
Optimal Approximation Rate of ReLU Networks in terms of
Width and Depth

Zuowei Shena, Haizhao Yangb, Shijun Zhanga

aDepartment of Mathematics, National University of Singapore
bDepartment of Mathematics, Purdue University

Abstract

This paper concentrates on the approximation power of deep feed-forward neural networks in terms of
width and depth. It is proved by construction that ReLU networks with width O(max{d⌊N1/d⌋, N + 2})

and depth O(L) can approximate a Hölder continuous function on [0,1]d with an approximation rate
O(λ

√
d(N2L2 lnN)−α/d), where α ∈ (0,1] and λ > 0 are Hölder order and constant, respectively. Such a

rate is optimal up to a constant in terms of width and depth separately, while existing results are only
nearly optimal without the logarithmic factor in the approximation rate. More generally, for an arbitrary
continuous function f on [0,1]d, the approximation rate becomes O(

√
dωf((N

2L2 lnN)−1/d)), where ωf(⋅)
is the modulus of continuity. We also extend our analysis to any continuous function f on a bounded set.
Particularly, if ReLU networks with depth 31 and width O(N) are used to approximate one-dimensional
Lipschitz continuous functions on [0,1] with a Lipschitz constant λ > 0, the approximation rate in terms
of the total number of parameters, W = O(N2), becomes O(λ

W lnW
), which has not been discovered in the

literature for fixed-depth ReLU networks.

Résumé

Cet article se concentre sur la capacité d’approximation des réseaux de neurones à propagation avant
en termes de largeur et de profondeur. Il est prouvé par construction que les réseaux ReLU de largeur
O(max{d⌊N1/d⌋, N + 2}) et profondeur O(L) peuvent approximer une fonction höldérienne sur [0,1]d avec

une erreur d’approximation O(λ
√
d(N2L2 lnN)−α/d), où α ∈ (0,1] et λ > 0 sont respectivement l’exposant

et la constante de Hölder. Une telle erreur d’approximation est optimale, à une constante multiplicative
près, en termes de largeur et de profondeur séparément, alors que les résultats connus ne sont que presque
optimaux sans le facteur logarithmique dans l’erreur d’approximation. Plus généralement, pour une fonction
continue arbitraire f sur [0,1]d, l’erreur d’approximation devient O(

√
dωf((N

2L2 lnN)−1/d)), où ωf(⋅)
est le module de continuité. Nous étendons également notre analyse à toute fonction continue f sur un
ensemble borné. En particulier, si les réseaux ReLU de profondeur 31 et de largeur O(N) sont utilisés
pour approximer les fonctions lipschitziennes d’une variable sur [0,1] avec une constante de Lipschitz λ > 0,
l’erreur d’approximation en fonction du nombre total de paramètres, W = O(N2), devient O(λ

W lnW
), ce

qui n’a pas été découvert dans la littérature pour les réseaux ReLU à profondeur fixée.

Keywords: Deep ReLU Networks, Optimal Approximation, VC-dimension, Bit Extraction

MSC: 41A25, 41A63, 41A46, 68T15

1. Introduction

Over the past few decades, the expressiveness of neural networks has been widely studied from many
points of view, e.g., in terms of combinatorics [1], topology [2], Vapnik-Chervonenkis (VC) dimension [3–

Email addresses: matzuows@nus.edu.sg (Zuowei Shen), haizhao@purdue.edu (Haizhao Yang), zhangshijun@u.nus.edu
(Shijun Zhang)

5], fat-shattering dimension [6, 7], information theory [8], classical approximation theory [9–13, 13–21],
optimization [22–26]. The error analysis of neural networks consists of three parts: the approximation error,
the optimization error, and the generalization error. This paper focuses on the approximation error for
ReLU networks.

The approximation errors of feed-forward neural networks with various activation functions have been
studied for different types of functions, e.g., smooth functions [16, 27–30], piecewise smooth functions [8],
band-limited functions [31], continuous functions [12, 15, 17, 18]. In the early works of approximation theory
for neural networks, the universal approximation theorem [9, 10, 32] without approximation rates showed
that there exists a sufficiently large neural network approximating a target function in a certain function
space within any given error ε > 0. In particular, it is shown in [33] that the ReLU-activated residual neural
network with one-neuron hidden layers is a universal approximator. The universal approximation property
for general residual neural networks was proved in [19] via a dynamical system approach.

An asymptotic analysis of the approximation rate in terms of depth is provided in [12, 34] for ReLU
networks. To be exact, the nearly optimal approximation rates of ReLU networks with width O(d) and
depth O(L) for functions in C([0,1]d) and Cs([0,1]d) are O(ωf(L

−2/d)) and O((L/ lnL)−2s/d), respectively.
These two papers provide the approximation rate in terms of depth asymptotically for fixed-width networks.
A different approach is used in [15, 16] to obtain a quantitative characterization of the approximation rate
in terms of width, depth, and smoothness order for continuous and smooth functions.

Particularly, it was shown in [15] that a ReLU network with width C1(d) ⋅N and depth C2(d) ⋅ L can
attain an approximation error C3(d) ⋅ ωf(N

−2/dL−2/d) to approximate a continuous function f on [0,1]d,
where C1(d), C2(d), and C3(d) are three constants in d with explicit formulas to specify their values, and
ωf(⋅) is the modulus of continuity of f ∈ C([0,1]d) defined via

ωf(r) ∶= sup{∣f(x) − f(y)∣ ∶ x,y ∈ [0,1]d, ∥x − y∥2 ≤ r}, for any r ≥ 0.

Such an approximation rate is optimal in terms of N and L up to a logarithmic term and the corresponding
optimal approximation theory is still unavailable. To address this problem, we provide a constructive proof
in this paper to show that ReLU networks of width O(N) and depth O(L) can approximate an arbitrary
continuous function f on [0,1]d with an optimal approximation error O(

√
dωf((N

2L2 lnN)−α/d)) in terms
of N and L. As shown by our main result, Theorem 1.1 below, the approximation rate obtained here admits
explicit formulas to specify its prefactors when ωf(⋅) is known.

Theorem 1.1. Given a continuous function f ∈ C([0,1]d), for any N ∈ N+, L ∈ N+, and p ∈ [1,∞], there
exists a function φ implemented by a ReLU network with width C1 max{d⌊N1/d⌋, N +2} and depth 11L+C2

such that
∥f − φ∥Lp([0,1]d) ≤ 131

√
dωf((N

2L2 log3(N + 2))
−1/d

),

where C1 = 16 and C2 = 18 if p ∈ [1,∞); C1 = 3d+3 and C2 = 18 + 2d if p = ∞.

Note that 3d+3 max{d⌊N1/d⌋, N + 2} ≤ 3d+3 max{dN, 3N} ≤ 3d+4dN . Given any Ñ , L̃ ∈ N+ with Ñ ≥

3d+4d and L̃ ≥ 29 + 2d, there exist N,L ∈ N+ such that

3d+4dN ≤ Ñ < 3d+4d(N + 1) and 11L + 18 + 2d ≤ L̃ < 11(L + 1) + 18 + 2d.

If follows that

N ≥
N + 1

3
>

Ñ

3d+5d
and L ≥

L + 1

2
>

1

2
⋅
L̃ − 18 − 2d

11
=
L̃ − 18 − 2d

22
.

Then we have an immediate corollary of Theorem 1.1.

Corollary 1.2. Given a continuous function f ∈ C([0,1]d), for any Ñ ∈ N+ and L̃ ∈ N+ with Ñ ≥ 3d+4d and
L̃ ≥ 29 + 2d, there exists a function φ implemented by a ReLU network with width Ñ and depth L̃ such that

∥f − φ∥L∞([0,1]d) ≤ 131
√
dωf(((

Ñ
3d+5d)

2
(L̃−18−2d

22
)
2 log3(

Ñ
3d+5d + 2))

−1/d
).

2

As a special case of Theorem 1.1 for explicit error characterization, let us take Hölder continuous
functions as an example. Let Hölder([0,1]d, α, λ) denote the space of Hölder continuous functions on [0,1]d

of order α ∈ (0,1] with a Hölder constant λ > 0. We have an immediate corollary of Theorem 1.1 as follows.

Corollary 1.3. Given a Hölder continuous function f ∈ Hölder([0,1]d, α, λ), for any N ∈ N+, L ∈ N+, and
p ∈ [1,∞], there exists a function φ implemented by a ReLU network with width C1 max{d⌊N1/d⌋, N + 2}
and depth 11L +C2 such that

∥f − φ∥Lp([0,1]d) ≤ 131λ
√
d(N2L2 log3(N + 2))

−α/d
,

where C1 = 16 and C2 = 18 if p ∈ [1,∞); C1 = 3d+3 and C2 = 18 + 2d if p = ∞.

To better illustrate the importance of our theory, we summarize our key contributions as follows.

(1) Upper bound: We provide a quantitative and non-asymptotic approximation rate 131
√
dωf((N

2L2 log3(N+

2))
−1/d

) in terms of width O(N) and depth O(L) for any f ∈ C([0,1]d) in Theorem 1.1.

(1.1) This approximation error analysis can be extended to f ∈ C(E) for any E ⊆ [−R,R]d with R > 0
as we shall see later in Theorem 2.5.

(1.2) In the case of one-dimensional Lipschitz continuous functions on [0,1] with a Lipschitz constant
λ > 0, the approximation rate in Theorem 1.1 becomes O(λ

W lnW
) for ReLU networks with 31

hidden layers and O(W) parameters via setting L = 1 and W = O(N2) therein. To the best
of our knowledge, the approximation rate O(λ

W lnW
) is better than existing known results using

fixed-depth ReLU networks to approximate Lipschitz continuous functions on [0,1].

(2) Lower bound: Through the VC-dimension bounds of ReLU networks given in [5], we show, in Section 2.3,

that the approximation rate 131λ
√
d(N2L2 log3(N + 2))

−α/d
in terms of width O(N) and depth O(L)

for Hölder([0,1]d, α, λ) is optimal as follows.

(2.1) When the width is fixed, both the approximation upper and lower bounds take the form of CL−2α/d

for a positive constant C.

(2.2) When the depth is fixed, both the approximation upper and lower bounds take the form of
C(N2 lnN)−α/d for a positive constant C.

0 20× 1000100 40× 1000100 60× 1000100 80× 1000100 100× 1000100 L

0

500

1000

N

N = L1/100

N = 1000

Figure 1: Our rate is optimal in terms of width O(N) and depth O(L) simultaneously except for the region marked in cyan
characterized by {(N,L) ∈ N2 ∶ C1 ≤ N ≤ LC2}, where Ci = Ci(α, d) for i = 1,2 are two positive constants. This figure is an
example for C1 = 1000 and C2 = 1/100.

3

We would like to point out that if N and L vary simultaneously, the rate is optimal in the N -L plane
except for a small region as shown in Figure 1. See Section 2.3 for a detailed discussion. The earlier result in
[15] provides a nearly optimal approximation error that has a gap (a logarithmic term) between the lower and
upper bounds. It is technically challenging to match the upper bound with the lower bound. Compared to
the nearly optimal rate 19λ

√
dN−2α/dL−2α/d for Hölder continuous functions in Hölder([0,1]d, α, λ) in [15],

this paper achieves the optimal rate 131λ
√
d(N2L2 log3(N + 2))

−α/d
using more technical and sophisticated

construction. For example, a novel bit extraction technique different to that in [3] is proposed, and new
ReLU networks are constructed to approximate step functions more efficiently than those in [15]. The
optimal result obtained in this paper could also be extended to other functions spaces, leading to better
understanding of deep network approximation.

We have obtained the optimal approximation rate for (Hölder) continuous functions approximated by
ReLU networks. There are two possible directions to improve the approximation rate or reduce the effect of
the curse of dimensionality. The first one is to consider proper target function spaces, e.g., Barron spaces
[11, 35–37], band-limited functions [31, 38], smooth functions [16, 34], and analytic functions [30]. The other
direction is to consider neural networks with other activation functions. For example, the results of [34]
imply that (sin,ReLU)-activated networks with W parameters can achieve an asymptotic approximation

error O(2−cd
√
W) for Lipschitz continuous functions defined on [0,1]d, where cd is an unknown constant

depending on d. Floor-ReLU networks with width O(N) and depth O(L) are constructed in [17] to admit

an approximation rate O(ωf(
√
dN−

√
L)) for any continuous function f ∈ C([0,1]d). It is shown in [18] that

three-hidden-layer networks with O(W) parameters using the floor function (⌊x⌋), the exponential function
(2x), and the step function (1x≥0) as activation functions can approximate Lipschitz functions defined on
[0,1]d with an exponentially small error O(

√
d2−W). By the use of more sophisticated activation functions

instead of those used in [17, 18, 34], a recent paper [39] shows that there exists a network of size depending
on d implicitly, achieving an arbitrary approximation error for any continuous function in C([0,1]d). A key
ingredient of the approaches mentioned above is to use more than one activation functions to design neural
network architectures.

The error analysis of deep learning is to estimate approximation, generalization, and optimization errors.
Here, we give a brief discussion, the interested reader can find more details in [16, 17]. Let φ(x;θ) denote a
function computed by a network parameterized with θ. Given a target function f , the final goal is to find
the expected risk minimizer

θD ∶= arg min
θ

RD(θ), where RD(θ) ∶= Ex∼U(X) [`(φ(x;θ), f(x))] ,

with a loss function `(⋅, ⋅) and an unknown data distribution U(X).
In practice, for given samples {(xi, f(xi))}

n
i=1, the goal of supervised learning is to identify the empirical

risk minimizer

θS ∶= arg min
θ

RS(θ), where RS(θ) ∶=
1

n

n

∑
i=1

`(φ(xi;θ), f(xi)).

In fact, one could only get a numerical minimizer θN via a numerical optimization method. The discrepancy
between the target function f and the learned function φ(x;θN) is measured by RD(θN), which is bounded
by

RD(θN) ≤ RD(θD)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Approximation error

+ [RS(θN) −RS(θS)]
´¹¹¹¸¹¹¶

Optimization error

+ [RD(θN) −RS(θN)] + [RS(θD) −RD(θD)]
´¹¹¸¹¹¶

Generalization error

.

This paper deals with the approximation error of ReLU networks for continuous functions and gives an upper
bound of RD(θD) which is optimal up to a constant. Note that the approximation error analysis given here
is independent of data samples and deep learning algorithms. However, the analysis of optimization and
generalization errors do depend on data samples, deep learning algorithms, models, etc. For example, refer
to [22–26, 35, 40–42] for a further understanding of the generalization and optimization errors.

The rest of this paper is organized as follows. In Section 2, we prove Theorem 1.1 by assuming Theo-
rem 2.1 is true, show the optimality of Theorem 1.1, and extend our analysis to continuous functions defined

4

on any bounded set. Next, Theorem 2.1 is proved in Section 3 based on Proposition 3.1 and 3.2, the proofs
of which can be found in Section 4. Finally, Section 5 concludes this paper with a short discussion.

