
Manuscript submitted to doi:10.3934/xx.xxxxxxx
AIMS’ Journals
Volume X, Number 0X, XX 200X pp. X–XX

GENERATIVE IMAGING AND IMAGE PROCESSING VIA

GENERATIVE ENCODER

Yong Zheng Ong

National University of Singapore

21 Lower Kent Ridge Rd
Singapore, Singapore 119077

Haizhao Yang

Purdue University

610 Purdue Mall
West Lafayette, IN 47907, USA

(Communicated by the associate editor name)

Abstract. This paper introduces a novel generative encoder (GE) framework
for generative imaging and image processing tasks like image reconstruction,

compression, denoising, inpainting, deblurring, and super-resolution. GE uni-
fies the generative capacity of GANs and the stability of AEs in an optimiza-

tion framework instead of stacking GANs and AEs into a single network or

combining their loss functions as in existing literature. GE provides a novel
approach to visualizing relationships between latent spaces and the data space.

The GE framework is made up of a pre-training phase and a solving phase.

In the former, a GAN with generator G capturing the data distribution of a
given image set, and an AE network with encoder E that compresses images

following the estimated distribution by G are trained separately, resulting in

two latent representations of the data, denoted as the generative and encoding
latent space respectively. In the solving phase, given noisy image x = P(x∗),

where x∗ is the target unknown image, P is an operator adding an addictive,

or multiplicative, or convolutional noise, or equivalently given such an image
x in the compressed domain, i.e., given m = E(x), the two latent spaces are

unified via solving the optimization problem

z∗ = argmin
z
‖E(G(z))−m‖22 + λ‖z‖22

and the image x∗ is recovered in a generative way via x̂ := G(z∗) ≈ x∗, where

λ > 0 is a hyperparameter. The unification of the two spaces allows improved
performance against corresponding GAN and AE networks while visualizing
interesting properties in each latent space.

1. Introduction. Deep learning-based structures have become an effective tool
for image processing. A stream of such studies is an end-to-end training with
an Autoencoder (AE) [1, 2] mapping source images to reconstructed images with
desired properties. Due to the powerful representation capacity of AEs, AEs can
approximate the desired imaging or image processing procedure well as long as

2020 Mathematics Subject Classification. Primary: 68U10; Secondary: 68T07.
Key words and phrases. Generative Adversarial Network, Autoencoder, Inverse Problem, La-

tent Space, Image Reconstruction, Denoising, Deblurring, Super Resolution, Inpainting.
The second author is supported by NSF grant DMS-1945029.

1

2 YONG ZHENG ONG AND HAIZHAO YANG

training data are sufficiently good. In particular, the dimension reduction property
in AEs play a key role in enhancing its performance, similar in importance to
sparsity in traditional image processing algorithms.

AEs are designed with 2 Neural Networks (NN). The encoder, E(x; θE) with pa-
rameters θE , adaptively captures the low-dimensional structure of a source image
x through repeated applications of convolution, pooling, and nonlinear activations,
to output a small feature vector z; whilst the decoder, DC(z; θDC) with parameters
θDC , efficiently reconstruct x via repeated deconvolution, up-sampling, and nonlin-
ear activations acting on z. Parameters in E and DC are jointly tuned such that
the input and output of the AE match via the below optimization problem

min
θE ,θDC

Ex∼pdata(x)

[
‖DC(E(x; θE); θDC)− x‖22

]
, (1)

where pdata is the image data distribution. Armed with a powerful representa-
tion capacity, AEs are capable of learning nonlinear transforms which create highly
sparse and low-dimensional representations of images, while maintaining the accu-
racy of image reconstruction. However, due to the least square nature of (1), AEs
penalize pixel-wise error and hence tends to generate smooth images, instead of
learning to generate fine details. A recent paper [3] explores this limitation in AEs,
and this paper will also demonstrate such phenomena experimentally.

Another stream of deep learning approaches [4, 5, 6, 7, 8, 9] are based on gen-
erative adversarial networks (GANs) [10] and its variants [11, 12, 13, 14]. GANs
consists of a generator G and discriminator D pair which are trained adversarially.
G, with parameters θG, takes random vector z from a given distribution pz and
output a synthetic sample G(z; θG). D, with parameters θD, takes as input x and
outputs a value D(x; θD) ∈ [0, 1] denoting the probability that the input x follows
the data distribution pdata. In simple terms, G is trained to generate samples to
fool D into thinking that the generated sample is real, while D learns to distinguish
between real samples from the data distribution versus synthetic fake data from G
via the below adversarial game

min
θG

max
θD

V (θD, θG) = Ex∼pdata(x)[logD(x; θD)]

+ Ez∼pz(z)[log(1−D(G(z; θG); θD))] (2)

D in the adversarial learning above can be applied to enhance image quality as in
[4]. G can also be applied as a tool for data augmentation [15, 16] or as an inverse
operator [5, 17, 18, 19, 20, 21] that returns the desired image from applications
with compressed measurements like compressed sensing. However, solving (2) or its
variants is challenging and the solution might not be stable, e.g. GANs are prone
to mode collapse or vanishing gradient problems, although generated content are
better in quality of fine details than those generated by AEs, which tends towards
smooth images.

A common point in both types of generative network lies in a mapping between
a lower-dimensional latent/feature space and the original data space. In particular,
the difference in objective of both leads to a different representation of data in the
latent spaces. This leads to a particular question of whether the latent spaces can
be combined, to gain the advantages of both. Present architectures do so either
using a single latent space to represent the encoding and the generating space, like
in VAEGAN [22, 23] and [24, 25], or train the losses jointly [26, 27]. This paper
introduces a novel generative encoder (GE) framework that takes advantage of both
AEs and GANs separately for generative imaging tasks. Instead of current methods

GENERATIVE IMAGING AND IMAGE PROCESSING VIA GENERATIVE ENCODER 3

which merge GAN and AE training, an alternative method to link both latent spaces
is proposed through solving an invert GAN problem, in which recent works have
begun exploring [17, 18, 20]. Empirical evidence shows improved performance in
applications like image reconstruction, denoising, inpainting, deblurring, and super-
resolution. The framework also introduces a novel approach towards the study and
understanding of latent spaces, which recent works [18] has investigated.

