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Abstract

This paper introduces a hierarchical interpolative decomposition butterfly-LU factoriza-
tion (H-IDBF-LU) preconditioner for solving two-dimensional electric-field integral equations
(EFIEs) in electromagnetic scattering problems of perfect electrically conducting objects with
open surfaces. H-IDBF-LU leverages the interpolative decomposition butterfly factorization
(IDBF) to compress dense blocks of the discretized EFIE operator to expedite its application;
this compressed operator also serves as an approximate LU factorization of the EFIE operator
leading to an efficient preconditioner in iterative solvers. Both the memory requirement and
computational cost of the H-IDBF-LU solver scale as O(N log2N) in one iteration; the total
number of iterations required for a reasonably good accuracy scales as O(1) to O(log2N) in
all of our numerical tests. The efficacy and accuracy of the proposed preconditioned iterative
solver are demonstrated via its application to a broad range of scatterers involving up to 100
million unknowns.

Keywords. Preconditioned iterative solver, interpolative decomposition butterfly factoriza-
tion, LU factorization, electric-field integral equation (EFIE), scattering.

AMS subject classifications: 44A55, 65R10 and 65T50.

1 Introduction

Iterative and direct surface integral equation (IE) techniques are popular tools for the scatter-
ing analysis involving electrically large perfect electrically conducting (PEC) objects. In itera-
tive techniques, fast matvec algorithms including multilevel fast multipole algorithms (MLFMA)
[1, 2, 3, 4, 5, 6, 7], directional compression algorithms [8, 9, 10, 11], special function transforms
[12, 13, 14, 15, 16], and butterfly factorizations (BFs) [17, 18, 19, 20, 21, 22] can be used to
rapidly apply discretized IE operators to trial solution vectors. These techniques typically require
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O(Nα
i N logβ N) (α, β = 1 or 2) CPU and memory resources, where N is the dimension of the dis-

cretized IE operator and Ni is the number of iterations required for convergence. The widespread
adoption and success of fast iterative methods for solving real-world electromagnetic scattering
problems can be attributed wholesale to their low computational costs when Ni is small. However,
in many applications when scatterers support resonances or are discretized using multi-scale/dense
meshes, the corresponding linear system becomes ill-conditioned especially for first-kind integral
equation formulations and Ni can be prohibitively large. This motivates a significant amount of
research devoted to the design of efficient semi-analytic or analytic preconditioners for integral
equations for both open and closed surfaces [23, 24, 25, 25, 26].

Direct solvers do not suffer (to the same degree) from the aforementioned drawbacks, since
they construct a compressed representation of the inverse of the discretized IE operator directly.
Most state-of-the-art direct methods apply low rank (LR) approximations to compress judiciously
selected off-diagonal blocks of the discretized IE operator and its inverse [27, 28, 29, 30, 31, 32, 33].
LR compression schemes are highly efficient and lead to nearly linear scaling direct solvers for
electrically small [28, 34], or specially-shaped structures [35, 36, 37, 38]. However, for electrically
large and arbitrarily shaped scatterers, the numerical rank of blocks of the discretized IE operators
and its inverse is no longer small. As a result, there is no theoretical guarantee of low computa-
tional costs for LR schemes in this high-frequency regime; experimentally their CPU and memory
requirements have been found to scale as O(Nα logβ N) (α ∈ [2.0, 3.0], β ≥ 1) and O(Nα logN)
(α ∈ [1.3, 2.0]), respectively. More recently, butterfly factorizations have been applied to construct
reduced-complexity direct solvers in the high-frequency regime [39, 40, 41]. These solvers construct
butterfly factorizations with constant ranks for blocks (that are LR less compressible) in the dis-
cretized IE operator and its inverse and rely on fast randomized algorithms to construct the inverse
in O(N1.5 logN) operations.

The lack of quasi-linear complexity direct solvers in the high-frequency regime motivates this
work to develop a hierarchical butterfly-compressed algebraic preconditioner for solving EFIEs
with O(N log2N) CPU and memory complexity per iteration and up to O(log2N) total iterations,
for analyzing scattering from electrically large two-dimensional PEC objects with open surfaces.
First, the interpolative decomposition butterfly factorization (IDBF) algorithm [20] is used to
compress off-diagonal blocks of the discretized IE operator, leading to O(N log2N) construction
and application algorithms with the hierarchical IDBF (H-IDBF) of the IE operator. Second, we
construct an approximate butterfly-compressed LU factorization of H-IDBF inspired by the work
in [40]. In contrast to [40] that computes the LU factorization via randomized butterfly algebra,
here the lower and upper triangular parts of the H-IDBF can directly serve as its approximate
LU factorization. This is justified by the observation that the discretized IE operator and its
LU factors exhibit similar oscillation patterns after a proper row-wise/column-wise ordering. This
approximate LU factorization permits construction of a quasi-linear complexity preconditioner for
EFIEs when applied to a wide range of scatterers. Compared to the analytic preconditioners in
[25, 26], the proposed H-IDBF-LU preconditioner is capable of analyzing scattering from electrically
large objects involving up to 100 million unknowns.

2 Interpolative Decomposition Butterfly Factorization (IDBF)

Since the IDBF will be applied repeatedly in this paper, we briefly sumarize the O(N logN) IDBF
algorithm proposed in [20] for a complementary low-rank matrix K ∈ CM×N with M ≈ N .

Let X and Ω be the row and column index sets of K. Two trees TX and TΩ of the same depth
L = O(logN), associated with X and Ω respectively, are constructed by dyadic partitioning with
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approximately equal node sizes with leaf node sizes no larger than n0. Denote the root level of the
tree as level 0 and the leaf one as level L. Such a matrix K of size M × N is said to satisfy the
complementary low-rank property if for any level `, any node A in TX at level `, and any node
B in TΩ at level L− `, the submatrix KA,B, obtained by restricting K to the rows indexed by the
points in A and the columns indexed by the points in B, is numerically low-rank. See Figure 9 for
an illustration of low-rank submatrices in a complementary low-rank matrix of size 16n0 × 16n0.
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Figure 1: Hierarchical decomposition of the row and column indices of a complementary low-rank
matrix of size 16n0×16n0. The trees TX (TΩ) has a root containing 16n0 column (row) indices and
leaves containing n0 row (column) indices. The rectangles above indicate the low-rank submatrices
that will be factorized in IDBF.

Given K, or equivalently an O(1) algorithm to evaluate an arbitrary entry of K, IDBF aims
at constructing a data-sparse representation of K using the ID of low-rank submatrices in the
complementary low-rank structure (see Figure 9) in the following form:

K ≈ ULUL−1 · · ·UhShV h · · ·V L−1V L, (1)

where the depth L = O(logN) is assumed to be even without loss of generality, h = L/2 is a middle
level index, and all factors are sparse matrices with O(N) nonzero entries. Storing and applying
IDBF requires only O(N logN) memory and time.

The construction of the butterfly factorization was usually expensive though the application
is cheap. The IDBF in [20] applies a linear scaling interpolation decomposition technique with
carefully selected matrix skeleton of K to achieve O(N log(N)) factorization time, making the
butterfly factorization more attractive in large-scale applications. Hence, the H-IDBF-LU to be
introduced in the next section also admits nearly linear scaling factorization time.

