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Abstract

This article presents a general framework for recovering missing dynamical systems using available
data and machine learning techniques. The proposed framework reformulates the prediction problem
as a supervised learning problem to approximate a map that takes the memories of the resolved and
identifiable unresolved variables to the missing components in the resolved dynamics. We demonstrate
the effectiveness of the proposed framework with a strong convergence error bound of the resolved
variables up to finite time and numerical tests on prototypical models in various scientific domains.
These include the 57-mode barotropic stress models with multiscale interactions that mimic the blocked
and unblocked patterns observed in the atmosphere, the nonlinear Schrödinger equation which found
many applications in physics such as optics and Bose-Einstein-Condense, the Kuramoto-Sivashinsky
equation which spatiotemporal chaotic pattern formation models trapped ion mode in plasma and phase
dynamics in reaction-diffusion systems. While many machine learning techniques can be used to validate
the proposed framework, we found that recurrent neural networks outperform kernel regression methods
in terms of recovering the trajectory of the resolved components and the equilibrium one-point and two-
point statistics. This superb performance suggests that a recurrent neural network is an effective tool for
recovering the missing dynamics that involves approximation of high-dimensional functions.
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1 Introduction

The problem of missing dynamics is ubiquitous in any scientific domain that concerns with prediction
through computational models. This long-standing problem has been posted under various names, including
model error, sub-grid scale parameterization, closure modeling [16, 32, 6, 27, 36, 39, 41, 45, 73]. Another
relevant topic of broad interest is the reduced-order modeling whose ultimate goal is to systematically de-
duce a computationally efficient model to predict the evolution of the resolved variables when the full un-
derlying model is too expensive to solve [22, 48, 49, 71, 13, 14, 24, 26, 33]. In our context, the proposed
framework adopted here does not require any knowledge of the full equations that govern the underlying
dynamical systems. The proposed approach that we consider assumes that only the dynamical components
corresponding to the resolved variables are given. As in [30], the missing components will be learned from
a historical time series of the resolved variables and the identifiable unresolved variables, where the latter
serves as feedback from the interaction of the resolved and unresolved scales. In essence, the proposed
approach is to learn a dynamical model for the identifiable unresolved variables that depend on both the
resolved and unresolved variables.

The success of deep learning as a supervised learning algorithm has drawn tremendous interest on
reduced-order modeling applications. A closely related approach to the modeling framework in this pa-
per is presented in [57]. They proposed a Feedforward Neural Network (FNN) as a representation of the
dynamics of the irrelevant variables. These authors also provide a linear control theory perspective to jus-
tify the identifiability of their dynamical representation on a class of nonlinear systems with a dual linear
closure. In this article, we consider the closure modeling framework with a nonparametric formulation and
provide a strong convergence error bound of the estimation of the resolved variables for the first time. For
discrete dynamics obtained from a temporal discretization of differential equations, we found that when the
unresolved variables are fully identifiable, the error rate is O(T 2∆2ε), under mild assumptions. Here, T > 0
denotes the prediction time index, ∆ denotes the discrete time step, and ε > 0 denotes the approximation
error of the missing dynamics. Recalling the theory of nonparametric regression [68], if the missing dy-
namics is a function of a Sobolev class, Hβ, where β > 0 denotes the regularity parameter, the learning
rate ε of any nonparametric regression algorithm with i.i.d data has an optimal global error rate of an order
ε = O(N−

β
2β+d ), where N denotes the length of training data and d denotes the dimension of the domain of

the function. Hence, nonparametric regression algorithms suffer from the curse of dimensionality unless
when the regularity parameter β = O(d). However, even for the case of β = O(d), there are no efficient tools
to carry out the computation for high-dimensional problems.

Fortunately, recent advances in the theoretical analysis of deep neural networks show that they can avoid
the curse of dimensionality in terms of approximation error in both the case of sufficiently smooth functions
[5, 51, 53, 52, 42], and even for continuous functions [64]. Also, there is no curse of dimensionality of deep
neural networks in terms of generalization error when the target functions admit sufficient smoothness [18],
when the data are sampled on a low-dimensional manifold [56], or in the case of classification functions
[9]. While the generalization error for deep neural networks on general functions is an open problem,
empirical numerical evidence has indicated that deep neural networks together with their stochastic training
algorithms (e.g., batch-based stochastic gradient descent) are automatic tools that can identify the “low
complexity” of the underlying systems, e.g., the smoothness or the low-dimensional domain that leads to no
curse of dimensionality [5, 52, 53, 63, 42, 18]. In particular, recurrent neural networks as a special case of
deep neural networks has the potential to avoid the curse of dimension when learning and predicting discrete
dynamical systems with low complexity structures.

While the closure modeling framework can be numerically realized using any approximation/regression
methods, we will consider a special type of recurrent neural networks called the Long-Short-Term-Memory
(LSTM) [29]. We will show that this approach can overcome the curse of dimension suffered by the standard
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nonparametric regression method such as the kernel mean embedding approximation used in [30]. Our
choice of using the LSTM is also encouraged by the success of it in recent closure modeling applications as
proposed in [44, 70, 50]. We should stress that these existing approaches [44, 70, 50] share a similarity, that
is, they specify the closure model as a function of only the memory of the resolved variables and motivate
their framework using a heuristic connection with the Mori-Zwanzig formalism [54, 75]. In contrast, we
will demonstrate that it is critical for the closure model to also depend on the memory of the identifiable
unresolved variables in addition to the resolved components. We will demonstrate the effectiveness of
our framework on several tough prototype complex systems that arise in geophysical fluid dynamics, optics,
quantum fluid such as Bose-Einstein-Condensate, and plasma physics, in addition to theoretical justification.

The rest of the paper is organized as follows. In Section 2, we formulate the problem, provide a simple
example to elucidate the proposed formulation, and discuss the theoretical aspect of the proposed approach.
In Section 3, we provide a short discussion on the numerical aspect of LSTM as a special class of RNN.
In Section 4, we report the numerical results on three prototypical examples of different types of dynamical
systems. In Section 5, we close the paper with a summary. The technical proofs of the theoretical result will
be reported in Appendices.

2 Data-Driven Modeling for Missing Dynamics

Throughout this paper, we will describe the closure modeling approach in the context of discrete maps
that naturally arise from numerical discretization of partial or ordinary differential equations. Stochastic
differential equation will be discussed in the following sections. Let the resolved, xt ∈ X, and unresolved,
yt ∈ Y, variables be the solution of the following deterministic discrete dynamical systems,

xt+1 = F (xt, yt), yt+1 = G(xt, yt), (1)

given initial conditions x0, y0.

Assumption 1. Furthermore, we assume that the full system is ergodic with a unique invariant measure
µ. For the measure space (X × Y,B, µ), where B denotes the σ-algebra of set X × Y, the map defined by
Φ := (F ,G) is invariant under measure µ. That is, µ(Φ−1(B)) = µ(B), for B ∈ B.

Under this assumption, the missing dynamics problem is to predict {xt : t ∈ N} and its statistics, such
as, the mean, covariance, and auto-correlation functions, given only partial dynamics, F . Basically, the
absence of G means that we are missing the unresolved dynamics for y. Our goal is to reconstruct the
missing dynamics in (1) from the given historical time series, {xt, θt}t=1,...,N , where θt := Θ(xt, yt) is the
identifiable unresolved variable. Here, the observables X : X × Y → X and Θ : X × Y → W are random
variables defined as X(xt, yt) = xt and Θ(xt, yt) = θt, respectively.

In particular, θt is the component of the unresolved variables that can be identified from F (x, y) :=
F (x,Θ(x, y)) in (1) and observations {xt}. With this definition, we abuse the notation F to emphasize its
dependence on θ (and suppress its dependence on y), so that in general, θ , y (see e.g, (2)). This restriction
is motivated by practical constraints where only the resolved variables are observed. For example, any F
can be decomposed into,

F (xt, yt) = F̄ (xt) + Θ(xt, yt) = F̄ (xt) + θt, (2)

for some F̄ that involves only the resolved variables and the remainder term is the identifiable unresolved
variable. Given {xt}, one can extract a time series of θt = xt+1−F̄ (xt) by a direct subtraction. In the case when
the observed xt is noisy, one can also use appropriate filtering methods [27, 7]. We should point out that our
formulation below also holds even if θ depends only on the unresolved variables y, so long as the time series
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of θ is available. In this case, the identifiability of θ will be related to the notion of reachability/observability
in the control theory (e.g. see Chapters 3 and 4 of [15]). In the numerical simulations shown below, we
assume that a historical timeseries of {xt, θt}t=1,...,N is available to us.

