Interpolative Decomposition Butterfly Factorization

Qiyuan Pang Kenneth L. Ho
Tsinghua University, China San Francisco, CA, USA
ppangqqyz@foxmail.com klho@alumni.caltech.edu

Haizhao Yang
Department of Mathematics
National University of Singapore, Singapore
haizhao@nus.edu.sg

September 27, 2018

Abstract

This paper introduces an interpolative decomposition butterfly factorization (IDBF) as a
data-sparse approximation for matrices that satisfy a complementary low-rank property. The
IDBF can be constructed in O(N log N') operations for an N x N matrix via hierarchical inter-
polative decompositions (IDs), if matrix entries can be sampled individually and each sample
takes O(1) operations. The resulting factorization is a product of O(log N) sparse matrices,
each with O(N) non-zero entries. Hence, it can be applied to a vector rapidly in O(N log N)
operations. Numerical results are provided to demonstrate the effectiveness of the butterfly
factorization and its construction algorithms.

Keywords. Data-sparse matrix, butterfly factorization, interpolative decomposition, operator
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1 Introduction

One of the key computational task in scientific computing is to evaluate dense matrix-vector mul-
tiplication (matvec) rapidly. Given a dense matrix K € CN*N and a vector € CV, it takes
O(N?) operations to naively compute the vector y = Kx € CV. There has been extensive re-
search in constructing data-sparse representation of structured matrices (e.g., low-rank matrices
[T, 2, 3, 4, 5], H matrices [6, [7, 8], H? matrics [9, 0], HSS matrices [11} 12], complementary low-
rank matrices [13| [14] [I5] [16, 17, 18], FMM [19] 20l 21}, 22} 23], 24, 25 26], directional low-rank
matrices [27, 28] 29] 30], and the combination of these matrices [31} [32]) aiming for linear or nearly
linear scaling matvec. In particular, this paper concerns nearly optimal matvec for complementary
low-rank matrices.

A wide range of transforms in harmonic analysis [14] [15, 33, [34} 35l B36], and integral equations
in the high-frequency regime [31], 32] admit a matrix or its submatrices satisfying a complementary
low-rank property. For a complementary low-rank matrix, its rows are typically indexed by a point
set X, and the columns by another point set 2, both X and € are point sets in R!. Associated
with X and 2 are two trees T'x and T constructing by dyadic partition. Both trees have the same
level L = O(log N), with the top root being the 1-th level and the bottom leaf level being the L-th
level. We say a matrix satisfies the complementary low-rank property if, any node A at level [ in
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Tx, and any node B at level L —[, the submatrix K jl4, p of K, obtained by restricting the rows of K
to the points in node A and the columns to the points in node B, was numerically low-rank; that
is, given a precision e, there exists an approximation of K AB with the 2-norm of the error bounded
by € and the rank k£ bounded by a polynomial in log N and log 1/€. See Figure I 1| for an illustration
of low-rank submatrices in a complementary low-rank matrix of size 16 x 16.

Figure 1: Hierarchical decomposition of the row and column indices of a 16 x 16 matrix. The
dyadic trees T'x and T have roots containing 16 rows and 16 columns respectively, and their leaves
containing only a single row or column. The partition above indicates the complementary low-rank
property of the matrix, and assumes that each submatrix is rank-1.

This paper introduces an Interpolative Decomposition Butterfly Factorization (IDBF)
as a data-sparse approximation for matrlces that satisfy the complementary low-rank property.
The IDBF can be constructed in O( °N log N') operations for an N x N matrix K with a local
rank parameter k and a leaf size parameter ng via hierarchical linear interpolative decompositions
(IDs), if matrix entries can be sampled individually and each sample takes O(1) operations. The
resulting factorization is a product of O(log N) sparse matrices, each of which contains O(fTZN )
nonzero entries as follows:

K~Utut e ghshyhe vyl (1)

where h L/2 and the level L is assumed to be even. Hence, it can be applied to a vector rapidly

in O( °N log N)) operations. Previously, purely algebraic butterfly factorizations (in the sense that

the complementary matrix is not the discretization of a kernel function K (z,£) = a(x, &)e?™®@:£)

with smooth a(z, &) and ®(z,€)) have at least O(N ') scaling [13} 14} [15, [I7]. The IDBF is the first
purely algebraic butterfly factorization (BF) with O(NN log N) scaling in both factorization
and application.