The GE model consists of a pre-training and a solving phase. In the former,
a GAN and an AE are separately trained. As the G in GAN captures the data
distribution of a given image set, generated images in a GAN can be used as training
data to augment the training of the AE component. Hence, the GAN is trained first
in the pre-training phase, followed by augmenting generated data with training data
to train the AE. Depending on the application, the AE can be further augmented
with noisy data, and trained to filter such noise [28]. In the solving phase, given a
noisy image x† = P(x∗), where x∗ is the target unknown image, P is an operator
adding an additive, multiplicative, or convolutional noise, the below optimization
problem is solved

z∗ = arg min
z
‖E(S(G(z)))− E(x†)‖22 + λ‖z‖22 (3)

and x∗ is recovered via x̂ := G(z∗) ≈ x∗. Here S denotes a down-sample or an
up-sample operator balancing the dimension of the output of G and the input of E,
or noise added to the generated image, if the structure of the noise is known, like
in inpainting. Else, S is the identity map. Finally, λ > 0 is a hyper-parameter. GE
unifies the generative capacity of the generative space in GANs and the stability
and rough detail capturing properties of the encoding space in AEs via an opti-
mization framework (3) instead of stacking GANs and AEs into a single network
or training the two together. Instead of learning an encoding and a generating net-
work into the same latent space, GE explores the benefits of using an optimization
network to learn a relationship between the two spaces, while each maximizes its
own advantages.

1.1. Related Work. This section briefly introduces related work in the field of
invert GAN. Lipton & Tripathy [19] described a direct optimization method to
invert a fixed generator G, which can be summarized to solving the below equation

z∗ = arg min
z
d(G(z), x) (4)

Here d denotes some distance function, for example l2-norm. The image x is then
recovered by G(z∗). Similar work is done in [20] to solve the above invert GAN
problem using different alternatives for d. Recent work by [17, 21] proposes alter-
native gradient/LP based optimization methods to invert compressed sensing or
deep generative models using ReLU activations, but is not applicable when model
architecture is much more complex, like progressive GAN (pGAN) [29]. [18] pro-
posed the use of a third network to learn the inverse mapping, by training the third
network, denoted as G−1(x, θG−1) via the objective

arg min
θG−1

d1(G−1(G(z)), z) + d2(G(z), x) (5)

Their method, while using an ”encoder” like structure in terms of G−1, differs from
GE in terms of G−1 learning an inverse of G, while in GE, there is no direct relation
between E and G. In fact, the dimensions of the two latent spaces in GE need not
be the same, which allows for greater flexibility and generalization.

4 YONG ZHENG ONG AND HAIZHAO YANG

1.2. Contributions. This section summarizes the contributions of GE:

a. Training of G and E in GE is done separately. To the best of our knowl-
edge, GE is the first framework that performs the training separately. The
motivation in doing so is to reduce competition between the different objectives
involved in training a GAN and AE. To illustrate this, the separation of the
two models in a denoising problem distributes the generative component to the
generative space and the dimension reduction and filtering of noise component
to the encoding space, which differs from existing methods that combine both
spaces together. This not only allows each model to maximise their performance
on the corresponding objectives, but also allows the use of the same pre-trained
GAN (since it is not trained to filter noise), which in general is harder to train,
for multiple applications of imaging problems, through switching of the AE com-
ponent. Numerical results are presented to demonstrate this capability and to
show that GE outperforms end-to-end convolutional AEs and the original invert
GAN proposed by [19] which uses only a generator. Empirical results also show
the benefits of separating losses, by comparing with a network that merges both
training losses, which will be denoted as AEGAN.

b. E learns a different set of latent vector compared to G. This is in
contrast with [18] where the third network is trained to learn and reproduce
the latent distribution of G, or in present GAN and AE frameworks like AE,
VAEGAN, etc, which uses the same feature space between their G and E. GE
is the first framework which utilizes a unification method to learn relationships
between the two learnt latent spaces. Numerical results in Section 5.5 will
demonstrate the importance of this idea. This section introduces the differing
objectives of the GAN and AE objectives, in which GANs are shown to favour
more prominent features for a realistic generation, while AE focuses on recon-
structing as many features as possible. GE, with the separation of training,
allows two different sets of latent vectors to be learnt, each maximising their
corresponding objectives, while using a solving phase to draw upon the benefits
of both.

c. Training of AE is augmented by G, thus the dimension reduction of AE
adapts to the target data distribution instead of training data only, making the
AE more compatible with data distribution and increasing the generalization
flexibility of AE. This is in contrast with existing methods, where the training
of the AE and GANs are done simultaneously, thus removing any possibility for
such a style of data augmentation.

d. Instead of creating an end-to-end neural network, an optimization problem (3)
is proposed to search for the best reconstruction that fits data measurements
in the compressed domain. On one hand, E stabilizes the reconstruction
via reducing the search domain, filtering out key features that should be
generated by G, based on how E is trained to handle and compress informa-
tion for the image processing task. On the other hand, G that focuses on
producing realistic images improves the reconstruction quality often
lost in traditional AEs that prefers smooth images. The latter property, in
particular, is lost in the merging of AE and GAN training, due to the addition
of the `2 type loss from AE, and G observing training data directly instead of
only through DC’s output.

e. A direct implication of using a solving phase allows the final output image to be
generated from G rather than the decoder of an AE, DC. This is motivated by

GENERATIVE IMAGING AND IMAGE PROCESSING VIA GENERATIVE ENCODER 5

the fact that AEs uses a distance type loss function which results in smoother
outputs. In comparison, GANs have been known to generate more realistic
images. Using a solving phase allows GE to produce realistic images, while
using the AE to perform task specific filtering. This is supported with numerical
results, which shows the distinct difference between using a GAN as output
(models like InvertGAN and GE), against using a decoder from an AE (models
labelled ConvAE and AEGAN). The importance of E during the solving phase
is apparent in complex applications, like Inpainting, where without it, the model
totally fails.

f. GE is a general framework with various applications. Numerical ex-
periments show that the proposed model can produce competitive or better
outcomes in these fields. Furthermore, GE is flexible in the choice of GAN
or AE used and can be constantly improved using newer GAN or AE methods,
according to the problem.

g. [18] introduced the idea that learning an inverse generator allows for an effec-
tive method in visualizing what a GAN cannot generate. In this regard, GE
presents a novel framework towards learning and understanding rela-
tionships between different latent spaces, by visualizing the information
gained and lost across two such spaces. This provides answers to certain inter-
esting questions, which will be elaborated on shortly.