Our goal is to predict {xt : t ∈ N} and its statistics, such as the mean, covariance, and auto-correlation
functions, with the above constraints. We also aim to reconstruct the missing dynamics in (1). Define
zt,m := (xt−m:t,θt−m:t) ∈ Z with xt−m:t := (xt−m, xt−m+1, . . . , xt) and θt−m:t := (θt−m, θt−m+1, . . . , θt) for some
integer m ≥ 0 which characterizes the memory length. We consider a general closure model of the following
form,

x̂t+1 = F (x̂t, θ̂t), θ̂t+1 = Eε[Θt+1|ẑt,m] + ξt+1, (3)

where ·̂ is used to denote the numerical approximation of the corresponding variable in the closure model.
In (3), the notation Eε[Θt+1|·] : Z → W is to denote an estimator to the target function E[Θt+1|·] :
Z → W with error ε > 0 in appropriate sense. Here, the random variable Θt+1 := S t+1 ◦ Θ, where
S : L2(µ,W) → L2(µ,W) denotes the associated Koopman operator that is defined as, S f := f ◦ Φ, for
all function f : X × Y → W of the Hilbert space L2(µ,W), equipped with the inner product 〈 f , g〉L2(µ) =∫
X×Y
〈 f (x, y), g(x, y)〉Wdµ(x, y). Here, the map Φ := (F ,G) denotes the full dynamics. With this definition,

one can verify that evaluating Θt+1 on initial condition (x0, y0) produces Θt+1(x0, y0) = S t+1Θ(x0, y0) =

Θ ◦ Φt+1(x0, y0) = Θ(xt+1, yt+1) = θt+1.
While the proposed framework suggests that one can use any supervised learning method to construct

an estimator Eε[Θt+1|·] (that can be in the form of parametric or nonparametric as we shall discuss in sub-
section 2.2), to guarantee an accurate estimation of the path xt, one should consider a consistent estimator,
that is, Eε[Θt+1|·] → E[Θt+1|·] as ε → 0 in L2 sense, as we shall discussed below in subsections 2.1 and
2.3. Another question that will be clarified in these two subsections is to which target function does the
proposed estimator converge to. In other words, what is the target function E[Θt+1|·]? As we shall see later,
this depends on the observable Θ.

In (3), the noise ξt is added to account for the residual due to misspecification of hypothesis space for
the target function E[Θt+1|·]. In fact, we shall see from our numerical experiments below that this additional
noise is not needed for the deterministic problems when LSTM is used as the estimator Eε[Θt+1|·]. For
simplicity, we only consider ξt ∼ Ξ to be Gaussian with variance,

E[Ξ2] := E
[
(Θt+1 − E

ε[Θt+1|Zt,m])2
]
, (4)

where we used the notation Zt,m to denote the random variables associated to the realizations zt,m. Here, the
variance will also be estimated by Monte-Carlo approximation to (4) using the historical solutions of the
ergodic system in (1).

To summarize, the closure model is reformulated as a supervised learning problem to learn the map
ẑt,m 7→ E[Θt+1|ẑt,m] and the variance E[Ξ2] of the residual. In the next subsection, we discuss a simple case
for which Θ(x, y) = y. Subsequently, we discuss the notion of parametric and nonparametric estimators,
Eε[Θt+1|·]. We finally close this section with a study on the general case of Θ, which constitutes a more
complicated target function, E[Θt+1|·], obtained using a discrete Dyson formula.

2.1 Fully identifiable unresolved variables

To give an intuition, suppose that the entire unresolved variables can be identified, that is, Θ(x, y) = y. Since
θt = yt, let us replace the notation Θt+1 with Yt+1 := S t+1◦Y defined with the random variable Y : X×Y → Y
in L2(µ,Y) with Y(xt, yt) = yt. In this case, it is clear that the target function is nothing but the full missing
dynamics, namely, E[Θt+1|zt,0] = E[Yt+1|xt, yt] = G(xt, yt) such that one can rewrite (1) as,

xt+1 = F (xt, yt), yt+1 = E[Yt+1|xt, yt]. (5)
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If Eε[Yt+1|·] is a consistent estimator of E[Yt+1|·] with variance error rate ε2, it is clear from (4) that
E[Ξ2] = O(ε2). In this case, we can show that

Theorem 1. Let F and G be Lipschitz in x and y. Let xt+1 be the solutions of (5) and x̂t+1 be the solutions
of,

x̂t+1 = F (x̂t, ŷt), ŷt+1 = Eε[Yt+1|x̂t, ŷt] + ξt+1, (6)

under the same initial conditions x0 = x̂0, y0 = ŷ0. Under the Assumption 1, if Eε[Yt+1|·] → E[Yt+1|·] as
ε → 0 with variance error of order ε2, then

E
[

max
t∈{0,...,T }

|x̂t − xt|
]

= O(aT ε). (7)

for some constant a > 1 that is independent of T and ε.

Proof. See Appendix A. �

This rather pessimistic error bound (exponential on T ) is not surprising since the assumption on F and
G is mild, Lipschitz continuous. This error bound is basically an extension of a classical result in dynamical
system theory, the continuous dependence of the solutions of uniformly perturbed vector field (e.g., Chapter
17.5 in [28]). To obtain an improved result (such as polynomial on T ), one should consider the structure on
F ,G. For example, when the discrete dynamical system is a result of the Euler-Maruyama discretization on
a system of stochastic differential equations,

dx = f (x, y) dt + σxdWx,t, dy = g(x, y) dt + σydWy,t,

where dWx,t and dWy,t denote independent Gaussian white noises, we have:

xt+1 = xt + f (xt, yt)∆ + σx∆
1/2ξx,t+1, yt+1 = yt + g(xt, yt)∆ + σy∆

1/2ξy,t+1, (8)

where ∆ denotes the time step. Here, ξx, ξy ∼ N(0,I) are samples of the standard Gaussian white noises.
When g and σy are unknown, we can directly estimate these terms and obtain a sharper error bound:

Theorem 2. blueLet F and G be Lipschitz in x and y. Let xt+1 be the solutions of (8) and x̂t+1 be the
solutions of,

x̂t+1 = x̂t + f (x̂t, ŷt) ∆ + σx∆
1/2ξx,t+1,

ŷt+1 = ŷt + ∆Eε
[
Y∆

t+1|x̂t, ŷt
]

+ σ̂y∆
1/2ξy,t+1,

(9)

under the same initial conditions x0 = x̂0, y0 = ŷ0. Here, we have defined Y∆
t+1 := Yt+1−Yt

∆
and the noise

variance,

σ̂2
y∆ := E

[(
Yt+1 − Yt − ∆Eε

[
Y∆

t+1|Xt,Yt
])2]

is estimated from the training data. Suppose that the learning variance error rate is,

E[(E[Y∆
t+1|Xt,Yt] − Eε[Y∆

t+1|Xt,Yt])2] ≤ Cε2,

for some C > 0. Let f and g be Lipschitz continuous in x and y, then,

E
[

max
t∈{0,...,T }

|x̂t − xt|
]

= O(εT 2∆2).
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Proof. See Appendix B. �

This result suggests that the solution of the proposed approximate dynamics in (9) strongly converges
to that of (8) up to finite time. The convergence rate suggests that one can expect a path-wise prediction
with an accuracy of order learning rate error, ε, up to order-one model unit time, (T∆)2 = O(1). In other
words, the length of accurate path-wise prediction is inversely proportional to the square root of the learning
error rate, T∆ ≈ ε−1/2. Using a consistent learning algorithm, ε → 0, one can control the polynomial error
growth. In the next section, we will use this error rate to estimate an accurate prediction time as a function
of the number of training data, using a class of hypothesis space with well-known optimal (in the sense of
bias-variance tradeoff) learning rate.

2.2 Parametric versus nonparametric closure models

The essence of parametric closure modeling is to simply specify Eε in (3) with a specific choice of function
P(ẑt,m; W) that depends on a finite-dimensional parameter W. The choice of ansatz P is usually based on
physical intuition; see e.g., [45, 27, 6, 39, 41]. Once the model is specified, the hyper-parameter W can be
obtained by regressing the pairs {zt,m, θt+1}. Subsequently, the variance of Ξ is estimated as in (4). In the
later section, we will consider the Long-Short-Term-Memory model for P.

In [30], a non-parametric closure model is considered. Specifically, the conditional expectation in (3) is
estimated using the kernel mean embedding of conditional distribution formula [66, 65]. In the implementa-
tion, they assume that E[θt+1|·] belongs to the reproducing kernel Hilbert space (RKHS)H ⊂ L2(Z, q) with
a well-defined Mercer-type kernel, constructed based on orthonormal basis functions {ϕk} of this L2-space,
weighted by an arbitrary positive q ∈ L1(Z) [30]. For non-compact domain, such construction was studied
in [74]. The advantage of RKHS beyond inheriting the orthogonality from the L2-space is that any sequence
of functions that converges inH-norm also converges uniformly and any function inH inherits the regular-
ity of the kernel. In fact, one can show that for appropriate choice of kernel, the RKHSH is dense in Cb(Z)
for compactZ [67] or C0(Z) for non-compactZ [74]. Then, for any zt ∈ Z, we can represent:

E[θt+1|zt] =

∞∑
k=0

ckϕk(zt), (10)

where the coefficients ck are precomputed from the available training data {θt, xt}; see [30] for details. The
key point is that this nonparametric formulation turns the problem of choosing the closure model into a
problem of constructing basis functions of a Hilbert space (i.e., choosing an appropriate hypothesis space).
Since H is dense in the space of continuous bounded functions, then any bounded continuous parametric
function P(z; W) can be consistently approximated by a truncation of the series expansion in (10) for appro-
priate choice of basis functions. In this sense, choosing a parametric-based model is somewhat equivalent
to specifying an appropriate RKHS space.

