
FRIEDRICHS LEARNING: WEAK SOLUTIONS OF PARTIAL DIFFERENTIAL
EQUATIONS VIA DEEP LEARNING

FAN CHEN

SCHOOL OF MATHEMATICAL SCIENCES, AND MOE-LSC,
SHANGHAI JIAO TONG UNIVERSITY, SHANGHAI 200240, CHINA (ALEXNWISH@SJTU.EDU.CN)

JIANGUO HUANG

SCHOOL OF MATHEMATICAL SCIENCES, AND MOE-LSC,
SHANGHAI JIAO TONG UNIVERSITY, SHANGHAI 200240, CHINA (JGHUANG@SJTU.EDU.CN)

CHUNMEI WANG

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF FLORIDA, GAINESVILLE, FL 32611, USA
(CHUNMEI.WANG@UFL.EDU)

HAIZHAO YANG

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, IN 47907, USA

(HAIZHAO@PURDUE.EDU)

Abstract. This paper proposes Friedrichs learning as a novel deep learning methodology that can learn the
weak solutions of PDEs via a minimax formulation, which transforms the PDE problem into a minimax optimization
problem to identify weak solutions. The name “Friedrichs learning” is to highlight the close relation between our
learning strategy and Friedrichs theory on symmetric systems of PDEs. The weak solution and the test function in the
weak formulation are parameterized as deep neural networks in a mesh-free manner, which are alternately updated to
approach the optimal solution networks approximating the weak solution and the optimal test function, respectively.
Extensive numerical results indicate that our mesh-free Friedrichs learning method can provide reasonably good
solutions for a wide range of PDEs defined on regular and irregular domains, where conventional numerical methods
such as finite difference methods and finite element methods may be tedious or difficult to be applied, especially for
those with discontinuous solutions in high-dimensional problems.

Key words. Partial Differential Equation; Friedrichs’ System; Minimax Optimization; Weak Solution; Deep
Neural Network; High Dimension; Complex Domain.

AMS subject classifications. 65M75; 65N75; 62M45.

1. Introduction. High-dimensional PDEs and PDEs defined on complex domains are
important tools in physical, financial, and biological models, etc. [46, 17, 62, 23, 61]. Generally
speaking, they do not have closed-form solutions making numerical solutions of such equations
indispensable in real applications. First, developing numerical methods for high-dimensional PDEs
has been a challenging task due to the curse of dimensionality in conventional discretization. Second,
conventional numerical methods rely on mesh generation that requires profound expertise and
programming skills. In particular, for problems defined in complicated domains, it is challenging
and time-consuming to implement conventional methods. As an efficient parametrization tool
for high-dimensional functions [7, 15, 52, 51, 58, 34, 37, 56, 57] with user-friendly software (e.g.,
TensorFlow and PyTorch), neural networks have been applied to solve PDEs via various approaches
recently. The idea of using neural networks to solve PDEs dates back to 1990s [45, 24, 13, 44] and
was revisited and popularized recently [14, 27, 16, 42, 59, 9, 47, 8, 36, 35, 11, 55, 48, 63, 6, 50, 41, 38].

Many network-based PDE solvers are concerned with the classical solutions that are differen-
tiable and satisfy PDEs in common sense. Unlike classical solutions, weak solutions are functions
for which the derivatives may not all exist but which are nonetheless deemed to satisfy the PDE
in some precisely defined sense. These solutions are crucial because many PDEs in modeling real-
world phenomena do not have sufficiently smooth solutions. Motivated by the seminal work in

1

2 Friedrichs Learning for Weak Solutions of PDEs

[6], we propose Friedrichs learning as an alternative method that can learn the weak solutions of
elliptic, parabolic, and hyperbolic PDEs in L2(Ω) via a novel minimax formulation devised and
analyzed in Section 2.3. Since the formulation is closely related to the work of Friedrichs theory on
symmetric systems of PDEs (cf. [22]), we call our learning strategy the Friedrichs learning. The
main idea is to transform the PDE problem into a minimax optimization problem to identify weak
solutions. Note that no regularity for the solution is required in Friedrichs learning, which is the
main advantage of the proposed method, making it applicable to a wide range of PDE problems,
especially those with discontinuous solutions. In addition, Friedrichs learning is capable of solving
PDEs with discontinuous solutions without a priori knowledge of the location of the discontinuity.
Although the current version of Friedrichs learning may not be able to provide highly accurate
solutions, obtaining a coarse solution without a priori knowledge of the discontinuity could provide
a rough estimation of the discontinuity and could be a good initial guess of conventional compu-
tation approaches for highly accurate solutions following the Int-Deep framework in [33]. Finally,
theoretical results are provided to justify the Firedrichs learning framework for various PDEs.