2. Applications. This section briefly introduces the applications of GE covered
in this paper.

2.1. Image Reconstruction/Compressed Sensing. Given measurement y =
Ax∗ + ε, where A is a sensing matrix satisfying the restricted isometry property
(RIP), ε is a noise vector, the compressed sensing problem seeks to recover x∗. If
x∗ is sparse, the recovery via an `1-penalized least square problem is guaranteed
by the compressed sensing theory in [30, 31]. The RIP condition is satisfied when
A is a random Gaussian matrix, and natural images are generally sparse after an
appropriate transform, e.g., wavelet transform. Therefore, compressed sensing has
always been a successful tool in imaging science.

Pioneer works including [5, 17] have explored the application of generative models
to improve traditional compressed sensing algorithms. The main idea is to apply G
to generate a synthetic image G(z) from z in a compressed space. In present image
processing applications, the matrix A is often replaced with E, and the problem is
solved as an AE.

2.2. Denoising and Inpainting. Denoising and inpainting have the same problem
statement in mathematics. Given a measurement y = x∗ + ε or y = x∗ ◦ ε, where
ε is a certain random or structured noise and ◦ represents the Hadamard product,
denoising and inpainting seek to recover x∗ from y. In this paper, Gaussian random
noise with a standard deviation of σ = 0.5 is used for denoising, while images are
partially masked by a 64× 64 block in randomly chosen positions in inpainting.

Traditional denoising or inpainting techniques generally rely on the sparsity of
x∗ after an approximate transform in a certain metric, e.g., KSVD [32], GSR [33],
BM3D [34], NLM [35], and total variation (TV) regularization [36, 37]. Deep learn-
ing approaches have become more popular than traditional methods recently, e.g.,
AE methods [1, 38, 39], especially when hidden information of noisy or damaged

6 YONG ZHENG ONG AND HAIZHAO YANG

images is not visually obvious. Recently, invert GAN based methods [17] have also
been suggested for inpainting.

2.3. Deblurring. Blurring an image is commonly modeled as the convolution of a
point-spread function over an original sharp image. For example, this paper uses a
rotationally symmetric Gaussian lowpass filter to produce blurred images. Deblur-
ring aims to reverse this process. Mathematically speaking, given a measurement
y = x ∗ h, where h is an unknown convolution kernel function and ∗ represents the
convolution operator, deblurring seeks to recover x with certain assumptions on h
and x to ease the ill-posedness. Sparse coding [40] and kernel estimation [41] are ef-
fective methods for image deblurring. CNNs have also been applied to this problem
recently [42], especially with the help of GAN [14]. Notice, that in this application,
GAN which has higher detail generation are used in these existing works over AEs.

2.4. Super-resolution. Super-resolution aims to generate high-resolution images
from low-resolution ones. For example, given a measurement y = S(x∗), where S
is a down-sampling operator or a convolution operator with a convolution kernel
function decaying quickly in the Fourier domain, super-resolution seeks to recover
x∗ with certain assumptions on S and x∗ to ease the ill-posedness. Traditionally,
interpolation methods (Bicubic, Nearest Neighbours) and sparse-coding [40] are
popular tools to increase image resolution. Recently, CNNs have also been applied
to solve this problem with great success [43, 44].

For the experiments, original images are downsampled to 32 × 32 × 3. Instead
of inputting this image into GE directly, the image is first reconstructed by up-
sampling the image using the nearest neighbor interpolation as input x† in (3),
which is equivalent to using the upsampling interpolation as a preconditioner of the
optimization problem.

3. Generative Encoder Framework. This section introduces the detailed im-
plementation of GE. In this paper, GE is trained using pGAN as the GAN and
a convolutional AE as the AE. In general, GE is broadly compatible with various
GANs and AEs. The overall training procedure of the GE model is summarized in
Algorithm 1 and visualized in Figure 1.

Algorithm 1 GE: generative encoder model

1: Pre-train a generator using any GAN.
2: Pre-train an AE using both real and fake images (generated by GAN in Step

1).
3: Take the generator G of GAN and the encoder E of AE to form the generative

encoder.
4: Given a measurement m = E(x†), find z∗ = arg minz ||E(S(G(z))) − m||22 +
λ‖z‖2p and return x̂ = G(z∗).

The key idea in GE is to combine G and E from a GAN and AE model respec-
tively. This takes advantage of each model using a new optimization framework
in (3) to unify latent spaces. The first term d(m, z) = ||E(S(G(z))) − m||22 itself
serves as the loss function in the solving phase. The `p term is introduced to reg-
ularize the highly nonconvex function d(m, z). This choice could vary depending
on how the latent space is represented in G (e.g. N(0, 1)). Besides, searching for
a solution with a small `2-norm also agrees with most GANs that has z ∼ N (0, I).

GENERATIVE IMAGING AND IMAGE PROCESSING VIA GENERATIVE ENCODER 7

Figure 1. Flow of training process in GE. Step 1 and 2 forms the
pre-training phase, while the remaining form the solving phase

Finally, λ > 0 is a hyperparameter denoting the weight of the regularization term.
An interesting extension would be replacing the `2 regularization with a NN for a
data-driven regularization. This is left as future work.

3.1. Visualizing and understanding the relationship between latent spaces.
Understanding latent spaces play an important role in NNs, especially in GAN and
AE which rely on a good representative space to perform. However, it is difficult
to visualize what is represented in the latent spaces, as well as derive mappings
between them. As a result, current applications in generative models like GAN,
AE, VAEGAN, etc relies on a single latent space. For example, in AE, E maps
an input to a feature representation, and DC reconstructs output from the same
space. [18] explores this concept to learn what a generative space cannot represent.
GE also seeks to address this objective, to provide answers to questions like

a. Are certain features avoided during generation, or are they just underrepre-
sented?

b. Can a model be encouraged to produce specific features without skewing the
training data? [18]

c. What information is prioritized in the different latent space? What gains/losses
are there in learning a mapping between each other?

Under the same set of data, different models produce largely different represen-
tations of the data. Such differences are difficult to visualize. GE leverages the use
of inverse GAN problem with an optimization framework to explore relationships
between any pair of generative and encoding space, by providing a way to visualize
this phenomenon, to answer questions like above.

