4)793

and (5.5), if x ∈ [ k
ML ,

k+1
ML − δ ⋅ 1{k<ML−1}] = [ kK , k+1

K − δ ⋅ 1{k<K−1}] and k = mL + ` for794

m ∈ {0,1,⋯,M − 1}, ` ∈ {0,1,⋯, L − 1}, we have795

φ(x) = Lφ1(x)+φ2(x− 1
M φ1(x))

ML = Lm+φ2(x−
m
M )

ML = Lm+`
ML = k

N2L2 = k
K .796

By Lemma 5.5,797

φ1 ∈ NN(widthvec = [2N,4NL − 1]) ⊆ NN(width ≤ 4N + 4; depth ≤ 2L + 2)798

and799

φ2 ∈ NN(widthvec = [2,4L − 1]) ⊆ NN(width ≤ 8; depth ≤ 2L + 2).800

Hence, φ can be implemented by a ReLU FNN with width 4N + 5 and depth 4L + 4. So801

we finish the proof.802

Case 2∶ d ≥ 2.803

Now we consider the case when d ≥ 2. For the sample set804

{( kK , kK ) ∶ k = 0,1,⋯,K − 1} ∪ {(k+1
K − δ, kK ) ∶ k = 0,1,⋯,K − 2} ∪ {(1, K−1

K ), (2,1)},805
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whose cardinality is 2K + 1 = ⌊N1/d⌋((2⌊N1/d⌋⌊L2/d⌋ − 1) + 1) + 1. By Lemma 5.4 with806

N1 = ⌊N1/d⌋ and N2 = 2⌊N1/d⌋⌊L2/d⌋ − 1 , there exists φ in807

NN(widthvec = [2⌊N1/d⌋,2(2⌊N1/d⌋⌊L2/d⌋ − 1) + 1])
⊆ NN(widthvec = [2⌊N1/d⌋,4⌊N1/d⌋⌊L2/d⌋ − 1])808

such that809

• φ(2) = 1, φ(K−1
K ) = φ(1) = K−1

K , and φ( kK ) = φ(k+1
K − δ) = k

K for k = 0,1,⋯,K − 2;810

• φ is linear on [K−1
K ,1] and each interval [ kK , k+1

K − δ] for k = 0,1,⋯,K − 2.811

Then812

φ(x) = k
K , if x ∈ [ kK , k+1

K − δ ⋅ 1{k<K−1}], for k = 0,1,⋯,K − 1.813

By Lemma 5.5,814

φ ∈ NN(widthvec = [2⌊N1/d⌋,4⌊N1/d⌋⌊L2/d⌋ − 1])
⊆ NN(width ≤ 4⌊N1/d⌋ + 4; depth ≤ 2⌊L2/d⌋ + 2)
⊆ NN(width ≤ 4N + 5; depth ≤ 4L + 4).

815

This establishes the Proposition.816

5.3 Proof of Proposition 4.4 for point fitting817

In this sub-section, we will discuss how to use ReLU FNNs to fit a collection of818

points in R2. 8○ It is trivial to fit n points via one-hidden-layer ReLU FNNs with O(n)819

parameters. However, to prove Proposition 4.4, we need to fit O(n) points with much less820

parameters, which is the main difficulty of our proof. Our proof below is mainly based821

on the “bit extraction” technique and the composition architecture of neural networks.822

Let us first introduce a basic lemma based on the “bit extraction” technique, which823

is in fact Lemma 2.6 of [27].824

Lemma 5.6. For any N,L ∈ N+, any θm,` ∈ {0,1} for m = 0,1,⋯,M −1, ` = 0,1,⋯, L−1,825

where M = N2L, there exists a ReLU FNN φ with width 4N + 5 and depth 3L + 4 such826

that φ(m,`) = ∑`
j=0 θm,j, for m = 0,1,⋯,M − 1, ` = 0,1,⋯, L − 1.827

Next, let us introduce Lemma 5.7, a variant of Lemma 5.6 for a different mapping828

for the “bit extraction”. Its proof is based on Lemma 5.4, 5.5, and 5.6.829

Lemma 5.7. For any N,L ∈ N+ and any θi ∈ {0,1} for i = 0,1,⋯,N2L2 − 1, there830

exists a ReLU FNN φ with width 8N + 10 and depth 5L + 6 such that φ(i) = θi, for831

i = 0,1,⋯,N2L2 − 1.832

8○Fitting a collection of points {(xi, yi)} in R2 means that the target ReLU FNN takes the value yi
at the location xi.
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Proof. The case L = 1 is simple. We assume L ≥ 2 below.833