The main philosophy of Friedrichs learning is to reformulate a PDE problem into a minimax
optimization, the solution of which is a test deep neural network (DNN) that maximizes the loss
and a solution DNN that minimizes the loss. For a high-order PDE, we first reformulate it into a
first-order PDE system by introducing auxiliary variables, the weak form of which naturally leads
to a minimax optimization using integration by parts according to the theory of Friedrichs’ system
[22]. The above-mentioned feature is the crucial difference from existing deep learning methods for
weak solutions [16, 63]. Let us introduce the formulation of Friedrichs learning using first-order
boundary value problems (BVPs) with homogeneous boundary conditions without loss of generality.
The initial value problems (IVPs) can be treated as BVPs, where the time variable is considered to
be one more spatial variable. The non-homogeneous boundary conditions can be easily transferred
to homogenous ones by subtracting the boundary functions from the solutions.

In the seminal results by Friedrichs in [22] and other investigations in [5, 21], an abstract
framework of the boundary value problem of the first-order system was established, which is referred
to as Friedrichs’ system in the literature. Let us introduce the concept of Firedrichs’ system using
a concrete and simple example and illustrate the main idea and intuition of the Friedrichs learning
proposed in this paper. A more detailed abstract framework of Friedrichs learning will be discussed
later in Section 2. Let r ∈ N and Ω ⊂ Rd be an open and bounded domain with Lipschitz boundary
∂Ω. The notation (·)ᵀ denotes the transpose of a vector or a matrix throughout the paper. We
assume: 1) Ak ∈ [L∞(Ω)]r,r,

∑d
k=1 ∂kAk ∈ [L∞(Ω)]r,r, Ak = Aᵀ

k a.e. in Ω for k = 1, . . . , d, and

C ∈ [L∞(Ω)]r,r; 2) the full coercivity holds true, i.e., C + Cᵀ −
∑d

k=1 ∂kAk ≥ 2µ0Ir a.e. in Ω
for some µ0 > 0 and the identity matrix Ir ∈ Rr×r. Then the first-order differential operator
T : D → L with L = [L2(Ω)]r and D = [C∞0 (Ω)]r defined by Tu :=

∑d
k=1Ak∂ku+Cu is called the

Friedrichs operator, while the first-order system of PDE Tu = f is called the Friedrichs’ system,
where f is a given data function in L. Throughout this paper, the bold font will be used for vectors
and matrices in concrete examples. In our abstract framework, PDE solutions are considered as
elements of a Hilber space and, hence, they are not denoted as bold letters.

Friedrichs [22] also introduced an abstract framework for representing boundary conditions
via matrix valued boundary fields. First, let An :=

∑d
k=1 nkAk ∈ L∞(∂Ω;Mr), where n =

(n1, · · · , nd) ∈ Rd is the unit outward normal direction on ∂Ω, Mr is the set of matrix of size r× r,
and let M : ∂Ω→Mr be a matrix field on the boundary. Then a homogeneous Dirichlet boundary
condition of Friedrichs’ system is prescribed by (An−M)u = 0 on ∂Ω by choosing an appropriate
M to ensure the well-poseness of Friedrichs’ system. In real applications, M is given by physical
knowledge. Let V := N (An −M) and V ∗ := N (An + Mᵀ), where N is the null space of the

Friedrichs Learning for Weak Solutions of PDEs 3

argument. It has been proved that u solves the BVP

(1.1) Tu = f in Ω and (An −M)u = 0 on ∂Ω,

if and only if u solves the minimax problem

min
u∈V

max
v∈V ∗

L(u,v) :=
|(u, T̃v)L − (f ,v)L|

‖T̃v‖L
,

where T̃ : D → L is the formal adjoint of T . Hence, in our Friedrichs learning, DNNs are applied
to parametrize u and v to solve the above minimax problem to obtain the solution of the BVP
(1.1). Friedrichs learning also works for other kinds of boundary conditions.