Consider a scenario that in optimizing (4), generated samples G(z∗) are noticed
to remove certain details. A valid suspicion would be that G avoids producing such
details, perhaps due to lack of appearance in training data, or to prioritize learning
a higher frequency feature. Now consider optimizing (3). Two possible scenarios
could be observed:

8 YONG ZHENG ONG AND HAIZHAO YANG

a. The feature appears: This suggests that G learned to produce the above
detail, but is underrepresented in the generative space. The same detail is
instead better represented in E. Optimizing G with the help of latent space E
magnifies these underrepresented features being expressed, even without skewing
the training data.

b. The feature does not appear: This suggests that both E and G does not
prioritize in learning the above feature. In this case, these features are likely to
be avoided by the models during the learning of each latent space.

On the other hand, suppose a feature disappears in GE as opposed to (4). This
in turn suggests a loss of information from G to E, that is, the feature is under-
represented by E, while largely represented by G. GE’s capability to visualize
these phenomenon allows one to gather statistical evidence to answer questions like
above. A method to visualize the results will be demonstrated in the experiments
(via Truth Tables and Visual Inspection).

3.2. Loss Functions.

3.2.1. Image Reconstruction. Suppose the original image is x∗ and a sensor E is
given. Given the measurement m = E(x∗), to find the reconstruction x̂ that is
as close to x∗ as possible, GE finds z in the latent space such that the compressed
measurement of its generated image, i.e., E(S(G(z))), is as close to the measurement
of the real image m as possible. Therefore, Algorithm 1 is solved with N as the
identity map to identify x̂ := G(z∗) ≈ x∗ as the reconstruction.

3.2.2. Denoising, Deblurring, Super-Resolution and Inpainting. The solution of the
denoising, deblurring, super-resolution, and inpainting can be obtained by solving
Algorithm 1 with their respective noise maps S, which is an identity for denoising
and deblurring, a masking operator for inpainting, and a dimension adjustment
operator for super-resolution. Let x† be the given noisy image constructed from an
unknown target image x∗. Then the reconstructed image is set as x̂ = G(z∗) ≈ x∗.

The AE is also trained to filter the noise, like in denoising AEs [28]. Training
of the AE in Step 2 of Algorithm 1 is modified to include noisy samples as data
augmentation, where in addition to training on reconstructing images, an additional
term ‖AE(x†) − x‖22 is added so that the AE matches noisy images against their
corresponding clean image, thus acting as a filter for GE.

4. Training Details. This section describes training details for the experiments
in this paper.

4.1. Training Data. For the experiments, the following datasets are used. First,
the CelebA dataset [45] is used and the following applications are explored on
the dataset: Image Reconstruction, Denoising, Inpainting, Deblurring, and Super-
resolution. This dataset contains more than 200, 000 celebrity images cropped to
size 128 × 128 × 3. A further split of the dataset to training and testing data is
performed, so that the performance of GE are tested with data not used in training.

Next, a digital rock dataset containing micro computed tomography (µCT) im-
ages of a dry Bentheimer sandstone outcrop [46] is used and the following applica-
tions are explored on the dataset: Image Reconstruction. The choice of using digital
rock images is due to the need for high quality results during the image processing
process. In particular, such rock images contains sharp edges and sediments that
does not favour the use of conventional AEs, which produces smooth outputs. The

GENERATIVE IMAGING AND IMAGE PROCESSING VIA GENERATIVE ENCODER 9

3D µCT image is first partitioned into 2D slices along varying axis, and crops of
size 256× 256× 1 are obtained from the centre of the resulting slices.

The third dataset is obtained from the LSUN church dataset [47] and the follow-
ing applications are explored on the dataset: Image Reconstruction. This dataset
is preprocessed by resizing all images to size 256 × 256 × 3. The train images are
used for training, while the provided validation images are used in testing.

4.2. GAN. pGAN is trained with training data above and the corresponding G
is adopted. pGAN model used is obtained from the official Github of the pGAN
paper [29]. The same G and weights are used throughout the different experiments.
This provides evidence to motivate the separation of training GAN and AE - in
that the G focuses on maximizing the generation capacity, as the same pre-trained
GAN model presents a similar generated quality of results for different problems,
without a need to retrain the GAN to handle the different tasks.

4.3. AE. GE is tested using a deep convolutional AE. The structure of the AE is
based on ensuring that the number of trainable parameters in the AE and pGAN is
similar. This provides a fair comparison in terms of model size for the experiments.
Table 1 describes the structure of E used in ConvAE, while DC is the reverse of
E using conv transpose and upsample, with a tanh output activation to match the
output of pGAN [29]. The input shape is [−1, 128, 128, 33]. k, s, a and h describes
the kernel, stride, choice of activation and the fully connected layer’s output size
respectively in the table. f = 32 in our experiments.

layer type layer
conv2d k = [3, 3, 3, f], s = [1, 1], a = ReLU

maxpool2d k = [1, 2, 2, 1], s = [2, 2]
conv2d k = [3, 3, f, 2 ∗ f], s = [1, 1], a = ReLU

maxpool2d k = [1, 2, 2, 1], s = [2, 2]
conv2d k = [3, 3, 2 ∗ f, 4 ∗ f], s = [1, 1], a = ReLU

maxpool2d k = [1, 2, 2, 1], s = [2, 2]
conv2d k = [3, 3, 4 ∗ f, 8 ∗ f], s = [1, 1], a = ReLU

maxpool2d k = [1, 2, 2, 1], s = [2, 2]
conv2d k = [3, 3, 8 ∗ f, 16 ∗ f], s = [1, 1], a = ReLU

maxpool2d k = [1, 2, 2, 1], s = [2, 2]
conv2d k = [3, 3, 16 ∗ f, 32 ∗ f], s = [1, 1], a = ReLU

maxpool2d k = [1, 2, 2, 1], s = [2, 2]
fullyconnected h = 256

Table 1. Structure of E. The decoder DC is a mirror of E using
conv transpose and upsample.

Note that the size of the latent space dimension of the GAN and AE used in the
experiments are not the same. E maps 128 × 128 × 3 images to vectors of length
256, while G maps noise vectors of length 512 to images of size 128× 128× 3. This
design is intentional, to demonstrate how GE differs from similar structured models
like [18] in which the choice of an additional neural network (NN), E, is added not
to learn the inverse mapping of G, but rather as a feature extraction and filtering
tool, based on the original function of E in traditional AEs.

Together, the combination of G of pGAN and E in the AE is denoted as GE.

10 YONG ZHENG ONG AND HAIZHAO YANG

4.4. Optimization in GE. In the solving phase, ADAM optimizer [48] is used
with lr = 0.1 to solve (3). z is initialized using the random start of the same
distribution as input distribution in pGAN, and training is conducted for 1400
iterations. For the experiments, the same random start and ADAM is used across
models to ensure a fair comparison.