Denote M = N2L, for each i ∈ {0,1,⋯,N2L2−1}, there exists a unique representation834

i =mL + ` for m = 0,1,⋯,M − 1 an L = 0,1,⋯, L − 1. So we define, for m = 0,1,⋯,M − 1835

and ` = 0,1,⋯, L − 1,836

am,` ∶= θi, where i =mL + `.837

Then we set bm,0 = 0 for m = 0,1,⋯,M − 1 and bm,` = am,`−1 for m = 0,1,⋯,M − 1 and838

` = 1,⋯, L − 1.839

By Lemma 5.6, there exist φ1, φ2 ∈ NN(width ≤ 4N + 5; depth ≤ 3L + 4) such that840

φ1(m,`) =
`

∑
j=1

am,j and φ2(m,`) =
`

∑
j=1

bm,j,841

for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1. We consider the sample set842

{(mL,m) ∶m = 0,1,⋯,M} ∪ {((m + 1)L − 1,m) ∶m = 0,1,⋯,M − 1} ⊆ R2.843

Its cardinality is 2M + 1 = N ⋅ ((2NL − 1) + 1) + 1. By Lemma 5.4 with N1 = N and844

N2 = 2NL − 1, there exists ψ ∈ NN(#input = 1; widthvec = [2N,2(2NL − 1) + 1]) =845

NN(#input = 1; widthvec = [2N,4NL − 1]) such that846

• ψ(ML) =M and ψ(mL) = ψ((m + 1)L − 1) =m for m = 0,1,⋯,M − 1;847

• ψ is linear on each interval [mL, (m + 1)L − 1] for m = 0,1,⋯,M − 1.848

It follows that849

ψ(i) =m where i =mL + `, for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1.850

Define851

φ(x) ∶= φ1(ψ(x), x −Lψ(x)) − φ2(ψ(x), x −Lψ(x)), for any x ∈ R.852

For i = 0,1,⋯,N2L2 − 1, represent i =mL + ` for m = 0,1,⋯,M − 1 and ` = 0,1,⋯, L − 1.853

We have854

φ(i) = φ1(ψ(i), i −Lψ(i)) − φ2(ψ(i), i −Lψ(i))
= φ1(m,`) − φ2(m,`)

=
`

∑
j=1

am,j −
`

∑
j=1

bm,j = am,` = θi.
855

What remaining is to estimate the width and depth of φ. Notice that856

φ1, φ2 ∈ NN(width ≤ 4N + 5; depth ≤ 3L + 4).857

And by Lemma 5.5,858

ψ ∈ NN(widthvec = [2N,4NL − 1]) ⊆ NN(width ≤ 4N + 4; depth ≤ 2L + 2).859

Hence, by the definition of φ, φ can be implemented by a ReLU FNN with width 8N +10860

and depth 5L + 6.861
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With Lemma 5.7 in hand, we are now ready to prove Proposition 4.4.862

Proof of Proposition 4.4. Denote J = ⌈2s log2(NL + 1)⌉. For each ξi ∈ [0,1], there exist863

ξi,1, ξi,2,⋯, ξi,J ∈ {0,1} such that864

∣ξi −Bin0.ξi,1ξi,2⋯ξi,J ∣ ≤ 2−J , for i = 0,1,⋯,N2L2 − 1.865

By Lemma 5.7, there exist φ1, φ2,⋯, φJ ∈ NN(width ≤ 8N + 10; depth ≤ 5L+ 6) such866