2 Interpolative Decomposition Butterfly Factorization (IDBF)

We will describe IDBF in detail in this section. For the sake of simplicity, we assume that N = 2Ln,
where L is an even integer, and ng = O(1) is the number of column or row indices in a leaf in the
dyadic trees of row and column spaces, i.e., Tx and Tgq, respectively. Let’s briefly introduce the
main ideas of designing O( N log N) IDBF using a linear ID. In IDBF, we compute O(log N)
levels of low-rank submatrix factorlzatlons At each level, according to the matrix partition by the
dyadic trees in column and row (see Figure |1| for an example), there are % low-rank submatrices.
At the /-th level, the size of submatrices to be factorized is 2—]\15 X 1 orn x QEZ, where n < 2k and k
is the rank parameter of IDBF. Linear IDs require O(k*n) < O(k?’) operation for each submatrix,
and hence at most O( N) for each level of factorization, and O( " Nlog N ) for the whole IDBF.
There are two differences between IDBF and other BFs [13, 14} 15]

1. The order of factorizations is from the leaf-root and root-leaf levels of matrix partitioning



(e.g., the left and right panels in Figure [I) and moves towards the middle level of matrix
partitioning (e.g., the middle panel of Figure .

2. Linear IDs are organized in an appropriate way such that it is cheep in terms of both memory
and operations to provide all necessary information for each level of factorizations.

Uppercase letters will generally denote matrices, while the lowercase letters ¢, p, ¢, r, and s
denote ordered sets of indices. For a given index set ¢, its cardinality is written |c[. Given a
matrix A, A,, or A, , is the submatrix with rows and columns restricted to the index sets p and
q, respectively. We also use the MATLAB® notation A. 4 to denote the submatrix with columns
restricted to q.

2.1 Linear scaling Interpolative Decompositions

Interpolative decomposition and other low-rank decomposition techniques [I} 3, B7] are important
elements in modern scientific computing. These techniques usually require O(mn) arithmetic op-
erations to get a rank k = O(1) matrix factorization to approximate a matrix A € C™*". Linear
scaling randomized techniques can reduce the cost to O(m + n) [38]. [39] further shows that in
the CUR low-rank approximation A ~ CUR, where C = A.., R = A,., and U ¢ CF*F with
lc| = |r| = k, if only U, ¢, and r are needed, there exists an O(k?) algorithm for constructing U, c,
and r.

In the construction of IDBF, we use an O(nk?) linear scaling column ID to construct 7" and
select skeleton indices ¢ such that A ~ A. T when n < m. Similarly, we can construct a row ID
A~ TA,, in O(mk?) operations when m < n. Either randomized sampling or Mock-Chebyshev
gridsﬂ [41l, 42] can be applied to reduce the quadratic computational cost to linear. Here we present
a simple lemma of interpolative decomposition (ID) to motivate the proposed linear scaling ID.

Lemma 2.1. For a matriz A € C"™*™ with rank k < min{m,n}, there exists a partition of the
column indices of A, pU q with |q| = k, and a matriz T € CK*" such that A., = A. ,T.

Proof. A rank revealing QR decomposition of A gives
AN = QR = Q[R1 Ry, (2)

where Q € C™** is an orthogonal matrix, R € CF*" is upper triangular, and A € C"™*" is a
carefully chosen permutation matrix such that R; € C*** is nonsingular. Let

A:,q = QR17 (3)
and then
A:,p = QRZ = QRlRIIRZ = A:,qTa (4)
where
T = Ry 'R,. (5)
O

! Though it was shown in [40] that no fast stable approximation of analytic functions from equispaced samples in
a bounded interval in the sense of L°°-norm with an exponential convergence rate is available, the Mock-Chebyshev
points admit polynomial interpolation with a root-exponential convergence rate. In this paper, we care more about
the approximation error at the equispaced sampling locations, in which case it is still unknown whether the Mock-
Chebyshev points admit an exponential convergence rate.



A., =A. T in Lemma @ is equivalent to the traditional form of a column ID,
A=A I TIA = AV, (6)

where A is a permutation matrix associated with p and q. We call p and q as skeleton and redundant
indices, respectively. V can be understood as a column interpolation matriz. Our goal for linear
scaling ID is to construct the skeleton index set ¢, the redundant index set p, T, and A in O(k?n)
operations and O(kn) memory.