2. Theoretical analysis

In this section, we first prove Theorem 1.1 and discuss its optimality. Next, we extend our analysis to
general continuous functions defined on any bounded set. Notations throughout this paper are summarized
in Section 2.1.

2.1. Notations

Let us summarize all basic notations used in this paper as follows.

• Matrices are denoted by bold uppercase letters. For instance, A ∈ Rm×n is a real matrix of size m×n,
and AT denotes the transpose of A. Vectors are denoted as bold lowercase letters. For example,

v = [v1,⋯, vd]
T = [

v1
⋮
vd

] ∈ Rd is a column vector with v(i) = vi being the i-th element. Besides, “[”

and “]” are used to partition matrices (vectors) into blocks, e.g., A = [A11 A12

A21 A22
].

• For any p ∈ [1,∞), the p-norm (or `p-norm) of a vector x = [x1, x2,⋯, xd]
T ∈ Rd is defined by

∥x∥p ∶= (∣x1∣
p
+ ∣x2∣

p
+⋯ + ∣xd∣

p)
1/p
.

• For any x ∈ R, let ⌊x⌋ ∶= max{n ∶ n ≤ x, n ∈ Z} and ⌈x⌉ ∶= min{n ∶ n ≥ x, n ∈ Z}.

• Assume n ∈ Nd, then f(n) = O(g(n)) means that there exists positive C independent of n, f , and g
such that f(n) ≤ Cg(n) when all entries of n go to +∞.

• For any θ ∈ [0,1), suppose its binary representation is θ = ∑
∞
`=1 θ`2

−` with θ` ∈ {0,1}, we introduce a
special notation bin0.θ1θ2⋯θL to denote the L-term binary representation of θ, i.e., bin0.θ1θ2⋯θL ∶=

∑
L
`=1 θ`2

−`.

• Let µ(⋅) denote the Lebesgue measure.

• Let 1S be the characteristic function on a set S, i.e., 1S is equal to 1 on S and 0 outside S.

• Let ∣S∣ denote the size of a set S, i.e., the number of all elements in S.

• The set difference of two sets A and B is denoted by A/B ∶= {x ∶ x ∈ A, x ∉ B}.

• Given any K ∈ N+ and δ ∈ (0, 1
K
), define a trifling region Ω([0,1]d,K, δ) of [0,1]d as

Ω([0,1]d,K, δ) ∶=
d

⋃
j=1

{x = [x1, x2,⋯, xd]
T
∈ [0,1]d ∶ xj ∈

K−1

⋃
k=1

(k
K
− δ, k

K
)}. (2.1)

In particular, Ω([0,1]d,K, δ) = ∅ if K = 1. See Figure 2 for two examples of trifling regions.

• Let Hölder([0,1]d, α, λ) denote the space of Hölder continuous functions on [0,1]d of order α ∈ (0,1]
with a Hölder constant λ > 0.

• For a continuous piecewise linear function f(x), the x values where the slope changes are typically
called breakpoints.

• Let CPwL(R, n) denote the space that consists of all continuous piecewise linear functions with at
most n breakpoints on R.

5

0.0 0.2 0.4 0.6 0.8 1.0

δ δ δ δ

Ω([0, 1]d, K, δ) for K = 5, d = 1

(a)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Ω([0, 1]d, K, δ) for K = 4, d = 2

(b)

Figure 2: Two examples of trifling regions. (a) K = 5, d = 1. (b) K = 4, d = 2.

• Let σ ∶ R → R denote the rectified linear unit (ReLU), i.e. σ(x) = max{0, x}. With a slight abuse of

notation, we define σ ∶ Rd → Rd as σ(x) =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

max{0, x1}

⋮

max{0, xd}

⎤
⎥
⎥
⎥
⎥
⎥
⎦

for any x = [x1,⋯, xd]
T ∈ Rd.

• We will use NN to denote a function implemented by a ReLU network for short and use Python-
type notations to specify a class of functions implemented by ReLU networks with several conditions,
e.g., NN(c1; c2; ⋯; cm) is a set of functions implemented by ReLU networks satisfying m conditions
given by {ci}1≤i≤m, each of which may specify the number of inputs (#input), the number of outputs
(#output), the number of hidden layers (depth), the total number of parameters (#parameter), and
the width in each hidden layer (widthvec), the maximum width of all hidden layers (width), etc. For
example, if φ ∈ NN(#input = 2; widthvec = [100,100]; #output = 1), then φ is a functions satisfies

– φ maps from R2 to R.

– φ can be implemented by a ReLU network with two hidden layers and the number of neurons in
each hidden layer is 100.

• For any function φ ∈ NN(#input = d; widthvec = [N1,N2,⋯,NL]; #output = 1), if we set N0 = d and
NL+1 = 1, then the architecture of the network implementing φ can be briefly described as follows:

x = h̃0
W0, b0
L0

h1
σ h̃1 ⋯

WL−1, bL−1
LL−1

hL
σ h̃L

WL, bL
LL

hL+1 = φ(x),

where Wi ∈ RNi+1×Ni and bi ∈ RNi+1 are the weight matrix and the bias vector in the i-th affine linear
transform Li, respectively, i.e.,

hi+1 =Wi ⋅ h̃i + bi =∶ Li(h̃i), for i = 0,1,⋯, L,

and
h̃i = σ(hi), for i = 1,2,⋯, L.

In particular, φ can be represented in a form of function compositions as follows.

φ = LL ○ σ ○ LL−1 ○ σ ○ ⋯ ○ σ ○ L1 ○ σ ○ L0,

which has been illustrated in Figure 3.

• The expression “a network with width N and depth L” means

– The maximum width of this network for all hidden layers is no more than N .

– The number of hidden layers of this network is no more than L.

6

(x1, x2)

x1

x2

h1

h1,1

h1,2

h1,3

h1,4

h̃1

h̃1,1

h̃1,2

h̃1,3

h̃1,4

h2

h2,1

h2,2

h2,3

h2,4

h2,5

h̃2

h̃2,1

h̃2,2

h̃2,3

h̃2,4

h̃2,5

φ(x1, x2)

φ(x1, x2)

W0, b0

L0

W1, b1

L1

W2, b2

L2

ReLU
σ

ReLU
σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

Figure 3: An example of a ReLU network with width 5 and depth 2.

2.2. Proof of Theorem 1.1

The key point is to construct piecewise constant functions to approximate continuous functions in the
proof. However, it is impossible to construct a piecewise constant function implemented by a ReLU network
due to the continuity of ReLU networks. Thus, we introduce the trifling region Ω([0,1]d,K, δ), defined
in Equation (2.1), and use ReLU networks to implement piecewise constant functions outside the trifling
region. To prove Theorem 1.1, we first introduce a weaker variant of Theorem 1.1, showing how to construct
ReLU networks to pointwisely approximate continuous functions except for the trifling region.

Theorem 2.1. Given a function f ∈ C([0,1]d), for any N ∈ N+ and L ∈ N+, there exists a function φ
implemented by a ReLU network with width max{8d⌊N1/d⌋ + 3d, 16N + 30} and depth 11L + 18 such that

∥φ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(
√
d) and

∣f(x) − φ(x)∣ ≤ 130
√
dωf((N

2L2 log3(N + 2))
−1/d

), for any x ∈ [0,1]d/Ω([0,1]d,K, δ),

where K = ⌊N1/d⌋2⌊L1/d⌋2⌊⌊log3(N + 2)⌋1/d⌋ and δ is an arbitrary number in (0, 1
3K

].

With Theorem 2.1 that will be proved in Section 3, we can easily prove Theorem 1.1 for the case
p ∈ [1,∞). To attain the rate in L∞-norm, we need to control the approximation error in the trifling region.
To this end, we introduce a theorem to deal with the approximation inside the trifling region Ω([0,1]d,K, δ).

Theorem 2.2 (Theorem 3.7 of [14] or Theorem 2.1 of [16]). Given any ε > 0, N,L,K ∈ N+, and δ ∈ (0, 1
3K

],

assume f is a continuous function in C([0,1]d) and φ̃ can be implemented by a ReLU network with width
N and depth L. If

∣f(x) − φ̃(x)∣ ≤ ε, for any x ∈ [0,1]d/Ω([0,1]d,K, δ),

then there exists a function φ implemented by a new ReLU network with width 3d(N + 4) and depth L + 2d
such that

∣f(x) − φ(x)∣ ≤ ε + d ⋅ ωf(δ), for any x ∈ [0,1]d.

Now we are ready to prove Theorem 1.1 by assuming Theorem 2.1 is true, which will be proved later
in Section 3.

Proof of Theorem 1.1. We may assume f is not a constant function since it is a trivial case. Then ωf(r) > 0
for any r > 0. Let us first consider the case p ∈ [1,∞). Set K = ⌊N1/d⌋2⌊L1/d⌋2⌊⌊log3(N + 2)⌋1/d⌋ and choose

a small δ ∈ (0, 1
3K

] such that

Kdδ(2∣f(0)∣ + 2ωf(
√
d))

p
= ⌊N1/d

⌋
2
⌊L1/d

⌋
2⌊⌊log3(N + 2)⌋1/d⌋dδ(2∣f(0)∣ + 2ωf(

√
d))

p

≤ (ωf((N
2L2 log3(N + 2))

−1/d
))

p

.

7

By Theorem 2.1, there exists a function φ implemented by a ReLU network with width

max{8d⌊N1/d
⌋ + 3d, 16N + 30} ≤ 16 max{d⌊N1/d

⌋, N + 2}

and depth 11L + 18 such that ∥φ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(
√
d) and

∣f(x) − φ(x)∣ ≤ 130
√
dωf((N

2L2 log3(N + 2))
−1/d

), for any x ∈ [0,1]d/Ω([0,1]d,K, δ),

It follows from µ(Ω([0,1]d,K, δ)) ≤Kdδ and ∥f∥L∞([0,1]d) ≤ ∣f(0)∣ + ωf(
√
d) that

∥f − φ∥p
Lp([0,1]d) = ∫Ω([0,1]d,K,δ)

∣f(x) − φ(x)∣pdx + ∫
[0,1]d/Ω([0,1]d,K,δ)

∣f(x) − φ(x)∣pdx

≤Kdδ(2∣f(0)∣ + 2ωf(
√
d))

p
+ (130

√
dωf((N

2L2 log3(N + 2))
−1/d

))

p

≤ (ωf((N
2L2 log3(N + 2))

−1/d
))

p

+ (130
√
dωf((N

2L2 log3(N + 2))
−1/d

))

p

≤ (131
√
dωf((N

2L2 log3(N + 2))
−1/d

))

p

.

Hence, ∥f − φ∥Lp([0,1]d) ≤ 131
√
dωf((N

2L2 log3(N + 2))
−1/d

).

Next, let us discuss the case p = ∞. Set K = ⌊N1/d⌋2⌊L1/d⌋2⌊⌊log3(N + 2)⌋1/d⌋ and choose a small

δ ∈ (0, 1
3K

] such that

d ⋅ ωf(δ) ≤ ωf((N
2L2 log3(N + 2))

−1/d
).

By Theorem 2.1, there exists a function φ̃ implemented by a ReLU network with width max{8d⌊N1/d⌋ +

3d, 16N + 30} and depth 11L + 18 such that

∣f(x) − φ̃(x)∣ ≤ 130
√
dωf((N

2L2 log3(N + 2))
−1/d

) =∶ ε,

for any x ∈ [0,1]d/Ω([0,1]d,K, δ). By Theorem 2.2, there exists a function φ implemented by a ReLU
network with width

3d(max{8d⌊N1/d
⌋ + 3d, 16N + 30} + 4) ≤ 3d+3 max{d⌊N1/d

⌋, N + 2}

and depth 11L + 18 + 2d such that

∣f(x) − φ(x)∣ ≤ ε + d ⋅ ωf(δ) ≤ 131
√
dωf((N

2L2 log3(N + 2))
−1/d

), for any x ∈ [0,1]d.

So we finish the proof.

2.3. Optimality

This section will show that the approximation rates in Theorem 1.1 and Corollary 1.3 are optimal and
there is no room to improve for the function class Hölder([0,1]d, α, λ). Therefore, the approximation rate
for the whole continuous functions space in terms of width and depth in Theorem 1.1 cannot be improved.
A typical method to characterize the optimal approximation theory of neural networks is to study the
connection between the approximation error and VapnikChervonenkis (VC) dimension [12, 14–16, 29]. This
method relies on the VC-dimension upper bound given in [5]. In this paper, we adopt this method with
several modifications to simplify the proof.

8

Let us first present the definitions of VC-dimension and related concepts. Let H be a class of functions
mapping from a general domain X to {0,1}. We say H shatters the set {x1,x2,⋯,xm} ⊆ X if

∣{[h(x1), h(x2),⋯, h(xm)]
T
∈ {0,1}m ∶ h ∈H}∣ = 2m,

where ∣ ⋅ ∣ denotes the size of a set. This equation means, given any θi ∈ {0,1} for i = 1,2,⋯,m, there exists
h ∈H such that h(xi) = θi for all i. For a general function set F mapping from X to R, we say F shatters
{x1,x2,⋯,xm} ⊆ X if T ○F does, where

T (t) ∶= {
1, t ≥ 0,
0, t < 0

and T ○F ∶= {T ○ f ∶ f ∈ F}.

For any m ∈ N+, we define the growth function of H as

ΠH(m) ∶= max
x1,x2,⋯,xm∈X

∣{[h(x1), h(x2),⋯, h(xm)]
T
∈ {0,1}m ∶ h ∈H}∣.

Definition 2.3 (VC-dimension). Let H be a class of functions from X to {0,1}. The VC-dimension of H,
denoted by VCDim(H), is the size of the largest shattered set, namely,

VCDim(H) ∶= sup{m ∈ N+
∶ ΠH(m) = 2m}

if {m ∈ N+ ∶ ΠH(m) = 2m} is not empty. In the case of {m ∈ N+ ∶ ΠH(m) = 2m} = ∅, we may define
VCDim(H) = 0.

Let F be a class of functions from X to R. The VC-dimension of F , denoted by VCDim(F), is defined
by VCDim(F) ∶= VCDim(T ○F), where

T (t) ∶= {
1, t ≥ 0,
0, t < 0

and T ○F ∶= {T ○ f ∶ f ∈ F}.

In particular, the expression “VC-dimension of a network (architecture)” means the VC-dimension of the
function set that consists of all functions implemented by this network (architecture).

We remark that one may also define VCDim(F) as VCDim(F) ∶= VCDim(T̃ ○F), where

T̃ (t) ∶= {
1, t > 0,
0, t ≤ 0

and T̃ ○F ∶= {T̃ ○ f ∶ f ∈ F}.

Note that function spaces generated by networks are closed under linear transformation. Thus, these two
definitions of VC-dimension are equivalent.

The theorem below, similar to Theorem 4.17 of [14], reveals the connection between VC-dimension and
approximation rate.