that867

φj(i) = ξi,j, for i = 0,1,⋯,N2L2 − 1, j = 1,2,⋯, J .868

Define869

φ̃(x) ∶=
J

∑
j=1

2−jφj(x), for any x ∈ R.870

It follows that, for i = 0,1,⋯,N2L2 − 1,871

∣φ̃(i) − ξi∣ = ∣
J

∑
j=1

2−jφj(i) − ξi∣ = ∣
J

∑
j=1

2−jξi,j − ξi∣ = ∣Bin0.ξi,1ξi,2⋯ξi,J − ξi∣ ≤ 2−J .872

Notice that873

2−J = 2−⌈2s log2(NL+1)⌉ ≤ 2−2s log2(NL+1) = (NL + 1)−2s ≤ N−2sL−2s.874

Now let us estimate the width and depth of φ̃. Recall that875

J = ⌈2s log2(NL + 1)⌉ ≤ 2s(1 + log2(NL + 1)) ≤ 2s(1 + log2(2N) + log2L)
≤ 2s(1 + log2(2N))(1 + log2L) ≤ 2s log2(4N) log2(2L),

876

and φj ∈ NN(width ≤ 8N + 10; depth ≤ 5L+ 6). Then φ̃ = ∑J
j=1 2−jφj can be implemented877

by a ReLU FNN with width 2s(8N + 10) log2(4N) + 2 ≤ 8s(2N + 3) log2(4N) and depth878

(5L + 6) log2(2L).879

Finally, we define880

φ(x) = min{max{0, φ̃(x)},1}, for any x ∈ R.881

Then 0 ≤ φ(x) ≤ 1 for any x ∈ R and φ can be implemented by a ReLU FNN with width882

8s(2N + 3) log2(4N) and depth (5L + 6) log2(2L) + 2 ≤ (5L + 8) log2(2L). Notice that883

φ̃(i) =
J

∑
j=1

2−jφj(i) =
J

∑
j=1

2−jξi,j ∈ [0,1], for i = 0,1,⋯,N2L2 − 1.884

It follows that885

∣φ(i)− ξi∣ = ∣min{max{0, φ̃(i)},1}− ξi∣ = ∣φ̃(i)− ξi∣ ≤ N−2sL−2s, for i = 0,1,⋯,N2L2 − 1.886

The proof is complete.887
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6 Conclusions888

This paper has established a nearly optimal approximation rate of ReLU FNNs in889

terms of both width and depth to approximate smooth functions. It is shown that ReLU890

FNNs with width O(N lnN) and depth O(L lnL) can approximate functions in the unit891

ball of Cs([0,1]d) with approximation rate O(N−2s/dL−2s/d). Through VC dimension, it892

is also proved that this approximation rate is asymptotically nearly tight for the closed893

unit ball of smooth function class Cs([0,1]d).894

We would like to remark that our analysis is for the fully connected feed-forward895

neural networks with the ReLU activation function. It would be an interesting direction896

to generalize our results to neural networks with other architectures (e.g., convolutional897

neural networks and ResNet) and activation functions (e.g., tanh and sigmoid functions).898

These will be left as future work.899

Acknowledgments900

The work of J. Lu is supported in part by the National Science Foundation via901

grants DMS-1415939 and CCF-1934964. Z. Shen is supported by Tan Chin Tuan Cen-902

tennial Professorship. H. Yang H. Yang was partially supported by the National Science903

Foundation under award DMS-1945029.904

References905

[1] M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations.906

Cambridge University Press, New York, NY, USA, 1st edition, 2009.907

[2] C. Bao, Q. Li, Z. Shen, C. Tai, L. Wu, and X. Xiang. Approximation analysis of908

convolutional neural networks. 2019.909

[3] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal910

function. IEEE Transactions on Information Theory, 39(3):930–945, May 1993.911

[4] P. Bartlett, V. Maiorov, and R. Meir. Almost linear VC-dimension bounds for912

piecewise polynomial networks. Neural Computation, 10:2159–2173, 1998.913

[5] M. Bianchini and F. Scarselli. On the complexity of neural network classifiers: A914

comparison between shallow and deep architectures. IEEE Transactions on Neural915

Networks and Learning Systems, 25(8):1553–1565, Aug 2014.916

[6] H. Bölcskei, P. Grohs, G. Kutyniok, and P. Petersen. Optimal approximation with917

sparsely connected deep neural networks. SIAM Journal on Mathematics of Data918

Science, 1(1):8–45, 2019.919

[7] M. Chen, H. Jiang, W. Liao, and T. Zhao. Efficient approximation of deep ReLU920

networks for functions on low dimensional manifolds. In H. Wallach, H. Larochelle,921
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