Now, let us demonstrate the effectiveness of this approach in the following simple yet nontrivial example.

Example: Consider a Langevin dynamics

dx = y dt,

dy = (−∇V (x) − γy) dt + σy dWt,
(11)

where x ∈ R is the displacement, y ∈ R is the velocity, V (x) = −x2/2 + x4/4 is the double-well potential,
γ = 1 is the damping coefficient, dW is a standard Gaussian white noise, and σy = 3

√
2/10 is the driving

strength. We observe the trajectories of the variables (xt, yt) at every time step ∆ = 0.01, obtained using
the Euler-Maruyama discretization scheme. In our previous notation, θ(y) = y and we consider a closure
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Table 1: Comparisons of mean exit time τ̄0 and reaction rate νR between the full model and closure models.

True RKHS N = 50, 000 RKHS N = 500, 000
τ̄0 99.2 69.1 102.7
νR 0.0079 0.0040 0.0075

model in (3) with E[θt+1|ẑt,0] = E
[
Yt+1|x̂t, ŷt

]
. This example is nontrivial due to the transition state induced

by the double-well potential V (x). Note that only when the driving strength σy is in a reasonable region, the
transition state phenomenon can be observed for this double-well potential system (see Fig. 1 for example).

In Fig. 1, we compare the result obtained using the RKHS approximation in (10) with the true trajectories
and the statistics from the full model in (11). In this comparison, we apply the formula in (10) with a tensor
product of 50 × 50 Hermite polynomials. We compare the prediction of the trajectory up to finite-time,
marginal density of x, and auto-covariance function E[xτx0] of the true dynamics in (11) with those from the
closure models, trained using N = 5 × 104 and 5 × 105 data points. Notice that using large enough training
data, we are not only accurately recovering the trajectory path-wise longer in time but also the density and
auto-covariance function. Compare to the optimal learning rate ε = O(N−

β
2β+d ) of [68] for very smooth

function with β = ∞, the empirical prediction length (as shown in Fig. 1) is on the order of the theoretical
prediction length T∆ = ε−1/2 ≈ 14.95 for N = 5 × 104 and is slightly longer than the conservative estimate
T∆ = ε−1/2 ≈ 26.59 for N = 5 × 105. In Table 1, we also see the agreement of several statistics that are
commonly used to characterize metastable dynamics. When the training data set is large, we see a relatively
accurate estimation of the mean exit time τ̄0 of a particle to escape one of the wells [21] and the reaction
rate νR, defined as the limit of NT/T as T → ∞ where NT is the number of trajectories to escape a well in
the time interval T [69].

2.3 Partially identifiable unresolved variables

While the closure model in (6) is theoretically consistent and the example above shows a very promising
approach, in real applications, the function Θ(x, y) , y since the unresolved variables, y, are usually not
identifiable from the data {xt} and the map F (xt, θt). Even if the full data of y are available, they are very
high-dimensional relative to θ. What is usually identified is θ in the sense of (2), which yields the same
dimensionality as the resolved variable x.

In this case, let us rewrite the underlying dynamics in (1) as a function of (x, θ). To do this, we consider
the Koopman operator S : H → H defined as, S ◦ f = f ◦Φ, for f ∈ H , a space of (X×W)-valued functions
f : X × Y → X ×W, equipped with an inner product, 〈 f , g〉H :=

∫
Ω
〈 f (ω), g(ω)〉X×W dµ(x), weighted by

the invariant measure µ. The main interest is of observable function π ∈ H defined as π := (X,Θ), such
that π(x, y) = (X(x, y),Θ(x, y)) = (x, θ),∀(x, y) ∈ X × Y, which can be interpreted as a map that changes
coordinate. For identifiable unresolved component as defined in (2), then X =W = Rdx for dx-dimensional
real-valued observable; if Y = Rdy , where dy � dx, then the random variable π maps vectors in Rdx+dy into
vectors in R2dx . Let P : H → H be an orthogonal projection operator to a closed set of functions of (x0, θ0),
namely V = { f ∈ H : f = g ◦ π | g : X ×W → X ×W}. To this end, we also define Q := I − P be the
projection map to the orthogonal spaceV⊥ ⊂ H . We now rewrite the dynamics of the observables (x, θ) by
applying the Dyson formula [17, 38],

S t+1 =

t∑
k=0

S t−kPS (QS )k + (QS )t+1,

7



(a) Trajectories (N = 50, 000)
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Figure 1: The top panels display comparison of the trajectories between the full model (green) and RKHS
closure model using different size of training dataset. The bottom panels compare PDFs and auto-covariance
functions (ACVs) among the full model (green), RKHS closure models.
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on π, evaluated at initial condition (x0, y0) with distribution µ. The left-hand-side term, S t+1π(x0, y0) =

π(Φt+1(x0, y0)) = π(xt+1, yt+1) = (X(xt+1, yt+1),Θ(xt+1, yt+1)) = (xt+1, θt+1). Evaluating the first term on the
right-hand-side on π(x0, y0), we obtain S t−kPS (QS )kπ(x0, y0) = PS (QS )kπ(xt−k, yt−k). For k = 0, we obtain
the Markovian term,

PS π(xt, yt) = P(π ◦ Φ(xt, yt)) = P(π ◦ (F (xt, yt),G(xt, yt))). (12)

In order to write (12) in terms of (xt, θt), we use the definition of V. Particularly, since PS π ∈ V, there
exists a function Φ̄0 : X×W → X×W such that PS π = Φ̄0 ◦ π. Note that PS is a linear operator whereas
Φ0 is a function (possibly nonlinear) where they share the same range in V. Let Φ̄0 = (F̄0, Ḡ0), where the
maps F̄0 : X×W → X and Ḡ0 : X×W →W denote the x− and θ−components of the Markovian term in
(12), respectively. Since π is identity in the x-direction, then the x−component of (12) is simply PF (xt, yt).
But since F (x, y) := F (x, θ) as we explained prior to Eq. (2), it is clear that PF (xt, yt) = F (xt, θt), which is
nothing but F̄0(xt, θt).

For the memory terms, k > 0, since PS (QS )kπ ∈ V, there exists Φ̄k : X × W → X × W such
that PS (QS )kπ = Φ̄k ◦ π, by the definition of V. As before, we let Φ̄k = (F̄k, Ḡk) such that the maps
F̄k : X ×W → X and Ḡk : X ×W → W denote the x− and θ−components of the memory functions,
respectively. Since QF = 0, the x−component of the dynamics has no memory term and therefore F̄k =

0, k > 0. Putting all these together, we have

xt+1 = F (xt, θt),

θt+1 = Ḡ0(xt, θt) +

t∑
k=1

Ḡk(xt−k, θt−k) + (QS )t+1(x0, y0).
(13)

Here the dynamics of θ inherits Markovian, memory and orthogonal terms, where the last term is usually
regarded as noise with the randomness corresponding to the distribution of the initial condition, µ.

Conceptually, one can consider learning the entire dynamics of θ by considering the target function
E[Θt+1|zt,t], conditioned to the entire history of zt,t = (x0:t,θ0:t), which is not practical. In applications,
however, the length of the memory is often finite, 0 < m < t, and it can be estimated as shown in [24, 58].
In fact, for nonlinear systems with linear dual closure (that is, the vector field is linear in terms of θ),
one can determine the minimum length of m to guarantee the identifiability of θt+1 from observed data of
zt,m := (xt−m:t,θt−m:t) ∈ Z [57]. We should point out that while the linear dual closure condition is satisfied
in the Langevin example above, it is not necessarily satisfied for all examples in Section 4, that is, while the
dependence of F on θ is linear as in (2), the dependence of Ḡ0 on θ in (13) may not be linear. Also, the
second fluctuation-dissipation theorem [76] states that the time correlation of the orthogonal dynamics is
proportional to the memory function. This suggests that if the memory term dissipates beyond m-lags, then
the orthogonal dynamics should also depend on state variables of not longer than m-lags. With this in mind,
let us rewrite (13) as,

θt+1 = Ḡ0(xt, θt) +

m∑
k=1

Ḡk(xt−k, θt−k) + (QS )m+1π(xt−m, yt−m) + Rt+1,

where

Rt+1 :=
t∑

k=m+1

Ḡk(xt−k, θt−k) + (QS )m+1
(
(QS )t−mπ(x0, y0) − π(xt−m, yt−m)

)
, (14)

denotes the modeling error due to finite memory assumption. Depending on the choice of learning algo-
rithm and model (e.g., width or depth of the deep neural network), the estimator Eε[Θt+1|zt,m] is usually
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found by minimizing the variance of Rt ∼ Σ, where Σ denotes the random variable of the error. From the
learning perspective, this modeling error is usually minimized in the training phase with the hope that the
corresponding generalization error will be not much larger than the training error. For the convenient of the
analysis below, we first assume that the finite memory approximation holds such that Rt+1 = 0.

For the convergence analysis, we require that the following assumption.

Assumption 2. Let PS and QS be bounded linear operators defined with respect to functions f ∈ C(X×Y).

