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Abstract

This paper proposes the multiresolution mode decomposition (MMD) as a novel
model for adaptive time series analysis. The main conceptual innovation is the intro-
duction of the multiresolution intrinsic mode function (MIMF) of the form

N/2−1∑
n=−N/2

an cos(2πnφ(t))scn(2πNφ(t)) +

N/2−1∑
n=−N/2

bn sin(2πnφ(t))ssn(2πNφ(t))

to model nonlinear and non-stationary data with time-dependent amplitudes, frequen-
cies, and waveforms. The multiresolution expansion coefficients {an}, {bn}, and the
shape function series {scn(t)} and {ssn(t)} provide innovative features for adaptive
time series analysis. For complex signals that are a superposition of several MIMFs
with well-differentiated phase functions φ(t), a new recursive scheme based on Gauss-
Seidel iteration and diffeomorphisms is proposed to identify these MIMFs, their mul-
tiresolution expansion coefficients, and shape function series. Numerical examples from
synthetic data and natural phenomena are given to demonstrate the power of this new
method.

Keywords. Multiresolution mode decomposition, multiresolution intrinsic mode func-
tion, recursive nonparametric regression, convergence.

AMS subject classifications: 42A99 and 65T99.

1 Introduction

Extracting useful information from large amounts of oscillatory data is important for a
considerate number of real world applications such as medical electrocardiography (ECG)
reading [1, 2, 3], atomic crystal images in physics [4, 5], mechanical engineering [6, 7],
art investigation [8, 9], geology [10, 11, 12], imaging [13], etc. In order to extract certain
features and analyze adaptive components of oscillatory data, it is typical to assume that
the signal f(t) consists of several oscillatory modes like

f(t) =
K∑
k=1

αk(t)e
2πiNkφk(t) + r(t), (1)

for t ∈ [0, 1], where αk(t) is the instantaneous amplitude, Nkφk(t) is the instantaneous
phase, Nkφ

′
k(t) is the instantaneous frequency, and r(t) is the residual signal. Many methods
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have been developed to decompose the signal f(t) into several modes αk(t)e
2πiNkφk(t) and to

estimate the instantaneous information (the amplitude and phase functions) including the
empirical mode decomposition (EMD) approach [14, 15], synchrosqueezed transforms [16,
17], time-frequency reassignment methods [18, 19], adaptive optimization [20, 21], iterative
filters [22, 23], etc.

Although modeling oscillation in the form of model (1) is effective in many applications,
sinusoidal oscillatory patterns may loses some important physical information when the data
contain more complicated features. This observation was rasied among EMD approaches
and named as the intra-wave phenomenon (see, e.g., [24]). This phenomenon was also
modeled with “wave-shape functions” in [25]. Let us use the second terminology with
{sk(t)}1≤k≤K as the shape functions to build a probably better mathematical model for
oscillatory data analysis in a form of a superposition of generalized intrinsic mode functions
(GIMFs):

f(t) =

K∑
k=1

αk(t)sk(2πNkφk(t)) + r(t) =

K∑
k=1

∞∑
n=−∞

ŝk(n)αk(t)e
2πinNkφk(t) + r(t), (2)

for t ∈ [0, 1], where {sk(t)}1≤k≤K are 2π-periodic shape functions with a unit norm in L2

and ŝ(0) = 0. The mode decomposition problem with a model in (2) may have different
names in the literature; but it is called the generalized mode decomposition (GMD) in this
paper. The shape function can reflect complicated evolution patterns of the signal f(t). The
photoplethysmogram (PPG) signal (see Figure 1) in medical study is one of such complex
examples. The PPG signal contains two essential evolution patterns corresponding to the
cardiac and respiratory cycles. The shape of the PPG waveform differs from subject to
subject and contains valuable information for monitoring the health condition of patients
[26]. For more examples, the reader is referred to a detailed survey in [27]. The introduction
of shape functions makes it more difficult to solve the decomposition problem and it has
been an active research direction to seek its numerical solutions [28, 29, 30, 31].

In spite of considerable successes of analyzing oscillatory time series in the form of mode
decomposition in (1) or GMD in (2), these models conflict with the physical intuition that
the oscillation pattern of the time series changes in time. For example, the cardiac and
respiratory patterns in Figure 1 vary in time. The GMD of the form (2) can only extract
average evolution patterns (i.e., time-independent shape functions) to describe the cardiac
and respiratory time series, leaving the evolution variance of these patterns (i.e., the devia-
tion from the average evolution pattern) in the residual signal r(t) (see Panel 4 of Figure 1).
However, the evolution variance is more important than the average evolution patterns for
detecting diseases and measuring health risk. For example, the electrocardiogram (ECG) is
an important tool to examine the functional status of the heart. The ECG waveform con-
sists of three characteristic events (the P, QRS and T-wave as shown in Figure 4) associated
with each beat. The detection of abnormal ECG waveforms is important to cardiac disease
diagnosis [32, 33] and the abnormality is the deviation of an observed ECG waveform to a
standard ECG waveform (e.g. tall R peaks caused by possible thickening of heart muscle
wall, wide QRS and wide S waves due to partial or complete right bundle branch block).

To analyze the fine features of evolution patterns discussed above, this paper proposes
the multiresolution mode decomposition as a novel model for adaptive time series analysis.
The main conceptual innovation is the introduction of the multiresolution intrinsic mode
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The raw PPG signal f(t).
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The cardiac mode f1(t) by the generalized mode decomposition in (2).
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The respiratory mode f2(t) by the generalized mode decomposition in (2).
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The residual error f(t)− f1(t)− f2(t) of the generalized mode decomposition in (2).
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The cardiac mode f1(t) by the multiresolution mode decomposition in (6).
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The respiratory mode f1(t) by the multiresolution mode decomposition in (6).
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The residual error f(t)− f1(t)− f2(t) of the multiresolution mode decomposition in (6).

Figure 1: Comparison of the GMD (2) and MMD (6) for a photoplethysmogram (PPG)
signal. The residual data of the GMD model still contain obvious oscillatory patterns with
significant signal intensity, while the residual data of the MMD model in (6) is much weaker
and close to i.i.d random noise (see Figure 2 below for a quantitative analysis).
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Figure 2: Comparison of the whiteness of the residual signal generated by GMD (2) and
MMD (6) for the PPG signal in Figure 1. The autocorrelation of the residual signal by
GMD, the residual signal by MMD, and a vector of Gaussian random noise is plotted in
the left, middle, and right figures, respectively. Theoretically, the autocorrelation of white
noise is an impulse at lag 0. Hence, the results here show that the residual signal by MMD
is close to white noise, while the one by GMD still contains correlated oscillation.
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Figure 3: Top-left: the logarithm of the synchrosqueezed transform (SST) of the original
PPG signal in Figure 1. Top-right: the logarithm of the SST of the residual signal by GMD
(2), i.e., the 4-th signal in Figure 1. There are three major instantaneous frequencies in each
rectangle on the left, while there are two in the rectangles on the right. Bottom figures: the
logarithm of the SST of the residual signal by MMD (6) with different visualization scales,
i.e., the last signal in Figure 1.
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Figure 4: A schematic diagram of normal sinus rhythm for a human heart as seen on ECG
[34].
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Figure 5: Top: a motion artifact contaminated electrocardiogram (ECG) signal f(t) mod-
eled by Equation (3). Middle: the 0-band multiresolution approximation M0(f)(t) =
a0sc0(2πNφ(t)) of f(t). Bottom: f(t)−M0(f)(t), the variance of the evolution pattern of
f(t).

function (MIMF) of the form1

f(t) =

N/2−1∑
n=−N/2

an cos(2πnφ(t))scn(2πNφ(t)) +

N/2−1∑
n=−N/2

bn sin(2πnφ(t))ssn(2πNφ(t)) (3)

for t ∈ [0, 1], where {an} and {bn} are real numbers, {scn} and {ssn} are real value functions,
to model nonlinear and non-stationary data with time-dependent amplitudes, frequencies,
and waveforms. The MIMF is a generalization of the model of GIMF, α(t)s(2πNφ(t)),
in Equation (2) for more accurate data analysis. When scn(t) and ssn(t) in Equation
(3) are equal to the same shape function s(t), the model in Equation (3) is reduced to
α(t)s(2πNφ(t)) once the amplitude function α(t) is written in the form of its Fourier series
expansion. When scn(t) and ssn(t) are different shape functions, the two summations in
Equation (3) lead to time-dependent shape functions to describe the nonlinear and non-
stationary time series adaptively. A recent paper [27] also tried to address the limitation of
GMD in (2) by replacing ŝk(n)αk(t) with a time-varying function, denoted as Bk,n(t), i.e.,
introducing more variance to amplitude functions. Our model in (3) emphasizes both the
time variance of amplitude and shape functions by introducing multiresolution expansion
coefficients and shape function series. As far as we understand, instead of estimating
time-varying amplitude and shape functions, [27] proposed an algorithm to eliminate the
influence of amplitude and shape functions and estimate phase functions Nkφk(t). This
algorithm could be a useful tool complimentary to the algorithm proposed in this paper,
since we assume phase functions are known and estimate time-varying amplitudes and
shapes.

1The analytic analog is f(t) =
∑N/2−1

n=−N/2 ane
2πinφ(t)sn(2πNφ(t)), where {an} are complex numbers and

{sn} are analytic shape functions. Without loss of generality, N is assumed to be even throughout this
paper.

5



LetM` be the operator for computing the `-banded multiresolution approximation to a
MIMF f(t) in Equation (3), i.e.,

M`(f)(t) =
∑̀
n=−`

an cos(2πnφ(t))scn(2πNφ(t)) +
∑̀
n=−`

bn sin(2πnφ(t))ssn(2πNφ(t)), (4)

and R` be the operator for the computing the residual sum

R`(f)(t) = f(t)−M`(f)(t). (5)

Then the 0-banded multiresolution approximation M0(f)(t) = a0sc0(2πNφ(t)) describes
the average evolution pattern of the signal, while the rest describe the evolution variance.
As shown in Figure 5, if f(t) is an ECG signal2, then it is more obvious to observe the
change of the evolution pattern from R0(f)(t) than from f(t), e.g., the change of the height
of R peaks and the width of QRS and S waves.

In many applications [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], a signal would be a
superposition of several MIMFs, for example, a complex signal

f(t) =
K∑
k=1

fk(t), (6)

where

fk(t) =

N/2−1∑
n=−N/2

an,k cos(2πnφk(t))scn,k(2πNkφk(t)) +

N/2−1∑
n=−N/2

bn,k sin(2πnφk(t))ssn,k(2πNkφk(t)).

The multiresolution mode decomposition (MMD) problem aims at extracting each MIMF
fk(t), estimating its corresponding multiresolution expansion coefficients {an,k}, {bn,k}, and
the shape function series {scn,k(t)} and {ssn,k(t)}. As we can see in Figure 1, if MMD is
applied to analyze the PPG signal, we can obtain the cardiac and respiratory patterns
(Panel 5 and 6 in Figure 1, respectively) with more accurate evolution variance than the
model of GMD in (2) in two aspects. In terms of statistical testing, the residual signal
of MMD in Panel 7 of Figure 1 contains information close to i.i.d random noise while the
residual by (2) still contains correlated oscillation patterns as demonstrated by Figure 2
quantitatively. From the point of view of time-frequency analysis visualized in Figure 3,
the synchrosqueezed transform (SST) of the residual by (2) in the top-right panel shares
almost the same spectrogram with the SST of the original PPG signal in the top-left panel.
Note that the model in (2) seems to capture only partial cardiac and respiratory patterns in
the PPG signal and the residual signal still contains significant information resembling the
cardiac and respiratory patterns. In fact, there are three major instantaneous frequencies
with almost the same geometry in each rectangle on the top-left of Figure 3, while there
are two in the rectangles on the top-right, indicating that the model in (2) misses some
instantaneous frequencies with similar oscillation patterns as those considered in (2). As
a comparison, the SST of the residual by MMD has no obvious spectrogram even if in a
much smaller visualization scale (0, 0.5) as shown in the bottom-left panel of Figure 3. In
a very small visualization scale like (0, 0.001) in the bottom-right panel, we see that the
SST of the residual by MMD indicates no meaningful oscillation pattern. The oscillation

2From the PhysiNet https://physionet.org/.
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patterns missed by (2) and visualized on the top-right panel of Figure 3 have been considered
in the MMD model using the summation over different n’s in (3). The geometry of the
instantaneous frequencies of different terms with different n’s is similar to that of the term
when n = 0.