3 H-IDBF-LU

3.1 Overview of the H-IDBF-LU preconditioner

Here we briefly describe the motivation and workflow of H-IDBF-LU in the context of EFIE for
2D TMz scattering. Let S denote a PEC cylindrical shell residing in free space. A current Jz(ρ)
is induced on S by an incident electric field Eincz (ρ). Enforcing a vanishing total electric field on S
results in the following EFIE:

Eincz (ρ) =
κη0

4

∫
S
Jz(ρ

′)H
(2)
0 (κ|ρ− ρ′|)ds, ∀ρ ∈ S.

Here, κ = 2π/λ0 is the wavenumber, λ0 represents the free-space wavelength, η0 is the intrinsic

impedance of free space, and H
(2)
0 denotes the zeroth-order Hankel function of the second kind.
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Figure 2: Left: hierarchical decomposition of the impedance matrix A with off-diagonal blocks as
complementary low-rank matrices. Right: A is separated into a lower triangular part (denoted as
L) with diagonal entries being 1, and a upper triangular part (denoted as U) with diagonal entries
equal to those of A.

Upon discretization of the current with pulse basis functions and point matching the above EFIE,
the following system of linear equations is attained [17]

Ax = b, (2)

where A is the impedance matrix with

Aij =

{
κη0wj

4 H
(2)
0 (κ|ρi − ρj |), if i 6= j,

κη0wi
4

[
1− i 2

π ln
(γκwi

4e

)]
, otherwise,

bi = Eincz (ρi) and xi = Jz(ρi) where e ≈ 2.718, γ ≈ 1.781, wi and ρi are the length and center
of the line segment associated with i-th pulse basis function. In the proposed solver, the linear
system in (2) is rescaled to aAx = ab, where we choose a := 1

maxi{|A(i,1)|} or a := ‖A‖2. Here ‖A‖2
can be rapidly computed via randomized SVD algorithms. Rescaling is a key step for the proposed
LU preconditioner to avoid arithmetic overflow in solution vectors as the iteration count increases.
Note that for second-kind integral equations the rescaling may not be necessary. With the abuse
of notations, we will still use Ax = b to denote the linear system after rescaling.

It was validated in [17, 39] that A admits a hierarchical complementary low-rank property, i.e.,
off-diagonal blocks (only well-separated ones if necessary) are complementary low-rank matrices
(See Figure 2 (left) for an example). [17] originally proposed a hierarchical compression technique
with O(N log2N) operations to compress the impedance matrix A; the IDBF in [20] proposed
a more stable algorithm with the same accuracy to compress A. After compression, it requires
O(N log2N) operations to apply the impedance matrix and makes it possible to design efficient
linear solvers for (2). The algorithm in [20] for compression of the impedance matrix is referred to
as hierarchical IDBF (H-IDBF) in this paper.

Since the H-IDBF of the impedance matrix A leads to an O(N log2N) fast matvec algorithm
in a purely algebraic fashion, an immediate question is how to construct a direct solver or an
efficient preconditioner for the linear system in (2). It was observed (without proof) in [40] that
the L and U factors in the LU factorization of A are also hierarchically complementary low-rank
matrices. Hence, [40] proposed an O(N1.5 logN) factorization algorithm based on randomized
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butterfly algebra to construct hierarchical compressions of the L and U factors, followed by an
O(N log2N) block triangular solution algorithm for rapidly application of the matrix inverse to a
vector. The lack of a quasi-linear LU factorization algorithm as a direct solver in [40] motivates this
work to construct an approximate LU factorization of A in O(N log2N) operations as an efficient
preconditioner.

The main observation of the proposed approximate LU factorization of A is that, the lower and
upper triangular parts of A have similarly oscillation patterns as the L and U factors of its LU
factorization, when the scatterer consists of open surfaces that do not support high-Q resonance. It
is also critical that the rows and columns of A are properly ordered such that A exhibits only O(1)
discontinuities with respective to N in each row and column. Figure 3 and 4 show two examples
of such scatterers; one is a spiral scatterer and the other one consists of two parallel strips. To be
precise, define triangular matrices L̃ and Ũ as follows:

L̃(i, j) =


0, if i < j,

1, if i = j,

A(i, j), otherwise,

(3)

and

Ũ(i, j) =

{
0, if i > j,

A(i, j), otherwise.
(4)

Let L and U be the lower and upper triangular matrices of the LU factorization of A, we observe
L ≈ L̃, U ≈ Ũ , and L̃−1AŨ−1 ≈ I numerically, where I is an identity matrix. See Figure 3
and 4 for the visualization of the approximation L̃−1AŨ−1 ≈ I and the eigenvalue distribution of
L̃−1AŨ−1 ≈ I. Take a spiral scatterer for example, the real (and imaginary) parts of A (Figure 3(d))
and its LU factors (Figure 3(e)) exhibit very similar oscillation patterns. Before preconditioning,
there are eigenvalues of A clustered at the origin (Figure 3(b)), while the preconditioned system
L̃−1AŨ−1 has no eigenvalues near the origin (Figure 3(c)). In fact, L̃−1AŨ−1 exhibits vanishingly
small off-diagonal values (Figure 3(f)). The H-IDBFs of L̃ and Ũ are referred to as the H-IDBF-LU
of the impedance matrix A in this paper.

Note that L̃ and Ũ are the lower and upper triangular parts of A, whose H-IDBFs are readily
available from the H-IDBF of A without any extra cost. Following the block triangular solve
algorithm for H-matrices [42], it only requires O(N log2N) operations to apply L̃−1 and Ũ−1 to a
vector. Hence, the approximate LU factorization results in an O(N log2N) preconditioner for the
linear system in (2). To be more specific, instead of directly solving (2) using traditional iterative
solvers, we solve a preconditioned linear system

L̃−1AŨ−1y = L̃−1b, (5)

and
Ũx = y. (6)

Since the eigenvalues of L̃−1AŨ−1 are well separated from 0 and gathered around 1 (see Figure 3
and 4 for two examples), the condition number of L̃−1AŨ−1 is well controlled and the number of
iterations for solving (5) is small. In all of our examples, the iteration number is O(1), O(logN), or
O(log2N) for scatterers consisting of open surfaces. As the construction, application and triangular
solve algorithms all require O(N log2N) operations, the overall preconditioner is also quasi-linear.
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3.2 Algorithm description

The remaining task in this section is to introduce the fast construction, application and solution
phases of the H-IDBF-LU solver.

3.2.1 Construction and application of H-IDBF

As we have seen in the previous subsection, the construction of the proposed preconditioner, i.e., the
H-IDBFs of L̃ and Ũ , is an immediate result of the H-IDBF of A. Hence, it is sufficient to introduce
the construction and application of the H-IDBF of A. In fact, these resemble standard techniques
for hierarchical matrices [43, 44, 45], and can be summarized in Algorithm 1 and 2, respectively.
For illustration purpose, we assume N is a power of 2 and omit the parameters of IDBF in all
algorithms. Furthermore, we assume all off-diagonal blocks of A are butterfly compressible (i.e.,
weak admissibility). However, the proposed solver trivially extends to arbitrary problem sizes and
strong admissibility. Let n0 denote the predefined leaf-level size parameter for all IDBFs, algorithm
1 constructs a IDBF of L = log2N−log2 n0−v levels for each off-diagonal block of dimension N/2v.
Once constructed, algorithm 2 can apply the compressed A to arbitrary vectors by accumulating
the matvec results of each submatrix.