4.5. Baseline Methods. As GE is a framework which is able to use different GAN
and AE, the main focus for comparison are the below objectives

a. The performance of GE is compared with existing methods similar in objective
[19, 20] and model size, as well as an AE, AEGAN which merge AE and GAN
training

b. Numerical evidence is demonstrated to motivate the discussion in Section 3.1

Should some existing SotA methods involving AE or GAN could outperform the
choice of pGAN or AE, the corresponding components of that method could always
be adopted to achieve similar improvement of results. This will be demonstrated
by a side experiment, through building GE with an alternate GAN, BEGAN [14],
instead of pGAN.

Baseline methods are chosen and modified to have the same G or E structure as
used in the choice of pGAN and AE for a fair comparison. Below lists the baseline
methods which will be used for comparison in this paper under the same conditions
and training set:

a. Convolutional AE. The same AE architecture (Table 1) in GE is used. This
allows for comparing between the benefits of using G from a GAN as a replace-
ment to DC in AEs, which favors smooth images and lacks finer details. This
also provides a means to compare between GE, which trains G and E separately,
to AEs which trains both the generator/decoder and encoder simultaneously.
This model is denoted as ConvAE.

b. Invert GAN. This benchmark uses the proposed optimization method by [19],
by solving the optimization problem (4) using `2 norm as d. As mentioned, other
works like [20, 17] are based upon this same problem with different optimization
methods. Furthermore, as explained previously, this benchmark is required to
investigate and show experimentally the claim that GE can be used to learn the
links between latent spaces. The same G and weights from the GE generator is
used in this benchmark. This allows for understanding the benefits of adding E
as a filtering mechanism in GE. This model is denoted as invertGAN.

c. AEGAN. This benchmark is used to visualize the effects of combining the loss
function of the AE and GAN in a typical AEGAN framework. The standard
AEGAN objective given by

min
θD,θG,θE

d1(x,G(E(x))) + Ex∼pdata(x)[logD(x; θD)]

+ Ez∼pz(z)[log(1−D(G(z; θG); θD))] (6)

is used. For the experiments, the same G and D structure from pGAN is used,
while E adopts the same architecture (Table 1), with h in the final layer replaced
to the same as the input vector size of pGAN, i.e. h = 512. The need to replace
this final layer already highlights one of the advantage of GE, in which here,
the same feature space is required, while in GE, this is not required. AEGAN is
trained following (6), with similar loss functions to GE and the other baselines,
without additional enhancements (e.g. Spectral Normalization). Thus d1 is the

GENERATIVE IMAGING AND IMAGE PROCESSING VIA GENERATIVE ENCODER 11

`2-norm. Additionally, a KL-divergence term [49] is included to ensure latent
space follows normal distribution.

5. Experimental Results. This section presents empirical results for the exper-
iments.

5.1. Reconstruction Results. In the reconstruction case, Equation (3) is solved
with S as identity. The results are compared with ConvAE, AEGAN and invert-
GAN, which is presented in Figure 2 for the CelebA dataset, Figure 3 for the Digital
Rock dataset and Figure 4 for the LSUN church dataset.

Figure 2. Reconstruction results on CelebA dataset.

5.2. Denoising, Deblurring, Super-resolution and Inpainting Results. For
the other applications, Equation (3) is solved, and the AE is trained with the
added loss term as described in the previous section, using their corresponding
noise to generate noisy data. The results for denoising, deblurring, super-resolution,
inpainting are presented in Figures 5, 6, 7 and 8 respectively.

5.3. Quantitative Analysis. Numerically, the following metrics: average mean
squared error (MSE), structural similarity index measure (SSIM) [50], and Frchet
inception distance (FID) [51] are used to evaluate the performance of GE in re-
constructing images in the CelebA test set. MSE measures the overall accuracy of
reconstruction, while SSIM and FID serves as a good metric for the evaluation of
detail. SSIM is evaluated using the python package skimage, while FID score is
computed using provided code from [51]. For the digital rock dataset, MSE and
Peak Signal-to-Noise Ratio (PSNR) are used, as they are commonly used metrics
on digital rock imaging. The results are presented in Table 2 and 3.

Figure 9 plots the log of average Mean Squared Error (MSE) over the test data
during each iteration in the solving phase of GE. As comparison, the average MSE
for ConvAE and AEGAN are also included. In general, convergence in invertGAN
and GE is stabilized around 1000 iterations.

12 YONG ZHENG ONG AND HAIZHAO YANG

Figure 3. Reconstruction results on Digital Rock dataset.

Figure 4. Reconstruction results on LSUN church dataset.

Comparing GE against ConvAE, invertGAN, and AEGAN, GE outperforms all
3 baselines based on the metrics. Visually, Figures 2 and 3 demonstrates this
phenomenon. The use of a generator to generate output images in the GE model
provides image reconstructions of higher quality than the coarse images output by
both the ConvAE and AEGAN in both figures. Both models, which is trained using
`2-norm loss, while being able to remain competitive in overall accuracy scores in

GENERATIVE IMAGING AND IMAGE PROCESSING VIA GENERATIVE ENCODER 13

Figure 5. Denoising results on CelebA dataset.

Figure 6. Deblurring results on CelebA dataset.

Figure 7. Super-resolution results on CelebA dataset.

14 YONG ZHENG ONG AND HAIZHAO YANG

Figure 8. Inpainting results on CelebA dataset.

Model MSE SSIM FID
CRGAN* 16.97
SSGAN* 24.36

Our pGAN 22.13
ConvAE 0.03386 0.6823±0.051 87.71
AEGAN 0.03317 0.6907±0.050 34.53

invertGAN 0.03529 0.7203±0.038 19.19
GE 0.03262 0.7329±0.025 17.42

Table 2. Quantitative results comparing models for CelebA. Ad-
ditionally, some FID scores reported by recent GAN papers that
used CelebA 128×128×3 images are also presented for comparison,
labelled with *.

Model MSE PSNR
ConvAE 0.009271 20.32

invertGAN (512) 0.008185 20.86
GE (512) 0.007470 21.26
GE (256) 0.007741 21.11
GE (128) 0.007839 21.05
GE (64) 0.008499 20.70

Table 3. Quantitative results comparing models for digital rocks.
The number in brackets show the size of the latent vector in pGAN
that the model is trained on. Models with same latent sizes are
solved with the same pGAN weights. The same AE is used for all
models.