Although there have been a few algorithms for the GMD in (2) [28, 30, 31], these meth-
ods are incapable of either identifying the shape function series {scn,k(t)} and {ssn,k(t)},
or the multiresolution expansion coefficients {an,k} and {bn,k} in the multiresolution mode
decomposition. Motivated by the recursive diffeomorphism-based regression (RDBR) in
[31], this paper proposes a Gauss-Seidel style recursive scheme to solve the multiresolution
mode decomposition problem. As we shall see later, the novel recursive scheme has a faster
convergence rate than the existing scheme in [31], and more importantly, it is robust to the
estimated number of components (i.e., it still returns a meaningful mode decomposition
even if the input number of modes is wrong).

To make the presentation of the Gauss-Seidel RDBR for the multiresolution mode de-
composition more accessible, we will first introduce the Gauss-Seidel RDBR for the GMD
in Section 2. The Gauss-Seidel RDBR for the multiresolution mode decomposition will be
introduced in Section 3. In Section 4, we present some numerical examples to demonstrate
the efficiency of the proposed RDBR. Finally, we conclude this paper in Section 5.

2 Gauss-Seidel recursive scheme for the GMD

In what follows, we introduce the new Gauss-Seidel recursive diffeomorphism-based regres-
sion (RDBR) for the GMD. Existing methods [28, 30, 31] for the GMD problem

f(t) =

K∑
k=1

αk(t)sk(2πNkφk(t)) =

K∑
k=1

∞∑
n=−∞

ŝk(n)αk(t)e
2πinNkφk(t) (7)

generally assume that the instantaneous properties (such as αk(t) and Nkφk(t) in Equation
(7)) are available and focus on the estimation of shape functions sk(t). This assumption
is based on the observation that: after filtering the signal with a low-pass filter, the GMD
problem in Equation (7) becomes the standard mode decomposition problem in (1); af-
terwards, instantaneous properties can be estimated by well-developed algorithms for the
mode decomposition problem [14, 15, 16, 18, 19, 20, 21, 22, 23], especially the deShape SST
[27, ?]. Hence, we assume that the instantaneous amplitudes and phases are known in this
section.

2.1 Algorithm description

As in the Jacobi style RDBR algorithm [31], we assume L points of measurement {f(t`)}`=1,...,L

with independent and identically distributed (i.i.d.) grid points {t`}`=1,...,L from a uniform
distribution in [0, 1]. Usually, the grid is deterministic and uniform in [0, 1], but an i.i.d.
grid enables a better estimation of the shape function with a smaller L, since it allows the
access of the 2-π periodic shape function s(t) for every t ∈ [0, 2π] with a certain probability.
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Figure 6: An illustration of the inverse-warping idea in Equation (8) when f(t) =
s1(2πN1φ1(t)) + s2(2πN2φ2(t)). Let pj = Njφj(t) for all j and inverse-warp f(t) with
v = p1(t) into h1(v) as in Equation (8), then h1(v) contains two main parts: a periodic
function, s1(2πv) with samples {s1(2πv`)}`=1,...,L (see the left figure), and a non-periodic
function, κ1(2πv) with samples {κ1(2πv`)}`=1,...,L (see the right figure).

In the RDBR, we define the inverse-warping data by

hk(v) =
f ◦ p−1

k (v)

αk ◦ p−1
k (v)

= sk(2πv) +
∑
j 6=k

αj ◦ p−1
k (v)

αk ◦ p−1
k (v)

sj(2πpj ◦ p−1
k (v))

:= sk(2πv) + κk(2πv), (8)

where v := pk(t), pj(t) = Njφj(t) for all j, and

κk(2πv) :=
∑
j 6=k

αj ◦ p−1
k (v)

αk ◦ p−1
k (v)

sj(2πpj ◦ p−1
k (v)).

As a consequence, we have a set of measurements of hk(v), {hk(v`)}`=1,...,L, sampled in v
with v` = pk(t`) (see Figure 6 for an illustration).

If there was a single mode in f(t) (e.g. f(t) = αk(t)sk(2πNkφk(t)) with k = 1), then
hk(v) is equal to a periodic function sk(2πv) with period 1. Hence, if we define a folding
map τ that folds the two-dimensional point set {(v`, hk(v`))}`=1,...,L together

τ : (v`, hk(v`)) 7→ (mod(v`, 1), hk(v`)) , (9)

then the point set {τ(v`, sk(2πv`))}`=1,...,L ⊂ R2 is a two-dimensional point set located
at the curve (v, sk(2πv)) ⊂ R2 given by the shape function sk(2πv) with v ∈ [0, 1) (see
Figure 7 (left) for an example). Using the notations in non-parametric regression, let Xk

be an independent random variable in [0, 1), Yk be the response random variable in R, and

consider (x
(k)
` , y

(k)
` ) = τ(v`, sk(2πv`)) as L i.i.d. samples of the random vector (Xk, Yk),

then a simple regression results in the exact shape function as follows. Define

sRk := arg min
s:R→R

E{|s(2πXk)− Yk|2}, (10)

where the superscript R means the ground truth regression function, then sk = sRk . If we
denote the numerical solution of the above regression problem as sPk , then sPk ≈ sRk = sk
when L is sufficiently large.

However, in the case of multiple modes, κk(2πv) 6= 0 and (x
(k)
` , y

(k)
` ) = τ(v`, sk(2πv`) +

κk(2πv`)) for ` = 1, . . . , L can be considered as noise-contaminated i.i.d. samples of a
random vector (Xk, Yk) (see Figure 7 (right) for an illustration). Hence, the regression in

8
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(10) would not estimate the ground true shape function precisely. Let us use the partition-
based regression method (or partitioning estimate) in Chapter 4 of [35] as an example.
Given a small step side h� 1, the time domain [0, 1] is uniformly partitioned into Nh = 1

h
(assumed to be an integer) parts {[thn, thn+1)}n=0,...,Nh−1, where thn = nh. Let sPk denote the
estimated regression function by the partition-based regression method with L samples,

(x
(k)
` , y

(k)
` )`=1,...,L. Following Chapter 4 of [35], we define

sPk (x) :=

∑L
`=1X[thn,t

h
n+1)(x

(k)
` )y

(k)
`∑L

`=1X[thn,t
h
n+1)(x

(k)
` )

(11)

as the partition-based regression function, when x ∈ [thn, t
h
n+1), where X[thn,t

h
n+1)(x) is the

indicator function supported on [thn, t
h
n+1). As illustrated by black points in Figure 7 (right),

the partition-based regression essentially computes sPk (x) as the average height of all obser-

vations y
(k)
` with sampling locations x

(k)
` in a small neighborhood of x. Let sEk := sPk −sk be

the residual shape function, then the residual error of the GMD after one step of regressions
on all modes is

r(t) = f(t)−
K∑
k=1

αk(t)s
P
k (2πNkφk(t)) ≈ −

K∑
k=1

αk(t)s
E
k (2πNkφk(t)), (12)

which might be large, since in general sk ≈ sPk is not true.
The deviation of sPk from sk comes from the influence of κk in (8). After the folding

map in (9), we hope that {κk(2π mod (v`, 1))}1≤`≤L behave like i.i.d. samples of a mean-
zero random noise so that sPk ≈ sk. To understand the behavior of κk(2π mod (v, 1)),
let us take the example of κ1(2π mod (v, 1)) in Figure 7 (right). If we unfold the black
samples {h1( mod (vbk` , 1)) = s1(2π mod (vbk` , 1)) + κ1(2π mod (vbk` , 1))}3 (samples with
sampling locations mod (vbk` , 1) near the point vbk in Figure 7 (right)) back to h1(vbk` ), we
see that the black samples κ1(2π mod (vbk` , 1)) come from the black samples κ1(2πvbk` ) in
Figure 6 (right). If we warp κ1(2πvbk` ) back to κ1(2πp1(tbk` )), inverse-warp κ1(2πp1(tbk` )) to
κ1(2πp1 ◦ p−1

2 (zbk` )), where z := p2(t), and finally fold κ1(2πp1 ◦ p−1
2 (zbk` )) into one period

to obtain
κ1(2πp1 ◦ p−1

2 ( mod (zbk` , 1))), (13)

then from Figure 8 (left) we see that the black samples κ1(2πp1 ◦ p−1
2 ( mod (zbk` , 1)))

essentially cover the shape function s2. In fact, by the definition of κ2, we have

κ1(2πp1 ◦ p−1
2 ( mod (zbk` , 1))) = s2(2π mod (zbk` , 1)).

Figure 8 (right) shows a histogram of the sampling locations { mod (zbk` , 1)}. Note that s2

has mean zero. Hence, if the point distribution { mod (zbk` , 1)} is almost uniform in [0, 1],

3Here bk means samples corresponding to black points in Figure 6 to 8.
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then by the partition-based regression formula, we see

sP1 (2πvbk) = s1(2πvbk) +

∑
` κ1(2π mod (vbk` , 1))

the number of samples of { mod (vbk` , 1)}

= s1(2πvbk) +

∑
` κ1(2πvbk` )

the number of samples of {vbk` }

= s1(2πvbk) +

∑
` κ1(2πp1(tbk` ))

the number of samples of {tbk` }

= s1(2πvbk) +

∑
` κ1(2πp1 ◦ p−1

2 (zbk` ))

the number of samples of {zbk` }

= s1(2πvbk) +

∑
` κ1(2πp1 ◦ p−1

2 ( mod (zbk` , 1)))

the number of samples of { mod (zbk` , 1)}

= s1(2πvbk) +

∑
` s2(2π mod (zbk` , 1))

the number of samples of { mod (zbk` , 1)}

≈ s1(2πvbk) +

∫ 1

0
s2(2πz)dz (14)

= s1(2πvbk).

In the case when the point distribution { mod (zbk` , 1)} is far from being uniform in [0, 1],
we see that sP1 is not close to s1.

Note that the residual r(t) in (12) can be viewed as a new superposition of modes
with new shape functions {−sEk }. This motivates the Jacobi recursive scheme in [31] that
repeats the same decomposition procedure to decompose the residual r(t), and update the
shape function estimation, until the residual is eliminated. It was proved in [31] that if the
empirical distribution of { mod (zbk` , 1)} corresponding to vbk for any vbk is uniformly and
strictly positive (e.g., larger than p > 0 as in Figure 8 (right)), then the recursive scheme
is able to eliminate the residual r(t).

To improve the convergence rate of the Jacobi style recursive scheme, this paper proposes
a Gauss-Seidel recursive scheme in Algorithm 1. More importantly, the convergence of the
Jacobi recursive scheme is sensitive to the prior information as inputs. For example, if the
number of modes K is not known exactly, the Jacobi recursive scheme may fail to converge,
while the Gauss-Seidel recursive scheme would not. In practice, the input prior information
is:

1. an estimated number of components K̄;

2. a set of estimated phase functions

pk(t) = nkNτkφτk(t)− nkNτkφτk(0), (15)

for k = 1, . . . , K̄, where τk ∈ {1, . . . ,K} and nk ∈ Z+ are unknown integers;

3. and the corresponding amplitude functions

qk(t) = akατk(t), (16)

for k = 1, . . . , K̄, where ak > 0 is unknown.

11



Note that the curves {p′k(t) = nkNτkφ
′
τk

(t)} naturally belong to a few groups, each of which
corresponds to the multiple of a fundamental instantaneous frequency Nkφ

′
k(t) for some k.