Data: A hierarchical complementary low-rank matrix A ∈ CN×N or an algorithm to
evaluate an arbitrary entry of A in O(1) operations.

Result: The H-IDBF of A, denoted as F , stored in a data structure consisting of four parts:
F11, F12, F21, and F22.

1 if N ≤ n0 then
2 for i = 1, 2 and j = 1, 2 do
3 Let Fij = A((1 : N/2) + (i− 1)N/2, (1 : N/2) + (j − 1)N/2);

4 else
5 Recursively apply Algorithm 1 with A(1 : N/2, 1 : N/2) as the input to obtain F11 as the

corresponding output;
6 Recursively apply Algorithm 1 with A(N/2 + 1 : N,N/2 + 1 : N) as the input to obtain

F22 as the corresponding output;
7 Construct the IDBF of A(1 : N/2, N/2 + 1 : N) and store it in F12;
8 Construct the IDBF of A(N/2 + 1 : N, 1 : N/2) and store it in F21;

Algorithm 1: An O(N log2N) recursive algorithm for constructing the H-IDBF of a hierar-
chical complementary low-rank matrix A.
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Data: A H-IDBF of A ∈ CN×N and vectors v, u ∈ CN .
Result: u += Av.

1 if N ≤ n0 then
2 for i = 1, 2 do
3 u((1 : N/2) + (i− 1)N/2) += Fi1u(1 : N/2) + Fi2u(N/2 + 1 : N);

4 else
5 Recursively apply Algorithm 2 to compute u(1 : N/2) += F11v(1 : N/2);
6 Recursively apply Algorithm 2 to compute u(N/2 + 1 : N) += F22v(N/2 + 1 : N);
7 Apply the IDBF stored as F21 to get u(N/2 + 1 : N) += F21v(1 : N/2);
8 Apply the IDBF stored as F12 to get u(1 : N/2) += F12v(N/2 + 1 : N);

Algorithm 2: An O(N log2N) recursive algorithm for applying the H-IDBF of a hierarchical
complementary low-rank matrix A to a vector v.

3.2.2 Solution of H-IDBF-LU
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Figure 3: (a) A spiral scatterer. (b) The eigenvalue distribution of the impedance matrix A
corresponding to (a). (c) The eigenvalue distribution of L̃−1AŨ−1, the impedance matrix after
preconditioning. (d) The real part of A. (e) The real part of L + U − I, where L and U are the
LU factors of A, and I is an identity matrix. (f) The magnitude of the entries of L̃−1AŨ−1.

The previous subsection has introduced O(N log2N) algorithms for constructing and applying
the H-IDBF of A and forming L̃ and Ũ as a preconditioner. Next, we will introduce O(N log2N)
algorithms for applying the inverse of L̃ and Ũ to a vector in this subsection, i.e, solving triangular
systems in a format of H-IDBFs. Similarly to solving a triangular system in a format of H-matrix,
the triangular solver for H-IDBF can also be done recursively as in Algorithm 3 and 4.
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Figure 4: (a) Two parallel strips. (b) The eigenvalue distribution of the impedance matrix A
corresponding to (a). (c) The eigenvalue distribution of L̃−1AŨ−1, the impedance matrix after
preconditioning. (d) The real part of A. (e) The real part of L + U − I, where L and U are the
LU factors of A, and I is an identity matrix. (f) The magnitude of the entries of L̃−1AŨ−1.

Data: A H-IDBF of L ∈ CN×N and a vector b ∈ CN .
Result: A vector x ∈ CN equal to L−1b.

1 if N ≤ n0 then
2 Solve the triangualr system Lx = b via standard LAPACK;
3 else
4 Partition the lower triangular system as

L =

(
F11 0
F21 F22

)
;

Recursively apply Algorithm 3 with F11 and b(1 : N/2) as the input to obtain
x(1 : N/2) as the corresponding output;

5 Apply Algorithm 2 with −F21 to obtain b(N/2 + 1 : N) −= F21x(1 : N/2);
6 Recursively apply Algorithm 3 with F22 and b(N/2 + 1 : N) as the input to obtain

x(N/2 + 1 : N) as the corresponding output;

Algorithm 3: An O(N log2N) recursive algorithm for solving a lower triangular system
Lx = b when L is stored in a format of H-IDBF. The notation “−=” in Line 5 stands for the
updating operator defined as: a −= b is equivalent to a = a− b for any array a and b.
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Data: A H-IDBF of U ∈ CN×N and a vector b ∈ CN .
Result: A vector x ∈ CN equal to U−1b.

1 if N ≤ n0 then
2 Solve the triangular system Ux = b via standard LAPACK;
3 else
4 Partition the upper triangular system as

U =

(
F11 F12

0 F22

)
;

Recursively apply Algorithm 4 with F22 and b(N/2 + 1 : N) as the input to obtain
x(N/2 + 1 : N) as the corresponding output;

5 Apply Algorithm 2 with −F12 to obtain b(1 : N/2) −= F12x(1 +N/2 : N);
6 Recursively apply Algorithm 4 with F11 and b(1 : N/2) as the input to obtain x(1 : N/2)

as the corresponding output;

Algorithm 4: An O(N log2N) recursive algorithm for solving an upper triangular system
Ux = b when U is stored in a format of H-IDBF. The notation “−=” in Line 5 stands for the
updating operator defined as: a −= b is equivalent to a = a− b for any array a and b.

(a) (b) (c)

1 1

11 11U L
- -

12A

21A

1 1

11 11U L
- -

12A
21A
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11 11U L
- -

12A

21A

Figure 5: Eliminated and remaining unknowns at steps (a) N/8, (b) N/4 and (c) 3N/8 of the LU
factorization. Note that A12 and A21 are dense matrices whose dimensions corresponding to the
number of unknowns in the red and blue colored curves.

3.3 Algorithm Analysis

Here, we briefly analyze the effectiveness of the proposed LU preconditioner and the compressibility
of off-diagonal blocks in the impedance matrix and its LU factors.

3.3.1 Oscillation patterns of A and its LU factors

We observed that the oscillation pattern of A resembles that of its LU factors. More specifically,
L̃ ≈ clL and Ũ ≈ cuU , where L̃/Ũ are introduced in (3)/(4), L and U are the LU factors of A,
and cl and cu are scalar constants with clcu = 1. In this subsection, we provide some physical
explanations of this observation assuming that 1) the scatterer consists of smooth non-resonant
surfaces; 2) the LU factorization follows a geometrical elimination order defined as follows.

Assume that the scatterers consist of one simple contour with an analytic boundary. Let
ρ : [0, 1) → R2 be the analytic map that maps [0, 1) on to the boundary and discretize [0, 1) with
a uniform grid xi = i−1

N for i = 1, . . . , N . The geometrical order is the order that corresponds to
the natural order of the discretized parameter xi. When the scatterers consist of multiple simple
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contours, the ordering between contours is not studied here and the optimal ordering remains an
open question.