This paper is organized as follows. In Section 2, we devise and analyze Friedrichs minimax
formulation for weak solutions of PDEs. In Section 3, several concrete examples of PDEs and their
minimax formulations are provided. In Section 4, network-based optimization is introduced to solve
the minimax problem in Friedrichs formulation. In Section 5, a series of numerical examples are
provided to demonstrate the effectiveness of the proposed Friedrichs learning. Finally, we conclude
this paper in Section 6.

2. Friedrichs Minimax Formulation for Weak Solutions. We shall first briefly review
Friedrichs’ system in a Hilbert space setting [1, 10]. We shall introduce and analyze Friedrichs
minimax formulation for weak solutions which is the foundation of Friedrichs learning.

2.1. An Abstract Framework of Friedrichs’ System. Firstly, we recall some basic
results on Friedrichs’ system for later uses [10, 1]. We assume L is a real Hilbert space associated
with the inner product (·, ·)L and the induced norm ‖ · ‖L. The dual space of L, denoted by L′, can
be identified naturally with L by the Riesz representation theorem. For a dense subspace D of L,
we consider two linear operators T : D → L and T̃ : D → L satisfying the following properties: for
any u, v ∈ D, there exists a positive constant C such that

(Tu, v)L = (u, T̃ v)L,(2.1)

‖(T + T̃)u‖L ≤ C‖u‖L.(2.2)

Here, T̃ is called the formal adjoint of T . As shown in [1, Lemma 2.1], we define a graph space W

(2.3) W = {u ∈ L; Tu ∈ L},

which is a Hilbert space with respect to the graph norm ‖ · ‖T = (·, ·)1/2
T induced by the inner

product (·, ·)T = (·, ·)L + (T ·, T ·)L. In addition, owing to (2.2), we have

W = {u ∈ L; T̃ u ∈ L}.

In other words, W is also a graph space associated with T̃ .
The abstract framework of Friedrichs’ system concerns the solvability of the problem

(2.4) Tu = f ∈ L,

and its solution falls in the graph space W . Obviously, the problem (2.4) may not be well-posed
since its solution in W may not be unique. We are interested in constructing a subspace V ⊆ W
such that T : V → L is an isomorphism. A standard way is carried out as follows. We first define
a self-adjoint boundary operator B ∈ L(W,W ′) as follows (cf. [1]). For any u, v ∈W ,

(2.5) 〈Bu, v〉W ′×W = (Tu, v)L − (u, T̃ v)L.

4 Friedrichs Learning for Weak Solutions of PDEs

This operator plays a key role in the forthcoming analysis. Moreover, the identity (2.5) can be
reformulated in the form

(Tu, v)L = (u, T̃ v)L + 〈Bu, v〉W ′×W ,

which is usually regarded as an abstract integration by parts formula (cf. [1]).

Next, we assume that there exists an operator M ∈ L(W,W ′) such that

〈Mw,w〉 ≥ 0, ∀w ∈W,(2.6)

W = N (B −M) +N (B +M),(2.7)

where N is the null space of its argument. Furthermore, let M∗ ∈ L(W,W ′) denote the adjoint
operator of M given by 〈M∗u, v〉W ′×W = 〈Mv, u〉W ′×W , ∀u, v ∈W.

To find V such that the problem (2.4) is well-posed, we should make an additional assumption
for L as follows; i.e.,

(2.8) ((T + T̃)v, v)L ≥ 2µ0‖v‖2L, ∀ v ∈ L,

where µ0 is a positive constant. Then we choose

(2.9) V = N (B −M), V ∗ = N (B +M∗).

We have the following important theory for Friedrichs’ system [1, Lemma 3.2 and Theorem 3.1].