For a tall skinny matrix A, i.e., m > n, the rank revealing QR decomposition of A in
typically requires O(mn?) operations. To reduce the complexity to O(k?n), we actually apply the
rank revealing QR decomposition to pk carefully selected rows of A, where p is an oversampling
number. These columns can be chosen independently and uniformly from the row space as the
sublinear CUR in [39] or the linear scaling algorithm in [38]; or they can be chosen from the Mock-
Chebyshev grids of the row indices as in [41} 42, [18]. After the rank revealing QR decomposition,
the other steps to generate T and A take only O(k?n) operations since R; in is an upper
triangular matrix. We refer this linear scaling column ID as cID.

For a short and fat matrix A € C™*" with m < n, a similar row ID

A=A T]*A,. :=UA,, (7)

can be devised similarly with O(k?m) operations and O(km) memory, where * denotes the conjugate
transpose of a matrix. We refer this linear scaling row ID as rID and U as the row interpolation
matriz.

2.2 Leaf-root complementary skeletonization (LRCS)

For a complementary low-rank matrix A, we introduce the leaf-root complementary skeletonization
(LRCS)
A=USV

via ¢IDs of the submatrices corresponding to the leaf-root levels of the column-row dyadic trees (e.g.,
see the associated matrix partition in Figure 2| (right)), and rIDs of the submatrices corresponding
to the root-leaf levels of the column-row dyadic trees (e.g., see the associated matrix partition in
Figure [2 (middle)). We always assume that IDs in this Section is applied with a rank parameter
k= O(1). We'll not specify k again in the following discussion.

Suppose that at the leaf level of the row (and column) dyadic trees, the row index set r (and
the column index set ¢) of A are partitioned into leaves {r;}1<i<m (and {c¢;}i1<i<m) as follows

r= [T177a27“' 7rm] (a'nd CcC= [017027' t 7cm])7 (8)

with |r;| = no (and |¢;| = ng) for all 1 <4 < m, where m = 2F = nﬂo, and L = logy N — logy ng is
the depth of the dyadic trees Tx (and Tg). Figure |2 shows an example of row and column dyadic
trees with m = 16. We apply rID to each A, . to obtain the row interpolation matrix in its ID and

denote it as U;; the associated skeleton indices of the ID is denoted as #; C r;. Let
7= [flv’féa'” 7fm]a (9)

then Aj; . is the important skeleton of A and we have

Ui Aiver Apre Ay e
Us Ajyer Aiges Aty e

Ar ) : . =UM
Um ATAWHCI A’;'mch T Afmycm
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Similarly, ¢ID is applied to each A; . to obtain the column interpolation matrix V; and the
skeleton indices ¢; C ¢; in its ID. Then finally we form the LRCS of A as

Ui Aoy Arey o Anen\ (N1
U- A,,ﬁ é qu é R A,: ém \%
Aw o T i L =USV. (10)
Um Afmzél A»,-"m’é2 PO Ar”m’ém Vm

For a concrete example, Figure [3| visualizes the non-zero pattern of the LRCS in of the com-
plementary low-rank matrix A in Figure 2]

The novelty of the LRCS is that M and S are not computed explicitly; instead, they are
generated and stored via the skeleton of row and column index sets. Hence, it only takes O(fL—zN )

operations and O(Z—EN ) memory to generate and store the factorization in , since there are
2m = 22 TDs in total.

It is worth emphasizing that in the LRCS of a complementary matrix A ~ USV, the matrix
S is again a complementary matrix. The row (and column) dyadic tree T (and Tq) of S is the
compressed version of the row (and column) dyadic trees Tx (and Tp) of A. Figure {4 (or [5)
visualizes the relation of Tx and Tx (or T and Tq) for the complementary matrix A in Figure
Tx (or Tq) is not compressible at the leaf level of Tx (or Tg) but it is compressible if it is
considered as a dyadic tree with one depth less (see Figure |§| for an example of a new compressible
dyadic tree with one depth less).

Figure 2: The left matrix is a complementary low-rank matrix. Assume that the depth of the
dyadic trees of column and row spaces is 5. The middle figure visualizes the root-leaf partitioning
that divides the row index set into sixteen continuous subsets as sixteen leaves. The right one is
for the leaf-root partitioning that divides the column index set into sixteen continuous subsets as
sixteen leaves.