For simplicity, it is assumed that A has been rescaled such that A(i, i) ≈ 1. We want to show
L̃ ≈ L and Ũ ≈ U , respectively. Note that the LU factorization process at the step p ∈ {1, ..., N}
can be rewritten as

A =

[
A11 A12

A21 A22

]
=

[
L11

A21U
−1
11 I

] [
I

S22

] [
U11 L−1

11 A12

I

]
, (7)

where A11 = L11U11 represents the completed LU factorization of the leading submatrix of sizes
p× p, and S22 = A22 − A21U

−1
11 L

−1
11 A12 denotes the updated Schur complement to be factorized

in the next step. It suffices to show L−1
11 A12 ≈ A12, A21U

−1
11 ≈ A21, and S22 ≈ A22. As the

factorization follows the geometrical order, let c1 and c2 denote the subscatterer corresponding to
the eliminated (i.e., A11) and remaining (i.e., A22) rows. See the curves highlighted in red and blue
in Figure 5 (a)-(c) for illustrations.

First note that S22 represents the numerical Green’s function that accounts for the curve c1 as
the background medium. As c1 is smooth and c2 resides on one side of c1, the scattering component
A21U

−1
11 L

−1
11 A12 does not dominate over the free-space interaction component A22. Physically, this

means that the current induced on c1 by sources on c2, namely U−1
11 L

−1
11 A12, has weak Green’s

function interaction in the directions towards c2. Therefore we can use an aggressive approximation
S22 ≈ A22.

We then show L−1
11 A12 ≈ A12 and A21U

−1
11 ≈ A21 by induction. Note that p = 1 is trivial and

assume that this holds true for step p − 1, i.e., L11 ≈ L̃11 and U11 ≈ Ũ11 at step p. Let bj denote
the jth column of A12, j = 1, ..., N − p, the vector v = A−1

11 bj is the current solution on c1 residing
in free space excited by a dipole source residing on c2. Note that c2 is located on one side of c1.
For the linear system A11v = bj , we can define the forward operator Ũ11 and backward operator
L̃11 which only propagates the current away from and towards the source point, respectively. As c1

is smooth and non-resonant, the linear system can be approximated as Ũ11v ≈ bj by replacing the
integral operator A11 by the forward operator Ũ11 which only propagates the current away from the
source point. For example, using the forward operator, the current v(i1) does not contribute to the
field bj(i2) given that i1 < i2 (i.e., xi1 represents a point that are further away from the source when
compared to xi2). Note that the approximation A11v ≈ Ũ11v does not guarantee that A11 ≈ Ũ11.
For more detailed explanation of this approximation, the readers are referred to Section III of [46].
From such approximation, it is easy to see that bj = A11v = L11U11v ≈ L̃11Ũ11v ≈ L̃11bj . Note
that the first approximate equality holds via induction. In other words, L̃−1

11 bj ≈ bj or equivalently
L−1

11 A12 ≈ L̃−1
11 A12 ≈ A12. Similarly, it can be shown that A21U

−1
11 ≈ A21.

The analysis above explains the observation L̃ ≈ L, Ũ ≈ U and suggests that L̃Ũ can be used
as an efficient preconditioner. We would like to highlight a few related works here. Our analysis
is closely related to the fix-point iteration methods such as the forward-backward method [46, 47]
or the symmetrical Gauss-Seidel iteration method [48] for solving integral equations with a certain
type of excitation vectors. When these methods are used as a preconditioner in a Krylov subspace
iterative solver for arbitrary excitations, our physical explanations above show effectiveness of such
preconditioner. Another related work is the sweeping preconditioner for differential equation solvers
[49] which requires a geometrical elimination order such that the Schur complement represents well-
compressible numerical Green’s functions. Here we show that for surface integral equation solvers,
a geometrical order can induce Schur complement that resembles the free-space Green’s function
for smooth, non-resonant scatterers. Both algorithms rely on the fact that the geometry points
corresponding to the remaining unknowns reside approximately on one side of the geometry points
corresponding to the the already eliminated unknowns.
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3.3.2 Butterfly compressibility of off-diagonal blocks

Here we analyze the complementary low-rank property of the off-diagonal blocks of A, and it follows
from the arguments in Section 3.3.1 that the LU factors of A are also butterfly compressible.
Note that the compressibility of off-diagonal blocks resulting from strong-admissibility is well-
studied in [9, 17], here we extend the compressibility analysis to the off-diagonal blocks from
weak-admissibility.

To simplify the analysis, we assume that the scatterer has an analytic boundary and its diameter
and length are of order 1. The parametrization of the boundary leads to an impedance matrix of
size N by N and the frequency parameter κ is of order N . Let ρ : [0, 1) → R2 be the analytic
map that maps [0, 1) on to the boundary of the scatterer and discretize [0, 1) with a uniform grid
xi = i−1

N for i = 1, . . . , N . Let ρi = ρ(xi), then the impedance matrix A is

Aij =

{
κη0wj

4 H
(2)
0 (κ|ρi − ρj |), if i 6= j,

κη0wi
4

[
1− i 2

π ln
(γκwi

4e

)]
, otherwise.

It is sufficient to show the butterfly compressibility of the off-diagonal block for 1 ≤ j < N
2 < i ≤ N

assuming N is an even number. The analysis for other off-diagonal blocks is similar. By the theory

of non-oscillatory phase functions for special functions [50, 51, 52], the Hankel function H
(2)
0 (x) for

x ∈ (0,∞) admits a representation

H
(2)
0 (x) =

√
2

πx

1√
α′(x)

e−iα(x),

where α(x) is an analytic non-oscillatory phase function. For more details about the definition,
computation, and asymptotic expansion of the non-oscillatory phase function, the reader is referred
to Section 2.5 of [52], where the notation α(t) is used to represent the phase function as well. If we
introduce a non-oscillatory matrix B and a purely oscillatory matrix C as follows,

Bij =


κη0wj

4

√
2

πκ|ρi−ρj |
1√

α′(κ|ρi−ρj |)
, if i 6= j,

κη0wi
4

[
1− i 2

π ln
(γκwi

4e

)]
, otherwise,

(8)

and

Cij =

{
e−iα(κ|ρi−ρj |), if i 6= j,

1, otherwise,
(9)

then A is the Hadamard product of B and C.

Note that κ|ρi − ρj | ≥ O(1) for all i 6= j. Hence, M(xi, xj) :=
√

2
πκ|ρ(xi)−ρ(xj)|

1√
α′(κ|ρ(xi)−ρ(xj)|)

is analytic and non-oscillatory in (xi, xj) leading to the following lemma.

Lemma 3.1. Suppose the map ρ associated to the boundary of the scatterer is analytic and nearly
isomatric, i.e., c1|x−y| ≤ |ρ(x)−ρ(y)| ≤ c2|x−y| for some positive constants c1 and c2. Suppose B
of size N by N is defined in (8), then the rank of the off-diagonal block of B for 1 ≤ j < N

2 < i ≤ N
is O(log(N)) with a prefactor depending on a relative approximation error ε and independent of N .