Following the curve classification idea in Algorithm 3.7 and Theorem 3.9 in [28], we are able
to classify the curves {p′k(t) = nkNτkφ

′
τk

(t)} and identify the corresponding fundamental
instantaneous frequencies {Nτkφ

′
τk

(t)}, which give the fundamental instantaneous phases
up to an unknown initial phase {Nτkφτk(t) − Nτkφτk(0)}. Therefore, we can assume that
{τk}1≤k≤K̄ are distinct and nk = 1 for all k in Equation (15) and (16) for clean data (i.e.
the prior information only contains the fundamental instantaneous frequencies without
their multiples, but the prior information may still miss some instantaneous frequencies).
The reader is referred to [28] for more detail. However, in the presence of noise, the
instantaneous frequency estimations may have large errors leading the failure of the curve
classification. In this case, the prior information may contain instantaneous frequencies
that are multiples of the fundamental instantaneous frequencies (i.e., there may be some
nk 6= 1). Even if the prior information above misses some fundamental frequencies or
contains the multiples of fundamental frequencies, the Gauss-Seidel recursive scheme below

12



can still recover reasonably accurate modes from their superposition.

1 Input: L points of i.i.d. measurement {f(t`)}`=1,...,L with t` ∈ [0, 1], estimated
instantaneous phases {pk}k=1,...,K̄ , amplitudes {qk}k=1,...,K̄ , an accuracy parameter
ε < 1, and the maximum iteration number J .

2 Output: the estimated shape functions {s̄k}k=1,...,K̄ and the estimated modes
{f̄k(t)}k=1,...,K̄ = {qk(t)s̄k(2πpk(t))}k=1,...,K̄ at the sampling grid points {t`}1≤`≤L.

3 Initialize: let r
(0)
1 = f , ε1 = ε2 = 1, ε0 = 2, the iteration number j = 0, ṡ

(0)
k = 0, and

s̄
(0)
k = 0 for all k = 1, . . . , K̄.

4 Compute Nk as the integer nearest to the average of p′k(t) for k = 1, . . . , K̄.
5 Sort {Nk}1≤k≤K̄ in an ascending order and reorder the amplitude and phase

functions accordingly.
6 while j < J , ε1 > ε, ε2 > ε, and |ε1 − ε0| > ε do
7 for k = 1, . . . , K̄ do
8 Define

h
(j)
k =

r
(j)
k ◦ p

−1
k

qk ◦ p−1
k

,

and we know it is sampled on grid points v` = pk(t`).

9 Observe that
{
τ(v`, h

(j)
k (v`))

}
`=1,...,L

behaves like a sequence of i.i.d. samples

of a certain random vector (Xk, Y
(j)
k ) with Xk ∈ [0, 1).

10 Solve the distribution-free regression problem

ṡ
(j+1)
k ≈ sR,(j+1)

k = arg min
s:R→R

E{
∣∣∣s(2πXk)− Y

(j)
k

∣∣∣2}, (17)

where ṡ
(j+1)
k denotes the numerical solution approximating the ground truth

solution s
R,(j+1)
k .

11 Update ṡ
(j+1)
k = ṡ

(j+1)
k − 1

2π

∫ 2π
0 ṡ

(j+1)
k (t)dt for all k.

12 Let s̄
(j+1)
k = s̄

(j)
k + ṡ

(j+1)
k for all k.

13 If k < K̄, then let r
(j)
k+1 = r

(j)
k − qk(t)ṡ

(j+1)
k (2πpk(t)); otherwise, let

r
(j+1)
1 = r

(j)
k − qk(t)ṡ

(j+1)
k (2πpk(t)).

14 Update ε0 = ε1, ε1 = ‖r(j+1)
1 ‖L2 , ε2 = maxk{‖ṡ

(j+1)
k ‖L2}.

15 Set j = j + 1.

16 Let s̄k = s̄
(j+1)
k for all k.

Algorithm 1: Gauss-Seidel recursive diffeomorphism-based regression (RDBR).

Remark: as pointed out in the Jacobi style RDBR [31], the unknown shifts {nkNτkφτk(0)}
in Equation (15) and the unknown prefactors {ak} in Equation (16) have been absorbed
in the estimation of shape functions and the reconstruction of modes. Hence, it is not
necessary to know them a prior. In the convergence analysis, instead of Equation (15) and
(16), we assume that

pk(t) = nkNτkφτk(t), (18)

and
qk(t) = ατk(t). (19)
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2.2 Convergence analysis

In this section, an asymptotic analysis on the convergence of the Gauss-Seidel recursive
diffeomorphism-based regression (RDBR) in Algorithm 1 is provided for a class of time
series that is a superposition of several generalized intrinsic mode functions as follows. To
make the analysis self-contained, a few definitions in [31] will be repeated.

Definition 2.1. Generalized shape functions: The generalized shape function class SM
consists of 2π-periodic functions s(t) in the Wiener Algebra with a unit L2([0, 2π])-norm
and a L∞-norm bounded by M satisfying the following spectral conditions:

1. The Fourier series of s(t) is uniformly convergent;

2.
∑∞

n=−∞ |ŝ(n)| ≤M and ŝ(0) = 0;

3. Let Λ be the set of integers {|n| : ŝ(n) 6= 0}. The greatest common divisor gcd(s) of
all the elements in Λ is 1.

Definition 2.2. A function f(t) = α(t)s(2πNφ(t)) for t ∈ [0, 1] is a generalized intrin-
sic mode function (GIMF) of type (M,N), if s(t) ∈ SM and α(t) and φ(t) satisfy the
conditions4 below:

α(t) ∈ C∞, 1/M ≤ α ≤M, φ(t) ∈ C∞, 1/M ≤ |φ′| ≤M.

In the analysis of the Gauss-Seidel RDBR, the partition-based regression method (or
partitioning estimate) in Chapter 4 of [35] will be adopted. Recall the definition of this
regression introduced in (11):

sR(x) ≈ sP (x) :=

∑L
`=1X[thn,t

h
n+1)(x`)y`∑L

`=1X[thn,t
h
n+1)(x`)

,

when x ∈ [thn, t
h
n+1). The following theorem given in Chapter 4 in [35] estimates the L2 risk

of the approximation sP ≈ sR as follows.

Theorem 2.3. For the uniform partition with a step side h in [0, 1) as defined just above,
assume that

Var(Y |X = x) ≤ σ2, x ∈ R,

|sR(x)− sR(z)| ≤ C|x− z|, x, z ∈ R,

X has a compact support [0, 1), and there are L i.i.d. samples of (X,Y ). Then the partition-
based regression method provides an estimated regression function sP to approximate the
ground truth regression function sR, where

sR = arg min
s:R→R

E{|s(2πX)− Y |2},

4 In the analysis of the synchrosqueezed transform in [28], a GIMF of type (M,N) requires stronger
conditions as follows:

α(t) ∈ C∞, |α′| ≤M, 1/M ≤ α ≤M
φ(t) ∈ C∞, 1/M ≤ |φ′| ≤M, |φ′′| ≤M.

However, the RDBR requires much weaker conditions.
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with an L2 risk bounded by

E‖sP − sR‖2 ≤ c0
σ2 + ‖sR‖2L∞

Lh
+ C2h2,

where c0 is a constant independent of the number of samples L, the regression function s,
the step side h, and the Lipschitz continuity constant C.

As we shall see later in the assumption of Theorem 2.5, when the small step size h in the
partition-based regression is fixed, we require the number of samples L to be sufficiently
large such that the L2 risk of the approximation sP ≈ sR is small enough. To simplify
notations, let LC be the class of functions that are Lipschitz continuous with a constant C.
Denote the set of sampling grid points {t`}`=1,...,L in Algorithm 1 as T . To estimate the
regression function using the partition-based regression method, T is divided into several
subsets as follows. For i, j = 1, . . . ,K, i 6= j, m,n = 0, . . . , Nh − 1, let

T ijh (m,n) =
{
t ∈ T : mod (pi(t), 1) ∈ [thm, t

h
m + h), mod (pj(t), 1) ∈ [thn, t

h
n + h)

}
,

and
T ih (m) =

{
t ∈ T : mod (pi(t), 1) ∈ [thm, t

h
m + h)

}
,

then T = ∪Nh−1
m=0 T ih (m) = ∪Nh−1

m=0 ∪
Nh−1
n=0 T ijh (m,n). Let

Dij
h (m,n) and Di

h(m) (20)

denote the number of points in T ijh (m,n) and T ih (m), respectively.

Definition 2.4. Suppose phase functions pk(t) = Nkφk(t) for t ∈ [0, 1], and k = 1, . . . ,K,
where φk(t) satisfies5

φk(t) ∈ C∞, 1/M ≤ |φ′k| ≤M.

Then the collection of phase functions {pk(t)}1≤k≤K is said to be (M,N,K, h, β, γ)-well-
differentiated and denoted as {pk(t)}1≤k≤K ⊂ WD(M,N,K, h, β, γ), if the following condi-
tions are satisfied:

1. Nk ≥ N for k = 1, . . . ,K;

2. γ := min
m,n,i 6=j

Dij
h (m,n) satisfies γ > 0 , where Dij

h (m,n) (and Di
h(m) below) is defined

in (20);

3. Let

βi,j :=

Nh−1∑
m=0

1

Di
h(m)

Nh−1∑
n=0

(Dij
h (m,n)− γ)2

1/2

for all i 6= j, then β := max{βi,j : i 6= j} satisfies M2(K − 1)β < 1.
5 In the analysis of the Jacobi style RDBR in [31], stronger conditions for the well-differentiated phase

functions were required as follows:

φk(t) ∈ C∞, 1/M ≤ |φ′k| ≤M, |φ′′k | ≤M.

In fact, these conditions can be further weakened when the phase functions are assumed to be known and
the synchrosqueezed transform is not involved in the analysis of RDBR.
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In the above definition, γ quantifies the dissimilarity between phase functions. The
larger γ is, the more dissimilarity phase functions have. If two phases are very similar,
there might be some nearly empty sets T ijh (m,n) and hence γ is small. If γ is larger,

the numbers {Dij
h (m,n)}m,n are closer and β would be smaller. To guarantee a large γ,

N and L should be sufficiently large. To give more intuition of the well-differentiation,
let us revisit the example in Figure 6 to 8. Note that: 1) the second condition γ :=

min
m,n,i 6=j

Dij
h (m,n) > 0 requires that the empirical distribution of { mod (zbk` , 1)} in (13) is

uniformly and strictly positive for all cases in the partition-based regression; 2) the number
β in the third condition quantifies how uniform the distribution of { mod (zbk` , 1)} is in the
partition-based regression. The fact that these distributions are close to being uniform is
equivalent to the fact that β ≈ 0. As we have seen in the example in (15), if the distribution
of { mod (zbk` , 1)} is close to being uniform, which can be guaranteed if γ is large and β
is close to zero, then one-step of diffeomorphism-based regression is already very accurate.
Repeatedly applying the diffeomorphism-based regression can quickly eliminate the residual
error.