Theorem 2.1. Assume (2.2) (2.8), (2.6) and (2.7) hold true. Let V and V ∗ be given by (2.9).
The following statements hold true:

1. For any v ∈W , there holds

(2.10) µ0‖v‖L ≤ ‖Tv‖L, µ0‖v‖L ≤ ‖T̃ v‖L.

2. For any f ∈ L, problem (2.4) has a unique solution in V . In other words, T is an isomor-
phism from V onto L. Moreover, T̃ is an isomorphism from V ∗ onto L.

2.2. First Order PDEs of Friedrichs Type. As a typical application of the above
framework, we restrict L to be the space of square integral (vector-valued) functions over an open
and bounded domain Ω ⊂ Rd with Lipschitz boundary, D to be the space of test functions, and T to
be a first-order differential operator with its formal adjoint T̃ . In particular, we take L = [L2(Ω)]r,
r ∈ N and D = [D(Ω)]r, where D(Ω) = C∞0 (Ω). D is thus dense in L. Consider T : D → L as
follows

(2.11) Tu =

d∑
k=1

Ak∂ku+Cu = f , ∀u ∈ D.

The standard assumptions are imposed on Ak and C for Friedrichs’ system [18, 19, 22]:

C ∈ [L∞(Ω)]r,r,(2.12)

Ak ∈ [L∞(Ω)]r,r, k = 1, · · · , d and
d∑

k=1

∂kAk ∈ [L∞(Ω)]r,r(2.13)

Ak = Aᵀ
k, a. e. in Ω, k = 1, · · · , d.(2.14)

Friedrichs Learning for Weak Solutions of PDEs 5

The formal adjoint T̃ : D → L of T can be defined by

(2.15) T̃u = −
d∑

k=1

Ak∂ku+ (Cᵀ −
d∑

k=1

∂kAk)u, ∀u ∈ D.

It is easy to see that T and T̃ satisfy (2.1)-(2.2). All the results in this section hold true for
Friedrichs’ system satisfying (2.12)-(2.14).

Regarding to the abstract Friedrichs’ system, an explicit representation of B could be found;
however, it is impossible for M on the abstract level. Assume B =

∑d
k=1 nkAk is well-defined

a.e. on ∂Ω where n = (n1, · · · , nd)ᵀ is the unit outward normal vector of ∂Ω. For simplicity of
notations, we set Hs = [Hs]r with Hs being the usual Sobolev space of order s, and C1 = [C1]r

with C1 being the space of continuously differentiable functions.

Lemma 2.2. [3, 39] For u,v ∈ H1(Ω) ⊂W (Ω), there holds

〈Bu,v〉W ′(Ω)×W (Ω) = 〈Bu,v〉
H−

1
2 (∂Ω)×H

1
2 (∂Ω)

,

where W (Ω) = {u ∈ L(Ω); Tu ∈ L(Ω)} and W ′(Ω) is the dual space of W (Ω). Specifically,
〈Bu,v〉W ′(Ω)×W (Ω) =

∫
∂Ω v

ᵀBuds, for any u,v ∈ C∞0 (Rd).
If Ω has segment property [4], C1(Ω) is thus dense in H1(Ω) and further is dense in W (Ω).

Therefore, the representation could be uniquely extended to the whole space W (Ω) in the sense
that for any u ∈W (Ω) and v ∈ H1(Ω),

(2.16) 〈Bu,v〉W ′(Ω)×W (Ω) = 〈Bu,v〉
H−

1
2 (∂Ω)×H

1
2 (∂Ω)

.

The coercivity condition on T dictated by the positiveness condition on the coefficients Ak and
C [18, 19, 20] is needed to show the well-posedness of PDEs of Friedrichs type. After some direct
manipulation, the abstract coercivity condition (2.8) is equivalent to the following full coercivity
for Friedrichs PDEs:

(2.17) C +Cᵀ −
d∑

k=1

∂kAk ≥ 2µ0Ir, a.e., in Ω,

where µ0 is a positive constant and Ir is the r×r identity matrix. If a system does not satisfies the
coercivity condition (2.17) we can introduce a feasible transformation so that the modified system
satisfies this condition. In [10], the authors introduced the so-called partial coercivity condition to
study the mathematical theory of the corresponding system. Readers are referred to [10] for more
details.