Proof. Consider the range x ∈ [x0− dx
2 , x0 + dx

2 ] and y ∈ [y0− dy
2 , y0 +

dy
2 ] with (x0− dx

2 )−(y0 +
dy
2 ) ≥

1
N . Then as discussed previously, M(x, y) is analytic and non-oscillatory in (x, y). Hence, as long as
dx and dy are sufficiently small depending on M(x, y) and are still of order 1, a low-rank separation
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Figure 6: Left: the low-rank structure of the off-diagonal matrix of the non-oscillatory matrix B for
1 ≤ j < N

2 < i ≤ N . All submatrices visualized are rank O(1). Middle: any contiguous submatrix
of C with O(M) entries is rank O(1) if the submatrix is away from the diagonal entries of C with a
distance at least O(M) entries for M = 1, . . . , N . Right: the low-rank structure of the off-diagonal
matrix of the purely oscillatory matrix C for 1 ≤ j < N

2 < i ≤ N . All visualized submatrices are
complementary low-rank matrices and hence butterfly compressible.

approximation for M(x, y) with a relative error ε can be constructed via Taylor expansion or
Chebyshev interpolation. The number of terms in the low-rank separation approximation depends
only on ε and is independent of N . The conclusion is an immediate result of this fact.

For example, let us assume low-rank approximations are valid as long as dx ≤ 1
4 and dy ≤ 1

4 .
Then the off-diagonal block of B is partitioned hierarchically as in Figure 6 (left), the submatries
of which have rank O(1) independent of N . For an off-diagonal matrix of size O(N) by O(N),
there are O(log(N)) levels of submatrices. Hence, the total rank of the whole off-diagonal matrix
in Figure 6 (left) is O(log(N)).

The next lemma below analyzes the low-rank structure of the purely oscillatory matrix C.

Lemma 3.2. Suppose the map ρ associated to the boundary of the scatterer is analytic and nearly
isomatric, i.e., c1|x− y| ≤ |ρ(x)−ρ(y)| ≤ c2|x− y| for some positive constants c1 and c2. Consider
an off-diagonal contiguous submatrix of C in (9) of size dx by dy with dxdy ≤M and the submatrix
is at least O(M) entries away from the diagonal of C. Then the submatrix is rank O(1) with a
prefactor depending on a relative approximation error ε and independent of N , when M is larger
than an O(1) constant independent of N .

Proof. Without loss of generality, we consider

x ∈ [x0 −
dx
2N

, x0 +
dx
2N

] and y ∈ [y0 −
dy
2N

, y0 +
dy
2N

] (10)

with

dxdy ≤M and (x0 −
dx
2N

)− (y0 +
dy
2N

) ≥ O(
M

N
).

Recall that x and y in [0, 1] are discretized with N uniform grid points to form the matrix C.
Hence, any submatrix in Lemma 3.2 is from the discretization of the conditions above. See Figure
6 (middle) for an illustration of the submatrix of C corresponding to the range in (10).

By the Taylor expansion of α(κ|ρ(x)− ρ(y)|) at the point (x0, y0), there exists a function β(x)
and a function γ(y) such that

e−iα(κ|ρ(x)−ρ(y)|) = β(x)e−i∂xyα(κ|ρ(x̄)−ρ(ȳ)|)(x−x0)(y−y0)γ(y), (11)

12



with x̄ ∈ [x0 − dx
2N , x0 + dx

2N ] and ȳ ∈ [y0 − dy
2N , y0 +

dy
2N ]. Hence, the separability of the func-

tion e−iα(κ|ρ(x)−ρ(y)|) is equivalent to the separability of e−i∂xyα(κ|ρ(x̄)−ρ(ȳ)|)(x−x0)(y−y0), i.e., to show
Lemma 3.2 for the matrix C, it is sufficient to show the same property for the matrix D defined
below.

Dij =

{
e−iω(xi−x0)(yj−y0), if i 6= j,

1, otherwise,
(12)

where ω = ∂xyα(κ|ρ(x̄)− ρ(ȳ)|) and xi = yi = i−1
N for 1 ≤ i ≤ N .

Let ρ(x) = [ρ1(x), ρ2(x)]. Then

∂xα(κ|ρ(x)− ρ(y)|) = κα′(κ|ρ(x)− ρ(y)|)(ρ1(x)− ρ1(y))ρ′1(x) + (ρ2(x)− ρ2(y))ρ′2(x)

|ρ(x)− ρ(y)|
,

and

∂xyα(κ|ρ(x)− ρ(y)|)

= −κ2α′′(κ|ρ(x)− ρ(y)|)(ρ1(x)− ρ1(y))ρ′1(x) + (ρ2(x)− ρ2(y))ρ′2(x)

|ρ(x)− ρ(y)|
(ρ1(x)− ρ1(y))ρ′1(y) + (ρ2(x)− ρ2(y))ρ′2(y)

|ρ(x)− ρ(y)|

−κα′(κ|ρ(x)− ρ(y)|)ρ
′
1(y)ρ′1(x) + ρ′2(y)ρ′2(x)

|ρ(x)− ρ(y)|

+κα′(κ|ρ(x)− ρ(y)|)(ρ1(x)− ρ1(y))ρ′1(x) + (ρ2(x)− ρ2(y))ρ′2(x)

|ρ(x)− ρ(y)|2
(ρ1(x)− ρ1(y))ρ′1(y) + (ρ2(x)− ρ2(y))ρ′2(y)

|ρ(x)− ρ(y)|
.

Hence, for the range considered in (10), we have |x̄− ȳ| ≥ O(MN ), then

|∂xyα(κ|ρ(x̄)− ρ(ȳ)|)| ≤ O(κ2α′′(κ|ρ(x̄)− ρ(ȳ)|) +
Nk

M
α′(k|ρ(x̄)− ρ(ȳ)|))),

since ρ is nearly isometric. Note that α(x) is non-oscillatory and analytic with the property (see
Equations (57) in [52]) that

lim
x→∞

α′(x) = 1.

Hence, there exists a positive constant b1 independent of N such that

max
x∈[a1,∞)

|α′(x)| ≤ b1,

where a1 is a positive number such that a1 ≤ κ|ρ(xi)− ρ(xj)| as long as i 6= j, where xi = i−1
N for

i = 1, . . . , N , i.e., a1 = O(1). Hence,

|Nκ
M

α′(κ|ρ(x̄)− ρ(ȳ)|))| ≤ O(
Nκ

M
).

By the asymptotics of Bessel functions in Equations (63) in Section 2.5 of [52], the following
expansion is valid for all x > 0:

α′′(x) ∼ −1

4x3
+

25

32x5
+
−3219

512x7
+ . . .
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By a finite term truncation of the above expansion, there exist positive constants c2 and b2 such
that |α′′(x)| ≤ c2

4x3
for x ∈ [b2,∞). Hence, as long as M is sufficiently large, e.g, larger than

O(b2) = O(1), κ|ρ(x̄)− ρ(ȳ)| ≥ b2, and hence

|κ2α′′(κ|ρ(x̄)− ρ(ȳ)|)| = O(
1

κ|ρ(x̄)− ρ(ȳ)|3
) = O(

N2

M3
),

since κ = O(N) and |ρ(x̄)− ρ(ȳ)| = O(|x̄− ȳ|) ≥ O(MN ). Note that

|(x− x0)(y − y0)| = O(
dxdy
N2

) ≤ O(
M

N2
).