With these notations defined, we are ready to present the main analysis of the Gauss-
Seidel RDBR. Let’s recall that in each iteration of Algorithm 1, if we denote the target

shape function as s
(j)
k then the given data is

r
(j)
k (t) =

k−1∑
`=1

α`(t)s
(j+1)
` (2πp`(t)) +

K∑
`=k

α`(t)s
(j)
` (2πp`(t)). (21)

By reformulating the regression problem

s
R,(j+1)
k = arg min

s:R→R
E{
∣∣∣s(2πXk)− Y

(j)
k

∣∣∣2} (22)

= arg min
s:R→R

E{
∣∣∣s(2πXk)− (Y

(j)
k − s(j)

k (2πXk))
∣∣∣2} − s(j)

k , (23)

we see that
s
R,(j+1)
k = s

(j)
k + s

E,(j)
k ,

where
s
E,(j)
k (2πx) := E{Y (j)

k − s(j)
k (2πXk)|Xk = x} 6= 0 (24)

due to the perturbation caused by other modes. In the next iteration, the target shape

function s
(j+1)
k = −sE,(j)k . Hence, the key convergence analysis is to show that s

E,(j)
k decays

as j →∞.
In what follows, we assume that an accuracy parameter ε is fixed. Furthermore, suppose

GIMF’s fk(t) = αk(t)sk(2πNkφk(t)), k = 1, . . . ,K, have phases in WD(M,N,K, h, β, γ),
all generalized shape functions and amplitude functions are in the space LC . Under these

conditions, all regression functions s
(j)
k ∈ L

C and have bounded L∞ norm linearly depending
only on M and K. By Line 8 in Algorithm 1, we have the nice and key condition that∫ 1

0 s
(j)
k (2πt)dt = 0 at each iteration for all k and j. Note that Var(Y

(j)
k |Xk = x) is bounded

by a constant linearly depending only on M and K as well. For the fixed ε and C, there
exists h0(ε, C) such that C2h2 < ε2 if 0 < h < h0. By the abuse of notation, O(ε) is
used instead of Ch later. By Theorem 2.3, for the fixed ε, M , K, C, and h, there exists
L0(ε,M,K,C, h) such that the L2 error of the partition-based regression is bounded by
ε2. In what follows, h is smaller than h0, L is larger than L0, and hence all estimated
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regression functions approximate the ground truth regression function with an L2 error of
order ε. Under these conditions and assumptions, as long as N and L are large enough,

s
E,(j)
k is shown to decay to O(ε) as j →∞, and the decay rate will be estimated.

Theorem 2.5. (Convergence of the Gauss-Seidel RDBR when K̄ = K) Suppose K̄ = K,
{1, . . . ,K} = {τ1, . . . , τK}, nk = 1 for all k in Equation (18) and (19). Under the conditions
listed in the paragraph immediately preceding this theorem, we have

‖sE,(j)k ‖L2 ≤ O(c0ε+ (M2(K − 1)β)c(j,k))

and
‖r(j+1)
k ‖L2 ≤ O(c0ε+

(
M2(K − 1)β

)c(j,1)
)

for all j ≥ 0 and 1 ≤ k ≤ K, where c(j, k) =
⌈
jK+k
K−1

⌉
, the smallest integer larger than or

equal to jK+k
K−1 , c0 = 1

1−M2(K−1)β
is a constant number, s

E,(j)
k is defined in Equation (24)

and r
(j)
k is defined in Equation (21).

Proof. First, we start with the case when K = 2 and αk(t) = 1 for all t and k.
Recall that pk(t) can be considered as a diffeomorphism from R to R transforming data

in the t domain to the pk(t) domain. We have introduced the inverse-warping data

h
(j)
k (v) = r

(j)
k ◦ p

−1
k (v)

= s
(j)
k (2πv) +

k−1∑
`=1

s
(j+1)
` (2πp` ◦ p−1

k (v)) +

K∑
`=k+1

s
(j)
` (2πp` ◦ p−1

k (v))

:= s
(j)
k (2πv) + κ

(j)
k (2πv),

where v = pk(t). After the folding map

τ : (v, hk(v)) 7→
(

mod(v, 1), h
(j)
k (v)

)
,

we have (x`, y`) = τ(v`, s
(j)
k (2πv`) + κ

(j)
k (2πv`)) for ` = 1, . . . , L as L i.i.d. samples of a

random vector (Xk, Y
(j)
k ), where Xk ∈ [0, 1]. We can assume the target shape functions s

(j)
k

for all k at the jth step are known in the analysis, although they are not known in practice.
The partition-based regression method is applied (not necessary to know the distribution

of the random vector (Xk, Y
(j)
k )) to solve the following regression problem approximately

arg min
s:R→R

E{
∣∣∣s(2πXk)− (Y

(j)
k − s(j)

k (2πXk))
∣∣∣2}, (25)

and the solution is denoted as s
P,(j)
k . We would like to emphasize that s

P,(j)
k is only used in

the analysis and it is not computed in Algorithm 1. Recall notations in Definition 3.2. By
the partition-based regression method, when x ∈ [thm, t

h
m + h),

s
P,(j)
1 (2πx) =

∑Nh−1
n=0

(
s

(j)
2 (2πthn) +O(ε)

)
D12
h (m,n)

D1
h(m)

,

and

s
P,(j)
2 (2πx) =

∑Nh−1
n=0

(
s

(j+1)
1 (2πthn) +O(ε)

)
D21
h (m,n)

D2
h(m)

, (26)
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where O(ε) comes from the approximation of the LC function si using the values on grid

points thn. Note that in the case of the Jacobi style RDBR in [31], the term s
(j+1)
1 in

Equation (26) is replaced with s
(j)
1 , since the Jacobi style iteration doesn’t use the latest

estimations of shape functions. The following argument is similar to that for Lemma 3.3
in [31]. It is easy to check that

|sP,(j)1 (2πx)| ≤ O(ε) +

∑Nh−1
n=0 s

(j)
2 (2πthn)

(
D12
h (m,n)− γ

)
D1
h(m)

and

|sP,(j)2 (2πx)| ≤ O(ε) +

∑Nh−1
n=0 s

(j+1)
1 (2πthn)

(
D21
h (m,n)− γ

)
D2
h(m)

,

which imply that

‖sP,(j)1 ‖L2 = O(ε) +

Nh−1∑
n=0

(
s

(j)
2 (2πthn)

)2
h

1/2Nh−1∑
m=0

Nh−1∑
n=0

(
D12
h (m,n)− γ
D1
h(m)

)2
1/2

and

‖sP,(j)2 ‖L2 = O(ε) +

Nh−1∑
n=0

(
s

(j+1)
1 (2πthn)

)2
h

1/2Nh−1∑
m=0

Nh−1∑
n=0

(
D21
h (m,n)− γ
D2
h(m)

)2
1/2

by the triangle inequality and Hölder’s inequality. Since s
(j)
2 and s

(j+1)
1 are in LC , we haveNh−1∑

n=0

(
s

(j)
2 (2πthn)

)2
h

1/2

= ‖s(j)
2 ‖L2 +O(ε)

and Nh−1∑
n=0

(
s

(j+1)
1 (2πthn)

)2
h

1/2

= ‖s(j+1)
1 ‖L2 +O(ε).

Since phase functions are in WD(M,N, h, β, γ),Nh−1∑
m=0

Nh−1∑
n=0

(
Dki
h (m,n)− γ
Dk
h(m)

)2
1/2

≤ β < 1.

Hence,

‖sP,(j)1 ‖L2 ≤ O(ε) + β‖s(j)
2 ‖

2
L2 ,

and
‖sP,(j)2 ‖L2 ≤ O(ε) + β‖s(j+1)

1 ‖2L2 .

By the conditions just listed immediately before Theorem 2.5, and the definition in Equation
(24), we have

‖sE,(j)1 ‖L2 ≤ O(ε) + ‖sP,(j)1 ‖L2 ≤ O(ε) + β‖s(j)
2 ‖

2
L2 , (27)
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and
‖sE,(j)2 ‖L2 ≤ O(ε) + ‖sP,(j)2 ‖L2 ≤ O(ε) + β‖s(j+1)

1 ‖2L2 .

Note that s
E,(j)
1 = s

(j+1)
1 , it holds that

‖sE,(j)2 ‖L2 ≤ O(ε) + β‖s(j+1)
1 ‖2L2 = O(ε) + β‖sE,(j)1 ‖2L2 ≤ O(ε) + β2‖s(j)

2 ‖
2
L2 . (28)

By Equation (27), (28), and the mathematical induction similar to that for Theorem 3.5 in
[31], it is easy to show that

‖sE,(j)k ‖L2 ≤ O(c0ε+ βc(j,k))

where c(j, k) = 2j + k and c0 = 1
1−β coming from the geometric sequence due to the

summation of the O(ε) term for all j ≥ 0.
To care the general case, we need to extend the argument to K > 2 and non-constant

αk. We shall do this in two steps: first K > 2 but αk ≡ 1 for all k, and then, finally, K > 2
and varying αk. Rather than repeating the earlier argument in full detail, adapted to these
more general situations, we indicate simply, for both steps, what extra estimates need to
be taken into account. This may not give the sharpest estimate, but this is not a concern
for now.

Next, we prove the case when K > 2 and αk(t) = 1 for all t and k. Similarly, by the
definition of the partition-based regression and the triangle inequality, we have

|sP,(j)k (2πx)| ≤ O(Kε) +
k−1∑
i=1

∑Nh−1
n=0 s

(j+1)
i (2πthn)

(
Dki
h (m,n)− γ

)
Dk
h(m)

+

K∑
i=k+1

∑Nh−1
n=0 s

(j)
i (2πthn)

(
Dki
h (m,n)− γ

)
Dk
h(m)

.

Hence, by the triangle inequality and the Hölder inequality again, it holds that

‖sP,(j)k ‖L2 ≤ O(Kε) +

k−1∑
i=1

Nh−1∑
m=0

(∑Nh−1
n=0 s

(j+1)
i (2πthn)

(
Dki
h (m,n)− γ

)
Dk
h(m)

)2

h

1/2

+

K∑
i=k+1

Nh−1∑
m=0

(∑Nh−1
n=0 s

(j)
i (2πthn)

(
Dki
h (m,n)− γ

)
Dk
h(m)

)2

h

1/2

≤ O(Kε) +
k−1∑
i=1

Nh−1∑
n=0

(
s

(j+1)
i (2πthn)

)2
h

1/2Nh−1∑
m=0

Nh−1∑
n=0

(
Dki
h (m,n)− γ
Dk
h(m)

)2
1/2

+
K∑

i=k+1

Nh−1∑
n=0

(
s

(j)
i (2πthn)

)2
h

1/2Nh−1∑
m=0

Nh−1∑
n=0

(
Dki
h (m,n)− γ
Dk
h(m)

)2
1/2

≤ O(ε) +

k−1∑
i=1

β‖s(j+1)
i ‖L2 +

K∑
i=k+1

β‖s(j)
i ‖L2 .

Since s
E,(j)
k − sP,(j)k = O(ε), we know

‖sE,(j)k ‖L2 ≤ O(ε) +

k−1∑
i=1

β‖s(j+1)
i ‖L2 +

K∑
i=k+1

β‖s(j)
i ‖L2 .
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Similar to the case of two components, by the equation just above and mathematical in-
duction, one can show that

‖sE,(j)k ‖L2 ≤ O(c0ε+ βc(j,k))

where c0 = 1
1−(K−1)β coming from the geometric sequence due to the summation of the

O(ε) term for all j ≥ 0,

c(j, k) =

⌈
jK + k

K − 1

⌉
,

and d·e is the ceiling operator.
Finally, we prove the case when amplitude functions are smooth functions but not a

constant 1. If the instantaneous frequencies are sufficiently large, depending on ε, M , K,
and C, amplitude functions are nearly constant up to an approximation error of order
ε. The time domain [0, 1] is divided into sufficiently small intervals such that amplitude
functions are nearly constant inside each interval. Accordingly, the samples (x`, y`) =

τ(v`, sk(2πv`) + κk(v`)) for ` = 1, . . . , L of the random vector (Xk, Y
(j)
k ) is divided into

groups and the partition-based regression method is applied to estimate the regression
function for each group. This is similar to data splitting in nonparametric regression. The

bound of |sP,(j)k (x)| is a weighted average of the bound given by each group, and the weight
comes the number of points in each group over the total number of samples. Note that
‖αk‖L∞ ≤M . By repeating the analysis above, it is simple to show

‖sE,(j)k ‖L2 ≤ O(ε) +M2
k−1∑
i=1

β‖s(j+1)
i ‖L2 +M2

K∑
i=k+1

β‖s(j)
i ‖L2 .

where M2 comes from
αi ◦ p−1

k (v)

αk ◦ p−1
k (v)

in κk(v) after warping. By mathematical induction similar to that for Theorem 3.5 in [31]
again, it holds that

‖sE,(j)k ‖L2 ≤ O(c0ε+ (M2(K − 1)β)c(j,k)) (29)

where c0 = 1
1−M2(K−1)β

coming from the geometric sequence due to the summation of the

O(ε) term for all j ≥ 0, and

c(j, k) =

⌈
jK + k

K − 1

⌉
.