With these assumptions, let (x, θ), (x′, θ′) ∈ X ×W, where (x, θ) = π(x, y), (x′, θ′) = π(x′, y′), and y, y′ ∈
Y. For π ∈ C(X × Y) ∩ H , notice that |Φ̄k(x, θ) − Φ̄k(x′, θ′)| = |PS (QS )kπ(x, y) − PS (QS )kπ(x′, y′)| ≤
|PS (QS )k||π(x, y) − π(x′, y′)| ≤ C|(x, θ) − (x′, θ′)|, where the | · | denotes the appropriate uniform norms.
Therefore, this technical assumption says that Φ̄k are Lipschitz continuous on x and θ, which is needed to
bound the errors in term of x and θ. Notice that if P and π are both identity maps and k = 0, this assumption
is equivalent to saying Φ = (F ,G) is Lipschitz in x and y, which is assumed in both theorems in previous
section. For the decomposition in (2), where F is linear in θ, this assumption means that F is also Lipschitz
in the x.

Theorem 3. Let xt+1 be the solution of

xt+1 = F (xt, θt),

θt+1 = Ḡ0(xt, θt) +

m∑
k=1

Ḡk(xt−k, θt−k) + (QS )m+1π(xt−m, yt−m) = E[Θt+1|zt,m],
(15)

where π ∈ C(X ×Y) ∩H and the Assumption 2 is satisfied. Let x̂t+1 be the solution of

x̂t+1 = F (x̂t, θ̂t), θ̂t+1 = Eε[Θt+1|ẑt,m] + ξt+1, (16)

under the same initial conditions x−m:0 = x̂−m:0, θ−m:0 = θ̂−m:0. In (16), the noise amplitude ξt ∼ Ξ is
estimated according to (4) using the training data. Under the Assumptions 1, if Eε[Θt+1|·] → E[Θt+1|·] as
ε → 0 with variance error of order ε2, then

E
[

max
t∈{0,...,T+1}

|x̂t − xt|
]

= O(aT ε)

where a > 1 is a constant that is independent of T and ε.

Proof. See Appendix C. �

We should point out that if the underlying dynamic solves the full Mori-Zwanzig equation in (13) and
the approximate dynamic in (16) commits modeling errors Rt+1 with error variance of order ε2

m, then the
error bound above becomes O(aT (ε + εm)). The only change in the proof in Appendix C is that the Eqn. 40
has an additional order-εm term due to the model error.

For dynamical systems driven by stochastic noises, one can rewrite the full dynamics as an autonomous
dynamical system by augmenting (xn, yn) with the entire history of the noises. See [34] for the details or
the Appendix of [38] for the key idea. Subsequently, one can apply the Dyson formula to the resulting
autonomous dynamics, defined on appropriate state space that includes X × Y and the space of the history
of the noises, and derive an analogous representation as in (13). We suspect that the result is not different
from that in Theorem 3 and thus we will not pursue this derivation.

Again, this error rate is rather loose with unknown coefficients a > 1 since no other assumptions are
included in F ,G. One might achieve an improved error rate by analyzing the eigenvalue problem cor-
responding to the autoregressive model of order-m, which bounds the dynamical equation for the errors
between (13) and (3). Another plausible approach is to consider a class of dynamical systems with spatially
short-range interaction as studied in [12], which will require further investigation.
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Figure 2: Left: the basic computational flow of a LSTM recurrence. + and
⊗

are element-wise addition
and multiplication respectively. Right: a sequence of LSTM cells applied compositionally.

3 Deep Learning via Long-Short-Term-Memory

As a nonlinear type parametric regression method, deep learning outperforms kernel methods including
the RKHS approach in terms of generalization error when the target functions are sufficiently smooth [18].
Though it is theoretically unclear whether there are any advantages of using deep learning over other non-
parametric regression methods for general continuous functions in terms of overcoming the curse of di-
mension [5, 51, 53, 52], deep learning has practical advantages over the RKHS approaches. A significant
challenge with the RKHS approximation in (10) is that there is no a priori guideline for choosing the appro-
priate hypothesis space. If the orthogonal basis is used, it is practically difficult to even construct these basis
functions on very high-dimensional variables z ∈ Z. On the other hand, if arbitrary radial functions are used
as a basis, the evaluation of the resulting model on a new point z requires evaluating the basis functions on
‖z −zt,m‖ for all training data t = 1, . . . ,N, predicting with (3) becomes too costly since we need to evaluate
the conditional expectation in (10) on a new point in each iteration. In contrast, deep learning as a nonlinear
parametric regression method is not hampered by these issues, since it is practically just a nonlinear inter-
polation technique using a composition of nonlinear activation functions and linear transforms. Of course,
the main issue with nonlinear regression is whether one can obtain the minimum on such a non-convex op-
timization problem in the training phase. Recent advances in optimization theory show that simple gradient
descent can identify a local minimizer with an arbitrarily small loss and a generalization error without the
curse of dimensionality when the network size is sufficiently large for classification problems [9]. Though
there is no existing optimization theory that guarantees good local minimizers in general settings, motivated
by many positive numerical results shown in other closure modeling approaches [70, 50], we will consider
realizing the closure model in (3) using recurrent neural networks.

As a special case of recurrent neural networks, Long-Short-Term-Memory (LSTM) is capable of learn-
ing multi-scale temporal effects and hence is adopted in our method. The computational flow of the LSTM
consists of a sequence of computational cells, each of which is

ft = σ ◦ NN(ht−1, zt; W f ), it = σ ◦ NN(ht−1, zt,Wt)

ot = σ ◦ NN(ht−1, zt; Wo), C̃t = tanh(NN(ht−1, zt; WT )),

Ct = ft ⊗Ct−1 + it ⊗ C̃t, ht = ot ⊗ tanh(Ct),

whereσ denotes the sigmoid function, ⊗ is the pointwise product, and NN denotes a fully connected network
which stacks layers of linear transformation and nonlinear activation function. See Fig. 2 (left) for an
illustration of an LSTM cell. For simplicity, let us denote the above flow as (ht,Ct) = P(zt, ht−1,Ct−1; W)
with parameters W, inputs (zt, ht−1,Ct−1), and outputs (ht,Ct). LSTM cells can be applied compositionally
and we denote the LSTM sequence with m + 1 cells as (hm+1,Cm+1) = Pm({zt}

m+1
t=1 , h0,C0; W) (see Fig. 2

(right) for an illustration).
Now let us apply the LSTM to approximate the closure model in (3) with the given training data {zt,m, θt},

where zt,m := (xt−m:t,θt−m:t) ∈ Z. We train an (m + 1)-cell LSTM (hm+1,Cm+1) = Pm(zt,m, h0,C0; W) with
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an input in the j-th cell as (xt−m+ j−1, θt−m+ j−1) such that hm+1 predicts θt+1 well. The parameters h0 and
C0 are set to be 0 for simplicity and W is identified via minimizing a mean squared error (MSE) function
specified below. In what follows, we adopt the notation hm+1 = Pm(zt,m; W) for simplicity. Define the MSE
loss as

L(W) :=
1

N − m − 1

N−1∑
s=m+1

(Pm(zs,m; W) − θs+1)2, (17)

i.e., we aim to identify a predictor Pm(zs,m; W) such that it can predict the (s+1)-th sample in the time series
given (m + 1) preceding samples. Minimizing (17) can be achieved efficiently via a mini-batch stochastic
gradient descent (SGD) and backpropagation through time (BPTT) [55, 62, 72]. Though the global min-
imizer of the above highly non-convex optimization might not be available, empirically numerical results
[59] and partial theoretical analysis show that gradient-based algorithms are able to provide a minimizer W∗

with a reasonably good generalization capacity in the case of over-parametrized networks [3, 1, 11]. Once
W∗ has been identified, θt+1 = Pm(zt,m; W∗) is applied instead of the conditional expectation in (3).

The computational cost of the proposed framework mainly consists of two parts: training and evaluation.
In the training part, suppose the SGD with a batch size K is applied to minimize the loss in (17), then the
computational cost for evaluating an approximate loss and gradient via BPTT is essentially O(Km) matrix-
vector multiplications with a matrix of size dL × dL, where dL is the dimension of the hidden layer of NN.
According to the approximation theory of DNNs [43, 63], dL is required to be larger than d; based on the
optimization analysis of DNNs [8, 2, 9], a larger dL admits a simpler optimization problem in deep learning.
In the numerical examples shown below, we empirically set dL = 500 for problems with dimensions d =

40, 80, and set dL = 1000 for a problem that involves d = 480. Hence, the total computational cost is
O(Kmd2

L) for one iteration in the SGD, which has been parallelized via GPU computing in standard machine
learning packages. Recent theoretical analysis shows that the convergence of SGD is linear under mild
conditions [3]. Therefore, the upper bound of the iteration number in the SGD to guarantee a loss less
than ε is O(log( 1

ε )). In our numerical examples below, the total numbers of iterations required for accurate
performance are 4 × 103 for the first problem and 4 × 104 for the last two problems. In the evaluation part,
the cost estimation for predicting one data sample with m pairs of historical data is O(md2

L), which has been
parallelized via GPU.