Theorem 2.4. Assume F is a set of functions mapping from [0,1]d to R. For any ε > 0, if VCDim(F) ≥ 1
and

inf
φ∈F

∥φ − f∥L∞([0,1]d) ≤ ε, for any f ∈ Hölder([0,1]d, α,1), (2.2)

then VCDim(F) ≥ (9ε)−d/α.

This theorem demonstrates the connection between VC-dimension of F and the approximation rate
using elements of F to approximate functions in Hölder([0,1]d, α, λ). To be precise, the VC-dimension of F
determines an approximation rate lower bound VCDim(F)−α/d/9, which is the best possible approximation
rate. Denote the best approximation error of functions in Hölder([0,1]d, α,1) approximated by ReLU
networks with width N and depth L as

Eα,d(N,L) ∶= sup
f∈Hölder([0,1]d,α,1)

(inf
φ∈NN(width≤N ; depth≤L)

∥φ − f∥L∞([0,1]d)),

We have three remarks listed below.

9

(i) A large VC-dimension cannot guarantee a good approximation rate. For example, it is easy to verify
that

VCDim({f ∶ f(x) = cos(ax), a ∈ R}) = ∞.

However, functions in {f ∶ f(x) = cos(ax), a ∈ R} cannot approximate Hölder continuous functions
well.

(ii) A large VC-dimension is necessary for a good approximation rate, because the best possible approx-
imation rate is controlled by an expression of VC-dimension, as shown in Theorem 2.4. It is shown
in Theorem 6 and 8 of [5] that the VC-dimension of ReLU networks has two types of upper bounds:
O(WL lnW) and O(WU). Here, W , L, and U are the numbers of parameters, layers, and neurons, re-
spectively. If we let N denote the maximum width of the network, then W = O(N2L) and U = O(NL),
implying that

WL lnW = O(N2L ⋅L ln(N2L)) = O(N2L2 ln(NL))

and
WU = O(N2L ⋅NL) = O(N3L2

).

If follows that

VCDim(NN(width ≤ N ; depth ≤ L)) ≤ min{O(N2L2 ln(NL)),O(N3L2
)},

deducing

C1(α, d)(min{N2L2 ln(NL),N3L2
})

−α/d
≤

´¹¹¹¸¹¹¹¶
implied by Theorem 2.4

Eα,d(N,L) ≤ C2(α, d)(N
2L2 lnN)

−α/d

´¹¹¹¸¹¹¶
implied by Corollary 1.2 and 1.3

, (2.3)

where C1(α, d) and C2(α, d) are two positive constants determined by s, d, and C2(s, d) can be explicitly
expressed.

• When L = L0 is fixed, Equation (2.3) implies

C1(α, d,L0)(N
2 lnN)

−α/d
≤ Eα,d(N,L0) ≤ C2(α, d,L0)(N

2 lnN)
−α/d,

where C1(α, d,L0) and C2(α, d,L0) are two positive constants determined by α, d,L0.

• When N = N0 is fixed, Equation (2.3) implies

C1(α, d,N0)L
−2α/d

≤ Eα,d(N0, L) ≤ C2(α, d,N0)L
−2α/d,

where C1(α, d,N0) and C2(α, d,N0) are two positive constants determined by α, d,N0.

• It is easy to verify that Equation (2.3) is tight except for the following region

{(N,L) ∈ N2
∶ C3(α, d) ≤ N ≤ LC4(α,d)},

C3 = C3(α, d) and C4 = C4(α, d) are two positive constants. See Figure 1 for an illustration for
the case C3 = 1000 and C4 = 1/100.

Finally, let us present the detailed proof of Theorem 2.4.

Proof of Theorem 2.4. Recall that the VC-dimension of a function set is defined as the size of the largest
set of points that this class of functions can shatter. So our goal is to find a subset of F to shatter O(ε−d/α)
points in [0,1]d, which can be divided into two steps.

• Construct {fχ ∶ χ ∈ B} ⊆ Hölder([0,1]d, α,1) that scatters O(ε−d/α) points, where B is a set defined
later.

10

• Design φχ ∈ F , for each χ ∈ B, based on fχ and Equation (2.2) such that {φχ ∶ χ ∈ F} ⊆ F also
shatters O(ε−d/α) points.

The details of these two steps can be found below.

Step 1∶ Construct {fχ ∶ χ ∈ B} ⊆ Hölder([0,1]d, α,1) that scatters O(ε−d/α) points.

We may assume ε ≤ 2/9 since the case ε > 2/9 is trivial. In fact, ε > 2/9 implies

VCDim(F) ≥ 1 ≥ 1/2 ≥ 2−d/α > (9ε)−d/α.

Let K = ⌊(9ε/2)
−1/α

⌋ ∈ N+ and divide [0,1]d into Kd non-overlapping sub-cubes {Qβ}β as follows:

Qβ ∶= {x = [x1, x2,⋯, xd]
T
∈ [0,1]d ∶ xi ∈ [

βi
K
, βi+1
K

], i = 1,2,⋯, d},

for any index vector β = [β1, β2,⋯, βd]
T ∈ {0,1,⋯,K − 1}d.

Define a function ζQ on [0,1]d corresponding to Q = Q(x0, η) ⊆ [0,1]d such that:

• ζQ(x0) = (η/2)α/2;

• ζQ(x) = 0 for any x ∉ Q/∂Q, where ∂Q is the boundary of Q;

• ζQ is linear on the line that connects x0 and x for any x ∈ ∂Q.

Define
B ∶= {χ ∶ χ is a map from {0,1,⋯,K − 1}d to {−1,1}}.

For each χ ∈ B, we define
fχ(x) ∶= ∑

β∈{0,1,⋯,K−1}d
χ(β)ζQβ

(x),

where ζQβ
(x) is the associated function introduced just above. It is easy to check that {fχ ∶ χ ∈ B} ⊆

Hölder([0,1]d, α,1) can shatter Kd = O(ε−d/α) points in [0,1]d.

Step 2∶ Construct {φχ ∶ χ ∈ B} that also scatters O(ε−d/α) points.

By Equation (2.2), for each χ ∈ B, there exists φχ ∈ F such that

∥φχ − fχ∥L∞([0,1]d) ≤ ε + ε/81.

Let µ(⋅) denote the Lebesgue measure of a set. Then, for each χ ∈ B, there existsHχ ⊆ [0,1]d with µ(Hχ) = 0
such that

∣φχ(x) − fχ(x)∣ ≤
82
81
ε, for any x ∈ [0,1]/Hχ.

Set H = ∪χ∈BHχ, then we have µ(H) = 0 and

∣φχ(x) − fχ(x)∣ ≤
82
81
ε, for any χ ∈ B and x ∈ [0,1]/H. (2.4)

Since Qβ has a sidelength 1
K
= 1

⌊(9ε/2)−1/α⌋ , we have, for each β ∈ {0,1,⋯,K − 1}d and any x ∈ 1
10
Qβ

1,

∣fχ(x)∣ = ∣ζQβ
(x)∣ ≥ 9

10
∣ζQβ

(xQβ
)∣ = 9

10
(1

2⌊(9ε/2)−1/α⌋)
α
/2 ≥ 81

80
ε, (2.5)

where xQβ
is the center of Qβ.

Note that (1
10
Qβ)/H is not empty, since µ((1

10
Qβ)/H) > 0 for each β ∈ {0,1,⋯,K − 1}d. Together with

Equation (2.4) and (2.5), there exists xβ ∈ (1
10
Qβ)/H such that, for each β ∈ {0,1,⋯,K − 1}d and each

χ ∈ B,
∣fχ(xβ)∣ ≥

81
80
ε > 82

81
ε ≥ ∣fχ(xβ) − φχ(xβ)∣,

1 1
10
Qβ denotes the closed cube whose sidelength is 1/10 of that of Qβ and which shares the same center of Qβ.

11

Hence, fχ(xβ) and φχ(xβ) have the same sign for each χ ∈ B and β ∈ {0,1,⋯,K − 1}d. Then {φχ ∶ χ ∈

B} shatters {xβ ∶ β ∈ {0,1,⋯,K − 1}d} since {fχ ∶ χ ∈ B} shatters {xβ ∶ β ∈ {0,1,⋯,K − 1}d}. Therefore,

VCDim(F) ≥ VCDim({φχ ∶ χ ∈ B}) ≥Kd
= ⌊(9ε/2)−1/α

⌋
d
≥ (9ε)−d/α,

where the last inequality comes from the fact ⌊x⌋ ≥ x/2 ≥ x/(21/α) for any x ∈ [1,∞) and α ∈ (0,1]. So we
finish the proof.

2.4. Approximation in irregular domain

We extend our analysis to general continuous functions defined on any irregular bounded set in Rd.
The key idea is to extend the target function to a hypercube while preserving the modulus of continuity.
The extension of continuous (smooth) functions has been widely studied, e.g., [43] for smooth functions and
[44] for continuous functions. For simplicity, we use Lemma 4.2 of [15]. The proof can be found therein.
For a general set E ⊆ Rd, the modulus of continuity of f ∈ C(E) is defined via

ωEf (r) ∶= sup{∣f(x) − f(y)∣ ∶ x,y ∈ E, ∥x − y∥2 ≤ r}, for any r ≥ 0.

In particular, ωf(⋅) is short of ωEf (⋅) in the case of E = [0,1]d. Then, Theorem 1.1 can be generalized to

f ∈ C(E) for any bounded set E ⊆ [−R,R]d with R > 0, as shown in the following theorem.

Theorem 2.5. Given any bounded continuous function f ∈ C(E) with E ⊆ [−R,R]d and R > 0, for any
N ∈ N+, L ∈ N+, and p ∈ [1,∞], there exists a function φ implemented by a ReLU network with width
C1 max{d⌊N1/d⌋, N + 2} and depth 11L +C2 such that

∥f − φ∥Lp(E) ≤ 131(2R)
d/p√dωEf (2R(N2L2 log3(N + 2))

−1/d
),

where C1 = 16 and C2 = 18 if p ∈ [1,∞); C1 = 3d+3 and C2 = 18 + 2d if p = ∞.

Proof. Given any bounded continuous function f ∈ C(E), by Lemma 4.2 of [15] via setting S = [−R,R]d,
there exists g ∈ C([−R,R]d) such that

• g(x) = f(x) for any x ∈ E ⊆ S = [−R,R]d;

• ωSg (r) = ω
E
f (r) for any r ≥ 0.

Define
g̃(x) ∶= g(2Rx −R), for any x ∈ [0,1]d.

By applying Theorem 1.1 to g̃ ∈ C([0,1]d), there exists a function φ̃ implemented by a ReLU network with
width C1 max{d⌊N1/d⌋, N + 2} and depth 11L +C2 such that

∥φ̃ − g̃∥Lp([0,1]d) ≤ 131
√
dωg̃((N

2L2 log3(N + 2))
−1/d

),

where C1 = 16 and C2 = 18 if p ∈ [1,∞); C1 = 3d+3 and C2 = 18 + 2d if p = ∞.
Note that f(x) = g(x) = g̃(x+R

2R
) for any x ∈ E ⊆ S = [−R,R]d and

ωg̃(r) = ω
S
g (2Rr) = ω

E
f (2Rr), for any r ≥ 0.

Define φ(x) ∶= φ̃(x+R
2R

) = φ̃ ○ L(x) for any x ∈ Rd, where L ∶ Rd → Rd is an affine linear map given by

L(x) = x+R
2R

. Clearly, φ can be implemented by a ReLU network with width C1 max{d⌊N1/d⌋, N + 2} and

12

depth 11L +C2, where C1 = 16 and C2 = 18 if p ∈ [1,∞); C1 = 3d+3 and C2 = 18 + 2d if p = ∞. Moreover, for
any x ∈ E ⊆ S = [−R,R]d, we have x+R

2R
∈ [0,1]d, implying

∥φ − f∥Lp(E) = ∥φ − g∥Lp(E) = ∥φ̃ ○ L − g̃ ○ L∥Lp(E)

≤ ∥φ̃ ○ L − g̃ ○ L∥Lp([−R,R]d) = (2R)
d/p

∥φ̃ − g̃∥Lp([0,1]d)

≤ 131(2R)
d/p√dωg̃((N

2L2 log3(N + 2))
−1/d

)

= 131(2R)
d/p√dωEf (2R(N2L2 log3(N + 2))

−1/d
).

With the discussion above, we have proved Theorem 2.5.

3. Proof of Theorem 2.1

We will prove Theorem 2.1 in this section. We first present the key ideas in Section 3.1. The detailed
proof is presented in Section 3.3, based on two propositions in Section 3.1, the proofs of which can be found
in Section 4.

3.1. Key ideas of proving Theorem 2.1

Given an arbitrary f ∈ C([0,1]d), our goal is to construct an almost piecewise constant function φ
implemented by a ReLU network to approximate f well. To this end, we introduce a piecewise constant
function fp ≈ f serving as an intermediate approximant in our construction in the sense that

f ≈ fp on [0,1]d and fp ≈ φ on [0,1]d/Ω([0,1]d,K, δ).

The approximation in f ≈ fp is a simple and standard technique in constructive approximation. The most
technical part is to design a ReLU network with the desired width and depth to implement a function φ with
φ ≈ fp outside Ω([0,1]d,K, δ). See Figure 4 for an illustration. The introduction of the trifling region is to
ease the construction of φ, which is a continuous piecewise linear function, to approximate the discontinuous
function fp by removing the difficulty near discontinuous points, essentially smoothing fp by restricting the
approximation domain in [0,1]d/Ω([0,1]d,K, δ).

0 1/9 2/9 3/9 4/9 5/9 6/9 7/9 8/9 1

0.0

0.5

1.0

1.5

2.0

Q0 Q3 Q6Q1 Q4 Q7Q2 Q5 Q8

f

fp

φ

Qβ

Ω([0, 1], K, δ)
(
xβ, f (xβ)

)

Figure 4: An illustration of f , fp, φ, xβ , Qβ , and the trifling region Ω([0,1]d,K, δ) in the one-dimensional case for β ∈
{0,1,⋯,K−1}d, whereK = N2L2 log3(N+2) and d = 1 withN = 1 and L = 3. f is the target function; fp is the piecewise constant
function approximating f ; φ is a function, implemented by a ReLU network, approximating f ; and xβ is a representative of

Qβ . The measure of Ω([0,1]d,K, δ) can be arbitrarily small as we shall see in the proof of Theorem 1.1.

Now let us discuss the detailed steps of construction.

(i) First, divide [0,1]d into a union of important regions {Qβ}β and the trifling region Ω([0,1]d,K, δ),
where each Qβ is associated with a representative xβ ∈ Qβ such that f(xβ) = fp(xβ) for each index
vector β ∈ {0,1, . . . ,K −1}d, where K = O((N2L2 lnN)1/d) is the partition number per dimension (see
Figure 7 for examples for d = 1 and d = 2).

13

(ii) Next, we design a vector function Φ1(x) constructed via

Φ1(x) = [φ1(x1), φ1(x2), ⋯, φ1(xd)]
T

to project the whole cube Qβ to a d-dimensional index β for each β, where each one-dimensional
function φ1 is a step function implemented by a ReLU network.