This finishes the proof of the first part of Theorem 2.5.

By the definition of r
(j)
k in Equation (21) and the inequality in Equation (29), it holds

that
‖r(j+1)
k ‖L2 ≤ O(c0ε+ (M2(K − 1)β)c(j,1)),

which completes the proof of Theorem 2.5.

Theorem 2.5 shows that the regression function in each step of Algorithm 1 decays, if
M2(K− 1)β < 1, in the L2 sense up to a fixed accuracy parameter as the iteration number
becomes large. Hence, the recovered shape function converges and the residual decays up to
a fixed accuracy parameter, if M2(K − 1)β < 1. When the iteration number is sufficiently
large, the accuracy of the RDBR in Theorem 2.5 is as good as a single step of regression
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in Theorem 2.3. Compared to the convergence theorem of the Jacobi RDBR in [31], both
the Jacobi style and the Gauss-Seidel style recursive scheme have linear convergence, but
the Gauss-Seidel style has a smaller rate of convergence; especially in the case of two
components, the rate of convergence of the Gauss-Seidel style is β2 while the one of the
Jacobi style is β.

Theorem 2.6. (Noise robustness of the Gauss-Seidel RDBR) Let fk(t) = αk(t)sk(2πNkφk(t)),
k = 1, . . . ,K, be K GIMF’s and f(t) =

∑K
k=1 fk(t) + n(t), where n(t) is a random noise

with a bounded variance σ2. Under the other conditions introduced in Theorem 2.5, for the
given ε, ∃L0(ε,M,K,C, h, σ), if L > L0, then

‖sE,(j)k ‖L2 ≤ O(c0ε+ (M2(K − 1)β)c(j,k))

and
‖r(j+1)
k ‖L2 ≤ O(c0ε+

(
M2(K − 1)β

)c(j,1)
),

for all j ≥ 0 and 1 ≤ k ≤ K, where c(j, k) =
⌈
jK+k
K−1

⌉
, c0 = 1

1−M2(K−1)β
is a constant

number, s
E,(j)
k is defined in Equation (24) and r

(j)
k is defined in Equation (21).

Theorem 2.6 is an immediate result of Theorem 2.3 and 2.5. It shows that as soon as
the number of sampling points L is large enough, the noise effect will be negligible.

Next, we discuss the case when the estimated number of components is inexact, i.e.,
K̄ 6= K in Algorithm 1. Two main situations are concerned here: (1) K̄ > K and
{pk}1≤k≤K̄ consists of all the fundamental phase functions and their multiples; (2) K̄ < K
and {pk}1≤k≤K̄ are fundamental phase functions. The convergence analysis of other situa-
tions can be generalized from these two situations.

In the first situation when K̄ > K, {p′k(t) = nkNτkφ
′
τk

(t)}1≤k≤K̄ naturally belong to K
groups {Gk}1≤k≤K , each of which corresponds to the multiple of a fundamental instanta-
neous frequency p′k(t). For each pk, the RDBR tries to identify a shape function and the
result depends on the order of pk in the set {pk}. To make sure that the shape functions
corresponding to fundamental phases are approximately the ground truth shape functions,
there is a sorting procedure in Line 4 and 5 of Algorithm 1. By the similar analysis in
Theorem 2.5, one can show that the summation of the shape function estimations corre-
sponding to the phase functions within each group Gk converges to the kth ground truth
shape function sk; i.e., let

s̃
(j)
k =

∑
τ∈Gk

s̄(j)
τ , (30)

then limj→∞ s̃
(j)
k = O(ε)+sk. In particular, Theorem 2.7 characterizes its convergence rate

as follows.

Theorem 2.7. (Convergence of the Gauss-Seidel RDBR when K̄ > K) Suppose K̄ > K
and {pk}1≤k≤K̄ in Algorithm 1 contains all the fundamental phase functions. Under the
conditions listed in the paragraph immediately preceding Theorem 2.5, we have

‖s̃(j)
k − sk‖L2 ≤ O(c0ε+ (M2(K − 1)β)c(j,k))

and
‖r̃(j+1)
k ‖L2 ≤ O(c0ε+

(
M2(K − 1)β

)c(j,1)
)
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for all j ≥ 0 and 1 ≤ k ≤ K, where c(j, k) =
⌈
jK+k
K−1

⌉
, c0 = 1

1−M2(K−1)β
is a constant

number, s̃
(j)
k is defined in Equation (30) and r̃

(j)
k is defined as

r̃
(j)
k = r(j)

τk
,

where τk ∈ Gk satisfies nτk ≥ nν for all ν ∈ Gk, and the notation nv is introduced in
Equation (18).

Proof. The proof of Theorem 2.7 can be generalized from Theorem 2.5. The phase functions
{pν}ν∈Gk compete with each other to obtain a larger L2-norm in their own shape function

estimation s̄
(j)
ν . This competition does not have negative effects on the convergence of

Algorithm 1; in fact, the more members in Gk, the faster convergence of the shape function

estimation, because the estimation error ‖s̃(j)
k −sk‖L2 can be reduced by the extra regressions

due to more than one member in Gk.

It is worth pointing out that the Gauss-Seidel RDBR converges in the sense of Theorem
2.7 when K̄ > K; however, the Jacobi RDBR diverges when K̄ > K.

In the second situation when K̄ < K, it is assumed that {pk}1≤k≤K̄ are all fundamental
phase functions. Since not all the fundamental phase functions are used in Algorithm 1, the
components corresponding to the missing fundamental phase functions always remain in

the residual signal r
(j)
k . Hence, the shape function estimation corresponding to the known

phase functions cannot be improved by recursive regression, and Algorithm 1 stops iteration
quickly since the stopping criteria |ε1 − ε0| ≤ ε is soon satisfied. After Algorithm 1 stops,
by the arguments in Theorem 2.5, it is easy to see that the estimated shape function s̄k
satisfies

‖s̄k − sk‖L2 ≤ O(ε+M2β
∑
`6=k
‖s`‖L2)

for 1 ≤ k ≤ K̄.

3 RDBR for the multiresolution mode decomposition

3.1 Algorithm description

In what follows, we modify the Gauss-Seidel RDBR in Algorithm 1 to solve the mul-
tiresolution mode decomposition. The multiresolution mode decomposition problem aims
at extracting each multiresolution intrinsic mode function fk(t) from their superposition
f(t) =

∑K
k=1 fk(t), estimating their corresponding multiresolution expansion coefficients

and the shape function series defined as follows.

Definition 3.1. A function

f(t) =

N/2−1∑
n=−N/2

an cos(2πnφ(t))scn(2πNφ(t)) +

N/2−1∑
n=−N/2

bn sin(2πnφ(t))ssn(2πNφ(t)) (31)

is a multiresolution intrinsic mode function (MIMF) of type (M0,M,N, ε) defined on [0, 1],
if the conditions below are satisfied:

• the shape function series {scn(t)} and {ssn(t)} are in SM ;
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• the multiresolution expansion coefficients {an} and {bn} satisfy

N/2−1∑
n=−N/2

|an| ≤M,

N/2−1∑
n=−N/2

|an| −
M0−1∑
n=−M0

|an| ≤ ε,

N/2−1∑
n=−N/2

|bn| ≤M,

N/2−1∑
n=−N/2

|bn| −
M0−1∑
n=−M0

|bn| ≤ ε;

• φ(t) satisfies

φ(t) ∈ C∞, 1/M ≤ |φ′| ≤M.

A MIMF is a generalization of the GIMF in Equation (2) for time-dependent shape
functions to describe the nonlinear and non-stationary time series adaptively, as we shall
see in numerical examples in Section 4. A single MIMF itself is a superposition of GIMF’s
that share the same phase function; identifying its multiresolution expansion coefficients
and shape function series requires separating these GIMF’s.

The only difference to distinguish different GIMF’s in a MIMF is the frequency of the
oscillation in cos(2πnφ(t)) and sin(2πnφ(t)) (see Equation (31)). Hence, if φ(t) and N are
known exactly, Fourier analysis in the coordinate of φ(t) (instead of t) can estimate the
multiresolution expansion coefficients {an}, {bn}, and the shape function series {scn} and
{ssn}. However, in practice φ(t) and N are only known approximately and the estimation
error in φ(t) can be amplified by a factor O(Nm), where m is the frequency bandwidth of
shape functions, if the Fourier analysis in the φ(t) coordinate is applied. This instability
makes the Fourier approach less attractive in analyzing a MIMF.

An immediate question is whether the diffeomorphism-based regression idea in Section
3 can estimate the GIMF’s in a MIMF. The main concerns are: when regression is applied
to estimate one GIMF, other GIMF’s acting as additive perturbation seem to cause a large
estimation error; when n 6= 0, cos(2πnφ(t)) and sin(2πnφ(t)) as the amplitudes of GIMF’s
are occasionally zero, making it numerically infeasible to apply the diffeomorphism-based
regression directly. Fortunately, for the first concern, the oscillatory functions cos(2πnφ(t))
and sin(2πnφ(t)) have zero mean in the coordinate of φ(t), exactly cancelling out the noise
perturbation. As for the second concern, by the formulas of trigonometric functions,

cos(2πmφ(t))f(t) =

N/2−1∑
n=−N/2

an
2

(cos(2π(m+ n)φ(t)) + cos(2π(m− n)φ(t))) scn(2πNφ(t))

+

N/2−1∑
n=−N/2

bn
2

(sin(2π(n+m)φ(t)) + sin(2π(n−m)φ(t))) ssn(2πNφ(t)),

where there is only one term with a non-zero-mean amplitude, am
2 scm(2πNφ(t)), imply-

ing that the diffeomorphism-based regression could be able to estimate am and scm from
cos(2πmφ(t))f(t). Similarly, we can estimate bm and ssm form sin(2πmφ(t))f(t). Hence,
by applying the diffeomorphism-based regression to cos(2πnφ(t))f(t) and sin(2πnφ(t))f(t)
for n = −N/2, . . . , N/2 − 1, we can estimate all the multiresolution expansion coefficients
{an}, {bn}, and the shape function series {scn} and {ssn}.
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However, in the presence of a superposition of several MIMFs, a sequence of diffeomorphism-
based analysis discussed just above cannot estimate all the multiresolution expansion co-
efficients and the shape function series. The reason for this inaccuracy is similar to the
motivation of the RDBR for GMD in Section 2. Hence, we expect that a modified ver-
sion of the RDBR can solve the multiresolution mode decomposition problem under the
condition of well-differentiated phase functions defined as follows.

Definition 3.2. Suppose

fk(t) =

Nk/2−1∑
n=−Nk/2

an,k cos(2πnφk(t))scn,k(2πNkφk(t)) +

Nk/2−1∑
n=−Nk/2

bn,k sin(2πnφk(t))ssn,k(2πNkφk(t)).

is a MIMF of type (M0,M,Nk, ε) for t ∈ [0, 1], k = 1, . . . ,K, and

{pk(t) = Nkφk(t)}1≤k≤K ⊂ WD(M,N,K, h, β, γ),

then f(t) =
∑K

k=1 fk(t) is said to be a well-differentiated superposition of MIMFs of type
(M0,M,N,K, h, β, γ, ε). Denote the set of all these functions f(t) asWS(M0,M,N,K, h, β, γ, ε).