GENERATIVE IMAGING AND IMAGE PROCESSING VIA GENERATIVE ENCODER 15

Figure 9. Plot of log of average MSE based on number of itera-
tions in the solving phase.

MSE, loses out in details, where it can be seen that SSIM, PSNR and FID scores
perform much worse than the GAN based counterparts (invertGAN and GE), whose
generators are not trained with `2 norm, as seen in Tables 2 and 3. This highlights
the importance in separating the GAN and AE training, where combining both
introduces coarser outputs.

In comparison against recent GAN models like CRGAN [52], SSGAN [53], GE is
still capable of presenting competitive performance in terms of FID scores. The flex-
ibility of the GE framework allows us to easily adapt to newer models, by replacing
the corresponding GAN or AE component and training in the same manner. This
flexibility also shows itself in the digital rock experiments, where the same fixed AE
is used across all variations of GE with differing parameters, and retraining of the
models is only performed on the GAN component.

The differences between the scores for invertGAN and GE also highlights the
importance of E in the solving phase. For GE, E plays two main roles. First,
it plays a large role in reducing the search domain from the image domain to the
compressed domain. Due to the optimization problem (3) being highly non-convex,
this is crucial to ensure the stability and quality of the result. Numerically, the
overall performance of GE outperforms invertGAN. SSIM scores are also much
stabler in GE (lower SD values) as opposed to the other models. Visually, from
examples like Sample 1 in Figure 2, the reduction of the search domain through
E captures important features like hat patterns, which is missing in invertGAN. A
closeup analysis of this phenomenon is presented in Figures 10 and 11. Additionally,
the above phenomena is also observed in the LSUN church dataset, boxed in red
in Figure 4. In the first image, the sign patterns is integrated into the background
building in InvertGAN, while not in GE, while the second image shows the missing
human, where in InvertGAN, this is integrated into the background building.

This is of crucial importance in digital rock images. The GE algorithm is applied
to test images of 2D slices along an axis of a 3D digital rock sample from the
dataset. The resulting 2D results are then combined to form a 3D reconstruction
of the sample and a separate slice along another axis is obtained from the result.
Figure 12 shows one such slice. In this application, the requirement of E in GE

16 YONG ZHENG ONG AND HAIZHAO YANG

Figure 10. Comparison of image reconstruction of detail region
(red box) for original image (left). In order of comparison, from
left to right, we have Original, GE, invertGAN, ConvAE.

Figure 11. Comparison of image reconstruction of detail region
(red box) for original image (left). In order of comparison, from
top to bottom, we have Original, GE, invertGAN, ConvAE.

becomes apparent, where without them, the GAN only InvertGAN model is seen to
introduce additional pores to the final results (highlighted by the red box), which
is undesirable. The use of an encoder in GE highly stabilizes this, and reduces the
likelihood to remove or add unnecessary details.

Secondly, E acts as a filter for noise. GE outperforms invertGAN in all of our
applications, as seen in Figures 5, 6, 7 and 8. In particular, consider results in
inpainting (Figure 8) and deblurring (Figure 6), in which InvertGAN fails totally.
In comparison, GE performed well even when using the same G throughout the
applications, while changing only the AEs which are trained to filter noise. A
single G can be used to solve all the problems in GE, whilst other GAN methods
may require training the entire model in some special manner to treat the noise,
especially in complicated applications. In GE, only the much stabler to train AE
portion needs retraining. GE presents an edge to other frameworks in this regard,
as it is sufficient to train a strong GAN that focuses solely on detail generation
while leaving filtering tasks to the AE.

5.4. Efficiency Analysis. The presence of a solving phase in GE results in a slower
inference time during inference. As seen in Figure 9, performance of GE achieves
the same amount of error as 1 step inference methods like ConvAE and AEGAN
at about 400 iterations. This timing can be reduced using early stopping after
the error reaches a predefined threshold, while the overall optimization time can
be reduced by improving the initialization method for z in the solving phase. For
example, instead of initializing z using one random start, multiple z can be sampled
and the vector whose reconstruction G(z) has the lowest loss to the target image x
can be used for initialization. Alternatively, the initialization can be trained using

GENERATIVE IMAGING AND IMAGE PROCESSING VIA GENERATIVE ENCODER 17

Figure 12. Additional pore sample result on Digital Rock dataset.

an encoder like structure which could even perform the solving phase in 1 step.
This is left as future work.

5.5. Visualizing feature spaces. The differences in representations of both fea-
ture spaces are apparent in Figures 4, 10, 11 and 12. This motivates a need for
the study of relationships between the feature spaces. This section demonstrates
how the relationship between the two feature spaces can be investigated. For this,
the CelebA dataset will be used and spectacle features are chosen as the feature
of study. We investigate image reconstructions for 1000 randomly chosen eyeglass
images in train data instead of test data, as the feature to investigate would be ob-
served in the training of the model. Table 4 shows the truth table comparing both
models, and Figure 13 shows some samples. Table 4 shows that 35% of samples
which did not produce spectacles in invertGAN did so in GE. The last sample in
Figure 13 showed a case where both model fails, and comparing with the original
image, this is likely that the spectacles are difficult to detect.

InvertGAN,F InvertGAN,T
GE,F 289 32
GE,T 157 469

Table 4. Results of invertGAN, GE on spectacles. T refers to
samples which produced spectacles, F refers to samples which did
not. Remaining are invalid reconstructions.

The appearance of spectacle features in GE shows that they are not completely
forgotten by G, and instead is likely to be just underrepresented in favor of other

18 YONG ZHENG ONG AND HAIZHAO YANG

Figure 13. Missing spectacles sample results on CelebA dataset.

features. Thus, introducing E magnified the observation of said feature in G. GE’s
optimization framework provides a method to encourage the same G to reproduce
underrepresented features learned, without needing to skew training data. Figure
13 and Table 4 visualizes the relative importance of spectacles in the generative
and encoding space. In the generative space, as the objective is to generate realistic
images, G tends towards reproducing simple but detailed features, and less on
generating complicated details. In the encoding space, however, as the objective is
to reconstruct the image, such features like spectacles are important to remember.
These observations coincide with the traditional understandings of each feature
space.

GE presents an effective tool to investigate specific shortcomings in each com-
ponent. In this example, a reasonable conclusion is that the introduction of E
results in the underrepresented feature of spectacles in G to be enhanced, without
any retraining of G. If one wishes to improve the overall result in reproducing
said feature, from this visualization, a more effective approach would be to tackle
improvements in GAN - for e.g. choosing alternative GAN which performs better
in producing spectacles. In contrast to existing methods that use the same latent
space, in order to improve their results, it is difficult to visualize which component
requires improvement, and retraining has to be done on the whole model.