2.3. Friedrichs Minimax Formulation. Throughout this subsection, we assume all the
conditions given in Theorem 2.1 hold true. Recall that V = N (B−M) and V ∗ = N (B+M∗) with
M ∈ L(W,W ′) satisfying conditions (2.6)-(2.7). For a given f ∈ L, find the solution u ∈ V such
that

(2.18) Tu = f,

or equivalently,

(2.19) (Tu, v)L = (f, v)L, ∀ v ∈ L.

6 Friedrichs Learning for Weak Solutions of PDEs

In most cases, L is a differential operator whose action on a function should be understood in the
sense of distributions. u is thus called the weak solution of the primal variational equation (2.19).
We restrict v ∈ V ∗ ⊂ L. From (2.5),

(Tu, v)L =(u, T̃ v)L + 〈Bu, v〉W ′×W

=(u, T̃ v)L + 〈B −M
2

u, v〉W ′×W + 〈B +M

2
u, v〉W ′×W

=(u, T̃ v)L + 〈u, B +M∗

2
v〉W ′×W = (u, T̃ v)L,

where we used u ∈ V = N (B −M) and v ∈ V ∗ = N (B +M∗). This, combined with (2.19), gives

(2.20) (u, T̃ v)L = (f, v)L, ∀ v ∈ V ∗.

For u ∈ V , (2.20) is equivalent to (2.19). For u ∈ L satisfying (2.20), u is called the weak solution
of the dual variational equation (2.20).

For u ∈ V , v ∈ V ∗, we define

(2.21) L(u, v) :=
|(u, T̃ v)L − (f, v)L|

‖T̃ v‖L
.

According to the estimate (2.10), we have

|(u, T̃ v)L − (f, v)L| ≤ ‖u‖L‖T̃ v‖L + ‖f‖L‖v‖L ≤ (‖u‖L +
1

µ0
‖f‖L)‖T̃ v‖L,

where µ0 is given in (2.8). Therefore, the functional L(u, v) is bounded with respect to v ∈ V ∗ for
a fixed u ∈ L.

Thus we can reformulate the problem (2.18) or equivalently the problem (2.19) as the following
minimax problem formally:

(2.22) min
u∈V

max
v∈V ∗

L(u, v) := min
u∈V

max
v∈V ∗

|(u, T̃ v)L − (f, v)L|
‖T̃ v‖L

,

to identify the weak solution of the primal variational equation (2.19).
Theorem 2.3. Assume all the conditions given in Theorem 2.1 hold true. Then u is the unique

weak solution of the primal variational equation (2.19) if and only if u is the unique solution that
solves the minimax problem (2.22).

Proof. On one hand, if u ∈ V is a weak solution of (2.19), we have from (2.20) that L(u, v) = 0
for all v ∈ V ∗. Thus, u is a solution of the minimax problem (2.22).

One the other hand, if u is a solution of the minimax problem (2.22), then

max
v∈V ∗

L(u, v) = max
v∈V ∗

|(u, T̃ v)L − (f, v)L|
‖T̃ v‖L

= 0.

Thus, we have L(u, v) = 0 for all v ∈ V ∗. This implies

(u, T̃ v)L − (f, v)L = 0, ∀ v ∈ V ∗.

Since u is in V , the above equation gives

(Tu− f, v)L = 0, ∀ v ∈ V ∗.

Friedrichs Learning for Weak Solutions of PDEs 7

Observing that D belongs to V ∗ and is dense in L, the above equation implies that u is a weak
solution of the primal variational equation (2.19).

Finally, under the the conditions given in Theorem 2.1, it is well known that the weak solution
u of the primal variational equation (2.19) exists and is unique. This completes the proof of this
theorem.

Note that the above discussion and Theorem 2.3 are concerned with the weak solution of the
primal variational equation (2.19) with a solution u being in V . It is also of interest to discuss
the weak solution u of the dual variational equation (2.20) with u being in L due to Friedrichs (cf.
[22]). According to similar arguments for proving Theorem 2.3, we have the following theorem.