(iii) The third step is to solve a point fitting problem. To be precise, we construct a function φ2 implemented
by a ReLU network to map β ∈ {0,1,⋯,K − 1}d approximately to fp(xβ) = f(xβ). Then φ2 ○Φ1(x) =
φ2(β) ≈ fp(xβ) = f(xβ) ≈ f(x) for any x ∈ Qβ and each β, implying φ ∶= φ2 ○ Φ1 ≈ fp ≈ f on
[0,1]d/Ω([0,1]d,K, δ). We would like to point out that we only need to care about the values of φ2

at a set of points {0,1,⋯,K − 1}d in the construction of φ2 according to our design φ = φ2 ○ Φ1 as
illustrated in Figure 5. Therefore, it is not necessary to care about the values of φ2 sampled outside
the set {0,1,⋯,K − 1}d, which is a key point to ease the design of a ReLU network to implement φ2

as we shall see later.

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Q0,0 Q1,0 Q2,0 Q3,0

Q0,1 Q1,1 Q2,1 Q3,1

Q0,2 Q1,2 Q2,2 Q3,2

Q0,3 Q1,3 Q2,3 Q3,3

Ω([0, 1]d, K, δ) for K = 4, d = 2

Qβ for β ∈ {0, 1, 2, 3}2

xβ for β ∈ {0, 1, 2, 3}2

Φ1(x) = β
=⇒
for x ∈ Qβ

A set of
d-dimensional indices:
β ∈ {0, 1, · · · ,K − 1}d

=⇒ φ2(β) ≈ f(xβ)

A set of function values
at representatives:{

f(xβ) : β ∈ {0, 1, · · · ,K − 1}d
}

Figure 5: An illustration of the desired function φ = φ2○Φ1. Note that φ ≈ f on [0,1]d/Ω([0,1]d,K, δ), since φ(x) = φ2○Φ1(x) =
φ2(β) ≈ f(xβ) ≈ f(x) for any x ∈ Qβ and each β ∈ {0,1,⋯,K − 1}d.

We remark that in Figure 5, we have

φ(x) = φ2 ○Φ1(x) = φ2(β)
E1
≈ f(xβ)

E2
≈ f(x)

for any x ∈ Qβ and each β ∈ {0,1,⋯,K − 1}d. Thus, φ − f is bounded by E1 + E2 outside the trifling region.

Observe that E2 is bounded by ωf(
√
d/K). As we shall see later in Section 3.3, E1 can also be bounded

by ωf(
√
d/K) by applying Proposition 3.2. Hence, φ − f is controlled by 2ωf(

√
d/K) outside the trifling

region, which deduces the desired approximation error.
Finally, we discuss how to implement Φ1 and φ2 by deep ReLU networks with width O(N) and depth

O(L) using two propositions as we shall prove in Section 4.2 and 4.3 later. We first show how to construct
a ReLU network with the desired width and depth by Proposition 3.1 to implement a one-dimensional step
function φ1. Then Φ1 can be attained via defining

Φ1(x) = [φ1(x1), φ1(x2), ⋯, φ1(xd)]
T
, for any x = [x1, x2,⋯, xd]

T
∈ Rd.

Proposition 3.1. For any N,L, d ∈ N+ and δ ∈ (0, 1
3K

] with

K = ⌊N1/d
⌋
2
⌊L2/d

⌋⌊n1/d
⌋, where n = ⌊log3(N + 2)⌋,

there exists a one-dimensional function φ implemented by a ReLU network with width 8⌊N1/d⌋+3 and depth
2⌊L1/d⌋ + 5 such that

φ(x) = k, if x ∈ [k
K
, k+1
K

− δ ⋅ 1{k≤K−2}] for k = 0,1,⋯,K − 1.

14

The setting K = ⌊N1/d⌋2⌊L1/d⌋2⌊n1/d⌋ = O(N2/dL2/dn1/d) is not neat here, but it is very convenient for
later use. The construction of φ2 is a direct result of Proposition 3.2 below, the proof of which relies on the
bit extraction technique in [3].

Proposition 3.2. Given any ε > 0 and arbitrary N,L,J ∈ N+ with J ≤ N2L2⌊log3(N + 2)⌋, assume yj ≥ 0
for j = 0,1,⋯, J − 1 are samples with

∣yj − yj−1∣ ≤ ε, for j = 1,2,⋯, J − 1.

Then there exists φ ∈ NN(#input = 1; width ≤ 16N + 30; depth ≤ 6L + 10; #output = 1) such that

(i) ∣φ(j) − yj ∣ ≤ ε for j = 0,1,⋯, J − 1.

(ii) 0 ≤ φ(x) ≤ max{yj ∶ j = 0,1,⋯, J − 1} for any x ∈ R.

3.2. Construction of final network

We will discuss the construction of the final network approximating the target function with the same
setting as in Section 3.1. There are two main parts: 1) Construct the final network architecture based on
Proposition 3.1 and 3.2; 2) Implement the network architectures in Proposition 3.1 and 3.2.

Final network architecture based on Proposition 3.1 and 3.2

By the idea mentioned in Figure 5, the final network architecture can be implemented as shown in
Figure 6.

x1 O(N1/d)

O(L1/d)

φ1

x2 O(N1/d)

O(L1/d)

φ1

xd O(N1/d)

O(L1/d)

φ1

ψ1 O(N)

O(L)

ψ2 φ(x)

Φ1(x) = [φ1(x1), · · · , φ1(xd)]T φ2 = ψ2 ◦ ψ1

Figure 6: An illustration of the final network architecture with width max{O(dN1/d), O(N)} and depth O(L). ψ1 ∶ Rd → R
is a linear function. φ1 and ψ2 are implemented via Proposition 3.1 and 3.2, respectively.

Note that φ1 in Figure 6 is a step function mapping x ∈ [k
K
, k
K
−δ ⋅1{k≤K−1}] to k for each k ∈ {0,1,⋯,K−

1}. It can be easily implemented via Proposition 3.1. Clearly, by defining Φ1(x) = [φ1(x1), φ1(x2),⋯, φ1(xd)]
T

,
Φ1 maps x ∈ Qβ to β.

As shown in Figure 5, we need to design a network to compute φ2 mapping β ∈ {0,1,⋯,K − 1}d

approximately to f(xβ). To this end, we first construct a linear function ψ1 ∶ Rd → R mapping β ∈

{0,1,⋯,K−1}d to R for the purpose of converting a d-dimensional point-fitting problem to a one-dimensional
one, and then construct a network to compute ψ2 with ψ2(ψ1(β)) ≈ f(xβ) via applying Proposition 3.2.
Thus, we have φ2(β) ∶= ψ2 ○ ψ(β) ≈ f(xβ) as desired.

Network architectures in Proposition 3.1 and 3.2

To prove Proposition 3.1, we need to construct a ReLU network with width O(N1/d) and depth O(L1/d)

to compute a step function with O((N2L2 lnN)1/d) “steps” outside the trifling region. It is easy to construct
a ReLU network with O(W) parameters to compute a step function with W “steps” outside a small region.

15

As we shall see later in Section 4.2, the composition architecture of ReLU networks can help to implement
step functions with much more “steps”. Refer to Section 4.2 for the detailed proof of Proposition 3.1.

Proposition 3.2 essentially solves a point-fitting problem with N2L2⌊log3(N +2)⌋ points via a ReLU net-
work with widthO(N) and depthO(L). SetM = N2L, L̂ = L⌊log3(N+2)⌋, and represent j ∈ {0,1,⋯,ML̂−1}
via j =mL̂ + k, where m ∈ {0,1,⋯,M − 1} and k ∈ {0,1,⋯, L̂ − 1}.

Define am,k = ⌊ym,k/ε⌋ where ym,k = ymL̂+k. Then

∣am,kε − ym,k ∣ = ∣⌊ym,k/ε⌋ε − ym,k∣ ≤ ε.

It suffices to prove φ(m,k) = am,k. The assumption ∣yj−yj−1∣ < ε implies that bm,k ∶= am,k−am,k−1 ∈ {−1,0,1}.
Thus, there exist cm,k ∈ {0,1} and dm,k ∈ {0,1} such that bm,k = cm,k − dm,k.

Note that

am,k = am,0 +
k

∑
j=1

(am,j − am,j−1) = am,0 +
k

∑
j=1

bm,j = am,0 +
k

∑
j=1

cm,j −
k

∑
j=1

dm,j .

It is easy to construct a ReLU network with width O(N) and depth O(L) (O(N2L) parameters in
total) to compute φ1 such that φ1(m) = am,0 for each m ∈ {0,1,⋯,M − 1} with M = N2L. By the bit
extraction technique in [3], one could construct φ2, φ3 ∈ NN(width ≤ O(N); depth ≤ O(L)) such that
φ2(m,k) = ∑

k
j=1 cm,j and φ3(m,k) = ∑

k
j=1 dm,j . Thus, φ(m,k) ∶= φ1(m) + φ2(m,k) − φ3(m,k) = am,k as

desired.
In order to use the bit extraction technique (two types of bits 0 or 1) to solve the point-fitting problem,

we essentially simplify the target as discussed above. That is,

positive number ym,k Ð→ integer am,k = ⌊ym,k/ε⌋
ε
≈ ym,k

Ð→ bm,k = am,k − am,k−1 ∈ {−1,0,1}

Ð→ bm,k = cm,k − dm,k with cm,k, dm,k ∈ {0,1}.

The detailed proof of Proposition 3.2 can be found in Section 4.3.

3.3. Detailed proof

We essentially construct an almost piecewise constant function implemented by a ReLU network with
width O(N) and depth O(L) to approximate f . We may assume f is not a constant function since it is a
trivial case. Then ωf(r) > 0 for any r > 0. It is clear that ∣f(x) − f(0)∣ ≤ ωf(

√
d) for any x ∈ [0,1]d. Define

f̃ = f − f(0) + ωf(
√
d), then 0 ≤ f̃(x) ≤ 2ωf(

√
d) for any x ∈ [0,1]d.

Let M = N2L, n = ⌊log3(N + 2)⌋, K = ⌊N1/d⌋2⌊L1/d⌋2⌊n1/d⌋, and δ be an arbitrary number in (0, 1
3K

].
The proof can be divided into four steps as follows:

1. Normalize f as f̃ , divide [0,1]d into a union of sub-cubes {Qβ}β∈{0,1,⋯,K−1}d and the trifling region

Ω([0,1]d,K, δ), and denote xβ as the vertex of Qβ with minimum ∥ ⋅ ∥1 norm;

2. Construct a sub-network to implement a vector function Φ1 projecting the whole cube Qβ to the
d-dimensional index β for each β, i.e., Φ1(x) = β for all x ∈ Qβ;

3. Construct a sub-network to implement a function φ2 mapping the index β approximately to f̃(xβ).
This core step can be further divided into three sub-steps:

3.1. Construct a sub-network to implement ψ1 bijectively mapping the index set {0,1,⋯,K − 1}d to
an auxiliary set A1 ⊆ {

j
2Kd ∶ j = 0,1,⋯,2Kd} defined later (see Figure 8 for an illustration);

3.2. Determine a continuous piecewise linear function g with a set of breakpoints A1 ∪ A2 ∪ {1}
satisfying: 1) assign the values of g at breakpoints in A1 based on {f̃(xβ)}β, i.e., g ○ ψ1(β) =

f̃(xβ); 2) assign the values of g at breakpoints in A2∪{1} to reduce the variation of g for applying
Proposition 3.2;

16

3.3. Apply Proposition 3.2 to construct a sub-network to implement a function ψ2 approximating
g well on A1 ∪ A2 ∪ {1}. Then the desired function φ2 is given by φ2 = ψ2 ○ ψ1 satisfying
φ2(β) = ψ2 ○ ψ1(β) ≈ g ○ ψ1(β) = f̃(xβ);

4. Construct the final network to implement the desired function φ such that φ(x) = φ2 ○Φ1(x) + f(0) −
ωf(

√
d) ≈ f̃(xβ) + f(0) − ωf(

√
d) = f(xβ) ≈ f(x) for any x ∈ Qβ and β ∈ {0,1,⋯,K − 1}d.

The details of these steps can be found below.

Step 1∶ Divide [0,1]d into {Qβ}β∈{0,1,⋯,K−1}d and Ω([0,1]d,K, δ).

Define xβ ∶= β/K and

Qβ ∶= {x = [x1,⋯, xd]
T
∈ [0,1]d ∶ xi ∈ [

βi
K
, βi+1
K

− δ ⋅ 1{βi≤K−2}], i = 1,⋯, d}

for each d-dimensional index β = [β1,⋯, βd]
T ∈ {0,1,⋯,K − 1}d. Recall that Ω([0,1]d,K, δ) is the trifling

region defined in Equation (2.1). Apparently, xβ is the vertex of Qβ with minimum ∥ ⋅ ∥1 norm and

[0,1]d = (∪β∈{0,1,⋯,K−1}d Qβ)⋃Ω([0,1]d,K, δ).

See Figure 7 for illustrations.

0.00 0.25 0.50 0.75 1.00

δ

Q0

δ

Q1

δ

Q2 Q3

Ω([0, 1]d, K, δ) for K = 4, d = 1

Qβ for β ∈ {0, 1, 2, 3}
xβ for β ∈ {0, 1, 2, 3}

(a)

0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

Q0,0 Q1,0 Q2,0 Q3,0

Q0,1 Q1,1 Q2,1 Q3,1

Q0,2 Q1,2 Q2,2 Q3,2

Q0,3 Q1,3 Q2,3 Q3,3

Ω([0, 1]d, K, δ) for K = 4, d = 2

Qβ for β ∈ {0, 1, 2, 3}2

xβ for β ∈ {0, 1, 2, 3}2

(b)

Figure 7: Illustrations of Ω([0,1]d,K, δ), Qβ, and xβ for β ∈ {0,1,⋯,K − 1}d. (a) K = 4 and d = 1. (b) K = 4 and d = 2.

Step 2∶ Construct Φ1 mapping x ∈ Qβ to β.

By Proposition 3.1, there exists φ1 ∈ NN(width ≤ 8⌊N1/d⌋ + 3; depth ≤ 2⌊L1/d⌋ + 5) such that

φ1(x) = k, if x ∈ [k
K
, k+1
K

− δ ⋅ 1{k≤K−2}] for k = 0,1,⋯,K − 1.

It follows that φ1(xi) = βi if x = [x1, x2,⋯, xd]
T ∈ Qβ for each β = [β1, β2,⋯, βd]

T .
By defining

Φ1(x) ∶= [φ1(x1), φ1(x2), ⋯, φ1(xd)]
T
, for any x = [x1, x2,⋯, xd]

T
∈ Rd,

we have Φ1(x) = β if x ∈ Qβ for each β ∈ {0,1,⋯,K − 1}d.

Step 3∶ Construct φ2 mapping β approximately to f̃(xβ).