5.6. Flexibility of GE. In this final part, GE is retrained using the same Con-
vAE, but a different choice of GAN, BEGAN. The objective is to demonstrate the
flexibility of GE, which can adapt to different choices of GAN. Figure 14 shows
the results for GE using BEGAN. Note that since the final result is obtained using
G(z∗), the quality of the final reconstruction depends on the ability of G to generate
details. This can also be observed in the constant quality of details in the results
from applying GE to solve the different applications.

As GE solves the imaging problem during a solving phase instead of the training
phase, modifying components of G or E with alternative models is still able to
achieve good results. The final quality of result depends on the detail generating
capability of G, and how E encodes the data and filters noise.

6. Conclusion. This paper introduced GE, a flexible framework that produces
promising outcomes for generative imaging tasks. GE unifies GANs and AEs in an
innovative manner to maximize the generative capacity of GANs and the compres-
sion ability of AEs to stabilize image reconstruction. GE also introduces a method
to visualize latent space relationships, and in turn, understanding each latent space

GENERATIVE IMAGING AND IMAGE PROCESSING VIA GENERATIVE ENCODER 19

Figure 14. Reconstruction results for 64×64×3 images in CelebA
with GE using BEGAN instead of pGAN.

in relation to the training data. This helps to answer important questions on the
latent space of generative networks. In the future, we intend to explore other appli-
cations that rely on latent spaces, like semantic attribute manipulation [54, 55], as
well as derive theoretical results similar to [17, 5], to further the understanding of
latent spaces and generative networks. The code will be available on the author’s
github.

REFERENCES

[1] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol. Stacked denoising autoen-
coders: Learning useful representations in a deep network with a local denoising criterion. J.

Mach. Learn. Res., 11:3371–3408, December 2010.

[2] Jo Schlemper, Jose Caballero, Joseph V. Hajnal, Anthony Price, and Daniel Rueckert. A
deep cascade of convolutional neural networks for mr image reconstruction. In Marc Ni-

ethammer, Martin Styner, Stephen Aylward, Hongtu Zhu, Ipek Oguz, Pew-Thian Yap, and

Dinggang Shen, editors, Information Processing in Medical Imaging, pages 647–658, Cham,
2017. Springer International Publishing.

[3] Sachit Menon, A. Damian, S. Hu, Nikhil Ravi, and C. Rudin. Pulse: Self-supervised photo
upsampling via latent space exploration of generative models. 2020 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 2434–2442, 2020.

[4] David Warde-Farley and Yoshua Bengio. Improving generative adversarial networks with de-
noising feature matching. In 5th International Conference on Learning Representations, ICLR

2017, Toulon, France, April 24-26, 2017, Workshop Track Proceedings, 2017.

[5] A. Bora, A. Jalal, E. Price, and A. G. Dimakis. Compressed sensing using generative models.
ICML’17 Proceedings of the 34th International Conference on Machine Learning, 70:537–546,

Aug 2017.

[6] Raymond A. Yeh, Chen Chen, Teck-Yian Lim, Alexander G. Schwing, Mark Hasegawa-
Johnson, and Minh N. Do. Semantic image inpainting with deep generative models. In 2017
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI,

USA, July 21-26, 2017, pages 6882–6890, 2017.
[7] Q. Yan and W. Wang. DCGANs for image super-resolution, denoising and debluring. 2017.

[8] O. Kupyn, V. Budzan, M. Mykhailych, D. Mishkin, and J. Matas. Deblurgan: Blind mo-

tion deblurring using conditional adversarial networks. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 8183–8192, June 2018.

[9] Jingwen Chen, Jiawei Chen, Hongyang Chao, and Ming Yang. Image blind denoising with
generative adversarial network based noise modeling. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), June 2018.

[10] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial nets. Advances in Neural Information Processing Sys-

tems 27 (NIPS 2014), 2014.
[11] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with

deep convolutional generative adversarial networks. In ICLR, 2016.
[12] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial

networks. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pages 214–223, International Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

20 YONG ZHENG ONG AND HAIZHAO YANG

[13] Junbo Jake Zhao, Michaël Mathieu, and Yann LeCun. Energy-based generative adversarial
networks. In ICLR, 2017.

[14] David Berthelot, Tom Schumm, and Luke Metz. BEGAN: boundary equilibrium generative

adversarial networks. CoRR, abs/1703.10717, 2017.
[15] Christopher Bowles, Liang Jeff Chen, Ricardo Guerrero, Paul Bentley, Roger N. Gunn,

Alexander Hammers, David Alexander Dickie, Maria del C. Valdés Hernández, Joanna M.
Wardlaw, and Daniel Rueckert. Gan augmentation: Augmenting training data using genera-

tive adversarial networks. ArXiv, abs/1810.10863, 2018.

[16] Sheng-Wei Huang, Che-Tsung Lin, Shu-Ping Chen, Yen-Yi Wu, Po-Hao Hsu, and Shang-
Hong Lai. Auggan: Cross domain adaptation with gan-based data augmentation. In Vittorio

Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair Weiss, editors, Computer Vision –

ECCV 2018, pages 731–744, Cham, 2018. Springer International Publishing.
[17] Qi Lei, Ajil Jalal, Inderjit S. Dhillon, and Alexandros G. Dimakis. Inverting deep generative

models, one layer at a time. CoRR, abs/1906.07437, 2019.

[18] David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hendrik Strobelt, Bolei Zhou, and
Antonio Torralba. Seeing what a gan cannot generate. ArXiv, abs/1910.11626, 2019.

[19] Zachary C. Lipton and Subarna Tripathi. Precise recovery of latent vectors from generative

adversarial networks. CoRR, abs/1702.04782, 2017.
[20] Antonia Creswell and Anil Anthony Bharath. Inverting the generator of A generative adver-

sarial network. CoRR, abs/1611.05644, 2016.
[21] V. Shah and C. Hegde. Solving linear inverse problems using gan priors: An algorithm with

provable guarantees. 2018 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 4609–4613, 2018.
[22] Anders Boesen Lindbo Larsen, Søren Kaae Sønderby, and Ole Winther. Autoencoding beyond

pixels using a learned similarity metric. CoRR, abs/1512.09300, 2015.