Theorem 2.4. Assume all the conditions given in Theorem 2.1 hold true. Then u is a weak
solution of the dual variational equation (2.20) if and only if u is a solution of the following minimax
problem:

(2.23) min
u∈L

max
v∈V ∗

L(u, v) = min
u∈L

max
v∈V ∗

|(u, T̃ v)L − (f, v)L|
‖T̃ v‖L

.

Note that the weak solution of the dual variational equation (2.20) in L may not be unique
which is also true for the minimax problem (2.23). However, their solution is unique for Friedrichs’
system mentioned in the Subsection 2.2, due to the equivalence between the weak solution and the
strong solution (cf. [22]). In this case, the two problems (2.22) and (2.23) are equivalent.

Theorems 2.3-2.4 have covered various interesting equations in real applications. However, we
would like to mention that Friedrichs learning can be extended to a more general setting, e.g.,
u ∈ L but the data function f in Tu = f is not necessarily in L. Since the solution space L is more
generic than V including solutions with discontinuity, this setting has a wide range of applications
in fluid mechanics. We will show this application by a numerical example for the advection-reaction
problem in Section 5. Theoretical analysis for more general cases is left as future work.

3. Examples of PDEs and the Corresponding Minimax Formulation. Using the
abstract framework and the minimax formulation developed in Section 2, we will derive the minimax
formulations for several typical PDEs. From now on, we will denote by (·, ·)Ω the standard L2 inner
product, which induces the L2 norm ‖ · ‖Ω. These notations also apply to L2 smooth vector-valued
functions. For simplicity, we will focus on PDEs with homogeneous boundary conditions throughout
this section.

3.1. Advection-Reaction Equation. The advection-reaction equation seeks u such that

(3.1) µu+ β · ∇u = f,

where β = (β1, · · · , βd)ᵀ ∈ [L∞(Ω)]d , ∇ · β ∈ L∞(Ω), µ ∈ L∞(Ω) and f ∈ L2(Ω). Compared with
(2.11), (3.1) is a Friedrichs’ system by setting Ak = βk for k = 1, 2, ..., d and C = µ.

We assume there exists µ0 > 0 such that

(3.2) µ(x)− 1

2
∇ · β(x) ≥ µ0 > 0, a.e. in Ω.

Thus, the full coercivity condition in (2.17) holds true. The graph space W given by (2.3) is

W = {w ∈ L2(Ω); β · ∇w ∈ L2(Ω)}.

We define the inflow and outflow boundary for the advection-reaction equation (3.1):

(3.3) ∂Ω− = {x ∈ ∂Ω;β(x) · n(x) < 0}, ∂Ω+ = {x ∈ ∂Ω;β(x) · n(x) > 0}.

8 Friedrichs Learning for Weak Solutions of PDEs

To enforce boundary conditions, we choose from the physical interpretation that

(3.4) V = {v ∈W ; v|∂Ω− = 0}, V ∗ = {v ∈W ; v|∂Ω+ = 0}.

In this case, it is easy to check that the conditions (2.6) and (2.7) hold true. By (2.11),

T̃ v = −
d∑
i=1

(
βi
∂v

∂xi
+

∂

∂xi
βiv
)

+Cᵀv = −β · ∇v − (∇ · β)v + µv.

The minimax problem is thus given as follows

min
u∈V

max
v∈V ∗

L(u, v) = min
u∈V

max
v∈V ∗

|
(
u,−(β · ∇v + (∇ · β)v) + µv

)
Ω
− (f, v)Ω|

‖β · ∇v + (∇ · β)v − µv‖Ω
.

Note that if the coercivity condition (3.2) does not hold true, we can introduce a transformation
u = eλ0tũ, so that the advection-reaction equation (3.1) in ũ satisfies (3.2) for sufficiently large
constant λ0 > 0.

3.2. Scalar Elliptic PDEs. Consider the second-order PDE to find u satisfying

(3.5) −∆u+ µu = f, in Ω,

where Ω ⊂ Rd, µ ∈ L∞(Ω) is positive and uniformly bounded away from zero, f ∈ L2(Ω). This
PDE can be rewritten into a first-order PDE system by introducing an auxiliary function v; i.e.,

v +∇u = 0, µu+∇ · v = f.