4 Numerical Examples

In this section, we numerically demonstrate the effectiveness of our proposed closure framework on severely
truncated dynamical systems in three prototypical applications. First, the topographic mean flow interaction
that mimics the blocked and unblocked patterns observed in the atmosphere [10, 25, 47, 20] is considered.
In our test, we will use the stochastic version of the 57-mode model studied in [61]. Second, the non-
linear Schrödinger equation that finds many applications in optics and Bose-Einstein-Condensate (see the
references in [31]) is studied. Finally, the Kuramoto-Shivashinsky equation with a spatiotemporal chaotic
pattern formation with applications in trapped ion modes in plasma [37] and phase dynamics in reaction-
diffusion systems [35]. We shall see that the closure models in these three examples progressively involve
approximations of functions of dimensions 40 to 480.
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4.1 Topographic mean flow interaction

We consider the topographic mean flow interaction that solves a barotropic quasi-geostrophic equation with
a large-scale zonal mean flow u(t) on a two-dimensional 2π × 2π periodic domain, formulated as in [61]:

du
dt

+

?
∂h
∂x
ψ = −d̄u + σµ−1/2Ẇ0,

∂ω

∂t
+ ∇⊥ψ · ∇q + u

∂q
∂x

+ β
∂ψ

∂x
= −Dψ + ΣẆ.

(18)

Here, q = ω + h is the small-scale potential vorticity which is advected by the velocity field v = ∇⊥ψ ≡(
−∂yψ, ∂xψ

)
; ω = ∆ψ and ψ are the relative potential vorticity and the stream function, respectively; h (x) =

h (x, y) is the topography. The parameter β is associated with the β-plane approximation to the Coriolis force.
The integral in (18) is a two-dimensional integral over a periodic box of [−π, π]× [−π, π]. On the right hand
side of (18), the dissipation and forcing operators are applied on both the small and the large scales. On
the small scale, the dissipation operator is in the form of D = −d̄∆ with d̄ ≥ 0 and ∆ the Laplace operator
corresponding to the Ekman drag dissipation. On the large scale, operator −d̄u represents the momentum
damping. The forcing terms are represented by random Gaussian white noises (e.g. unresolved baroclinic
instability processes on small scales, random wind stress, etc), where W (t) and W0 (t) are standard Wiener
processes; σµ−1/2 > 0 is a constant amplitude and Σ is spatially dependent.

Following [47, 20, 61], we construct a set of special solutions to (18), which inherit the nonlinear cou-
pling of the small-scale vortical modes with the large-scale mean flow via topographic stress. Consider the
truncated spectral expansion of the state variables for ψ and ω with high wavenumber truncation 1 ≤ |k| ≤ K
using standard Fourier basis exp(ik · x) with k =

(
kx, ky

)
. We can rewrite (18) for the large-scale mean flow

u (t) in a truncated Fourier form, as:

du
dt

= i
∑

1≤|k|≤K

kx

|k|2
ĥ∗kωk − d

(
u − ueq

)
+ σµ−1/2Ẇt,

dωk

dt
= PK,k

(
∇⊥ψN · ∇qN

)
+ ikx

(
β

|k|2
− u

)
ωk − ikxĥku − d

(
ωk − ωeq,k

)
+ σkẆk,t, 1 ≤ |k| ≤ K,

(19)

Here, ĥk and ωk are the Fourier transform of the topography h (x) and the relative potential vorticity ω,
respectively; ueq = −β/µ is the equilibrium mean of u (t); ωeq,k = − |k|2 ĥk/

(
µ + |k|2

)
is the mean relative

vorticity; σk = σ
(
1 + µ |k|−2

)−1/2
is the forcing strength for each mode k. The parameter σ is chosen such

that σ2
eq = σ2

2d̄ = 1. The parameters β = 1 and µ = 2 are fixed in our simulation.
In our implementation, we consider the ground truth as the solution corresponding to the truncation

1 ≤ |k| ≤ K with K = 17 such that there are 57 degrees of freedom for integers k =
(
kx, ky

)
. In this

topographic 57-mode model, we use the standard 4th order Runge-Kutta method for the time integration up
to 5 × 107 time iterations with a time step δt = 2.5E−3, which is small enough to capture the small-scale
dynamics. For the nonlinear advection term, PK,k

(
∇⊥ψK · ∇qK

)
, the 2/3 rule is applied for de-aliasing [61].

The noise is added using the standard Euler-Maruyama scheme. Here, the initial condition, ψ(x, 0), is a
sample of Gaussian distribution with random phases and amplitudes consistent with the ensemble mean and
enstrophy as in [46]. The observed data are recorded at every 20 time steps, that is, we observe the data at
every ∆ = 0.05 time unit. Taking half of this data set for training, N = 1.25×106 samples. For the topography
h (x), we use a simple layered topography with variation only in the x-direction, h (x) = H (cos (x) + sin (x)) ,
where H denotes the topography amplitude.

We now present the closure model for the large-scale mean flow u (t) in Eq. (19). The application of the
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Euler-Maruyama scheme for the large-scale mean flow û (t) gives

ût+1 = ût + ∆ θ̂t − ∆d̄
(
ût − ueq

)
+
√

∆σµ−1/2ηt+1,

θ̂t+1 = Eε
[
Θt+1|ût−m:t, θ̂t−m:t

]
+ ξt+1,

(20)

where the time step ∆ = 0.05 and θ̂t is an estimator of the identifiable unresolved variable. In this case, θ =

θ(ωk) = i
∑

1≤|k|≤K
kx

|k|2
ĥ∗kωk, is a function of the unresolved variables alone. The noises ηt are i.i.d. standard

Gaussian while the noises ξt are Gaussian with mean zero and variance Ξ determined from the training
residual using Eq. (4). We will approximate the conditional expectation Eε in (20) with the LSTM model
with m = 19, which involves an approximation of a forty dimensional function. We should point out that
the results become inaccurate when m is too small. Taking the efficiency of computation into consideration,
we empirically found that m = 19 is a convenient choice. In fact, in all LSTM examples in the remaining
of this paper, we use this same number of m on the purpose of showing that our proposed framework is
not sensitive to m. We will also include an experiment mimicking the existing approach in [44, 70, 50],
where the conditional expectation in (20) is replaced with Eε

[
Θt+1|ût−mu:t], a function that depends only on

the memory of the resolved scale with memory length mu = 19. In this case, the conditional expectation is
a twenty dimensional function. In addition, we also report the RKHS approximation to (20) with m = 2,
which involves only an approximation of a six-dimensional function (ût−2:t, θ̂t−2:t) 7→ Eε[Θt+1|ût−2:t, θ̂t−2:t].
Here, we use a tensor product of Hermite polynomials to represent this six dimensional function. The curse
of dimensionality makes the RKHS model with orthogonal polynomials prohibitive in higher dimensions.

To compare the pathwise trajectories for short-time forecasting in the verification phase, we need to drive
the closure model in (20) with the appropriate realization of noises ξt and ηt, that respects the realization
of the noises, Ẇt+1, Ẇk,t of (19), which drive the verification trajectory. Since the closure model depends
on the identifiable unresolved variable, θ, one can, in principle, account for the realization of the noise
σkẆk,t corresponding to the verification trajectory by first mapping it to W-space via the linear mapping
θ(·) (defined short after (20)) and use it as a realization of ξt. Based on our numerical inspection, we found
that the variance of this noise (inW-space) is on the order of 10−8, whereas the variance of θ is on the order
of 10−2, so there is a large signal-to-noise ratio in the true θ-dynamics. With such a distinct signal-to-noise
in the true θ-dynamics, one can expect that the trajectory of u can be recovered up to some accuracy even
if this noise realization is neglected in the closure model so long as the conditional expectation model in
(20) can accurately approximate the deterministic part of the unresolved dynamics. Furthermore, we found
that the residuals in the training phase are small (the variances, Ξ, are on the order of 10−5) in most of the
dynamical regimes that we tested. Based on these observations, we will show numerical results obtained
without additional noise ξt in (20), to verify the prediction skill of the conditional expectation model alone.
We should note that in separate experiments (not reported here), we found that the differences between the
results without and with noise, ξt, where the latter uses a completely random realization, are negligible.

As for the stochastic noise, Ẇt, corresponds to the resolved dynamics in (19), we notice that the full
model and the closure models are integrated with different time steps. The full model is integrated with a
relatively small time step δt = 2.5E−3 in order to resolve all the small-scale vorticity modes. Nevertheless,
the closure models are integrated with a relatively large time step ∆ = 0.05 for resolving only the large-scale
mean flow u (t). To compare the pathwise trajectories, we first generate a realization of the noise Ẇt+1 from
identifiable variables using finite difference method

ηt+1 =
ut+1 −

[
ut + ∆θt − ∆d

(
ut − ueq

)]
√

∆σµ−1/2
,

where ut and θt are the identifiable variables from the dataset for verification of the full model observed
with time interval ∆ = 0.05. Using such realization of Ẇt+1 for the noise ηt+1 in (20), we can now compare
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Figure 3: Comparison of trajectories between the full and closure models for the mean velocity u. The true
trajectory (green solid) in all panels; RKHS m = 2 (yellow dash-dotted line) in the first row; LSTM mu = 19
(red dashes) in the second row; LSTM m = 19 (blue dotted line) in the third row.

the path of the closure model with ∆ = 0.05 to the path of the true trajectory, starting at the same initial
condition.