The construction of the sub-network implementing φ2 is essentially based on Proposition 3.2. To meet
the requirements of applying Proposition 3.2, we first define two auxiliary set A1 and A2 as

A1 ∶= { i
Kd−1 +

k
2Kd ∶ i = 0,1,⋯,Kd−1

−1 and k = 0,1,⋯,K − 1}

17

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 A1

A2

{1}
g

Figure 8: An illustration of A1, A2, {1}, and g for d = 2 and K = 4.

and
A2 ∶= { i

Kd−1 +
K+k
2Kd ∶ i = 0,1,⋯,Kd−1

−1 and k = 0,1,⋯,K − 1}.

Clearly, A1 ∪A2 ∪ {1} = {
j

2Kd ∶ j = 0,1,⋯,2Kd} and A1 ∩A2 = ∅. See Figure 7 for an illustration of A1 and
A2. Next, we further divide this step into three sub-steps.

Step 3.1∶ Construct ψ1 bijectively mapping {0,1,⋯,K − 1}d to A1.

Inspired by the binary representation, we define

ψ1(x) ∶=
xd

2Kd
+
d−1

∑
i=1

xi
Ki

, for any x = [x1, x2,⋯, xd]
T
∈ Rd. (3.1)

Then ψ1 is a linear function bijectively mapping the index set {0,1,⋯,K − 1}d to

{
βd

2Kd +
d−1

∑
i=1

βi
Ki ∶ β ∈ {0,1,⋯,K − 1}d}

= { i
Kd−1 +

k
2Kd ∶ i = 0,1,⋯,Kd−1

−1 and k = 0,1,⋯,K − 1} = A1.

Step 3.2∶ Construct g to satisfy g○ψ1(β) = f̃(xβ) and to meet the requirements of applying Proposition 3.2.

Let g ∶ [0,1] → R be a continuous piecewise linear function with a set of breakpoints {
j

2Kd ∶ j = 0,1,⋯,2Kd} =

A1 ∪A2 ∪ {1} and the values of g at these breakpoints satisfy the following properties:

• The values of g at the breakpoints in A1 are set as

g(ψ1(β)) = f̃(xβ), for any β ∈ {0,1,⋯,K − 1}d; (3.2)

• At the breakpoint 1, let g(1) = f̃(1), where 1 = [1,1,⋯,1]T ∈ Rd;

• The values of g at the breakpoints inA2 are assigned to reduce the variation of g, which is a requirement
of applying Proposition 3.2. Note that

{ i
Kd−1 −

K+1
2Kd ,

i
Kd−1 } ⊆ A1 ∪ {1}, for i = 1,2,⋯,Kd−1,

implying the values of g at i
Kd−1 −

K+1
2Kd and i

Kd−1 have been assigned for i = 1,2,⋯,Kd−1. Thus, the
values of g at the breakpoints in A2 can be successfully assigned by letting g linear on each interval

[i
Kd−1 −

K+1
2Kd ,

i
Kd−1] for i = 1,2,⋯,Kd−1, since A2 ⊆ ⋃

Kd−1
i=1 [i

Kd−1 −
K+1
2Kd ,

i
Kd−1]. See Figure 8 for an

illustration.

18

Apparently, such a function g exists (see Figure 8 for an example) and satisfies

∣g(j
2Kd) − g(

j−1
2Kd)∣ ≤ max{ωf(

1
K
), ωf(

√
d)/K} ≤ ωf(

√
d
K

), for j = 1,2,⋯,2Kd,

and
0 ≤ g(j

2Kd) ≤ 2ωf(
√
d), for j = 0,1,⋯,2Kd.

Step 3.3∶ Construct ψ2 approximating g well on A1 ∪A2 ∪ {1}.

Note that

2Kd
= 2(⌊N1/d

⌋
2
⌊L1/d

⌋
2
⌊n1/d

⌋)
d
≤ 2(N2L2n) ≤ N2

⌈
√

2L⌉2⌊log3(N + 2)⌋.

By Proposition 3.2 (set yj = g(
j

2K2) and ε = ωf(
√
d
K

) > 0 therein), there exists

ψ̃2 ∈ NN(#input = 1; width ≤ 16N + 30; depth ≤ 6⌈
√

2L⌉ + 10; #output = 1)

such that
∣ψ̃2(j) − g(

j
2Kd)∣ ≤ ωf(

√
d
K

), for j = 0,1,⋯,2Kd
− 1,

and

0 ≤ ψ̃2(x) ≤ max{g(j
2Kd) ∶ j = 0,1,⋯,2Kd

− 1} ≤ 2ωf(
√
d), for any x ∈ R.

By defining ψ2(x) ∶= ψ̃2(2K
dx) for any x ∈ R, we have ψ2 ∈ NN(#input = 1; width ≤ 16N + 30; depth ≤

6⌈
√

2L⌉ + 10; #output = 1),

0 ≤ ψ2(x) = ψ̃2(2K
dx) ≤ 2ωf(

√
d), for any x ∈ R, (3.3)

and
∣ψ2(

j
2Kd) − g(

j
2Kd)∣ = ∣ψ̃2(j) − g(

j
2Kd)∣ ≤ ωf(

√
d
K

), for j = 0,1,⋯,2Kd
− 1. (3.4)

Let us end Step 3 by defining the desired function φ2 as φ2 ∶= ψ2 ○ ψ1. Note that ψ1 ∶ Rd → R is a
linear function and ψ2 ∈ NN(#input = 1; width ≤ 16N + 30; depth ≤ 6⌈

√
2L⌉ + 10; #output = 1). Thus,

φ2 ∈ NN(#input = 1; width ≤ 16N + 30; depth ≤ 6⌈
√

2L⌉ + 10; #output = 1). By Equation (3.2) and (3.4),
we have

∣φ2(β) − f̃(xβ)∣ = ∣ψ2(ψ1(β)) − g(ψ1(β))∣ ≤ ωf(
√
d
K

), (3.5)

for any β ∈ {0,1,⋯,K − 1}d. Equation (3.3) and φ2 = ψ2 ○ ψ1 implies

0 ≤ φ2(x) ≤ 2ωf(
√
d), for any x ∈ Rd. (3.6)

Step 4∶ Construct the final network to implement the desired function φ.

Define φ ∶= φ2 ○ Φ1 + f(0) − ωf(
√
d). Since φ1 ∈ NN(width ≤ 8⌊N1/d⌋ + 3; depth ≤ 2⌊L1/d⌋ + 5]), we

have Φ1 ∈ NN(#input = d; width ≤ 8d⌊N1/d⌋ + 3d; depth ≤ 2L + 5; #output = d). If follows from the fact
⌈
√

2L⌉ ≤ ⌈ 3
2
L⌉ ≤ 3

2
L + 1

2
that 6⌈

√
2L⌉ + 10 ≤ 9L + 13, implying

φ2 ∈ NN(#input = 1; width ≤ 16N + 30; depth ≤ 6⌈
√

2L⌉ + 10; #output = 1)

⊆ NN(#input = 1; width ≤ 16N + 30; depth ≤ 9L + 13; #output = 1).

Thus, φ = φ2 ○Φ1 + f(0) − ωf(
√
d) is in

NN(width ≤ max{8d⌊N1/d
⌋ + 3d,16N + 30}; depth ≤ (2L + 5) + (9L + 13) = 11L + 18).

19

Now let us estimate the approximation error. Note that f = f̃ + f(0) −ωf(
√
d). By Equation (3.5), for

any x ∈ Qβ and β ∈ {0,1,⋯,K − 1}d, we have

∣f(x) − φ(x)∣ = ∣f̃(x) − φ2(Φ1(x))∣ = ∣f̃(x) − φ2(β)∣

≤ ∣f̃(x) − f̃(xβ)∣ + ∣f̃(xβ) − φ2(β)∣

≤ ωf(
√
d
K

) + ωf(
√
d
K

) ≤ 2ωf(64
√
d(N2L2 log3(N + 2))

−1/d
),

where the last inequality comes from the fact

K = ⌊N1/d
⌋
2
⌊L1/d

⌋
2
⌊n1/d

⌋ ≥ N2/dL2/dn1/d
32

=
N2/dL2/d⌊log3(N+2)⌋1/d

32
≥

(N2L2 log3(N+2))1/d
64

,

for any N,L ∈ N+. Recall the fact ωf(j ⋅ r) ≤ j ⋅ ωf(r) for any j ∈ N+ and r ∈ [0,∞). Therefore, for any
x ∈ ⋃β∈{0,1,⋯,K−1}d Qβ=[0,1]

d/Ω([0,1]d,K, δ), we have

∣f(x) − φ(x)∣ ≤ 2ωf(64
√
d(N2L2 log3(N + 2))

−1/d
)

≤ 2⌈64
√
d⌉ωf((N

2L2 log3(N + 2))
−1/d

)

≤ 130
√
dωf((N

2L2 log3(N + 2))
−1/d

).

It remains to show the upper bound of φ. By Equation (3.6) and φ = φ2 ○Φ1 + f(0) −ωf(
√
d), it holds

that ∥φ∥L∞(Rd) ≤ ∣f(0)∣ + ωf(
√
d). Thus, we finish the proof.

4. Proofs of propositions in Section 3.1

In this section, we will prove Proposition 3.1 and 3.2. We first introduce several basic results of ReLU
networks. Next, we prove these two propositions based on these basic results.

4.1. Basic results of ReLU networks

To simplify the proofs of two propositions in Section 3.1, we introduce three lemmas below, which are
basic results of ReLU networks

Lemma 4.1. For any N1,N2 ∈ N+, given N1(N2 + 1) + 1 samples (xi, yi) ∈ R2 with x0 < x1 < ⋯ < xN1(N2+1)
and yi ≥ 0 for i = 0,1,⋯,N1(N2+1), there exists φ ∈ NN(#input = 1; widthvec = [2N1,2N2+1]; #output = 1)
satisfying the following conditions.

(i) φ(xi) = yi for i = 0,1,⋯,N1(N2 + 1).

(ii) φ is linear on each interval [xi−1, xi] for i ∉ {(N2 + 1)j ∶ j = 1,2,⋯,N1}.

Lemma 4.2. Given any N,L, d ∈ N+, it holds that

NN(#input = d; widthvec = [N,NL]; #output = 1)

⊆ NN(#input = d; width ≤ 2N + 2; depth ≤ L + 1; #output = 1).

Lemma 4.3. For any n ∈ N+, it holds that

CPwL(R, n) ⊆ NN(#input = 1; widthvec = [n + 1]; #output = 1). (4.1)

Lemma 4.1 is a part of Theorem 3.2 in [14] or Lemma 2.2 in [13]. Lemma 4.1 is Theorem 3.1 in [14] or
Lemma 3.4 in [13]. It remains to prove Lemma 4.3.

20

Proof of Lemma 4.3. We use the mathematics induction to prove Equation (4.1). First, consider the case
n = 1. Given any f ∈ CPwL(R,1), there exist a1, a2, x0 ∈ R such that

f(x) = {
a1(x − x0) + f(x0), if x ≥ x0,
a2(x0 − x) + f(x0), if x < x0.

Thus, f(x) = a1σ(x − x0) + a2σ(x0 − x) + f(x0) for any x ∈ R, implying

f ∈ NN(#input = 1; widthvec = [2]; #output = 1).

Thus, Equation (4.1) holds for n = 1.
Now assume Equation (4.1) holds for n = k ∈ N+, we would like to show it is also true for n = k + 1.

Given any f ∈ CPwL(R, k + 1), we may assume the biggest breakpoint of f is x0 since it is trivial for the
case that f has no breakpoint. Denote the slopes of the linear pieces left and right next to x0 by a1 and a2,
respectively. Define

f̃(x) ∶= f(x) − (a2 − a1)σ(x − x0), for any x ∈ R.

Then f̃ has at most k breakpoints. By the induction hypothesis, we have

f̃ ∈ CPwL(R, k) ⊆ NN(#input = 1; widthvec = [k + 1]; #output = 1).

Thus, there exist w0,j , b0,j ,w1,j , b1 for j = 1,2,⋯, k + 1 such that

f̃(x) =
k+1

∑
j=1

w1,jσ(w0,jx + b0,j) + b1, for any x ∈ R.

Therefore, for any x ∈ R, we have

f(x) = (a2 − a1)σ(x − x0) + f̃(x) = (a2 − a1)σ(x − x0) +
k+1

∑
j=1

w1,jσ(w0,jx + b0,j) + b1,

implying f ∈ NN(#input = 1; widthvec = [k + 2]; #output = 1). Thus, Equation (4.1) holds for k + 1, which
means we finish the induction process. So we complete the proof.

4.2. Proof of Proposition 3.1

Now, let us present the detailed proof of Proposition 3.1. Denote K = M̃ ⋅ L̃, where M̃ = ⌊N1/d⌋2⌊L1/d⌋,
n = ⌊log3(N + 2)⌋, and L̃ = ⌊L1/d⌋⌊n1/d⌋. Consider the sample set

{(1, M̃ − 1), (2,0)}⋃{(m
M̃
,m) ∶m = 0,1,⋯, M̃ − 1}

⋃{(m+1
M̃

− δ,m) ∶m = 0,1,⋯, M̃ − 2}.

Its size is
2M̃ + 1 = 2⌊N1/d

⌋
2
⌊L1/d

⌋ + 1 = ⌊N1/d
⌋ ⋅ ((2⌊N1/d

⌋⌊L1/d
⌋ − 1) + 1) + 1.

By Lemma 4.1 (set N1 = ⌊N1/d⌋ and N2 = 2⌊N1/d⌋⌊L1/d⌋ − 1 therein), there exists

φ1 ∈ NN(widthvec = [2⌊N1/d
⌋,2(2⌊N1/d

⌋⌊L1/d
⌋ − 1) + 1])

= NN(widthvec = [2⌊N1/d
⌋,4⌊N1/d

⌋⌊L1/d
⌋ − 1])

such that

• φ1(
M̃−1
M̃

) = φ1(1) = M̃ − 1 and φ1(
m
M̃

) = φ1(
m+1
M̃

− δ) =m for m = 0,1,⋯, M̃ − 2.

• φ1 is linear on [M̃−1
M̃

,1] and each interval [m
M̃
, m+1
M̃

− δ] for m = 0,1,⋯, M̃ − 2.

21

Then, for m = 0,1,⋯, M̃ − 1, we have

φ1(x) =m, for any x ∈ [m
M̃
, m+1
M̃

− δ ⋅ 1{m≤M̃−2}]. (4.2)

Now consider another sample set

{(1
M̃
, L̃ − 1), (2,0)}⋃{(`

M̃L̃
, `) ∶ ` = 0,1,⋯, L̃ − 1}

⋃{(`+1
M̃L̃

− δ, `) ∶ ` = 0,1,⋯, L̃ − 2}.

Its size is
2L̃ + 1 = 2⌊L1/d

⌋⌊n1/d
⌋ + 1 = ⌊n1/d

⌋ ⋅ ((2⌊L1/d
⌋ − 1) + 1) + 1.