Hence,

|ω(x− x0)(y − y0)|
= |∂xyα(κ|ρ(x̄)− ρ(ȳ)|)(x− x0)(y − y0)|

≤ O

((
k2α′′(κ|ρ(x̄)− ρ(ȳ)|) +

Nκ

M
α′(κ|ρ(x̄)− ρ(ȳ)|)

)
M

N2

)
≤ O(

1

M2
) +O(1)

= O(1),

which means that the submatrix of D corresponding to the range in (10) is non-oscillatory and
hence is rank O(1) with a prefactor depending on a relative approximation error ε and independent
of N . By (11), this conclusion is also true for the matrix C and hence, we have completed the proof
of Lemma 3.2.

An immediate result of Lemma 3.2 is that the off-diagonal block of C is a hierarchically com-
plementary low-rank matrix, e.g., see Figure 6 (right) for an illustration. This conclusion is also
true for the impedance matrix A. Theoretically, the fast matvec of A can be performed via hierar-
chically decomposition A as in Figure 6 (right) and applying the IDBF for each submatrix. This
leads to a fast matvec with a complexity O(N log2(N)). Numerically, a more convenient way is to
directly compress the whole off-diagonal block with IDBF, which also leads to a fast matvec with
a numerical complexity O(N log2(N)).

4 Numerical results

This section demonstrates the efficiency and accuracy of the proposed preconditioner via its appli-
cation to wide classes of open surfaces: a semicircle, a corrugated corner reflector, a spiral line, two
parallel strips, a cup-shaped cavity, and an array of open arcs. In all examples, the surfaces are
discretized with approximately 20 pulse basis functions per wavelength. The leaf sizes in the dyadic
trees of each butterfly-compressed block are set to approximately n0 = 200. The compression toler-
ance in linear scaling ID is set to ε=1.0E-4, and the oversampling parameter t in the linear scaling
ID is set to 1. For the aforementioned surfaces, the maximum butterfly ranks k among all blocks of
the impedance matrices are respectively 7, 11, 10, 7, 14, 13, which are almost independent of the
matrix sizes N . The matrix entries are scaled with a scalar such that the largest diagonal entry
has unit magnitude. A transpose-free quasi-minimal residual (TFQMR) iterative solver is utilized
with a convergence tolerance 1.0E-5. All experiments are performed on the Cori Haswell machine
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at NERSC, which is a Cray XC40 system and consists of 2388 dual-socket nodes with Intel Xeon
E5-2698v3 processors running 16 cores per socket. The nodes are configured with 128 GB of DDR4
memory at 2133 MHz.

First, the accuracy of the proposed preconditioner is demonstrated by changing the matrix size
N from 5000 to 5,000,000. Let xt be a randomly generated N × 1 vector, the right hand side is
generated as b = Axt. Note that A is replaced by its H-IDBF compression F when N > 10000.
Let xa denote the solution vector computed from the preconditioned linear system. The solution
error is defined as εa =

∥∥xa − xt∥∥
2
/
∥∥xt∥∥

2
. From Table 1, reasonably good accuracy has been

observed for all classes of surfaces. However, a slight degradation in accuracy when N increases is
also observed.

Next, the computational efficiency is demonstrated by investigating the computation time and
memory as matrix size N increases. The construction time, iterative solution time, and overall
memory are plotted in Figure 7 for all test surfaces. It can be easily validated that all three
quantities scale as O(N log2N) as predicted. It is worth mentioning that for the semicircle example,
the proposed preconditioner permits rapid solution for N = 100 million, which is very competitive
to the state-of-the-art MLFMA-based iterative solvers. We also observe that the solution time
(i.e., application and triangular solve of H-IDBF-LU in the iterative solver) dominates the overall
computation time especially for surfaces that requires constant but a high number of iterations.

Finally, we compare the iteration counts of the proposed preconditioner and an iterative solver
without any preconditioner (see Figure 8). First, we investigate the dependence on N for differ-
ent surface shapes. The iteration counts required by the iterative solver without preconditioner
grow rapidly for all surfaces (dashed lines in Figure 8(a)). In contrast, for surfaces including the
semicircle, spiral lines, and corrugated corners, the iteration counts using the proposed precondi-
tioner stay as small constant (typically less than 30); for the other surfaces, the observed iteration
counts scale at most as O(log2N). It’s worth mentioning that for complicated geometries such
as highly resonant cavities or closed surfaces, the iteration counts can grow much faster. To see
this, we then investigate the dependence on the degree of resonance or multiple reflections using
an open arc with varying angles (Figure 8(b)), an Archimedean spiral with varying rotation angles
(Figure 8(c)), (d) a 1-D array of open arcs with different element counts (Figure 8(d)). For the
arc and spiral, the surface supports a higher degree of resonance as the angle increases (especially
beyond 2π), therefore the proposed preconditioner becomes less effective but still shows significant
improvement compared to the iterative solver without any preconditioner. For the array of arcs,
the scatterers support a dominant direction of propagation (along the direction of repetition) as
the element increases, therefore the proposed preconditioner becomes very effective.

shape semicircle corner spiral strips square cup

N=5E3 2.24E-06 9.51E-06 8.13E-06 7.12E-05 2.28E-05 1.60E-05

N=5E4 1.11E-05 9.84E-06 3.82E-05 6.45E-04 2.24E-04 1.84E-04

N=5E5 5.86E-06 3.85E-06 4.01E-05 9.86E-04 2.38E-04 3.56E-04

N=5E6 1.10E-05 8.17E-06 1.37E-04 3.74E-04 2.33E-04 6.16E-04

Table 1: Measured solution error for different geometry shapes.
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Figure 7: Computation time and memory of the proposed preconditioner for (a) a semicircle, (b)
a corrugated corner, (c) a cup-shaped cavity, (d) two parallel strips, (e) a spiral line, and (f) an
array of 2×2 arcs.

5 Conclusion and discussion

This paper has introduced a simple and efficient algorithm, the hierarchical interpolative decompo-
sition butterfly-LU factorization (H-IDBF-LU) preconditioner for solving two-dimensional electric-
field integral equations (EFIEs) in electromagnetic scattering problems of perfect electrically con-
ducting objects with open surfaces. H-IDBF-LU consists of two main parts: the first part applies

16



10
4

10
5

10
6

10
7

10
8

10
1

10
2

10
3

200 250 300 350
10
1

10
2

10
3

10
4

(a) (b)

200 250 300 350 400 450
10
1

10
2

10
3

10
4

2 4 8 16
10

0

10
1

10
2

10
3

# of elements

(c) (d)

Figure 8: Iteration counts with and without the proposed preconditioners for (a) curves with
different shapes, (b) an open arc with varying angles, (c) an Archimedean spiral with varying
rotation angles, (d) a 1-D array of open arcs with different element counts.

the newly developed interpolative decomposition butterfly factorization (IDBF) to compress dense
blocks of the discretized EFIE operator to expedite its application; the second part treats the lower
and upper triangular part of the IDBF as an approximate LU factorization of the EFIE operator
leading to an efficient preconditioner in iterative solvers.