Figure 3: An example of the LRCS in of the complementary low-rank matrix A in Figure
Non-zero submatrices in are shown in gray areas.
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Figure 4: Left: The dyadic tree T'x of the row space with leaves {r;}1<i<16 denoted as in for the
example in Figure Right: Selected important rows of Tx naturally form a compressed dyadic
tree in red with leaves {7;}1<;<16 denoted as in @D
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Figure 5: Left: The dyadic tree T of the column space with leaves {¢; }1<i<16 denoted as in for
the example in Figure Right: Selected important columns of T naturally form a compressed
dyadic tree in red with leaves {¢; }1<i<i6-
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Figure 6: Left: The compressed dyadic tree of Tx of the row space in Figure @ Level 5 is not
compressible. Middle left: Combining adjacent leaves at Level 5, i.e., 7; = 7o;_1 U 79;, forms a
compressible dyadic tree with depth 4. Middle right: the compressed dyadic tree of T of the
column space in Figure 5l Level 5 is not compressible. Right: Combining adjacent leaves at Level
5, i.e., ¢; = Coj—1 U C9;, forms a compressible dyadic tree with depth 4.
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2.3 Matrix splitting with complementary skeletonization (MSCS)

Here we describe another elementary idea of IDBF that is applied repeatedly: MSCS. A comple-
mentary low-rank matrix A (with row and column dyadic trees Tx and Tq of depth L and with
m = 2% leaves) can be split into a 2 x 2 block matrix

An A12)
A= 11
(Azl Az (1D
according to the nodes of the second level of the dyadic trees Tx and T (those nodes right
next to the root level). By the complementary low-rank property of A, we know that A;; is also
complementary low-rank, for all ¢ and j, with row and column dyadic trees Ty ;; and Tq ;; of depth

L — 1 and with m/2 leaves.
Suppose A;; = U;;S;jVij, for 4,5 = 1,2, is the LRCS of A4;;. Then A can be factorized as

A =USV, where
Un Uro
U= ,
( Us1 Uzz)

St
g " Sa1 ,
12
12
Sy (12)
Vin
Via
V=
Vo1
Vaa

The factorization in is referred as the matriz splitting with complementary skeletonization
(MSCS) in this paper. Recall that the middle factor S is not explicitly computed, resulting in
a linear scaling algorithm for forming . Figure [7| visualizes the MSCS of a complementary
low-rank matrix A with dyadic trees of depth 5 and 16 leaf nodes in Figure

Figure 7: The visualization of a MSCS of a complementary low-rank matrix A ~ USV with dyadic
trees of depth 5 and 16 leaf nodes in Figure [2| Non-zero blocks in are shown in gray areas.

2.4 Recursive MSCS

Now we apply MSCS recursively to get the full IDBF of a complementary low-rank matrix A (with
row and column dyadic trees T and Tq of depth L and with m = 2 leaves). As in (12]), suppose
we have constructed the first level of MSCS and denote it as

A=UtstvE (13)



with

UL — <U1Ll L UILQ L>
U21 U22

St
SL: S2Ll
St ’
sk, )
Vi
VL
L 12
VI v ’
Vi3

as in .
Suppose that at the leaf level of the row and column dyadic trees, the row index set r and the
column index set ¢ of A are partitioned into leaves {r;}1<i<m and {c¢;}1<i<m as in . By the rIDs
and cIDs applied in the construction of , we have obtained skeleton index sets #; C r; and

¢; C ¢;. Then
Ap A

Pli—1)ym/241:C(j—1)ym/2+1 P(i—1)m/24+1:Cjm /2
L _ . . .
A A

Pim/2:C(j—1)m/2+1 T Pim)2:Cim)2
fori,j =1,2.

As explained in Section each non-zero block Sle in S” is a submatrix of A;; consisting of
important rows and columns of A;; for ¢, 7 = 1,2. Hence, Sl% inherits the complementary low-rank
property of A;; and is a complementary low-rank matrix. Suppose Ty ;; and Tq ;; are the dyadic
trees of the row and column spaces of A;; with m/2 leafs and L —1 depth, then according to Section
SL has compressible row and column dyadic trees T 'x,ij and TQ 4j with m/4 leafs and L — 2
depth

Next, we apply MSCS to each SZ-L]- in a recursive way. In particular, we divide each SZ-L]- into a
2 x 2 block matrix according to the nodes at the second level of its row and column dyadic trees:

). (16)
(Siz)21 (Si7)22
After constructing the LRCS of the (k, £)-th block of SE, i.e., (SE)ke = (UL ie(S] ) re(ViF e
for k,£ = 1,2, we assemble them to obtain the MSCS of SZ% as follows:

SL UL 151[/ 1vL 17 (17)



where

L1 _ ((Ué_l)u (U5 e )
)22 ’

Y (O (o
(SE
L1 (SE N
S (S5 o ’ .
ij 18
(S5 )2
(Vi D
VE)e
V[.’_l _ ( ij
i (VL—1)21 )
ij
(Vi )2

according to Section [2.3]
Finally, we organize the factorizations in for all 4,7 = 1,2 to form a factorization of S* as

St~ Uttstty il (19)
where
L-1
Ull i1
UL~
yLl-1 _ 21
Ukt ’
L—1
Ull
L—1
Sll 11
gL—1 _ gL Sn ’ (20)
12 11
SQZ
L—-1
Vll 71
vI-
L1 _ 12
Voi ! ’
L—1
S22

leading to a second level factorization of A:
A~ ULyL-1gL-1yL-1y/L

Figure [8| visualizes the recursive MSCS of S¥ in when A is a complementary low-rank matrix
with dyadic trees of depth 5 and 16 leaf nodes in Figure

Comparing , , , and , we can see a fractal structure in each level of the middle
factor S¢ for £ = L and L — 1. For example in (see Figure [8| for its visulaization), ST~! has 4
submatrices SiLj*l with the same structure as S* for all 4 and j. 55*1 can be factorized into a prod-
uct of three matrices with the same sparsity structure as the factorization S = Ur=-1gL-tyL-1,
Hence, we can apply MSCS recursively to each S¢ and assemble matrix factors hierarchically for
(=1, ..., L/2 to obtain

A~Utut=t...yhstyh...yLl-lyl, (21)

where h = L/2. In the -th recursive MSCS, S* has 22(L=¢*1) dense submatrices with compressible
row and column dyadic trees with o577 leaves and depth L —2(L — ¢+ 1). Hence, the recursive
MSCS stops after h = L/2 iterations when S" doesn’t contain compressible submatrices.
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Figure 8: The visualization of the recursive MSCS of S¥ = UL=tgl-1yL=1 ip when A is a
complementary low-rank matrix with dyadic trees of depth 5 and 16 leaf nodes in Figure
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3 Numerical results

This section presents several numerical examples to demonstrate the effectiveness of the algorithms
proposed above. The first three examples are complementary low-rank matrices coming from non-
uniform Fourier transform, Fourier integral operators, and special function transforms. The last
two examples are hierarchical complementary matrices [31] from 2D Helmholtz boundary integral
methods in the high-frequency regime. IDBF is able to reduce the construction time of the data-
sparse representation of the HSS-type complementary matrix in [31] from N to nearly linear
scaling. IDBF can also accelerate the factorization time of the hierarchical complementary matrix
in [32] to nearly linear scaling for 3D high-frequency boundary integral methods. After factorization,
the application time of matrices in these two integral methods is nearly linear scaling. We leave the
trivial extension to 3D high-frequency integral methods to the reader and only present the results
for 2D problems. All implementations are in MATLAB® on a server computer with a single thread
and 3.2 GHz CPU. This new framework will be incorperated into the ButterﬂyLa‘tﬂ in the future.

Let {ud(x),r € X} and {u®(z),z € X} denote the results given by the direct matrix-vector
multiplication and the butterfly factorization. The accuracy of applying the butterfly factorization
algorithm is estimated by the following relative error

\/ Yesu(z) — w!(@)? )

2 res Iud( )7

where S is a point set of size 256 randomly sampled from X.

In all of our examples, we use Mock-Chebyshev grid points and the oversampling parameter p
in the linear scaling ID is set to 1. The number of Mock-Chebyshev grid points is also called the
truncation rank (the rank parameter k) in IDs.