By Lemma 4.1 (set N1 = ⌊n1/d⌋ and N2 = 2⌊L1/d⌋ − 1 therein), there exists

φ2 ∈ NN(widthvec = [2⌊n1/d
⌋,2(2⌊L1/d

⌋ − 1) + 1])

= NN(widthvec = [2⌊n1/d
⌋,4⌊L1/d

⌋ − 1])

such that

• φ2(
L̃−1
M̃L̃

) = φ2(
1
M̃

) = L̃ − 1 and φ2(
`
M̃L̃

) = φ2(
`+1
M̃L̃

− δ) = ` for ` = 0,1,⋯, L̃ − 2.

• φ2 is linear on [L̃−1
M̃L̃

, 1
M̃

] and each interval [`
M̃L̃

, `+1
M̃L̃

− δ] for ` = 0,1,⋯, L̃ − 2.

It follows that, for m = 0,1,⋯, M̃ − 1 and ` = 0,1,⋯, L̃ − 1,

φ2(x −
m
M̃

) = `, for any x ∈ [mL̃+`
M̃L̃

, mL̃+`+1
M̃L̃

− δ ⋅ 1{`≤L̃−2}]. (4.3)

K = M̃ ⋅ L̃ implies any k ∈ {0,1,⋯,K − 1} can be unique represented by k =mL̃+ ` for m = 0,1,⋯, M̃ − 1
and ` = 0,1,⋯, L̃−1. Then the desired function φ can be implemented by a ReLU network shown in Figure 9.

x

φ1(x) = m

x

m

x− m

M̃

m

φ2(x− m

M̃
) = `

mL̃+ ` = k =: φ(x)
φ1

φ2

Figure 9: An illustration of the network architecture implementing φ based on Equation (4.2) and (4.3) for x ∈ [k
K
, k
K
− δ ⋅

1
{k≤K−2}] = [mL+`

M̃L̃
, mL+`+1

M̃L̃
− δ ⋅ 1

{m≤M̃−2 or `≤L̃−2}], where k =mL̃ + ` for m = 0,1,⋯, M̃ − 1 and ` = 0,1,⋯, L̃ − 1.

Clearly,
φ(x) = k, if x ∈ [k

K
, k
K
− δ ⋅ 1{k≤K−2}], for any k ∈ {0,1,⋯,K − 1}.

By Lemma 4.2, we have

φ1 ∈ NN(#input = 1; widthvec = [2⌊N1/d
⌋,4⌊N1/d

⌋⌊L1/d
⌋ − 1]; #output = 1)

⊆ NN(#input = 1; width ≤ 8⌊N1/d
⌋ + 2; depth ≤ ⌊L1/d

⌋ + 1; #output = 1)

and

φ2 ∈ NN(#input = 1; widthvec = [2⌊n1/d
⌋,4⌊L1/d

⌋ − 1]; #output = 1)

⊆ NN(#input = 1; width ≤ 8⌊n1/d
⌋ + 2; depth ≤ ⌊L1/d

⌋ + 1; #output = 1).

Recall that n = ⌊log3(N + 2)⌋ ≤ N . It follows from Figure 9 that φ can be implemented by a ReLU network
with width

max{8⌊N1/d
⌋ + 2 + 1,8⌊n1/d

⌋ + 2 + 1} = 8⌊N1/d
⌋ + 3

and depth
(⌊L1/d

⌋ + 1) + 2 + (⌊L1/d
⌋ + 1) + 1 = 2⌊L1/d

⌋ + 5.

So we finish the proof.

22

4.3. Proof of Proposition 3.2

The proof of Proposition 3.2 is based on the bit extraction technique in [3, 5]. To simplify the proof,
we first prove Lemma 4.4, 4.5, 4.6, and 4.7, which serve as four important intermediate steps. Next, we will
apply Lemma 4.7 to prove Proposition 3.2. In fact, we modify this technique to extract the sum of many
bits rather than one bit and this modification can be summarized in Lemma 4.4 and 4.5 below.

Lemma 4.4. For any n ∈ N+, there exists a function φ in

NN(#input = 2; width ≤ (n + 1)2n+1; depth ≤ 3; #output = 1)

such that: Given any θj ∈ {0,1} for j = 1,2,⋯, n, we have

φ(bin0.θ1θ2⋯θn, i) =
i

∑
j=1

θj , for any i ∈ {0,1,2,⋯, n}. 2

Proof. Define θ = bin0.θ1θ2⋯θn. Clearly,

θj = ⌊2jθ⌋/2 − ⌊2j−1θ⌋, for any j ∈ {1,2,⋯, n}.

We shall use a ReLU network to replace ⌊⋅⌋. Let g ∈ CPwL(R,2n+1 − 2) be the function satisfying two
conditions:

• g matches set of samples

2n−1

⋃
k=0

{(k, k), (k + 1 − δ, k)}, where δ = 2−(n+1);

• The breakpoint set of g is

(
2n−1

⋃
k=0

{k, k + 1 − δ})/({0}⋃{2n − δ}).

Then g(x) = ⌊x⌋ for any x ∈ ⋃2n−1
k=0 [k, k + 1 − δ]. Clearly, θ = bin0.θ1θ2⋯θn implies

2jθ ∈
2n−1

⋃
k=0

[k, k + 1 − δ], for any j ∈ {0,1,2,⋯, n}.

Thus,
θj = ⌊2jθ⌋/2 − ⌊2j−1θ⌋ = g(2jθ)/2 − g(2j−1θ), for any j ∈ {1,2,⋯, n}. (4.4)

It is easy to design a ReLU network to output θ1, θ2,⋯, θn by Equation (4.4) when using θ = bin0.θ1θ2⋯θn
as the input. However, it is highly non-trivial to construct a ReLU network to output ∑

i
j=1 θj with another

input i, since many operations like multiplication and comparison are not allowed in designing ReLU net-
works. Now let us establish a formula to represent ∑

i
j=1 θj in a form of a ReLU network as follows.

Define T (n) ∶= σ(n + 1) − σ(n) = {
1, n≥0,
0, n<0 for any integer n. Then, by Equation (4.4) and the fact

x1x2 = σ(x1 + x2 − 1) for any x1, x2 ∈ {0,1}, we have, for i = 0,1,2,⋯, n,

i

∑
j=1

θj =
n

∑
j=1

θj ⋅ T (i − j) =
n

∑
j=1

σ(θj + T (i − j) − 1)

=
n

∑
j=1

σ(θj + σ(i − j + 1) − σ(i − j) − 1)

=
n

∑
j=1

σ(g(2jθ)/2 − g(2j−1θ) + σ(i − j + 1) − σ(i − j) − 1).

2By convention, ∑mj=n aj = 0 if n >m, no matter what aj is for each j.

23

Define

zi,j ∶= σ(g(2
jθ)/2 − g(2j−1θ) + σ(i − j + 1) − σ(i − j) − 1), (4.5)

for any i, j ∈ {1,2,⋯, n}. Then the goal is to design φ satisfying

φ(θ, i) =
i

∑
j=1

θj =
n

∑
j=1

zi,j , for any i ∈ {0,1,2,⋯, n}. (4.6)

See Figure 10 for the network architecture implementing the desired function φ.

Input 1 2 3 Output

g(·)
g(2·)
g(22·)
g(2n−1·)
g(2n·)

θ

i

g(θ)

g(2θ)

g(22θ)

...
g(2n−1θ)

g(2nθ)

σ(i)

σ(i− 1)

σ(i− 2)

...
σ(i− n+ 1)

σ(i− n)

σ
(
g(2θ)/2− g(θ) + σ(i)− σ(i− 1)− 1

)
= zi,1

σ
(
g(22θ)/2− g(21θ) + σ(i− 1)− σ(i− 2)− 1

)
= zi,2

...

σ
(
g(2nθ)/2− g(2n−1θ) + σ(i− n+ 1)− σ(i− n)− 1

)
= zi,n

n∑

j=1

zi,j =
i∑

j=1

θj =: φ(θ, i)

Figure 10: An illustration of the network implementing the desired function φ with the input [θ, i]T = [bin 0.θ1θ2⋯θn, i]T for
any i ∈ {0,1,2,⋯, n} and θ1, θ2,⋯, θn ∈ {0,1}. g(2j ⋅) can be implemented by a one-hidden-layer network with width 2n+1−1 for
each j ∈ {0,1,2,⋯, n}. The red numbers above the architecture indicate the order of hidden layers. The network architecture is
essentially determined by Equation (4.5) and (4.6), which are valid no matter what θ1, θ2,⋯, θn ∈ {0,1} are. Thus, the desired
function φ is independent of θ1, θ2,⋯, θn ∈ {0,1}. We omit ReLU (σ) for a neuron if its output is non-negative without ReLU.
Such a simplification are applied to similar figures in this paper.

By Lemma 4.3, we have

g ∈ CPwL(R,2n+1
− 2) ⊆ NN(#input = 1; widthvec = [2n+1

− 1]; #output = 1),

implying

g(2j ⋅) ∈ CPwL(R,2n+1
− 2) ⊆ NN(#input = 1; widthvec = [2n+1

− 1]; #output = 1),

for any j = 0,1,2,⋯, n. Clearly, the network in Figure 10 has width

(n + 1)(2n+1
− 1) + (n + 1) = (n + 1)2n+1

and depth 3. So we finish the proof.

Lemma 4.5. For any n,L ∈ N+, there exists a function φ in

NN(#input = 2; width ≤ (n + 3)2n+1
+ 4; depth ≤ 4L + 2; #output = 1)

such that: Given any θj ∈ {0,1} for j = 1,2,⋯, Ln, we have

φ(bin0.θ1θ2⋯θLn, k) =
k

∑
j=1

θj , for any k ∈ {1,2,⋯, Ln}.

24

Proof. Let g1 ∈ CPwL(R,2n+1 − 2) be the function satisfying:

• g1 matches the set of samples

2n−1

⋃
i=0

{(i, i), (i + 1 − δ, i)}, where δ = 2−(Ln+1).

• The breakpoint set of g1 is

(
2n−1

⋃
i=0

{(i, i), (i + 1 − δ, i)})/({0}⋃{2n − δ}).

Then g1(x) = ⌊x⌋ for any x ∈ ⋃2n−1
i=0 [i, i + 1 − δ]. Note that

2n ⋅ bin0.θ`n+1⋯θLn ∈
2n−1

⋃
i=0

[i, i + 1 − δ], for any ` ∈ {0,1,⋯, L − 1}.

Thus, for any ` ∈ {0,1,⋯, L − 1}, we have

bin0.θ`n+1⋯θ`n+n =
⌊2n ⋅ bin0.θ`n+1⋯θLn⌋

2n
=
g1(2

n ⋅ bin0.θ`n+1⋯θLn)

2n
. (4.7)

Define g2(x) ∶= 2nx − g1(2
nx) for any x ∈ R. Then g2 ∈ CPwL(R,2n+1 − 2) and

bin0.θ(`+1)n+1⋯θLn = 2n(bin0.θ`n+1⋯θLn − bin0.θ`n+1⋯θ`n+n)

= 2n(bin0.θ`n+1⋯θLn −
g1(2

n ⋅ bin0.θ`n+1⋯θLn)

2n
) = g2(bin0.θ`n+1⋯θLn).

(4.8)

By Lemma 4.4, there exists

φ1 ∈ NN(#input = 2; width ≤ (n + 1)2n+1; depth ≤ 3; #output = 1)

such that: For any ξ1, ξ2,⋯, ξn ∈ {0,1}, we have

φ1(bin0.ξ1ξ2⋯ξn, i) =
i

∑
j=1

ξj , for i = 0,1,2,⋯, n.

It follows that

φ1(bin0.θ`n+1θ`n+2⋯θ`n+n, i) =
i

∑
j=1

θ`n+j , for ` = 0,1,⋯, L − 1 and i = 0,1,⋯, n. (4.9)

Define φ2,`(x) ∶= min{σ(x− `n), n} for any x ∈ R and ` ∈ {0,1,⋯, L− 1}. For any k ∈ {1,2,⋯, Ln}, there
exists k1 ∈ {0,1,⋯, L − 1} and k2 ∈ {1,2,⋯, n} such that k = k1n + k2, implying

k

∑
i=1

θi =
k1n+k2
∑
i=1

θi =
k1−1

∑
`=0

(
n

∑
j=1

θ`n+j) +
k1

∑
`=k1

(
k2

∑
j=1

θ`n+j) +
L−1

∑
`=k1+1

(
0

∑
j=1

θ`n+j)

=
L−1

∑
`=0

(

min{σ(k−`n), n}

∑
j=1

θ`n+j) =
L−1

∑
`=0

(

φ2,`(k)

∑
j=1

θ`n+j).

(4.10)

Then, the desired function φ can be implemented by the network architecture in Figure 11.
By Lemma 4.3, we have

g1, g2 ∈ CPwL(R,2n+1
− 2) ⊆ NN(#input = 1; widthvec = [2n+1

− 1]; #output = 1).

25

bin0.θ1 · · · θLn

k

bin0.θn+1 · · · θLn

bin0.θ1 · · · θn

φ2,0(k)

k

bin0.θ2n+1 · · · θLn

bin0.θn+1 · · · θn+n

φ2,1(k)

φ2,0(k)∑

j=1

θj

k

bin0.θ3n+1 · · · θLn

bin0.θ2n+1 · · · θ2n+n

φ2,2(k)

1∑

`=0

φ2,`(k)∑

j=1

θ`n+j

k

bin0.θ(L−1)n+1 · · · θLn

bin0.θ(L−2)n+1 · · · θ(L−2)n+n

φ2,L−2(k)

L−3∑

`=0

φ2,`(k)∑

j=1

θ`n+j

k

· · ·
bin0.θ(L−1)n+1 · · · θ(L−1)n+n

φ2,L−1(k)

L−2∑

`=0

φ2,`(k)∑

j=1

θ`n+j

L−1∑

`=0

φ2,`(k)∑

j=1

θ`n+j =
k∑

i=1

θi =: φ(bin0.θ1 · · · θLn, k)

g2 g2 g2
g1 g1 g1

φ1 φ1 φ1 φ1

φ2,0 φ2,1 φ2,2 φ2,L−1

Figure 11: An illustration of the network implementing the desired function φ with the input [bin 0.θ1θ2⋯θLn, k]T for any
k ∈ {1,2,⋯, Ln} and θ1, θ2,⋯, θLn ∈ {0,1}. The network architecture is essentially determined by Equation (4.7), (4.8),
(4.9), and (4.10), which are valid no matter what θ1, θ2,⋯, θLn ∈ {0,1} are. Thus, the desired function φ is independent of
θ1, θ2,⋯, θLn ∈ {0,1}. We omit ReLU (σ) for a neuron if its output is non-negative without ReLU.

x σ(x− `n)

σ
(
σ(x− `n) + n

)

σ
(
− σ(x− `n)− n

)

σ
(
σ(x− `n)− n

)

σ
(
− σ(x− `n) + n

)

min
{
σ(x− `n), n

}
=: φ2,`(x)

Figure 12: An illustration of the network implementing the desired function φ2,` for each ` ∈ {0,1,⋯, L−1}, based on min{y,n} =
1
2
(σ(y + n) − σ(−y − n) − σ(y − n) − σ(−y + n)).