In Fig. 3, we present the short-time predictions of u in three regimes: weak coupling (H = 3
√

2/4,
d̄ = 0.5), intermediate coupling (H = 5

√
2/4, d̄ = 0.1), and strong coupling (H = 7

√
2/4, d̄ = 0.1). These

three regimes were considered in [61]. We would like to emphasize that we verify the closure model in (20)
using initial conditions not in the training data set. In each regime, we compare the trajectories of the full
model and the three closure models discussed above. In the weak coupling regime, one can see that the short-
time predictions are all excellent among three closure models. For the other two regimes, the LSTM without
the unresolved variables (mu = 19) proposed in [44, 70, 50] produces the worst prediction, which justifies
the importance of considering both the resolved and identifiable unresolved variables in the closure model
proposed in this paper. Surprisingly, the RKHS prediction is quite accurate considering that it requires less
computational effort relative to LSTM. As we discussed before, given the large signal-to-noise ratio in the
θ-dynamics, the reasonably accurate trajectory recovery of the closure model in (20) without incorporating
the noise realization σkẆk,t suggests that the conditional expectation model alone has captured the bulk of
the deterministic part of the unresolved dynamics.

In Fig. 4, we show the comparison of the equilibrium density and Auto-Correlation Functions (ACFs) of
the full model and three prediction methods. The auto-correlation function (ACF) for the large-scale mean
flow u is calculated as 〈UtU0〉 / 〈U0U0〉, where Ut = ut−〈ut〉 with 〈·〉 being the temporal average over 1.25×
106 data for verification, which is different from the N = 1.25×106 training dataset. The probability density
function (PDF) for u is obtained from the same verification dataset using the kernel density estimation (KDE)
method. For the long-time statistics, both the LSTM methods provide a better approximation than the RKHS
model. This is because not enough memory terms are used in the RKHS model. In the strong coupling
regime, one can see that the LSTM method with m = 19 is the best approximation. This is because the
variance of the training residual is small about 10−5 for the LSTM with m = 19 and the variance is relatively
large about 10−1 for the LSTM with mu = 19. This result confirms the robustness of our framework with a
closure model that depends on, both, the memories of the resolved and identifiable unresolved variables.
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Figure 4: Comparison of densities and Auto-Correlation functions (ACF) between the full and closure
models for the mean velocity u.
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4.2 Nonlinear Schrödinger equation

We consider the cubic nonlinear Schrödinger (NLS) equation defined on a periodic boundary condition
[0, 2π], which dynamical equation can be written in terms of the Fourier modes as,

duk

dt
= −ik2uk − i

∑
k1∈Z

∑
k2∈Z

uk1uk2u∗k1+k2−k. (21)

Numerically, we generate the truth by integrating (21) on finite wavenumbers |k| ≤ K and Strang’s splitting
method in time [4]. Here, the number of modes K = 32 and the observation time interval ∆ = 0.02. The
observation data length is 106, obtained from a single trajectory. Taking half of this data set for training,
N = 5 × 105 samples.

We simulate the initial conditions by sampling from the Gibbs distribution π = exp(− E
kBT ), where E

denotes the Hamiltonian of the ODE system resulting from the Fourier representation (21); kB and T denote
the Boltzmann constant and temperature, respectively. In this case, the Hamiltonian is given by E = E2 +E4,

E2 =
∑
k∈Z

k2 |uk|
2 , E4 =

1
2

∑
k1∈Z

∑
k2∈Z

∑
k3∈Z

uk1uk2u∗k3
u∗k1+k2−k3

.

We should point out that the qualitative solutions for higher temperature have larger amplitudes and frequen-
cies. Since smaller time steps are required for accurate solutions with higher amplitude as well as the faster
frequency, the problem is numerically stiff as the temperature increases. To keep the presentation short, we
only show the numerical results for the zeroth mode u0 in a high-temperature regime with kBT = 10. Our
numerical test on lower temperature regime (not shown) do not change the conclusion in this section. In fact,
a parametric closure proposed in [26] has shown accurate recovery for extremely low temperature regime,
kBT = 10−4, and less accurate as the temperature increases. The stiffness of high-temperature regime will
also be manifested in the numerical scheme that is used in integrating the closure model as we will explained
below.

In this example, we are interested in constructing a closure model for the dynamics of the zeroth mode
u0 of the NLS equation. Given the dynamical equation of the resolved variable, u0, we can rewrite it in the
form of (2) as,

du0

dt
= −i

∑
k1∈Z

∑
k2∈Z

uk1uk2u∗k1+k2
:= −i

(
|u0|

2u0 + θ
)
, (22)

where θ is basically the full vector field without the cubic term that involves only u0 in the right-hand-side of
(22). The closure model is obtained by concatenating a discretization of (22) with time step ∆ with a map,
Eε

[
Θt+1| ·

]
: R(m+1)×4 → R2, defined as,

θt+1 = Eε
[
Θt+1|u0,t−m:t,θt−m:t

]
. (23)

Here θt+1 denotes the unresolved identifiable component at discrete time t + 1. To train this model, we
need a time series of {θt} in addition to {u0,t}. Based on the form of the resolved dynamics in (22), given a
training time series of {u0,t}, we extract {θt} by a direct subtraction and a finite difference approximation to
the derivative. However, we should point out that if we reverse-engineer this step, that is, solve (22) with
the true initial condition of u0(0) using a lower-order scheme (such as Euler method) and directly use the
data {θt} that we just obtained from direct subtraction, the solution for u0(t) will blow up in finite-time. This
is a manifestation of the stiffness of this problem. To avoid this issue in the closure model, we apply the
following time-splitting method in our numerical discretization of (22). That is, we use the Euler scheme
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Figure 5: Comparison of (a) trajectories, (b) ACFs, and (c) densities of the full and closure LSTM models
in the high temperature regime with kBT = 10. The time step for the closure model is ∆ = 0.02 and the
LSTM method uses m = 19 memory terms for (θ, u0) in Eq. (23). Full model (blue dashes); LSTM m = 19
(red solid).

to solve the linear ODE, du0/dt = −iθ, since we only have discrete estimates of θ, and we use the explicit
solution u0(t) = u0(t0) exp(−i|u0(t0)|2t) for the nonlinear ODE, du0/dt = −i|u0|

2u0.
In this numerical experiment, we fix the memory length to be m = 19 in the LSTM method, resulting

in an approximation of 80-dimensional function Eε
[
Θt+1| ·

]
. No residual term is added in (23). For the

short-time forecasting, we observe from Fig. 5(a) that the path-wise solution of Re(u0) is well captured for
a sufficiently long time; the discrepancies in the frequencies are noticeable as time increases. In Fig. 5(b)
and (c), we also reported the ACF for the Re(u0), calculated by a temporal average over 5 × 105 verification
data, which is different from the N = 5×105 training dataset. The PDF for Re(u0) is obtained from the same
verification dataset using the kernel density estimation (KDE) method. Notice that both the ACF (below
time 40 unit) and the density of the true u0 are also well reproduced. Therefore, for the first mode u0 of the
NLS equation, the proposed closure model using the LSTM method can reasonably replicate the short-time
forecasting skill and long-time statistics in the high-temperature regime.

We should point out that the resulting model is only valid in predicting the evolution of the system on the
same energy level since the underlying Hamiltonian system is not ergodic. This implies that the verification
will only be valid to predict the evolution of the system with initial conditions sampled from the same Gibbs
distribution where the training data is generated from.

4.3 The Kuramoto-Sivashinsky equation

We consider the Kuramoto-Sivashinsky equation (KSE) on an L−periodic domain, the Fourier representation
of which can be written as
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d
dt

vk =
(
q2

k − q4
k

)
vk −

iqk

2

∞∑
l=−∞

vlvk−l, (24)

where qk = 2πk/L with k ∈ Z, and vk denotes the kth Fourier mode.
In our numerical implementation, we let the full dynamics to be the Galerkin truncation of (24) for |k| ≤

K/2, where K = 96. Notice that in the linearized equations of (24), each Fourier mode has an eigenvalue
q2

k − q4
k so that high k modes with |qk| > 1 are linearly stable whereas low k modes with |qk| ≤ 1 are not. We

set the spatial length L = 2π/
√

0.085 so that the number of linearly unstable modes is
⌊
1/
√

0.085
⌋

= 3. In
this case, the energy is transferred from the linearly unstable low 3 modes to the damped high K/2 − 3 = 45
modes through the nonlinear terms so that the KSE is well-posed and the solutions remain globally bounded
in time [23]. This regime is exactly the same as the one considered in [40, 38].