Recall that M` is the operator for computing the `-banded multiresolution approxima-
tion to a MIMF f(t) in Equation (31), i.e.,

M`(f)(t) =
∑̀
n=−`

an cos(2πnφ(t))scn(2πNφ(t)) +
∑̀
n=−`

bn sin(2πnφ(t))ssn(2πNφ(t)). (32)

Ideally, we hope to apply the modified RDBR algorithm in Algorithm 2 to f(t)−Mn−1(f)(t)
for computing the multiresolution expansion coefficients {an,k}1≤k≤K , {bn,k}1≤k≤K , and the
shape functions {scn,k}1≤k≤K and {ssn,k}1≤k≤K , whereMn−1(f)(t) is available from previ-
ous computation. However, the modified RDBR can only return estimations approximately
andMn−1(f)(t) is only available approximately. This motivates us to repeatedly apply the
same idea to refine the estimations. In summary, Algorithm 3 below identifiesMM0(fk)(t),
its multiresolution expansion coefficients {an,k} and {bn,k}, and its shape function series
{scn,k} and {ssn,k} from the superposition f(t) ∈ WS(M0,M,N,K, h, β, γ, ε) based on re-
peating the modified RDBR in Algorithm 2. In the pseudo-code in Algorithm 3, the input
and output of Algorithm 2 is denoted as

[{s̄k}1≤K̄ , {f̄k}1≤K̄ ] = RDBR(f, {pk}1≤K̄ , n, tp, ε, J).

The MMD algorithm in Algorithm 3 is essentially J1J2M0 iterations of recursive regres-
sion, while the GMD solved by Algorithm 1 requires J1 iterations when we set J = J1. The
main computational cost in each iteration in both algorithms is the same and depends on
the cost of regression. Hence, the computational cost of the MMD over the one of GMD
is always O(J2M0) independent of data and computational environment. In the current
version of code, both GMD and MMD are implemented with a knot-free spline regression
in [36], which might not be efficient enough. In a parallel paper concerning the efficient
numerical implementation of the MMD (including GMD) algorithm, we have proposed fast
algorithms to solve the MMD problem [?].
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1 Input: L points of i.i.d. measurement {f(t`)}`=1,...,L with t` ∈ [0, 1], estimated
instantaneous phases {pk}k=1,...,K̄ , an accuracy parameter ε < 1, the maximum
iteration number J , frequency n, the type of amplitude tp.

2 Output: the estimated shape functions {s̄k}k=1,...,K̄ , and the estimated modes
{f̄k(t)}k=1,...,K̄ at the sampling grid points {t`}1≤`≤L.

3 Initialize: let r
(0)
1 = f , ε1 = ε2 = 1, ε0 = 2, the iteration number j = 0, ṡ

(0)
k = 0,

s̄
(0)
k = 0, and f̄k = 0 for all k = 1, . . . , K̄.

4 Compute Nk as the integer nearest to the average of p′k(t) for k = 1, . . . , K̄.
5 Sort {Nk}1≤k≤K̄ in an ascending order and reorder the amplitude and phase

functions accordingly.
6 while j < J , ε1 > ε, ε2 > ε, and |ε1 − ε0| > ε do
7 for k = 1, . . . , K̄ do
8 if tp = 1 then

9 Let g(t) = cos(2π n
Nk
pk(t)) and evaluate h

(j)
k (t) = g(p−1

k (t))r
(j)
k (p−1

k (t)).

10 else

11 Let g(t) = sin(2π n
Nk
pk(t)) and evaluate h

(j)
k (t) = g(p−1

k (t))r
(j)
k (p−1

k (t)).

12 Repeat Line 9 to 11 in Algorithm 1 to compute ṡ
(j+1)
k .

13 if m = 0 then

14 Let ḟ
(j+1)
k (t) = ṡ

(j+1)
k (2πpk(t)).

15 else

16 Let ḟ
(j+1)
k (t) = 2g(t)ṡ

(j+1)
k (2πpk(t)) and ṡ

(j+1)
k = 2ṡ

(j+1)
k .

17 Let s̄
(j+1)
k = s̄

(j)
k + ṡ

(j+1)
k .

18 Update f̄k(t)← f̄k(t) + ḟ
(j+1)
k (t).

19 if k < K̄ then

20 Let r
(j)
k+1 = r

(j)
k − ḟ

(j+1)
k (t).

21 else

22 Let r
(j+1)
1 = r

(j)
k − ḟ

(j+1)
k (t).

23 Update ε0 = ε1, ε1 = ‖r(j+1)
1 ‖L2 , ε2 = maxk{‖ṡ

(j+1)
k ‖L2}.

24 Set j = j + 1.

Algorithm 2: A modified RDBR for the multiresolution mode decomposition.
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1 Input: L points of i.i.d. measurement {f(t`)}`=1,...,L with t` ∈ [0, 1], estimated
instantaneous phases {pk}k=1,...,K̄ , accuracy parameters ε1 and ε2, the maximum
iteration numbers J1 and J2, and the band-width parameter M0.

2 Output: MM0(fk)(t) at the sampling grid points {t`}1≤`≤L, its multiresolution
expansion coefficients {an,k}n=−M0,...,M0 and {bn,k}n=−M0,...,M0 , and its shape
function series {scn,k}n=−M0,...,M0 and {ssn,k}n=−M0,...,M0 for 1 ≤ k ≤ K̄.

3 Initialize: let an,k = 0, bn,k = 0, scn,k = 0, ssn,k = 0, MM0(fk) = 0 for all k and n; let

c = ‖f‖L2 ; let e = 1; let r(0) = f .
4 for j = 1, 2, . . . , J1, do
5 for n = 0, 1,−1, . . . ,M0,−M0 do

6 [{s̄k}1≤K̄ , {f̄k}1≤K̄ ] = RDBR(r(j−1), {pk}1≤K̄ , n, 1, ε2, J2).

7 for k = 1, . . . , K̄ do
8 scn,k ← scn,k + s̄k.
9 Update MM0(fk)(t)←MM0(fk)(t) + f̄k.

10 Compute r(j) = r(j−1) − f̄k.
11 if |n| > 0 then

12 [{s̄k}1≤K̄ , {f̄k}1≤K̄ ] = RDBR(r(j), {pk}1≤K̄ , n, 0, ε2, J2).

13 for k = 1, . . . , K̄ do
14 ssn,k ← ssn,k + s̄k.
15 Update MM0(fk)(t)←MM0(fk)(t) + f̄k.

16 Update r(j) ← r(j) − f̄k.

17 If ‖r(j)‖L2/c ≤ ε1, then break the for loop.

18 if ‖r(j)‖L2/c ≥ e− ε1 then
19 Break the for loop.

20 else

21 e = ‖r(j)‖L2/c.

22 Let an,k = ‖scn,k‖L2 and scn,k = scn,k/an,k for all k and n.
23 Let bn,k = ‖ssn,k‖L2 and ssn,k = ssn,k/bn,k for all k and n.

Algorithm 3: Multiresolution mode decomposition.
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3.2 Convergence analysis

In this section, an asymptotic analysis on the convergence of the multiresolution mode
decomposition in Algorithm 3 is introduced. We assume that the number of MIMFs is
known exactly, i.e., K̄ = K; we also focus on the case when J2 = 1 in Algorithm 3; the
analysis for other cases can be directly generalized. Similar to the theory in Section 2, the
main analysis is to prove that the for-loop in Line 5 in Algorithm 3 is able to approximately
identify the multiresolution expansion coefficients an,k and bn,k, and estimate the shape
function series scn,k and ssn,k for 1 ≤ k ≤ K and −M0 ≤ n ≤ M0. Though the Gauss-
Seidel iteration is used in Algorithm 3 for faster convergence, we will show a looser bound
of the convergence by using the Jacobi style iteration for the purpose of simplicity.

In the (j + 1)th iteration in Line 4, the residual function is

r(j)(t) =

K∑
k=1

M0∑
n=−M0

cos(2πnφk(t))s
(j)
cn,k(2πNkφk(t))

+

K∑
k=1

M0∑
n=−M0

sin(2πnφk(t))s
(j)
sn,k(2πNkφk(t)) +O(ε), (33)

where the superscript (j) indicates the new target shape function series in the (j + 1)th
iteration of Line 4 in Algorithm 3, and the multiresolution expansion coefficients have been
absorbed in the shape functions. Since we adopt the Jacobi style iteration in the analysis,
the residual function in (33) remains the same throughout the jth iteration, i.e. Line 9, 10,
15, and 16 were postponed until the end of the for-loop in Line 5. For the kth component
and frequency n, the diffeomorphism-based analysis with a constant amplitude function and
the phase function Nkφk(t) is applied to 2 cos(2πnφk(t))r

(j)(t) and 2 sin(2πnφk(t))r
(j)(t) to

estimate the target shape functions s
(j)
cn,k and s

(j)
sn,k, respectively.

In particular,

2 cos(2πnφk(t))r
(j)(t)

=
K∑
k=1

M0∑
m=−M0

2 cos(2πnφk(t)) cos(2πmφk(t))s
(j)
cm,k(2πNkφk(t))

+

K∑
k=1

M0∑
m=−M0

2 cos(2πnφk(t)) sin(2πmφk(t))s
(j)
sm,k(2πNkφk(t)) +O(ε), (34)

where the term 2 cos(2πnφk(t)) cos(2πnφk(t))s
(j)
cn,k(2πNkφk(t)) results in

s
(j)
cn,k(2πNkφk(t)) + cos(4πnφk(t))s

(j)
cn,k(2πNkφk(t)).

s
(j)
cn,k(2πNkφk(t)) is the only term with a non-zero-mean amplitude function in 34. Following

the same notations as in Section 2.2, let

h
(j)
cn,k(v) = 2

(
cos(2πnφk(t))r

(j)
)
◦ p−1

k (v)

= s
(j)
cn,k(2πv) + κ

(j)
cn,k(2πv) +O(ε),

where v = pk(t) = Nkφk(t) and κ
(j)
cn,k comes from other terms in (34). After the folding

map

τ :
(
v, h

(j)
cn,k(v)

)
7→
(

mod(v, 1), h
(j)
cn,k(v)

)
,
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we have (x`, y`) = τ(v`, s
(j)
cn,k(2πv`) +κ

(j)
cn,k(2πv`) +O(ε)) for ` = 1, . . . , L as L i.i.d. samples

of a random vector (Xcn,k, Y
(j)
cn,k), where Xcn,k ∈ [0, 1]. Hence, the regression problem in

(34) can be written as

s
R,(j+1)
cn,k = arg min

s:R→R
E{
∣∣∣s(2πXn,k)− Y

(j)
cn,k

∣∣∣2}
= arg min

s:R→R
E{
∣∣∣s(2πXn,k)− (Y

(j)
cn,k − s

(j)
cn,k(2πXcn,k))

∣∣∣2} − s(j)
cn,k, (35)

we have
s
R,(j+1)
cn,k = s

(j)
cn,k + s

E,(j)
cn,k ,

where
s
E,(j)
cn,k (2πx) := E{Y (j)

cn,k − s
(j)
cn,k(2πXcn,k)|Xcn,k = x} 6= 0 (36)

due to the perturbation caused by κ
(j)
cn,k. In the next iteration, the target shape function

s
(j+1)
cn,k = −sE,(j)cn,k . Hence, the key convergence analysis is to show that s

E,(j)
cn,k decays as

j →∞.

Similarly, when the diffeomorphism-based regression is applied to s
(j)
sn,k, we are able

to estimate s
(j)
sn,k approximately and the estimation error s

E,(j)
sn,k is the estimation target

s
(j+1)
sn,k = −sE,(j)sn,k in the next iteration.