Recall that φ1 ∈ NN(width ≤ (n + 1)2n+1; depth ≤ 3). As shown in Figure 12, φ2,`(x) ∈ NN(width ≤

4; depth ≤ 2) for ` = 0,1,⋯, L − 1. Therefore, the network in Figure 11 has width

(2n+1
− 1) + (2n+1

− 1) + (n + 1)2n+1
+ 1 + 4 + 1 = (n + 3)2n+1

+ 4

and depth
2 +L(1 + 3) = 4L + 2.

So we finish the proof.

Next, we introduce Lemma 4.6 to map indices to the partial sum of given bits.

Lemma 4.6. Given any N,L ∈ N+ and arbitrary θm,k ∈ {0,1} for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1,
where M = N2L and n = ⌊log3(N + 2)⌋, there exists

φ ∈ NN(#input = 2; width ≤ 6N + 14; depth ≤ 5L + 4; #output = 1)

such that

φ(m,k) =
k

∑
j=0

θm,j , for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1.

Proof. Define
ym ∶= bin0.θm,0θm,1⋯θm,Ln−1, for m = 0,1,⋯,M − 1.

Consider the sample set {(m,ym) ∶m = 0,1,⋯,M}, whose cardinality is

M + 1 = N((NL − 1) + 1) + 1.

By Lemma 4.1 (set N1 = N and N2 = NL − 1 therein), there exists

φ1 ∈ NN(#input = 1; widthvec = [2N,2(NL − 1) + 1]; #output = 1)

= NN(#input = 1; widthvec = [2N,2NL − 1]; #output = 1)

26

m

k

φ1(m)

k + 1

φ2
(
φ1(m), k + 1

)
=
∑k

j=0 θm,j =: φ(m, k)

φ1
φ2

Figure 13: An illustration of the network implementing the desired function φ for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1.

such that
φ1(m) = ym, for m = 0,1,⋯,M − 1.

By Lemma 4.5, there exists

φ2 ∈ NN(#input = 2; width ≤ (n + 3)2n+1
+ 4; depth ≤ 4L + 2; #output = 1)

such that, for any ξ1, ξ2,⋯, ξLn ∈ {0,1}, we have

φ2(bin0.ξ1ξ2⋯ξLn, k) =
k

∑
j=1

ξj , for k = 1,2,⋯, Ln.

It follows that, for any ξ0, ξ1,⋯, ξLn−1 ∈ {0,1}, we have

φ2(bin0.ξ0ξ1⋯ξLn−1, k + 1) =
k

∑
j=0

ξj , for k = 0,1,⋯, Ln − 1.

Thus, for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1, we have

φ2(φ1(m), k + 1) = φ2(ym, k + 1) = φ2(0.θm,0θm,1⋯θm,L−1, k + 1) =
k

∑
j=0

θm,j .

Hence, the desired function function φ can be implemented by the network shown in Figure 13. By
Lemma 4.2, φ1 ∈ NN(widthvec = [2N,2NL − 1]) ⊆ NN(width ≤ 4N + 2; depth ≤ L + 1). It holds that

(n + 3)2n+1
+ 4 ≤ 6 ⋅ (3n) + 2 = 6 ⋅ (3⌊log3(N+2)⌋

) + 2 ≤ 6(N + 2) + 2 = 6N + 14,

implying

φ2 ∈ NN(#input = 2; width ≤ (n + 3)2n+1
+ 4; depth ≤ 4L + 2; #output = 1)

⊆ NN(#input = 2; width ≤ 6N + 14; depth ≤ 4L + 2; #output = 1).

Therefore, the network in Figure 13 is with width max{(4N + 2) + 1,6N + 14} = 6N + 14 and depth (4L +
2) + 1 + (L + 1) = 5L + 4. So we finish the proof.

Next, we apply Lemma 4.6 to prove Lemma 4.7 below, which is a key intermediate conclusion to prove
Proposition 3.2.

Lemma 4.7. For any ε > 0 and N,L ∈ N+, denote M = N2L and n = ⌊log3(N + 2)⌋. Assume ym,k ≥ 0 for
m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1 are samples with

∣ym,k − ym,k−1∣ ≤ ε, for m = 0,1,⋯,M − 1 and k = 1,2,⋯, Ln − 1.

Then there exists φ ∈ NN(#input = 2; width ≤ 16N + 30; depth ≤ 5L + 7; #output = 1) such that

(i) ∣φ(m,k) − ym,k ∣ ≤ ε for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1;

(ii) 0 ≤ φ(x1, x2) ≤ max{ym,k ∶m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1} for any x1, x2 ∈ R.

27

Proof. Define
am,k ∶= ⌊ym,k/ε⌋, for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1.

We will construct a function implemented by a ReLU network to map the index (m,k) to am,kε for m =

0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1.
Define bm,0 ∶= 0 and bm,k ∶= am,k − am,k−1 for m = 0,1,⋯,M − 1 and k = 1,2,⋯, Ln − 1. Since ∣ym,k −

ym,k−1∣ ≤ ε for all m and k, we have bm,k ∈ {−1,0,1}. Hence, there exist cm,k ∈ {0,1} and dm,k ∈ {0,1} such
that bm,k = cm,k − dm,k, which implies

am,k = am,0 +
k

∑
i=1

(am,i − am,i−1) = am,0 +
k

∑
i=1

bm,i = am,0 +
k

∑
i=0

bm,i

= am,0 +
k

∑
i=0

cm,i −
k

∑
i=0

dm,i,

for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1.
Consider the sample set

{(m,am,0) ∶m = 0,1,⋯,M − 1}⋃{(M,0)}.

Its size is M + 1 = N ⋅ ((NL − 1) + 1) + 1, by Lemma 4.1 (set N1 = N and N2 = NL − 1 therein), there exists

ψ1 ∈ NN(widthvec = [2N,2(NL − 1) + 1]) = NN(widthvec = [2N,2NL − 1])

such that
ψ1(m) = am,0, for m = 0,1,⋯,M − 1.

By Lemma 4.6, there exist ψ2, ψ3 ∈ NN(width ≤ 6N + 14; depth ≤ 5L + 4) such that

ψ2(m,k) =
k

∑
i=0

cm,i and ψ3(m,k) =
k

∑
i=0

dm,i,

for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1. Hence, it holds that

am,k = am,0 +
k

∑
i=0

cm,i −
k

∑
i=0

dm,i = ψ1(m) + ψ2(m,k) − ψ3(m,k), (4.11)

for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1.
Define

ymax ∶= max{ym,k ∶m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1}.

Then the desired function can be implemented by two sub-networks shown in Figure 14.

m

k

ψ1(m)

ψ2(m, k)

ψ3(m, k)

am,kε =: φ1(m, k)

ψ1

ψ2

ψ3

(a) φ1

x σ(x)

σ
(
σ(x) + ymax

)

σ
(
− σ(x)− ymax

)

σ
(
σ(x)− ymax

)

σ
(
− σ(x) + ymax

)

min
{
σ(x), ymax

}
=: φ2(x)

(b) φ2

Figure 14: Illustrations of two sub-networks implementing the desired function φ = φ2 ○ φ1 for m = 0,1,⋯,M − 1 and k =
0,1,⋯, Ln − 1, based on Equation (4.11) and the fact min{x1, x2} = x1+x2−∣x1−x2 ∣

2
= σ(x1+x2)−σ(−x1−x2)−σ(x1−x2)−σ(−x1+x2)

2
.

28

By Lemma 4.2,

ψ1 ∈ NN(#input = 1; widthvec = [2N,2NL − 1]; #output = 1)

⊆ NN(#input = 1; width ≤ 4N + 2; depth ≤ L + 1; #output = 1).

Recall that ψ2, ψ3 ∈ NN(width ≤ 6N + 14; depth ≤ 5L + 4). Thus, φ1 ∈ NN(width ≤ (4N + 2) + 2(6N + 14) =
16N + 30; depth ≤ (5L + 4) + 1 = 5L + 5) as shown in Figure 14. And it is clear that φ2 ∈ NN(width ≤

4; depth ≤ 2), implying φ = φ2 ○ φ1 ∈ NN(width ≤ 16N + 30; depth ≤ (5L + 5) + 2 = 5L + 7).
Clearly, 0 ≤ φ(x1, x2) ≤ ymax for any x1, x2 ∈ R, since φ(x1, x2) = φ2○φ1(x1, x2) = max{σ(φ1(x1, x2)), ymax}.
Note that 0 ≤ am,kε = ⌊ym,k/ε⌋ε ≤ ymax. Then we have φ(m,k) = φ2 ○ φ1(m,k) = φ2(am,kε) =

max{σ(am,kε), ymax} = am,kε. Therefore,

∣φ(m,k) − ym,k ∣ = ∣am,kε − ym,k ∣ = ∣⌊ym,k/ε⌋ε − ym,k∣ ≤ ε,

for m = 0,1,⋯,M − 1 and k = 0,1,⋯, Ln − 1. Hence, we finish the proof.

Finally, we apply Lemma 4.7 to prove Proposition 3.2.

Proof of Proposition 3.2. Denote M = N2L, n = ⌊log3(N +2)⌋, and L̂ = Ln. We may assume J =MLn =ML̂
since we can set yJ−1 = yJ = yJ+1 = ⋯ = yML̂−1 if J <ML̂.

Consider the sample set

{(mL̂,m) ∶m = 0,1,⋯,M}⋃{(mL̂ + L̂ − 1,m) ∶m = 0,1,⋯,M − 1}.

Its size is 2M + 1 = N ⋅ ((2NL− 1)+ 1)+ 1. By Lemma 4.1 (set N1 = N and N2 = NL− 1 therein), there exist

φ1 ∈ NN(widthvec = [2N,2(2NL − 1) + 1]) = NN(widthvec = [2N,4NL − 1])

such that

• φ1(ML̂) =M and φ1(mL̂) = φ1(mL̂ + L̂ − 1) =m for m = 0,1,⋯,M − 1.

• φ1 is linear on each interval [mL̂,mL̂ + L̂ − 1] for m = 0,1,⋯,M − 1.

It follows that
φ1(j) =m, and j − L̂φ1(j) = k, where j =mL̂ + k, (4.12)

for m = 0,1,⋯,M − 1 and k = 0,1,⋯, L̂ − 1.
Note that any number j in {0,1,⋯, J−1} can be uniquely indexed as j =mL̂+k for m = 0,1,⋯,M−1 and

k = 0,1,⋯, L̂ − 1. So we can denote yj = ymL̂+k as ym,k. Then by Lemma 4.7, there exists φ2 ∈ NN(width ≤

16N + 30; depth ≤ 5L + 7) such that

∣φ2(m,k) − ym,k ∣ ≤ ε, for m = 0,1,⋯,M − 1 and k = 0,1,⋯, L̂ − 1, (4.13)

and
0 ≤ φ2(x1, x2) ≤ ymax, for any x1, x2 ∈ R, (4.14)

where ymax ∶= max{ym,k ∶m = 0,1,⋯,M − 1 and k = 0,1,⋯, L̂ − 1} = max{yj ∶ j = 0,1,⋯,ML̂ − 1}.

j

φ1(j)

j

φ1(j)

j − L̂φ1(j)

φ(j) := φ2
(
φ1(j), j − L̂φ1(j)

)
= φ2(m, `) = φ(j) ≈ ym,` = yj

φ1 φ2

Figure 15: An illustration of the ReLU network implementing the desired function φ based Equation (4.12). The index
j ∈ {0,1,⋯,ML̂ − 1} is unique represented by j =mL + k for m = 0,1,⋯,M − 1 and k = 0,1,⋯, L̂ − 1.

29

By Lemma 4.2,

φ1 ∈ NN(#input = 1; widthvec = [2N,4NL − 1]; #output = 1)

⊆ NN(#input = 1; width ≤ 8N + 2; depth ≤ L + 1; #output = 1).

Recall that φ2 ∈ NN(width ≤ 16N + 30; depth ≤ 5L + 7). So φ ∈ NN(width ≤ 16N + 30; depth ≤ (L + 1) + 2 +
(5L + 7) = 6L + 10) as shown in Figure 15.

Equation (4.14) implies
0 ≤ φ(x) ≤ ymax, for any x ∈ R,

since φ is given by φ(x) = φ2(φ1(x), x − L̂φ1(x)).

Represent j ∈ {0,1,⋯,ML̂ − 1} via j = mL̂ + k for m = 0,1,⋯,M − 1 and k = 0,1,⋯, L̂ − 1. Then, by
Equation (4.13), we have

∣φ(j) − yj ∣ = ∣φ2(φ1(j), j − L̂φ1(j)) − yj ∣ = ∣φ2(m,k) − ym,k ∣ ≤ ε,

for any j ∈ {0,1,⋯,ML̂ − 1} = {0,1,⋯, J − 1}. So we finish the proof.

We would like to remark that the key idea in the proof of Proposition 3.2 is the bit extraction technique
in Lemma 4.5, which allows us to store Ln bits in a binary number bin0.θ1θ2⋯θLn and extract each bit θi.
The extraction operator can be efficiently carried out via a deep ReLU neural network demonstrating the
power of depth.

5. Conclusion and future work

This paper aims at a quantitative and optimal approximation rate for ReLU networks in terms of the
width and depth to approximate continuous functions. It is shown by construction that ReLU networks
with width O(N) and depth O(L) can approximate an arbitrary continuous function on [0,1]d with an
approximation rate O(ωf((N

2L2 lnN)−1/d)). By connecting the approximation property to VC-dimension,

we prove that such a rate is optimal for Hölder continuous functions on [0,1]d in terms of the width and
depth separately, and hence this rate is also optimal for the whole continuous function class. We also extend
our analysis to general continuous functions on any bounded subset of Rd. We would like to remark that our
analysis was based on the fully connected feed-forward neural networks and the ReLU activation function.
It would be very interesting to extend our conclusions to neural networks with other types of architectures
(e.g., convolutional neural networks) and activation functions (e.g., tanh and sigmoid functions).