Both the memory requirement and computational cost of the H-IDBF-LU solver scale as
O(N log2N) in one iteration; the total number of iterations required for a reasonably good ac-
curacy scales as O(1) to O(log2N) in all of our numerical tests. Our algorithm is simple to
implement, automatically adapts to different structures with open surfaces, and is competitive
with state-of-the-art MLFMA-based algorithms. A user-friendly MATLAB package, ButterflyLab
(https://github.com/ButterflyLab/ButterflyLab), and a distributed parallel Fortran/C++
package, ButterflyPack (https://github.com/liuyangzhuan/ButterflyPACK), are freely avail-
able online.

The lower and upper triangular part of the EFIE operator can serve as an approximate LU
factorization of the EFIE operator is an interesting observation and deserves much theoretical
attention in the future. This idea could also be applied to three-dimensional EFIE’s with open
surfaces and we will explore this in future work.
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[29] Alex Heldring, Juan M. Rius, José M. Tamayo, Josep Parrn, and Eduard Ubeda. Multiscale
compressed block decomposition for fast direct solution of method of moments linear system.
IEEE Transactions on Antennas and Propagation, 59(2):526–536, Feb 2011.

[30] John Shaeffer. Direct solve of electrically large integral equations for problem sizes to 1 M
unknowns. IEEE Transactions on Antennas and Propagation, 56(8):2306–2313, Aug 2008.

[31] Wenwen Chai and Dan Jiao. An H2-matrix-based integral-equation solver of reduced com-
plexity and controlled accuracy for solving electrodynamic problems. IEEE Transactions on
Antennas and Propagation, 57(10):3147–3159, Oct 2009.

[32] Mario Bebendorf. Hierarchical LU decomposition-based preconditioners for bem. Computing,
74(3):225–247, May 2005.

[33] Victor Minden, Kenneth Ho, Anil Damle, and Lexing Ying. A recursive skeletonization fac-
torization based on strong admissibility. Multiscale Modeling & Simulation, 15(2):768–796,
2017.

[34] Eduardo Corona, Per-Gunnar Martinsson, and Denis Zorin. An o(n) direct solver for integral
equations on the plane. Applied and Computational Harmonic Analysis, 38(2):284 – 317, 2015.

[35] Per Gunnar Martinsson and Vladimir Rokhlin. A fast direct solver for scattering problems
involving elongated structures. Journal of Computational Physics, 221(1):288 – 302, 2007.

[36] Eric Michielssen, Amir Boag, and Weng Cho Chew. Scattering from elongated objects: direct
solution in O(N log/sup 2/ N) operations. IEE Proceedings - Microwaves, Antennas and
Propagation, 143(4):277–283, Aug 1996.

[37] Emil Winebrand and Amir Boag. A multilevel fast direct solver for em scattering from quasi-
planar objects. In 2009 International Conference on Electromagnetics in Advanced Applica-
tions, pages 640–643, Sept 2009.

[38] Yaniv Brick, Vitaliy Lomakin, and Amir Boag. Fast direct solver for essentially convex scat-
terers using multilevel non-uniform grids. IEEE Transactions on Antennas and Propagation,
62(8):4314–4324, Aug 2014.

[39] Yang Liu, Han Guo, and Eric Michielssen. An HSS matrix-inspired butterfly-based direct
solver for analyzing scattering from two-dimensional objects. IEEE Antennas and Wireless
Propagation Letters, 16:1179–1183, 2017.

[40] Han Guo, Yang Liu, Jun Hu, and Eric Michielssen. A butterfly-based direct integral-equation
solver using hierarchical LU factorization for analyzing scattering from electrically large con-
ducting objects. IEEE Transactions on Antennas and Propagation, 65(9):4742–4750, Sept
2017.

[41] Han Guo, Yang Liu, Jun Hu, and Eric Michielssen. A butterfly-based direct solver using
hierarchical LU factorization for Poggio-Miller-Chang-Harrington-Wu-Tsai equations. Microw
Opt Technol Lett., 60:13811387, 2018.
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Appendix: IDBF

5.1 Overview

Since the IDBF will be applied repeatedly in this paper, we briefly review the O(N logN) IDBF
algorithm proposed in [20] for a complementary low-rank matrix K ∈ CM×N with M ≈ N for the
purpose of completeness. Let X and Ω be the row and column index sets of K. Two trees TX
and TΩ of the same depth L = O(logN), associated with X and Ω respectively, are constructed
by dyadic partitioning with approximately equal node sizes with leaf node sizes no larger than n0.
Denote the root level of the tree as level 0 and the leaf one as level L. Such a matrix K of size
M×N is said to satisfy the complementary low-rank property if for any level `, any node A in
TX at level `, and any node B in TΩ at level L− `, the submatrix KA,B, obtained by restricting K
to the rows indexed by the points in A and the columns indexed by the points in B, is numerically
low-rank. See Figure 9 for an illustration of low-rank submatrices in a complementary low-rank
matrix of size 16n0 × 16n0.
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Figure 9: Hierarchical decomposition of the row and column indices of a complementary low-rank
matrix of size 16n0×16n0. The trees TX (TΩ) has a root containing 16n0 column (row) indices and
leaves containing n0 row (column) indices. The rectangles above indicate the low-rank submatrices
that will be factorized in IDBF.

Given K, or equivalently an O(1) algorithm to evaluate an arbitrary entry of K, IDBF aims
at constructing a data-sparse representation of K using the ID of low-rank submatrices in the
complementary low-rank structure (see Figure 9) in the following form:

K ≈ ULUL−1 · · ·UhShV h · · ·V L−1V L, (13)

where the depth L = O(logN) is assumed to be even without loss of generality, h = L/2 is a middle
level index, and all factors are sparse matrices with O(N) nonzero entries. Storing and applying
IDBF requires only O(N logN) memory and time.

In what follows, uppercase letters will generally denote matrices, while the lowercase letters c,
p, q, r, and s denote ordered sets of indices. For a given index set c, its cardinality is written as
|c|. Given a matrix A, Apq, Ap,q, or A(p, q) is the submatrix with rows and columns restricted to
the index sets p and q, respectively. We also use the notation A:,q to denote the submatrix with
columns restricted to q. s : t is an index set containing indices {s, s + 1, s + 2, . . . , t − 1, t}. For
the sake of simplicity, we assume that N = 2Ln0, where n0 = O(1) is the number of column or
row indices in a leaf in the dyadic trees of row and column spaces, i.e., TX and TΩ, respectively. In
practical numerical implementations, this assumption is not required.
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5.2 Linear scaling Interpolative Decompositions

Suppose A has rank k, a rank revealing QR decomposition to As,: gives

As,:Λ = QR = Q[R1 R2], (14)

where s is an index set containing tk carefully selected rows of A with t as an oversampling
parameter, Q ∈ Ctk×k is an orthogonal matrix, R ∈ Ck×n is upper trapezoidal, and Λ ∈ Cn×n
is a carefully chosen permutation matrix such that R1 ∈ Ck×k is nonsingular. These tk rows can
be chosen from the Mock-Chebyshev grids of the row indices as in [22, 53, 54]. Let

As,q = QR1, T = R−1
1 R2, (15)

then
A:,p ≈ A:,qT, (16)

which is equivalent to the traditional form of a column ID,

A ≈ A:,q[I T ]Λ∗ := A:,qV, (17)

where q is the complementary set of p, ∗ denotes the conjugate transpose of a matrix, and V is the
column interpolation matrix.. It can be easily shown that all the steps above require only O(k2n)
operations and O(kn) memory.