In what follows, we assume that an accuracy parameter ε is fixed. Furthermore, suppose
f(t) ∈ WS(M0,M,N,K, h, β, γ, ε), and all shape functions are in the space LC . Under these

conditions, all regression functions s
(j)
cn,k ∈ L

C , s
(j)
sn,k ∈ L

C , and have bounded L∞ norm
depending only on M and K. By Algorithm 2, we have the nice and key conditions that∫ 1

0 s
(j)
cn,k(2πt)dt = 0 and

∫ 1
0 s

(j)
sn,k(2πt)dt = 0 at each iteration for all n, k and j. Note that

Var(Y
(j)
cn,k|Xcn,k = x) and Var(Y

(j)
sn,k|Xsn,k = x) are bounded by a constant depending only

on M and K as well. For the fixed ε and C, there exists h0(ε, C) such that C2h2 < ε2

if 0 < h < h0. By the abuse of notation, O(ε) is used instead of Ch later. By Theorem
2.3, for the fixed ε, M0, M , K, C, and h, there exists L0(ε,M0,M,K,C, h) such that the
L2 error of the partition-based regression is bounded by ε2. In what follows, h is smaller
than h0, L is larger than L0, and hence all estimated regression functions approximate the
ground truth regression function with an L2 error of order ε. Under these conditions and

assumptions, s
E,(j)
cn,k and s

E,(j)
sn,k are shown to decay to O(ε) as j → ∞, as long as L and N

are sufficiently large, and the decay rate will be estimated.

Theorem 3.3. (Convergence of the multiresolution mode decomposition) Under the condi-
tions listed in the paragraph immediately preceding this theorem, suppose Nk and φk(t) are
known for all k, and J2 = 1 in Algorithm 3, as long as L and N are sufficiently large, we
have

‖sE,(j)cn,k ‖L2 ≤ O(c0ε+ (β(2M0 + 1)(K − 1))j),

and
‖sE,(j)sn,k ‖L2 ≤ O(c0ε+ (β(2M0 + 1)(K − 1))j)

for all j ≥ 0 and 1 ≤ k ≤ K, where c0 = 1
1−β(2M0+1)(K−1) is a constant number, s

E,(j)
cn,k is

defined in Equation (36) and s
E,(j)
sn,k is defined similarly.
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Proof. We only prove the case when K = 2; the proof for a general case follows a similar
discussion of the proof of Theorem 2.5.

Recall notations in Definition 3.2. When the partition-based regression method is ap-
plied to solve the regression problem in (35) to obtain the approximate regression function

s
P,(j)
cn,1 (2πx), we have

s
P,(j)
cn,1 (2πx) =

∑Nh−1
n=0

(
κ

(j)
cn,1(2πthn) +O(ε)

)
D12
h (m,n)

D1
h(m)

,

for x ∈ [thm, t
h
m + h), where O(ε) comes from the approximation of LC functions using the

values on grid points thn, and the O(ε) term in the residual function in (33). The following
argument is similar to that for Lemma 3.3 in [31]. It is easy to check that

|sP,(j)cn,1 (2πx)| ≤ O(ε) +

∑Nh−1
n=0 κ̄

(j)
cn,1(2πthn)

(
D12
h (m,n)− γ

)
D1
h(m)

+ γ

∑Nh−1
n=0 κ̄

(j)
cn,1(2πthn)

D1
h(m)

, (37)

where
κ̄

(j)
cn,k(2πv) := κ

(j)
cn,k(2πv)− κ̇(j)

cn,k(2πv),

and

κ̇
(j)
cn,k(2πv) :=

M0∑
m=−M0

2 cos(2π
n

Nk
v) cos(2π

m

Nk
v)s

(j)
cm,k(2πv)

+

M0∑
m=−M0

2 cos(2π
n

Nk
v) sin(2π

m

Nk
v)s

(j)
sm,k(2πv)− s(j)

cn,k(2πv)

=

M0∑
m=−M0

(
cos(2π

m+ n

Nk
v) + cos(2π

n−m
Nk

v)

)
s

(j)
cn,k(2πv)

+

M0∑
m=−M0

(
sin(2π

n+m

Nk
v) + sin(2π

m− n
Nk

v)

)
s

(j)
sn,k(2πv)− s(j)

cn,k(2πv),

since ∑Nh−1
n=0 κ̇

(j)
cn,1(2πthn)

(
D12
h (m,n)

)
D1
h(m)

= O(ε), (38)

which is due to the fact that the oscillation in the smooth amplitudes (cos(2π±n±mNk
v) and

sin(2π±n±mNk
v)) can cancel out the summation in 38.

The inequalities in (37) implies that

‖sP,(j)cn,1 ‖L2 ≤ O(ε) +

Nh−1∑
n=0

(
κ̄

(j)
cn,1(2πthn)

)2
h

1/2Nh−1∑
m=0

Nh−1∑
n=0

(
D12
h (m,n)− γ
D1
h(m)

)2
1/2

+γ

∑Nh−1
n=0 κ̄

(j)
cn,1(2πthn)

D1
h(m)

(39)
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by the triangle inequality and Hölder’s inequality. Note thatNh−1∑
n=0

(
κ̄

(j)
cn,k(2πt

h
n)
)2
h

1/2

≤
∑
`6=k

M0∑
m=−M0

Nh−1∑
n=0

(
s

(j)
cm,`(2πt

h
n)
)2
h

1/2

+
∑
`6=k

M0∑
m=−M0

Nh−1∑
n=0

(
s

(j)
sm,`(2πt

h
n)
)2
h

1/2

by the triangle inequality. Since all shape functions are in LC , we haveNh−1∑
n=0

(
s

(j)
cm,`(2πt

h
n)
)2
h

1/2

= ‖s(j)
cm,`‖L2 +O(ε),

and Nh−1∑
n=0

(
s

(j)
sm,`(2πt

h
n)
)2
h

1/2

= ‖s(j)
sm,`‖L2 +O(ε)

for all ` and m. Hence,Nh−1∑
n=0

(
κ̄

(j)
cn,k(2πt

h
n)
)2
h

1/2

≤ O(ε) + (2M0 + 1)(K − 1) max
1≤k≤K,−M0≤m≤M0

(
‖s(j)
cm,k‖L2 + ‖s(j)

sm,k‖L2

)
. (40)

Since phase functions are in WD(M,N, h, β, γ),Nh−1∑
m=0

Nh−1∑
n=0

(
Dki
h (m,n)− γ
Dk
h(m)

)2
1/2

≤ β < 1. (41)

Hence, by (39), (40), and (41), it holds that

‖sP,(j)cn,1 ‖L2 ≤ O(ε) + γ

∑Nh−1
n=0 κ̄

(j)
cn,1(2πthn)

D1
h(m)

(42)

+β(2M0 + 1)(K − 1) max
1≤k≤K,−M0≤m≤M0

(
‖s(j)
cm,k‖L2 + ‖s(j)

sm,k‖L2

)
.

Note that Dk
h(m) ≥ Nhγ = γ/h. Hence, γ

Dkh(m)
≤ h and

γ

∑Nh−1
n=0 κ̄

(j)
cn,1(2πthn)

D1
h(m)

≤ h
Nh−1∑
n=0

κ̄
(j)
cn,1(2πthn). (43)

Since s
(j)
cn,k ∈ L

C , s
(j)
sn,k ∈ L

C ,
∫ 1

0 s
(j)
cn,k(2πt)dt = 0, and

∫ 1
0 s

(j)
sn,k(2πt)dt = 0 for all n and k,

by the stationary phase approximation, we have

h
Nh−1∑
n=0

κ̄
(j)
cn,1(2πthn) ≤ O(ε), (44)
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as long as the number of grid points, L, and the lower bound of the oscillation frequency,
N , are sufficiently large. In sum, by (42), (43), and (44), we have

‖sP,(j)cn,1 ‖L2 ≤ O(ε) (45)

+β(2M0 + 1)(K − 1) max
1≤k≤K,−M0≤m≤M0

(
‖s(j)
cm,k‖L2 + ‖s(j)

sm,k‖L2

)
.

In fact, following the arguments for (45), we can bound ‖sP,(j)cn,k ‖L2 and ‖sP,(j)sn,k ‖L2 for all
k with the same bound as in (45).

By the conditions just listed immediately before Theorem 3.3, and the definition in
Equation (36), we have

‖sE,(j)cn,k ‖L2 ≤ O(ε) + ‖sP,(j)cn,k ‖L2 ≤ (46)

O(ε) + β(2M0 + 1)(K − 1) max
1≤k≤K,−M0≤m≤M0

(
‖s(j)
cm,k‖L2 + ‖s(j)

sm,k‖L2

)
,

and

‖sE,(j)sn,k ‖L2 ≤ O(ε) + ‖sP,(j)sn,k ‖L2 ≤ (47)

O(ε) + β(2M0 + 1)(K − 1) max
1≤k≤K,−M0≤m≤M0

(
‖s(j)
cm,k‖L2 + ‖s(j)

sm,k‖L2

)
.

By Equation (46), (47), and mathematical induction, it is easy to show that

‖sE,(j)cn,k ‖L2 ≤ O(c0ε+ (β(2M0 + 1)(K − 1))j),

and
‖sE,(j)sn,k ‖L2 ≤ O(c0ε+ (β(2M0 + 1)(K − 1))j)

for all j ≥ 0 and 1 ≤ k ≤ K, where c0 = 1
1−β(2M0+1)(K−1) is a constant number coming

from the geometric sequence due to the summation of the O(ε) term for all j ≥ 0.
The above proof is just for K = 2. To care the general case for K > 2, the only

difference is the presence of more terms in the inequality estimations.

Theorem 3.3 shows that the regression function in each iteration of Line 4 in Algorithm
3 decays, if J2 = 1 and β(2M0 + 1)(K − 1) < 1, in the L2 sense up to a fixed accuracy
parameter as the iteration number becomes large. Hence, the recovered shape function
converges and the residual decays up to a fixed accuracy parameter. For a general case
when J2 > 1, the convergence of Algorithm 3 is obvious following Theorem 3.3. It is
tedious to compare the convergence rate for different J2, since it depends on how fast the
multiresolution expansion coefficients acn,k, asn,k, bcn,k, and bsn,k decay in n. In general, the
faster the coefficients decay in n, the larger J2 should be used. Another immediate result
of Theorem 3.3 is that, the correlation of MIMF’s with well-differentiated phase functions
is asymptotically zero in the sense of recursive diffeomorphism-based regression. In other
words, when the MIMF and MMD model is applied to analyze a time series, the resulting
representation by MIMF’s is unique. The robustness of Algorithm 3.3 is an immediate
result following the proof of Theorem 2.6 and 2.7.
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4 Numerical Example

In this section, some numerical examples of synthetic and real data are provided to support
the multiresolution mode decomposition (MMD) model and Algorithm 3. We apply the
least squares spline regression method with free knots in [36] to solve all the regression prob-
lems in this paper. The implementation of the regression method is available online6. In all
synthetic examples, we assume the fundamental instantaneous phases are known and only
focus on verifying the theory in Section 3. In real examples, we apply the one-dimensional
synchrosqueezed wave packet transform (SSWPT) to estimate instantaneous phases as in-
puts of the multiresolution mode decomposition in Algorithm 3. The implementation of
the SSWPT is available in SynLab7, while the code for the MMD is available online in a
MATLAB package named DeCom8.

Before presenting results, we would like to summarize the main parameters in the above
packages and in Algorithm 3. In the spline regression with free knots, main parameters are

• nk: the number of free knots;

• krf : the knot removal factor, a number quantifying how likely a free knot would be
removed;

• ord: the highest degree of spline polynomials.

In SynLab, main parameters are

• s: a geometric scaling parameter;

• rad: the support size of the mother wave packet in the Fourier domain;

• red: a redundancy parameter, the number of frames in the wave packet transform;

• εsst: a threshold for the wave packet coefficients.

In Algorithm 3, main parameters are

• J1: the maximum number of iterations allowed in Algorithm 3;

• J2: the maximum number of iterations allowed in Algorithm 2;

• M0: the bandwidth parameter;

• ε1 = ε2 = ε: the accuracy parameter.

For the purpose of convenience, the synthetic data is defined in [0, 1] and sampled on a
uniform grid. All these parameters in different examples are summarized in Table 1.