Acknowledgments

Z. Shen is supported by Tan Chin Tuan Centennial Professorship. H. Yang was partially supported by
the US National Science Foundation under award DMS-1945029. S. Zhang is supported by a Postdoctoral
Fellowship under NUS ENDOWMENT FUND (EXP WBS) (01 651).
[1] G. F. Montufar, R. Pascanu, K. Cho, Y. Bengio, On the number of linear regions of deep neural networks, in: Z. Ghahra-

mani, M. Welling, C. Cortes, N. D. Lawrence, K. Q. Weinberger (Eds.), Advances in Neural Information Processing
Systems 27, Curran Associates, Inc., 2014, pp. 2924–2932.
URL https://dl.acm.org/doi/10.5555/2969033.2969153

[2] M. Bianchini, F. Scarselli, On the complexity of neural network classifiers: A comparison between shallow and deep
architectures, IEEE Transactions on Neural Networks and Learning Systems 25 (8) (2014) 1553–1565. doi:10.1109/

TNNLS.2013.2293637.
[3] P. Bartlett, V. Maiorov, R. Meir, Almost linear VC-dimension bounds for piecewise polynomial networks, Neural Compu-

tation 10 (8) (1998) 2159–2173. doi:10.1162/089976698300017016.
[4] A. Sakurai, Tight bounds for the VC-dimension of piecewise polynomial networks, in: Advances in Neural Information

Processing Systems, Neural information processing systems foundation, 1999, pp. 323–329.
URL https://dl.acm.org/doi/abs/10.5555/3009055.3009101

[5] N. Harvey, C. Liaw, A. Mehrabian, Nearly-tight VC-dimension bounds for piecewise linear neural networks, in: S. Kale,
O. Shamir (Eds.), Proceedings of the 2017 Conference on Learning Theory, Vol. 65 of Proceedings of Machine Learning
Research, PMLR, Amsterdam, Netherlands, 2017, pp. 1064–1068.
URL http://proceedings.mlr.press/v65/harvey17a.html

30

https://dl.acm.org/doi/10.5555/2969033.2969153
https://dl.acm.org/doi/10.5555/2969033.2969153
http://dx.doi.org/10.1109/TNNLS.2013.2293637
http://dx.doi.org/10.1109/TNNLS.2013.2293637
http://dx.doi.org/10.1162/089976698300017016
https://dl.acm.org/doi/abs/10.5555/3009055.3009101
https://dl.acm.org/doi/abs/10.5555/3009055.3009101
http://proceedings.mlr.press/v65/harvey17a.html
http://proceedings.mlr.press/v65/harvey17a.html

[6] M. J. Kearns, R. E. Schapire, Efficient distribution-free learning of probabilistic concepts, J. Comput. Syst. Sci. 48 (3)
(1994) 464–497. doi:10.1016/S0022-0000(05)80062-5.
URL http://dx.doi.org/10.1016/S0022-0000(05)80062-5

[7] M. Anthony, P. L. Bartlett, Neural Network Learning: Theoretical Foundations, 1st Edition, Cambridge University Press,
New York, NY, USA, 2009.

[8] P. Petersen, F. Voigtlaender, Optimal approximation of piecewise smooth functions using deep ReLU neural networks,
Neural Networks 108 (2018) 296–330. doi:https://doi.org/10.1016/j.neunet.2018.08.019.
URL http://www.sciencedirect.com/science/article/pii/S0893608018302454

[9] G. Cybenko, Approximation by superpositions of a sigmoidal function, MCSS 2 (1989) 303–314. doi:10.1007/BF02551274.
[10] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Networks

2 (5) (1989) 359–366. doi:https://doi.org/10.1016/0893-6080(89)90020-8.
URL http://www.sciencedirect.com/science/article/pii/0893608089900208

[11] A. R. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE Transactions on Informa-
tion Theory 39 (3) (1993) 930–945. doi:10.1109/18.256500.

[12] D. Yarotsky, Optimal approximation of continuous functions by very deep ReLU networks, in: S. Bubeck, V. Perchet,
P. Rigollet (Eds.), Proceedings of the 31st Conference On Learning Theory, Vol. 75 of Proceedings of Machine Learning
Research, PMLR, 2018, pp. 639–649.
URL http://proceedings.mlr.press/v75/yarotsky18a.html

[13] Z. Shen, H. Yang, S. Zhang, Nonlinear approximation via compositions, Neural Networks 119 (2019) 74–84. doi:10.1016/
j.neunet.2019.07.011.
URL http://www.sciencedirect.com/science/article/pii/S0893608019301996

[14] S. Zhang, Deep neural network approximation via function compositions, PhD Thesis, National University of Singapore.
URL https://scholarbank.nus.edu.sg/handle/10635/186064

[15] Z. Shen, H. Yang, S. Zhang, Deep network approximation characterized by number of neurons, Communications in
Computational Physics 28 (5) (2020) 1768–1811. doi:10.4208/cicp.OA-2020-0149.

[16] J. Lu, Z. Shen, H. Yang, S. Zhang, Deep network approximation for smooth functions, arXiv e-printsarXiv:2001.03040.
[17] Z. Shen, H. Yang, S. Zhang, Deep Network With Approximation Error Being Reciprocal of Width to Power of Square

Root of Depth, Neural Computation 33 (4) (2021) 1005–1036. doi:10.1162/neco_a_01364.
[18] Z. Shen, H. Yang, S. Zhang, Neural network approximation: Three hidden layers are enough, Neural Networks.
[19] Q. Li, T. Lin, Z. Shen, Deep learning via dynamical systems: An approximation perspective, Journal of European

Mathematical Society.
[20] J. W. Siegel, J. Xu, Approximation rates for neural networks with general activation functions, Neural Networks 128

(2020) 313–321. doi:https://doi.org/10.1016/j.neunet.2020.05.019.
URL https://www.sciencedirect.com/science/article/pii/S0893608020301891

[21] W. E, S. Wojtowytsch, On the Banach spaces associated with multi-layer ReLU networks: Function representation,
approximation theory and gradient descent dynamics, arXiv e-printsarXiv:2007.15623.

[22] K. Kawaguchi, Deep learning without poor local minima, in: D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, R. Garnett
(Eds.), Advances in Neural Information Processing Systems 29, Curran Associates, Inc., 2016, pp. 586–594.
URL http://papers.nips.cc/paper/6112-deep-learning-without-poor-local-minima.pdf

[23] Q. N. Nguyen, M. Hein, The loss surface of deep and wide neural networks, CoRR abs/1704.08045. arXiv:1704.08045.
URL http://arxiv.org/abs/1704.08045

[24] K. Kawaguchi, Y. Bengio, Depth with nonlinearity creates no bad local minima in resnets, Neural Networks 118 (2019)
167–174. doi:https://doi.org/10.1016/j.neunet.2019.06.009.
URL https://www.sciencedirect.com/science/article/pii/S0893608019301820

[25] J. He, X. Jia, J. Xu, L. Zhang, L. Zhao, Make `1 regularization effective in training sparse CNN, Computational Opti-
mization and Applications 77 (1) (2020) 163182. doi:https://doi.org/10.1007/s10589-020-00202-1.

[26] Q. Li, C. Tai, W. E, Stochastic modified equations and dynamics of stochastic gradient algorithms I: Mathematical
foundations, Journal of Machine Learning Research 20 (40) (2019) 1–47.
URL http://jmlr.org/papers/v20/17-526.html

[27] Z. Lu, H. Pu, F. Wang, Z. Hu, L. Wang, The expressive power of neural networks: A view from the width, in: I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information
Processing Systems 30, Curran Associates, Inc., 2017, pp. 6231–6239.
URL http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf

[28] S. Liang, R. Srikant, Why deep neural networks?, CoRR abs/1610.04161. arXiv:1610.04161.
URL http://arxiv.org/abs/1610.04161

[29] D. Yarotsky, Error bounds for approximations with deep ReLU networks, Neural Networks 94 (2017) 103–114. doi:https:
//doi.org/10.1016/j.neunet.2017.07.002.
URL http://www.sciencedirect.com/science/article/pii/S0893608017301545

[30] W. E, Q. Wang, Exponential convergence of the deep neural network approximation for analytic functions, CoRR
abs/1807.00297. arXiv:1807.00297.
URL http://arxiv.org/abs/1807.00297

[31] H. Montanelli, H. Yang, Q. Du, Deep ReLU networks overcome the curse of dimensionality for bandlimited functions,
Journal of Computational Mathematics.

[32] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Networks 4 (2) (1991) 251–257. doi:

https://doi.org/10.1016/0893-6080(91)90009-T.

31

http://dx.doi.org/10.1016/S0022-0000(05)80062-5
http://dx.doi.org/10.1016/S0022-0000(05)80062-5
http://dx.doi.org/10.1016/S0022-0000(05)80062-5
http://www.sciencedirect.com/science/article/pii/S0893608018302454
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2018.08.019
http://www.sciencedirect.com/science/article/pii/S0893608018302454
http://dx.doi.org/10.1007/BF02551274
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://dx.doi.org/https://doi.org/10.1016/0893-6080(89)90020-8
http://www.sciencedirect.com/science/article/pii/0893608089900208
http://dx.doi.org/10.1109/18.256500
http://proceedings.mlr.press/v75/yarotsky18a.html
http://proceedings.mlr.press/v75/yarotsky18a.html
http://www.sciencedirect.com/science/article/pii/S0893608019301996
http://dx.doi.org/10.1016/j.neunet.2019.07.011
http://dx.doi.org/10.1016/j.neunet.2019.07.011
http://www.sciencedirect.com/science/article/pii/S0893608019301996
https://scholarbank.nus.edu.sg/handle/10635/186064
https://scholarbank.nus.edu.sg/handle/10635/186064
http://dx.doi.org/10.4208/cicp.OA-2020-0149
http://arxiv.org/abs/2001.03040
http://dx.doi.org/10.1162/neco_a_01364
https://www.sciencedirect.com/science/article/pii/S0893608020301891
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2020.05.019
https://www.sciencedirect.com/science/article/pii/S0893608020301891
http://arxiv.org/abs/2007.15623
http://papers.nips.cc/paper/6112-deep-learning-without-poor-local-minima.pdf
http://papers.nips.cc/paper/6112-deep-learning-without-poor-local-minima.pdf
http://arxiv.org/abs/1704.08045
http://arxiv.org/abs/1704.08045
http://arxiv.org/abs/1704.08045
https://www.sciencedirect.com/science/article/pii/S0893608019301820
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2019.06.009
https://www.sciencedirect.com/science/article/pii/S0893608019301820
http://dx.doi.org/https://doi.org/10.1007/s10589-020-00202-1
http://jmlr.org/papers/v20/17-526.html
http://jmlr.org/papers/v20/17-526.html
http://jmlr.org/papers/v20/17-526.html
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://papers.nips.cc/paper/7203-the-expressive-power-of-neural-networks-a-view-from-the-width.pdf
http://arxiv.org/abs/1610.04161
http://arxiv.org/abs/1610.04161
http://arxiv.org/abs/1610.04161
http://www.sciencedirect.com/science/article/pii/S0893608017301545
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2017.07.002
http://dx.doi.org/https://doi.org/10.1016/j.neunet.2017.07.002
http://www.sciencedirect.com/science/article/pii/S0893608017301545
http://arxiv.org/abs/1807.00297
http://arxiv.org/abs/1807.00297
http://arxiv.org/abs/1807.00297
http://www.sciencedirect.com/science/article/pii/089360809190009T
http://dx.doi.org/https://doi.org/10.1016/0893-6080(91)90009-T
http://dx.doi.org/https://doi.org/10.1016/0893-6080(91)90009-T

URL http://www.sciencedirect.com/science/article/pii/089360809190009T

[33] H. Lin, S. Jegelka, Resnet with one-neuron hidden layers is a universal approximator, in: S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems,
Vol. 31, Curran Associates, Inc., 2018.
URL https://proceedings.neurips.cc/paper/2018/file/03bfc1d4783966c69cc6aef8247e0103-Paper.pdf

[34] D. Yarotsky, A. Zhevnerchuk, The phase diagram of approximation rates for deep neural networks, in: H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, H. Lin (Eds.), Advances in Neural Information Processing Systems, Vol. 33,
Curran Associates, Inc., 2020, pp. 13005–13015.
URL https://proceedings.neurips.cc/paper/2020/file/979a3f14bae523dc5101c52120c535e9-Paper.pdf

[35] W. E, C. Ma, L. Wu, A priori estimates of the population risk for two-layer neural networks, Communications in Mathe-
matical Sciences 17 (5) (2019) 1407–1425. doi:10.4310/CMS.2019.v17.n5.a11.

[36] W. E, S. Wojtowytsch, Representation formulas and pointwise properties for Barron functions, arXiv e-printsarXiv:
2006.05982.

[37] J. W. Siegel, J. Xu, Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks, arXiv e-
printsarXiv:2101.12365.

[38] L. Chen, C. Wu, A note on the expressive power of deep rectified linear unit networks in high-dimensional spaces,
Mathematical Methods in the Applied Sciences 42 (9) (2019) 3400–3404. arXiv:https://onlinelibrary.wiley.com/doi/
pdf/10.1002/mma.5575, doi:10.1002/mma.5575.
URL https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.5575

[39] D. Yarotsky, Elementary superexpressive activations, arXiv e-printsarXiv:2102.10911.
[40] B. Neyshabur, Z. Li, S. Bhojanapalli, Y. LeCun, N. Srebro, The role of over-parametrization in generalization of neural

networks, in: International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=BygfghAcYX

[41] W. E, C. Ma, Q. Wang, A Priori Estimates of the Population Risk for Residual Networks, arXiv e-printsarXiv:1903.02154.
[42] W. E, S. Wojtowytsch, A priori estimates for classification problems using neural networks, arXiv e-printsarXiv:2009.

13500.
[43] H. Whitney, Analytic extensions of differentiable functions defined in closed sets, Transactions of the American Mathe-

matical Society 36 (1934) 63–89. doi:10.1090/S0002-9947-1934-1501735-3.
[44] P. Urysohn, über die mächtigkeit der zusammenhängenden mengen, Mathematische Annalen 94 (1925) 262295. doi:

10.1007/BF01208659.

32

http://www.sciencedirect.com/science/article/pii/089360809190009T
https://proceedings.neurips.cc/paper/2018/file/03bfc1d4783966c69cc6aef8247e0103-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/03bfc1d4783966c69cc6aef8247e0103-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/979a3f14bae523dc5101c52120c535e9-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/979a3f14bae523dc5101c52120c535e9-Paper.pdf
http://dx.doi.org/10.4310/CMS.2019.v17.n5.a11
http://arxiv.org/abs/2006.05982
http://arxiv.org/abs/2006.05982
http://arxiv.org/abs/2101.12365
https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.5575
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/mma.5575
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/mma.5575
http://dx.doi.org/10.1002/mma.5575
https://onlinelibrary.wiley.com/doi/abs/10.1002/mma.5575
http://arxiv.org/abs/2102.10911
https://openreview.net/forum?id=BygfghAcYX
https://openreview.net/forum?id=BygfghAcYX
https://openreview.net/forum?id=BygfghAcYX
http://arxiv.org/abs/1903.02154
http://arxiv.org/abs/2009.13500
http://arxiv.org/abs/2009.13500
http://dx.doi.org/10.1090/S0002-9947-1934-1501735-3
http://dx.doi.org/10.1007/BF01208659
http://dx.doi.org/10.1007/BF01208659

	Introduction
	Theoretical analysis
	Notations
	Proof of Theorem 1.1
	Optimality
	Approximation in irregular domain

	Proof of Theorem 2.1
	Key ideas of proving Theorem 2.1
	Construction of final network
	Detailed proof

	Proofs of propositions in Section 3.1
	Basic results of ReLU networks
	Proof of Proposition 3.1
	Proof of Proposition 3.2

	Conclusion and future work