Example 1. Our first example is to evaluate a one-dimensional FIO of the following form:

ulw) = [ e f(eyae, (23)
where f is the Fourier transform of f, and ®(x,§) is a phase function given by
O(x,&) =z &+ c(x)|l], clx)=(2+0.2sin(27x))/16. (24)
The discretization of is
z) =Y PS¢, i j=1,2,...,N, (25)
&

2 Available on https://github.com/ButterflyLabl
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where {z;} and {{;} are uniformly distributed points in [0, 1) and [-N/2, N/2) following
zi=(i—1)/Nand §=j—1—N/2. (26)

can be represented in a matrix form as u = Kg, where u; = u(z;), K;; = e2m®(i87) and
g9j = f (&5). The matrix K satisfies the complementary low-rank property with a rank parameter
k independent of the problem size N when ¢ is sufficiently far away from the origin as proved in
[36] 143]. To make the presentation simpler, we will directly apply IDBF to the whole K instead
of performing a polar transform as in [36] or apply IDBF hierarchically as in [44]. Hence, due to
the non-smoothness of the ®(z, &) at £ = 0, submatrices intersecting with or close to the line { =0
have a local rank increasing slightly in N, while other submatrices have rank independent of V.
Figure [9] summarizes the results of this example for different grid sizes N with the same truncation
rank r = 30 and tolerance tol = 1078. We see that the IDBF applied to the whole matrix K has
O(Nlog?(N)) factorization and application time. The running time agrees with the scaling of the
number of non-zero entries required in the data-sparse representation. In fact, when NN is large
enough, the number of non-zero entries in the IDBF tends to scale as O(N log N), which means
that the numerical scaling can approach to O(N log N) in both factorization and application when
N is large enough.

28

—A—nnz BF J -5.5 | |—A—err BF
og ||~ = Nlog(N) p
—A—BF fac rank - = Nlog(N) 7.7
T ——BFapprank| 7,7 <
S - = Nlog(N) N 24 ,,’ E 6
=] (= @
= =T NlogN?* | o 7 =
3 N log(N) g 2 /7 8
(4
N log(N)? V'
20 / -6.5
2
18
10 12 14 16 18 10 12 14 16 18 10 12 14 16 18
log,,(N) log,(N) log,(N)

Figure 9: Numerical results for the FIO given in . N is the size of the matrix; nnz is the
number of non-zero entries in the butterfly factorization, err is the approximation error of the
IDBF matvec.

Example 2. Next, we provide an example of a special function transform, the evaluation of
Schlémilch expansions [45] at g, = &L for 1 < k < N:

N
U = chju(gkwn)a (27)

n=1

where J, is the Bessel function of the first kind with parameter v = 0, and w, = nw. It is
demonstrated in [14] that can be represented via a matvec u = Kg, where K satisfies the
complementary low-rank property. An arbitrary entry of K can be calculated in O(1) operations
[46] and hence IDBF is suitable for accelerating the matvec u = Kg. Other similar examples
can be found in [45] and they can be also evaluated by IDBF with the same operation counts.
Figure summarizes the results of this example for different problem sizes N with the same
truncation rank r = 30 and tolerance tol = 1078. The results show that IDBF applied to this
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example has O(N log?(N)) factorization and application time. The running time agrees with the
scaling of the number of non-zero entries required in the data-sparse representation to guarantee
the approximation accuracy. In fact, when N is large enough, the number of non-zero entries in
the IDBF tends to scale as O(N log V), which means that the numerical scaling can approach to
O(Nlog N) in both factorization and application when N is large enough.

30 4.7
—4—nnz BF
28 -4.8
—A—BF fac rank Y
T —e—BF app rank __ 26
£ - = Nlog(N) g 4.9
= - = Nlog(N)? =24
[=)) [=2]
3 N log(N) ° B
2 22
N log(N)
20 -5.1
-15 18 5.2
10 12 14 16 18 10 12 14 16 18 10 12 14 16 18
log,(N) log,(N) log,(N)

Figure 10: Numerical results for the Schlomilch expansions given in . N is the size of the matrix;
nnz is the number of non-zero entries in the butterfly factorization, err is the approximation error
of the IDBF matvec.

Example 3. In this example, we consider the one-dimensional non-uniform Fourier transform as
follows:

N
up = Z 6_2”“7"“”“_%, (28)
n=1

for 1 < k < N, where z,, is randomly selected in [0, 1), and wy is randomly selected in [—£, &)
according to uniform distributions in these intervals.

Figure summarizes the results of this example for different grid sizes N with the same
truncation rank r = 30 and tolerance tol = 1078, Numerical results show that IDBF admits at
most O(N log?(N)) factorization and application time for the non-uniform Fourier transform. The
running time agrees with the scaling of the number of non-zero entries required in the data-sparse
representation. In fact, when N is large enough, the number of non-zero entries in the IDBF tends
to scale as O(N log N), which means that the numerical scaling can approach to O(N log N) in
both factorization and application when N is large enough.