In the noisy synthetic examples, Gaussian random noise with a distribution N (0, σ2) is
used. The signal-to-noise ration (SNR) of f(t) is defined as

SNR[dB] = 10 log10

(
‖f‖L2

σ2

)
(48)

where σ2 is the variation of the noise.
6Available at https://www.mathworks.com/matlabcentral/fileexchange/25872-free-knot-spline-

approximation.
7Available at https://github.com/HaizhaoYang/SynLab.
8Available at https://github.com/HaizhaoYang/DeCom.
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figure nk krf ord s rad red εsst J1 J2 M0 ε L

7, 8, 9 20 1.0001 3 0.5 1.5 8 1e-3 200 10 20 1e-6 216

10, 11, 12 20 1.0001 3 0.5 1 8 1e-3 200 10 20 1e-6 4000
14, 15 20 1.0001 3 – – – – 200 10 10 1e-6 215

16, 17, 18 20 1.0001 3 0.5 1.5 8 1e-3 200 10 40 1e-6 216

Table 1: Parameters in the spline regression, SynLab, and Algorithm 3. The notation “–”
means the corresponding parameter is not used.

4.1 Synthetic multiresolution mode decomposition

In this section, clean and noisy synthetic time series are provided to demonstrate the
effectiveness and the robustness of the multiresolution mode decomposition in Algorithm
3.

The first synthetic example. We consider a simple case when the signal has two
MIMFs with ECG shape functions. In particular, we generate MIMFs such that ssn,k =
scn,k = sk for all n ≥ 0 and k, and ssn,k = scn,k = 0 for all n < 0 and k, resulting in
an example that can be either considered as a GMD or an MMD problem. Through this
example we see that Algorithm 3 for MMD can also be applied to solve the GMD problem.
For example, we consider a signal of the form

f(t) = f1(t) + f2(t) + ns, (49)

where ns denotes Gaussian random noise with a distribution N (0, σ2),

f1(t) = α1(φ1(t))s1(300πφ1(t)), (50)

f2(t) = α2(φ2(t))s2(440πφ2(t)), (51)

α1(t) = 1 + 0.2 cos(2πt) + 0.1 sin(2πt),

α2(t) = 1 + 0.1 cos(2πt) + 0.2 sin(2πt),

φ1(t) = t+ 0.006 sin(2πt),

and
φ2(t) = t+ 0.006 cos(2πt).

s1(2πt) and s2(2πt) are generalized shape functions defined in [0, 1] as shown in Figure 9.
In the noiseless example when ns = 0, we apply the MMD in Algorithm 3 with the known
instantaneous phases mentioned just above to estimate the multiresolution expansion co-
efficients and the shape functions series. Note that it is sufficient to show the estimation
accuracy of the product of the multiresolution expansion coefficient and its corresponding
shape function; the products of the first five leading expansion coefficients and shape func-
tions are shown in Figure 10. The estimation errors are very small; the estimated results
and the ground truth are almost indistinguishable. The numerical results of a noisy sig-
nal with ns = N (0, 2.25) are shown in Figure 11. Even if the SNR for the leading terms
M0(f1)(t) and M0(f2)(t) are near −10, the estimation a0,1sc0,1(t) is almost equal to the
ground truth s1(t), and the estimation a0,2sc0,2(t) is almost equal to the ground truth s2(t).
The SNR for the other terms are even much smaller (less than −20). However, as shown
in Figure 11, the estimation of other terms are still reasonable, capturing the main trend
of the shape functions. Therefore, Algorithm 3 is quite robust against noise perturbation.
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Figure 9: Shape function s1(2πt) in (50) and s2(2πt) in (51).
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Figure 10: Top row: estimated shape functions a0,1sc0,1(2πt), a1,1sc1,1(2πt),
a−1,1sc−1,1(2πt), b1,1ss1,1(2πt), and b−1,1ss−1,1(2πt) of f1(t) in (50). Bottom row: es-
timated shape functions a0,2sc0,2(2πt), a1,2sc1,2(2πt), a−1,2sc−1,2(2πt), b1,2ss1,2(2πt), and
b−1,2ss−1,2(2πt) of f2(t) in (51).

4.2 Multiresolution intrinsic mode functions in real data

In this section, time series in real application are provided to support the model of mul-
tiresolution intrinsic mode functions (MIMFs). The first example is an ECG record from a
normal subject and the second example is a motion-contaminated ECG record. The reader
is referred to https://www.physionet.org/physiobank/database/ for more details about
the ECG data. We compute the band-limited multiresolution approximations of the first
example and visualize them in Figure 12, 13, and 14; the band-limited multiresolution ap-
proximations of the second example are plotted in Figure 15, 16, and 17. Note that when
the bandwidth of the multiresolution approximation increases, the approximation error de-
creases, and finer variation of the time series can be captured. These observations support
the model of MIMF as a superposition of several oscillatory components. In particular,
the results in Figure 13 shows that, as the bandwidth increases, the variation of the time-
varying amplitude of the signal has been captured in the high frequency components of the
MIMF. Figure 14 and 17 show the first five shape functions of these two examples, respec-
tively; all shape functions vary a lot at different level of resolution. The actual time-varying
shape of an ECG signals we see in the raw data is not exactly any single shape function in
the shape function series; they are actually the results of all shape functions in the shape
function series. This completes the validation of the proposed MIMF model.
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Figure 11: Top row: estimated shape functions a0,1sc0,1(2πt), a1,1sc1,1(2πt),
a−1,1sc−1,1(2πt), b1,1ss1,1(2πt), and b−1,1ss−1,1(2πt) of f1(t) + ns, where f1(t) is given in
(50) and ns is Gaussian random noise with variance 2.25. Bottom row: estimated shape
functions a0,2sc0,2(2πt), a1,2sc1,2(2πt), a−1,2sc−1,2(2πt), b1,2ss1,2(2πt), and b−1,2ss−1,2(2πt)
of f2(t) + ns, where f2(t) is given in (51) and ns is Gaussian random noise with variance
2.25.
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Figure 12: Multiresolution approximations of an ECG record from a normal subject.
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Figure 13: The residual of the multiresolution approximations of an ECG record from a
normal subject in Figure 12.
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Figure 14: Estimated shape functions a0sc0(t), a1sc1(t), a−1sc−1(t), b1ss1(t), and b−1ss−1(t)
for the ECG signal in Figure 12.

4.3 Real example of multiresolution mode decomposition

In this section, we provide a real example to demonstrate the application of the multires-
olution mode decomposition. This is an example of photoplethysmography (PPG)9 that
contains the hemodynamical information as well as the respiration information. Hence, the
PPG signal essentially contains two MIMFs. In this example, the instantaneous frequencies
and phases are not known and they are estimated via the synchrosqueezed transform in
[28]. Figure 18 shows the estimated fundamental instantaneous frequencies of the respira-
tory and cardiac cycles. Inputing their corresponding instantaneous phases into the MMD
algorithm, the PPG signal is separated into a respiratory MIMF and a cardiac MIMF as
shown in Figure 19; their leading multiresolution shape functions are shown in Figure 20.

The last two panels of Figure 19 shows that the PPG signal has been completely sep-
arated into two MIMFs; the residual signal only contains noise, a smooth trend, and some

9From http://www.capnobase.org.
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Figure 15: Multiresolution approximations of a motion-contaminated ECG record.

sharp changes that are not correlated to the oscillation in MIMFs. It is worth to exploring
the application of MIMFs and MMD for fault detection in health data. For example, the
detection of abnormal ECG waveforms is important to cardiac disease diagnosis [32, 33]; the
abnormality can be identified by detecting the sharp changes in the residual signal that are
not correlated to the normal oscillation pattern. The second panel shows that the MIMF
model can characterize time-varying shape functions, while the third panel shows that the
MIMF model can capture the time-varying amplitude functions.

5 Conclusion

This paper proposed the multiresolution intrinsic mode function (MIMF) as a new model
to simulate oscillatory time series with time-varying amplitudes and shapes. In the case of
a superposition of several MIMFs, a novel multiresolution decomposition algorithm based
on the idea of recursive diffeomorphism-based regression is proposed to separate the signal
into individual MIMFs. The convergence and the robustness of recursive scheme has been
theoretically and numerically proved. The application of MIMFs and MMD is not limited to
decomposing signals into several components with well-differentiated instantaneous phase
functions; they can also be used for time series denoising due to the robustness of the
MMD algorithm; the multiresolution expansion coefficients and shape function series can
also provide better features for adaptive time series analysis than traditional Fourier analysis
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Figure 16: The residual of the multiresolution approximations of a motion-contaminated
ECG record in Figure 15.
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Figure 17: Estimated shape functions a0sc0(t), a1sc1(t), a−1sc−1(t), b1ss1(t), and b−1ss−1(t)
for the ECG signal in Figure 15.
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Figure 18: Estimated fundamental instantaneous frequencies of the real PPG signal in the
first panel of Figure 19 by the synchrosqueezed transform.

and wavelet analysis.
The MIMF model is inspired by the visual observation of nonlinear and non-stationary

oscillatory time series with time-dependent amplitudes and shape functions. Theoretically
it has been proved that the correlation of MIMF’s with well-differentiated phase functions
is asymptotically zero in the sense of recursive diffeomorphism-based regression. In other

38



60 70 80 90 100 110 120 130 140 150 160

time

-10

0

10

s
ig

n
a
l 
in

te
n
s
it
y

60 70 80 90 100 110 120 130 140 150 160

time

-10

0

10

s
ig

n
a
l 
in

te
n
s
it
y

60 70 80 90 100 110 120 130 140 150 160

time

-10

0

10

s
ig

n
a
l 
in

te
n
s
it
y

60 70 80 90 100 110 120 130 140 150 160

time

-10

0

10

s
ig

n
a
l 
in

te
n
s
it
y

60 70 80 90 100 110 120 130 140 150 160

time

-4

-2

0

2

s
ig

n
a

l 
in

te
n

s
it
y

Figure 19: First panel: the raw PPG signal f(t). Second panel: the respiratory MIMF f1(t).
Third panel: the cardiac MIMF f2(t). Fourth panel: the summation of the respiratory and
cardiac MIMFs f1(t) + f2(t) (red) compared to the raw PPG signal f(t) (blue). The fifth
panel: the residual signal f(t)− f1(t)− f2(t).

words, when the MIMF and MMD model is applied to analyze a time series, the resulting
representation by MIMF’s is unique. Numerically, it is shown that MIMF’s match real
oscillatory time series well, especially those from health data. To theoretically validate the
MIMF model for oscillatory time series, a more fundamental but challenging approach is
to understand the governing dynamics that generate the time series. For example, despite
several attempts [37] over decades still it has not been successful to establish dynamical
models faithfully describing real ECG signals – not to mention the variability among differ-
ent individuals. The MIMF model may serve as a prototype that separates the variability
of complicated signals into simpler components, the generator of whose dynamics may be
more accessible.

Though adaptive time-series analysis is the main motivation of MIMF and MMD dis-
cussed in this paper, these models and algorithms can be naturally extended to higher
dimensional spaces. Applications include atomic crystal images in physics [4, 5], art in-
vestigation [8, 9], geology [10, 11, 12], imaging [13], etc. In higher dimensional spaces,
the computational efficiency is a crucial issue. There are mainly two directions for future
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Figure 20: Top row: estimated shape functions a0,1sc0,1(2πt), a1,1sc1,1(2πt),
a−1,1sc−1,1(2πt), b1,1ss1,1(2πt), and b−1,1ss−1,1(2πt) for the respiratory MIMF. Bottom row:
estimated shape functions a0,2sc0,2(2πt), a1,2sc1,2(2πt), a−1,2sc−1,2(2πt), b1,2ss1,2(2πt), and
b−1,2ss−1,2(2πt) for the cardiac MIMF.

works for fast algorithms for MMD. A natural idea is to develop fast regression techniques
to reduce the time for each iteration in the recursive scheme in MMD; a more challenging
question is to develop new recursive schemes to update all the multiresolution expansion
coefficients and shape function series simultaneously, instead of updating them one by one
in each iteration in Algorithm 2 and 3.

Acknowledgments. H.Y. thanks Ingrid Daubechies for her fruitful discussion.
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