[23] Mihaela Rosca, Balaji Lakshminarayanan, David Warde-Farley, and S. Mohamed. Variational
approaches for auto-encoding generative adversarial networks. ArXiv, abs/1706.04987, 2017.

[24] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky. Adversarial generator-encoder

networks. CoRR, abs/1704.02304, 2017.
[25] Anh Nguyen, Jason Yosinski, Yoshua Bengio, Alexey Dosovitskiy, and Jeff Clune. Plug &

play generative networks: Conditional iterative generation of images in latent space. CoRR,

abs/1612.00005, 2016.
[26] Jeff Donahue, Philipp Krähenbühl, and Trevor Darrell. Adversarial feature learning. CoRR,

abs/1605.09782, 2016.
[27] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Alex Lamb, Mart́ın Arjovsky, Olivier Mas-

tropietro, and Aaron C. Courville. Adversarially learned inference. ArXiv, abs/1606.00704,

2017.
[28] Pascal Vincent, H. Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and

composing robust features with denoising autoencoders. In ICML ’08, 2008.
[29] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for

improved quality, stability, and variation. CoRR, abs/1710.10196, 2017.

[30] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal recon-

struction from highly incomplete frequency information. IEEE Transactions on Information
Theory, 52(2):489509, Feb 2006.

[31] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52(4):1289
– 1306, Apr 2006.

[32] M. Aharon, M. Elad, and A. Bruckstein. K-svd: An algorithm for designing overcomplete

dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):4311

– 4322, Oct 2006.
[33] J. Zhang, D. Zhao, and W. Gao. Group-based sparse representation for image restoration.

IEEE Transactions on Image Processing, 23(8):3336–3351, May 2014.
[34] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian. Bm3d image denoising with shape-

adaptive principal component analysis. Proc. Workshop on Signal Processing with Adaptive

Sparse Structured Representations (SPARS’09), Apr 2009.
[35] A. Buades, B. Coll, and J. . Morel. A non-local algorithm for image denoising. In 2005 IEEE

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05),

volume 2, pages 60–65 vol. 2, June 2005.
[36] Leonid I. Rudin, Stanley Osher, and Emad Fatemi. Nonlinear total variation based noise

removal algorithms. Physica D: Nonlinear Phenomena, 60(1):259–268, 1992.

GENERATIVE IMAGING AND IMAGE PROCESSING VIA GENERATIVE ENCODER 21

[37] P. Getreuer. Total Variation Inpainting using Split Bregman. Image Processing On Line,
2:147–157, 2012.

[38] Deepak Pathak, Philipp Krähenbühl, Jeff Donahue, Trevor Darrell, and Alexei Efros. Context

encoders: Feature learning by inpainting. In CVPR, 2016.
[39] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Generative

image inpainting with contextual attention. arXiv preprint arXiv:1801.07892, 2018.
[40] W. Dong, L. Zhang, G. Shi, and X. Wu. Image deblurring and super-resolution by adaptive

sparse domain selection and adaptive regularization. IEEE Transactions on Image Processing,

20(7):1838–1857, July 2011.
[41] Li Xu and Jiaya Jia. Two-phase kernel estimation for robust motion deblurring. 2010.

[42] R. Yan and L. Shao. Blind image blur estimation via deep learning. IEEE Trans Image

Process, 25(4):1910–21, Apr 2016.
[43] Victor Lempitsky Dmitry Ulyanov, Andrea Vedaldi. Deep image prior. 1711.10925, 2017.

[44] Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro

Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, and Wenzhe Shi.
Photo-realistic single image super-resolution using a generative adversarial network. pages

105–114, 07 2017.

[45] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the
wild. In Proceedings of International Conference on Computer Vision (ICCV), 2015.

[46] Thomas Ramstad. Bentheimer micro-ct with waterflood. http://www.digitalrocksportal.
org/projects/172, 2018.

[47] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. LSUN: construction of a

large-scale image dataset using deep learning with humans in the loop. CoRR, abs/1506.03365,
2015.

[48] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014. cite

arxiv:1412.6980Comment: Published as a conference paper at the 3rd International Confer-
ence for Learning Representations, San Diego, 2015.

[49] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.

[50] Zhou Wang, Alan Bovik, Hamid Sheikh, and Eero Simoncelli. Image quality assessment: From
error visibility to structural similarity. Image Processing, IEEE Transactions on, 13:600 – 612,

05 2004.

[51] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Günter Klam-
bauer, and Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a nash

equilibrium. CoRR, abs/1706.08500, 2017.
[52] H. Zhang, Zizhao Zhang, Augustus Odena, and H. Lee. Consistency regularization for gener-

ative adversarial networks. ArXiv, abs/1910.12027, 2020.

[53] Ting Chen, Xiaohua Zhai, M. Ritter, M. Lucic, and Neil Houlsby. Self-supervised gans via
auxiliary rotation loss. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR), pages 12146–12155, 2019.
[54] Yujun Shen, Jinjin Gu, Xiaoou Tang, and Bolei Zhou. Interpreting the latent space of gans

for semantic face editing. CoRR, abs/1907.10786, 2019.

[55] Xiaodan Liang, Hao Zhang, and Eric P. Xing. Generative semantic manipulation with con-

trasting GAN. CoRR, abs/1708.00315, 2017.

Received xxxx 20xx; revised xxxx 20xx.

E-mail address: e0011814@u.nus.edu

E-mail address: haizhao@purdue.edu

http://www.digitalrocksportal.org/projects/172
http://www.digitalrocksportal.org/projects/172
mailto:e0011814@u.nus.edu
mailto:haizhao@purdue.edu

	1. Introduction
	1.1. Related Work
	1.2. Contributions

	2. Applications
	2.1. Image Reconstruction/Compressed Sensing
	2.2. Denoising and Inpainting
	2.3. Deblurring
	2.4. Super-resolution

	3. Generative Encoder Framework
	3.1. Visualizing and understanding the relationship between latent spaces
	3.2. Loss Functions

	4. Training Details
	4.1. Training Data
	4.2. GAN
	4.3. AE
	4.4. Optimization in GE
	4.5. Baseline Methods

	5. Experimental Results
	5.1. Reconstruction Results
	5.2. Denoising, Deblurring, Super-resolution and Inpainting Results
	5.3. Quantitative Analysis
	5.4. Efficiency Analysis
	5.5. Visualizing feature spaces
	5.6. Flexibility of GE

	6. Conclusion
	REFERENCES