In practice, the true rank of A is not available i.e., k is unknown. As is in standard randomized
algorithms, we could choose to fix a test rank k ≤ n or fix the approximation accuracy ε and find
a numerical rank kε such that

‖A−A:,qV ‖2 ≤ O(ε) (18)

with T ∈ Ckε×(n−kε) and V ∈ Ckε×n. We refer to this linear scaling column ID with an accuracy
tolerance ε and a rank parameter k as (ε, k)-cID ((ε, k)-cID for short). For convenience, we will
drop the term (ε, k) when it is not necessary to specify it.

Similarly, a row ID for the matrix A ∈ Cm×n

A ≈ Λ[I T ]∗Aq,: := UAq,: (19)

can be attained by performing cID on A∗ with O(k2m) operations and O(km) memory. We refer
to this linear scaling row ID as (ε, k)-rID and U as the row interpolation matrix.

5.3 Leaf-root complementary skeletonization (LRCS)

Assume that at the leaf level of the row (and column) dyadic trees, the row index set r (and the
column index set c) of A are divided into leaves {ri}1≤i≤m (and {ci}1≤i≤m) in the following way:

r = [r1, r2, · · · , rm] (and c = [c1, c2, · · · , cm]), (20)

with |ri| = n0 (and |ci| = n0) for all 1 ≤ i ≤ m, where m = 2L = N
n0

, L = log2N − log2 n0, and
L + 1 is the depth of the dyadic trees TX (and TΩ). rID is applied to each Ari,: to compute the
row interpolation matrix and denote it as Ui; the associated skeleton indices is denoted as r̂i ⊂ ri.
Let r̂ = [r̂1, r̂2, · · · , r̂m], then Ar̂,: is the important skeleton of A and we can arrange all the small
ID factors into a larger matrix factorization as follows:

A ≈


U1

U2

. . .

Um



Ar̂1,c1 Ar̂1,c2 . . . Ar̂1,cm
Ar̂2,c1 Ar̂2,c2 . . . Ar̂2,cm

...
...

. . .
...

Ar̂m,c1 Ar̂m,c2 . . . Ar̂m,cm

 := UM.
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Similarly, cID is applied to each Ar̂,cj to obtain the column interpolation matrix Vj and the
skeleton indices ĉj ⊂ cj . Then finally we form the LRCS of A as

A ≈


U1

U2

. . .

Um



Ar̂1,ĉ1 Ar̂1,ĉ2 . . . Ar̂1,ĉm
Ar̂2,ĉ1 Ar̂2,ĉ2 . . . Ar̂2,ĉm

...
...

. . .
...

Ar̂m,ĉ1 Ar̂m,ĉ2 . . . Ar̂m,ĉm



V1

V2

. . .

Vm

 := USV. (21)

For a concrete example, Figure 10 visualizes the non-zero pattern of the LRCS in (21).
It is noteworthy that we only generate and store the skeleton of row and column index sets

corresponding to M and S, instead of computing M and S explicitly. Hence, it only takes O( k
3

n0
N)

operations and O( k
2

n0
N) memory to generate and store the factorization in (21), since there are

2m = 2N
n0

IDs in total.
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Figure 10: An example of the LRCS in (21) of the complementary low-rank matrix A. Non-zero
submatrices in (21) are shown in gray areas.

5.4 Matrix splitting with complementary skeletonization (MSCS)

A complementary low-rank matrix A (with row and column dyadic trees TX and TΩ of depth L+ 1

and with m = 2L leaves) can be split into a 2× 2 block matrix, A =

(
A11 A12

A21 A22

)
, according to the

nodes of the second level of the dyadic trees TX and TΩ (right next to the root). As a result, each
Aij is also a complementary low-rank matrix with its row and column dyadic trees of L− 1 levels.
For example, A in Figure 9 is a five-level complementary low-rank matrix and A11 is a three-level
complementary low-rank matrix (see the highlighted submatrices in Figure 9).

Suppose Aij ≈ UijSijVij , for i, j = 1, 2, is the LRCS of Aij . Then A ≈ USV , where

U =

(
U11 U12

U21 U22

)
, S =


S11

S21

S12

S22

 , V =


V11

V12

V21

V22

 . (22)

The factorization in (22) is referred as the MSCS. Recall that the middle factor S is not explicitly
computed, resulting in a linear scaling algorithm for forming (22). Figure 11 visualizes the MSCS
of a complementary low-rank matrix A.
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Figure 11: The visualization of a MSCS of a complementary low-rank matrix A ≈ USV . Non-zero
blocks in (22) are shown in gray areas.

5.5 Recursive MSCS

Now we apply MSCS recursively to get the full IDBF. Suppose we have the first level of MSCS as
A ≈ ULSLV L with

UL =

(
UL11 UL12

UL21 UL22

)
, SL =


SL11

SL21

SL12

SL22

 , V L =


V L

11

V L
12

V L
21

V L
22

 . (23)

By construction, we know SLij are complementary low-rank. Next, apply MSCS to each SLij :

SLij ≈ UL−1
ij SL−1

ij V L−1
ij , (24)

where

UL−1
ij =

(
(UL−1

ij )11 (UL−1
ij )12

(UL−1
ij )21 (UL−1

ij )22

)
,

SL−1
ij =


(SL−1
ij )11

(SL−1
ij )21

(SL−1
ij )12

(SL−1
ij )22

 ,

V L−1
ij =


(V L−1
ij )11

(V L−1
ij )12

(V L−1
ij )21

(V L−1
ij )22

 .

(25)

Finally, organizing (24) forms SL ≈ UL−1SL−1V L−1 (see its visualization in Figure 12), where

UL−1 =


UL−1

11

UL−1
21

UL−1
12

UL−1
11

 , SL−1 =


SL−1

11

SL−1
21

SL−1
12

SL−1
22

 , (26)

V L−1 =


V L−1

11

V L−1
12

V L−1
21

SL−1
22

 ,
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Figure 12: The visualization of the recursive MSCS of SL = UL−1SL−1V L−1.

leading to a second level factorization of A as A ≈ ULUL−1SL−1V L−1V L.
Similarly, we can apply MSCS recursively to each S` and assemble matrix factors hierarchically

for ` = L, L− 1, . . . , L/2 to obtain

A ≈ ULUL−1 · · ·UhShV h · · ·V L−1V L, (27)

where h = L/2. In the entire computation procedure, linear IDs only require O(1) operations for
each low-rank submatrix, and hence at most O(N) for each level of factorization, and O(N logN)
for the whole IDBF.
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