Example 4. The fourth example is from electric field integral equations (EFIEs). In EFIEs, the
linear system to be solved using the method of moments is of the following form [I3]

Zx =0b,
where Z is an impedance matrix with

2 . . .
g “ho s HYY (klps — pil), i 4 # j,
? W'Q% [1 - i% In (%)] , otherwise,

7

where e &~ 2.718, v ~ 1.781, u, is the free-space permeability, k = 27/), is the wavenumber, A,
represents the free-space wavelength, Hé2) denotes the zeroth-order Hankel function of the second
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Figure 11: Numerical results for the NUFFT given in . N is the size of the matrix; nnz is
the number of non-zero entries in the butterfly factorization, err is the approximation error of the
IDBF matvec.
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Figure 12: The two scatterers used in Example 4 and 5: (a) a spiral object; (b) a round object
with a hole in center which is the port.

kind, w; is the length of the i-th segment of the scatter object, p; is the center of the i-th segment,
w is a constant of order k.

It was shown in [13, B1] that the impedance matrix of the EFIE by the method of moments
for analyzing scattering from two-dimensional objects admits a HSS-type complementary low-rank
property, i.e., off-diagonal blocks are complementary low-rank matrices. The method in [31] requires
O(N'?log N) operations to compress the impedance matrix via a slower version of butterfly factor-
ization. After compression, it requires O(N log?(N)) operations to apply the impedance matrix and
makes it possible to design efficient iterative solvers to solve the linear system for the impedance
matrix. Replacing the butterfly factorization in [31] with IDBF, we reduce the factorization time
to O(Nlog?(N)) as well.

Figure shows the results of the fast matvec of the impedance matrix from an 2D EFIE
generated with a spiral object as shown in Figure (a). We vary the number of discretization
segments N of the scatter object and let k¥ = O(N) in the construction of Z. In the IDBF, we
use the same truncation rank r = 40 and tolerance tol = 10~*. Numerical results verifies the
O(N log?(N)) scaling for both the factorization and application of the new HSS-type butterfly
factorization by IDBF.
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Figure 13: Numerical results for the 2D electric field integral equation. N is the size of the matrix;
nnz is the number of non-zero entries in the butterfly factorization, err is the approximation error
of the matvec by hierarchically applying IDBF.

Example 5. The fifth example is from combined field integral equations (CFIEs). Similar to
the ideas in [13| BI] for EFIE, we show that the impedance matrix of the CFIEﬂ by the method
of moments for analyzing scattering from two-dimensional objects also admits a HSS-type com-
plementary low-rank property. Applying the same HSS-type butterfly factorization by IDBF, we
obtain O(N log?(N)) scaling for both the factorization and application time for impedance matrices
of CFIEs. This makes it possible to design efficient iterative solvers to solve the linear system for
the impedance matrix. Figure shows the results of the fast matvec of the impedance matrix
from an 2D CFIE generated with a round object as shown in Figure (b). We vary grid sizes
N with the same truncation rank r = 40 and tolerance tol = 10~%. Numerical results verifies
the O(N log?(N)) scaling for both the factorization and application of the new HSS-type butterfly
factorization by IDBF.
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Figure 14: Numerical results for the 2D combined field integral equation. NV is the size of the matrix;
nnz is the number of non-zero entries in the butterfly factorization, err is the approximation error
of the matvec by hierarchically applying IDBF.

3Codes for generating the impedance matrix are from a MATLAB package “emsolver” available at https://
github.com/dsmi/emsolver.
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4

Conclusion and discussion

This paper introduces an interpolative decomposition butterfly factorization as a data-sparse ap-
proximation of complementary low-rank matrices. It represents such an N x N dense matrix as a
product of O(log N) sparse matrices. The factorization and application time, and the memory of
IDBF all scale as O(N log N). IDBF can also be applied to the HSS-type complementary low-rank
matrices introduced in [I3] B1]. The new HSS-type butterfly factorization based on IDBF also
admits nearly linear scaling for both factorization and application.

Acknowledgments. H. Yang thanks the support of the start-up grant by the Department of

Mathematics at the National University of Singapore.
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