We predict the six leading modes of the KSE with the following partial dynamics,

d
dt

v̂k =
(
q2

k − q4
k

)
v̂k −

iqk

2

∑
1≤|l|,|k−l|≤6

v̂lv̂k−l + θ̂k, k = 1, . . . , 6. (25)

In this case, since the nonlinear terms in (25) only involve summation of terms that are restricted to 1 ≤
|l|, |k− l| ≤ 6, the identifiable unresolved variables, θk, depends also on the resolved modes, in addition to the
unresolved modes. The proposed closure model is to concatenate the numerical discretization of (25) with
the discrete nonparametric closure model,

θ̂t+1 = Eε
[
Θt+1|v̂t−m:t, θ̂t−m:t

]
, (26)

where θ̂t = (θ̂1,t, . . . , θ̂6,t) ∈ C6 and v̂t = (v̂1,t, . . . , v̂6,t) ∈ C6. In our numerical experiment, we set m = 19
such that Eε in (26) is a function that maps a real-valued vector of size (19 + 1) × 12 × 2 = 480 to a 12-
dimensional vector consisting of the real and imaginary values of θ̂t+1. To evolve the dynamics in (25)-(26),
we discretize (25) with the midpoint rule and a time step ∆.

In our numerical experiment, the true time series for training are obtained by integrating the full dynam-
ics, that is, (24) truncated on 1 ≤ |k| ≤ 48 with a time step δt = 0.005. We observe only the first 6 modes at a
time step ∆ = 0.05. The size of the training data set is N = 2.5 × 105. The identifiable unresolved variable,
θt, is estimated by fitting the time series vt to the dynamics in (25). Subsequently, we use the pair {θt,vt}

to train the LSTM model for (26); for training, we add Gaussian noises of variance 1% relative to that of
the original data to avoid overfitting that tends to occur when the hypothesis space is rather complex and the
amount of data is finite.

Fig. 6(a) displays the difference of the short-time spatiotemporal manifestation between the full and the
closure models. One can see that the spatio-temporal pattern of the proposed closure model is consistent
with that of the full KS model up to roughly time t = 54. A close inspection shows an accurate path-
wise prediction of the real component of the leading six Fourier modes up to time 54 (see Fig. 8). In
Fig. 7, we report the root-mean-square-error (RMSE) and (anomaly correlation) ANCR as defined in [16]
that characterize the lead-time prediction skill, averaged over 1000 initial conditions out-of-samples and the
spatial domain. Notice that both metrics show a substantial improvement in the prediction skill relative to
that of the bare truncated model which is a result of using only (25) with θ̂k = 0.

For this regime L ≈ 21.55, the leading Lyapunov exponent is roughly λ1 ≈ 0.04 [19], which suggests
that the accurate prediction length is roughly 54×λ1 = 2.16 Lyapunov time units. In other words, the length
of the prediction is on the same order as the Lyapunov time. While this empirical result suggests that the
constant a in Theorem 3 is roughly eλ1 , a theoretical justification for such a tighter bound will require more
thorough investigation with possibly additional assumptions on the dynamics.
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(a) Difference of the full and closure models solutions (b) Energy spectrum
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Figure 6: (a) Difference of spatiotemporal manifestation of KS solutions starting from the same initial
conditions between the full model and the closure model using the LSTM method; (b) The energy spectra
〈|vk|〉

2 for the KS solutions between the full (blue solid) and the closure (red dashes) LSTM models.
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Figure 7: Prediction error: RMSE and ANCR as a function of time. These metric are estimated by a spatial
and temporal average over 1000 initial conditions out-of-sampling.

In Fig. 6(b), we show the accurate recovery of the energy spectra. Fig. 8 also displays the results for
the comparison of ACFs and PDFs for all the Fourier modes v1, . . . , v6 and CCF’s defined as the cross-
correlation functions between |vk|

2 and |v4|
2. All of these long-time statistics are computed using the Monte-

Carlo estimation over 2.5×105 data samples. We can see that ACFs, CCFs, and PDFs can be well reproduced
by the LSTM for all modes. Therefore, the closure model using the LSTM can provide an accurate recovery
for both the short-time forecasting and the long-time statistics of the KSE.

To summarize, we should also mention that while such an accurate recovery in path-wise and statistical
prediction has also been achieved with the NARMAX parametric closure in [40, 38], careful choice of
parametric ansatz is necessary with the NARMAX model. Here, an accurate recovery is obtained with a
much simpler nonparametric model in (26).
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5 Summary

We have presented a general nonparametric framework for prediction with missing dynamics. The proposed
framework reformulates the closure model as a supervised learning problem in which the task is to approx-
imate a high-dimensional map that takes the history of resolved and identifiable unresolved variables to
the missing components in the resolved dynamics. Mathematically, we validate the approach with an error
bound which implies that the closure framework converges when a consistent learning algorithm is used.
Numerically, we demonstrate the effectiveness of our framework in replicating severely truncated complex
nonlinear problems arising in many applications. While the framework can be realized using any machine
learning technique, we found that the LSTM as a special class of RNN is robust for this particular task.

From the positive numerical tests, several open questions deserve further investigation. For example,
justifying the existence of the equilibrium distribution of the closure model; demonstrating the convergence
to the underlying equilibrium distribution; characterizing the prediction error using Lyapunov exponents for
chaotic dynamics; clarifying the condition under which we can achieve a stable closure model.
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A Proof of Theorem 1

Before we prove Theorem 1 in the main text, let us review the following bound which will be used below as
well as in the proof of Theorem 3.

Lemma 1. Let α, c > 0 be real numbers and m,T ≥ 0 be integers. Suppose that,

ET+1 ≤ α

T∑
j=T−m

E j + c,

If E j = 0 for j = −m, . . . , 0, then for all integer T ≥ 0.

ET+1 ≤ c(1 + α)T .

Proof. We proceed by induction. one can verify that, E1 ≤ c, E2 ≤ c(1 +α) and so on. In fact, we can verify
for j = 0, . . . ,m one by one that

E j ≤ c(1 + α) j−1. (27)

By induction, for T ≥ m, we have

ET+1 ≤ cα
T∑

j=T−m

(1 + α) j−1 + c ≤ cα
T∑

j=1

(1 + α) j−1 + c = c(1 + α)T . (28)

�
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Now we proceed with the proof of Theorem 1. As we mentioned before, since

E[yt+1|xt, yt] = G(xt, yt), (29)

we can rewrite the full dynamics as,

xt+1 = F (xt, yt),

yt+1 = E[Yt+1|xt, yt].

We consider an approximate dynamics given as,

x̂t+1 = F (x̂t, ŷt)

ŷt+1 = Eε[yt+1|x̂t, ŷt] + ξt+1,

where ξt+1 ∼ Ξ are Gaussian white noises with variance,

E[Ξ2] := E
[(

Yt+1 − E
ε[Yt+1|Xt,Yt]

)2
]

= E
[(
E[Yt+1|Xt,Yt] − Eε[Yt+1|Xt, Xt]

)2
]

= O(ε2). (30)

Define Ex,t := |xt+1 − x̂t+1| and Ey,t := |yt+1 − ŷt+1|, using the consistency in (29) and the Lipschitz
conditions of F and G, we deduce

Ey,t+1 ≤
∣∣∣E[Yt+1|xt, yt] − Eε[Yt+1|x̂t, ŷt]

∣∣∣ + |ξt+1|

≤ |E[Yt+1|xt, yt] − E[Yt+1|x̂t, ŷt]| +
∣∣∣E[Yt+1|x̂t, ŷt] − Eε[Yt+1|x̂t, ŷt]

∣∣∣ + |ξt+1|

< |G(xt, yt) − G(x̂t, ŷt)| +
∣∣∣E[Yt+1|x̂t, ŷt] − Eε[Yt+1|x̂t, ŷt]

∣∣∣ + |ξt+1|

≤ L1Ey,t + L2Ex,t +
∣∣∣E[Yt+1|x̂t, ŷt] − Eε[Yt+1|x̂t, ŷt]

∣∣∣ + |ξt+1|

Define E∗x,T+1 := E[maxt={0,...,T+1} Ex,t] and E∗y,T+1 := E[maxt={0,...,T+1} Ey,t]. Then, by the Burkholder-
Davis-Gundy inequality [60],

E∗y,T+1 ≤ L1E∗y,T + L2E∗x,T + Cε, (31)

in which we have used (30) to bound the last two terms. This bound can be explicitly written as,

E∗y,T+1 ≤ LT+1
1 E∗y,0 +

T∑
j=0

L j
1(L2E∗x,T− j + Cε)

≤ LT+1
1 E∗y,0 + (L2E∗x,T + Cε)

T∑
j=0

L j
1

= (L2E∗x,T + Cε)
LT+1

1 − 1
L1 − 1

. (32)

where we have used the fact that L2E∗x,t + Cε is non-decreasing to get the second inequality and E∗y,0 = 0 to
obtain the last equality.

Using similar algebra, we have

E∗x,T+1 ≤ L3E∗x,T + L4E∗y,T (33)

Inserting (32) into (33), we obtain

E∗x,T+1 ≤ L3E∗x,T + L4(L2E∗x,T−1 + Cε)
LT

1 − 1
L1 − 1

≤ α(E∗x,T + E∗x,T−1) + CL4ε
LT

1 − 1
L1 − 1

(34)
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where we have define α = max{L3, L2L4
LT

1 −1
L1−1 }.

Given E∗x,0 = 0, we apply the bound in Lemma 1 for m = 1,

E∗x,T+1 ≤ CL4ε
LT

1 − 1
L1 − 1

(1 + α)T = O(aT ε),

for some constant a > 1 and the proof is complete.

B Proof of Theorem 2

Let Y∆
t+1 := Yt+1−Yt

∆
such that,

E
[
Y∆

t+1|xt, yt
]

= g(xt, yt). (35)

With this definition, we can rewrite the full dynamics as,

xt+1 = xt + f (xt, yt)∆ + ∆1/2σxξx,t+1,

yt+1 = yt + E[Y∆
t+1|xt, yt]∆ + ∆1/2σyξy,t+1.

We consider an approximate dynamics given as,

x̂t+1 = x̂t + f (x̂t, ŷt)∆ + ∆1/2σxξx,t+1,

ŷt+1 = ŷt + Eε[Y∆
t+1|x̂t, ŷt]∆ + ∆1/2σ̂yξy,t+1.

First, notice that

∆σ̂2
y = E

[(
Yt+1 − Yt − ∆Eε[Y∆

t+1|Xt,Yt]
)2

]
≤ E

[(
Yt+1 − Yt − ∆E[Y∆

t+1|Xt,Yt]
)2

]
+ ∆2E

(
E[Y∆

t+1|Xt,Yt] − Eε[Y∆
t+1|Xt,Yt]

)2
. . .

+2∆E
[(

Yt+1 − Yt − ∆E[Y∆
t+1|Xt,Yt]

) (
E[Y∆

t+1|Xt,Yt] − Eε[Y∆
t+1|Xt,Yt]

)]
= ∆σ2

y + O(∆2ε2), (36)

where the last term vanishes since the mean of yt+1 − yt − ∆E[Y∆
t+1|xt, yt] = ∆1/2σyξx,t+1 is zero.

Define Ex,t+1 := |xt+1 − x̂t+1| and Ey,t+1 := |yt+1 − ŷt+1|, using the consistency in (35) and the Lipschitz
conditions of f and g, we deduce

Ey,t+1 ≤ Ey,t + ∆
∣∣∣E[Y∆

t+1|xt, yt] − Eε[Y∆
t+1|x̂t, ŷt]

∣∣∣ + ∆1/2
∣∣∣σy − σ̂y

∣∣∣ |ξy,t+1|

≤ Ey,t + ∆
∣∣∣E[Y∆

t+1|xt, yt] − E[Y∆
t+1|x̂t, ŷt]

∣∣∣ + ∆
∣∣∣E[Y∆

t+1|x̂t, ŷt] − Eε[Y∆
t+1|x̂t, ŷt]

∣∣∣ + ∆1/2
∣∣∣σy − σ̂y

∣∣∣ |ξy,t+1|

< Ey,t + ∆ |g(xt, yt) − g(x̂t, ŷt)| + ∆
∣∣∣E[Y∆

t+1|x̂t, ŷt] − Eε[Y∆
t+1|x̂t, ŷt]

∣∣∣ + ∆1/2
∣∣∣σy − σ̂y

∣∣∣ |ξy,t+1|

≤ (1 + ∆`)Ey,t + ∆`Ex,t + ∆
∣∣∣E[Y∆

t+1|x̂t, ŷt] − Eε[Y∆
t+1|x̂t, ŷt]

∣∣∣ + ∆1/2
∣∣∣σy − σ̂y

∣∣∣ |ξy,t+1|.

where ` = O(1) denotes the largest Lipschitz constant in all directions. Define E∗x,T+1 := E[maxt={0,...,T+1} Ex,t]
and E∗y,T+1 := E[maxt={0,...,T+1} Ey,t]. Then, by the Burkholder-Davis-Gundy inequality [60], we have

E∗y,T+1 ≤ (1 + ∆`)E∗y,T + ∆`E∗x,T + C∆ε, (37)

where we have used (36). Concatenate this with

E∗x,T+1 ≤ (1 + ∆`)E∗x,T + ∆`E∗y,T ,
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we have

E∗T+1 ≤ (I + A + A2 + . . . + AT )b,

where

E∗T+1 =

E∗x,T+1
E∗y,T+1

 , A =

(
1 + ∆` ∆`

∆` 1 + ∆`

)
, b =

(
0

C∆ε

)
.

Using the fact that,

A =
1
2

(
1 1
−1 1

) (
1 0
0 1 + 2`∆

) (
1 −1
1 1

)
,

one can deduce that,

E∗x,T+1 ≤ C∆ε
(
− (T + 1) +

1 − (1 + 2`∆)T+1

−2`∆

)
≤ C∆ε

−(T + 1) +

−1 +
(
1 + 2`∆ (T + 1) +

T (T+1)
2 (2`∆)2 + O(∆3T 3)

)
2`∆




= C∆ε
T (T + 1)

2
2`∆ + O(ε∆3T 3)

= O(ε∆2T 2).

where we use Taylor expansion over small 2`∆ and the proof is complete.

C Proof of Theorem 3

In this case, we have

E[Θt+1|zt,m] = Ḡ0(xt, θt) +

m∑
k=1

Ḡk(xt−k, θt−k) + (QS )m+1π(xt−m, yt−m), (38)

where zt,m = (xt−m:t,θt−m:t).
Define Eθ,t+1 := |θt+1 − θ̂t+1| and Ex,t+1 := |xt+1 − x̂t+1|. By the Assumption 2, F and Gk are Lipschitz

continuous on x and θ, and (QS )m+1 is a bounded linear operator in uniform sense. Thus, we have

Eθ,t+1 ≤
∣∣∣E[Θt+1|zt,m] − Eε[Θt+1|ẑt,m]

∣∣∣ + |ξt+1|

≤
∣∣∣E[Θt+1|zt,m] − E[Θt+1|ẑt,m]

∣∣∣ +
∣∣∣E[Θt+1|ẑt,m] − Eε[Θt+1|ẑt,m]

∣∣∣ + |ξt+1|

≤

m∑
k=0

∣∣∣Gk(xt−k, θt−k) − Gk(x̂t−k, θ̂t−k)
∣∣∣ +

∣∣∣(QS )m+1π(xt−m, yt−m) − (QS )m+1π(x̂t−m, ŷt−m)
∣∣∣

+
∣∣∣E[Θt+1|ẑt,m] − Eε[Θt+1|ẑt,m]

∣∣∣ + |ξt+1|

≤

t∑
s=t−m

Ks−(t−m)Eθ,s +

t∑
s=t−m

Ls−(t−m)Ex,s +
∣∣∣E[Θt+1|ẑt,m] − Eε[Θt+1|ẑt,m]

∣∣∣ + |ξt+1|, (39)

where Ks, Ls are Lipschitz constants.
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Define E∗θ,T+1 := E[maxt={0,...,T+1} Eθ,t] and E∗x,T+1 := E[maxt={0,...,T+1} Ex,t]. Then we have,

E∗θ,T+1 ≤

T∑
s=T−m

Ks−(T−m)E∗θ,s +

T∑
s=T−m

Ls−(T−m)E∗x,s + Cε, (40)

where the expectation of the last term in (39) is bounded using the Burkholder-Davis-Gundy inequality [60].
We should point out that since the expectation in

E
[(
E[θt+1|Zt,m] − Eε[Θt+1|Zt,m]

)2
]

= O(ε2),

is defined with respect to the pushforward measure ν := Zt,m∗µ, that is, ν(B) = µ(Z−1
t,m(B)), for all B ∈ B(Z)

in the σ-algebra, associated to the random variable Zt,m : X × Y → Z. Since ν(Z) =
∫
Z

dν(z) < ∞, it is
clear that expectation of the third term in (39),

E
[ ∣∣∣E[θt+1|Zt,m] − Eε[Θt+1|Zt,m]

∣∣∣ ] ≤ E[ ∣∣∣E[θt+1|Zt,m] − Eε[Θt+1|Zt,m]
∣∣∣2 ]1/2

ν(Z)1/2 = Cε. (41)

is also bounded by order-ε.
Let 0 < K := max{K0, . . . ,Km}, applying the bound in Lemma 1, we can obtain from (40)

E∗θ,T+1 ≤
( T∑

s=T−m

Ls−(T−m)E∗x,s + Cε
)
(1 + K)T . (42)

Using similar algebra, we have

E∗x,T+1 ≤ Lm+1E∗x,T + Km+1E∗θ,T , (43)

for some constants Km+1, Lm+1 > 0. Inserting (42) into (43), let 0 < L := max j=0,...,m{Lm+1,Km+1L j(1 +

K)T−1}, applying the bound (28), we obtain

E∗x,T+1 ≤ Lm+1E∗x,T + Km+1
( T−1∑

s=T−m−1

Ls−(T−m−1)E∗x,s + Cε
)
(1 + K)T−1 (44)

≤ L
T∑

s=T−m−1

E∗x,s + Km+1Cε(1 + K)T−1 (45)

≤ Km+1Cε(1 + K)T−1(1 + L)T (46)

= O(aT ε),

for some a > 1 and the proof is completed.
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