This first order system could be formulated into a Friedrichs’ system with r = d + 1. The
Hilbert space L is chosen as L = [L2(Ω)]r. Let ũ = (vᵀ, u)ᵀ ∈ L. For k = 1, 2, ..., d, Ak =[

0 ek

(ek)ᵀ 0

]
, C =

[
Id 0
0 µ

]
, where ek is the k-th canonical basis of Rd. Since µ > 0 and has

a lower bound away from zero, the full coercivity condition (2.17) is satisfied. The graph space is

W = H(div; Ω)×H1(Ω).

One possible choice of the Dirichlet boundary condition is as follows

(3.6) V = V ∗ = H(div; Ω)×H1
0 (Ω) = {(vᵀ, u)ᵀ ∈W ; u|∂Ω = 0}.

The choices of boundary conditions are not unique obviously. By introducing auxiliary variables,
the second-order linear PDE can be reformulated into a first-order PDE system. Finally, the weak
solution of (3.5) can be found by solving the equivalent minimax problem in (2.22).

Denote the test function by ψ = (ψᵀ
v, ψu)ᵀ in the space V ∗. The minimax problem can be

presented as

min
ũ∈V

max
ψ∈V ∗

L(ũ,ψ) = min
ũ∈V

max
ψ∈V ∗

|
(
− v, ψv −∇ψu

)
Ω

+ (u, µψu −∇ · ψv)Ω − (f, ψu)Ω|
‖((ψv −∇ψu)ᵀ, µψu −∇ · ψv)ᵀ‖Ω

.

To reduce the computational cost, we will reformulate the above formulation into a minimax prob-
lem in a primal form. To this end, letting ψv = ∇ψu, and noting that ũ = (∇uᵀ, u)ᵀ, we have by
a direct manipulation that

L(ũ,ψ) =
|(u, µψu −∆ψu)Ω − (f, ψu)Ω|

‖µψu −∆ψu‖Ω
,

Friedrichs Learning for Weak Solutions of PDEs 9

which induces the following minimax problem

(3.7) min
u∈H1

0 (Ω)
max

ψu∈H1
0 (Ω)
L(u, ψu) = min

u∈H1
0 (Ω)

max
ψu∈H1

0 (Ω)

|(u, µψu −∆ψu)Ω − (f, ψu)Ω|
‖µψu −∆ψu‖Ω

.

In fact, we can derive the above minimax problem in a rigorous way. From (3.5), we have

(−∆u+ µu, ψu) = (f, ψu), ∀ψu ∈ H1
0 (Ω),

which, from the usual integration by parts twice, gives

(u, µψu −∆ψu)Ω = (f, ψu)Ω, ∀ψu ∈ H1
0 (Ω).

This will naturally give the minimax problem (3.7).

3.3. Maxwell’s Equation in the Diffusion Regime. The Maxwell’s equations in R3

in the diffusive regime could be considered as

(3.8) µH +∇×E = f , σE −∇×H = g,

with µ and σ being two positive functions in L∞(Ω) and uniformly bounded away from zero.
Three-dimensional functions f , g lie in the space [L2(Ω)]3 and the solution functions (Hᵀ,Eᵀ)ᵀ

are in the space [L2(Ω)]3 × [L2(Ω)]3. In Equation (2.11), set r = 6 and let Ak ∈ R6×6 and C be

Ak =

[
0 Rk

(Rk)ᵀ 0

]
, C =

[
µ · I3 0

0 σ · I3

]
, for k = 1, 2, 3. Here, the entries ofRkij = sign(i−j)

if i = k + 1(mod 3) and Rkij = 0 otherwise. The graph space is defined as W = [H(curl; Ω)]3 ×
[H(curl; Ω)]3. One example of the boundary condition is V = V ∗ = [H(curl; Ω)]3 × [H0(curl; Ω)]3.
The function pair u := (Hᵀ,Eᵀ)ᵀ ∈ W is in V whenever E × n|∂Ω = 0. Let ψ = (ψᵀ

H ,ψ
ᵀ
E)ᵀ be

the test function in V ∗. Then the minimax problem in (2.22) becomes

min
u∈V

max
ψ∈V ∗

|
(
H,−∇×ψE + µψH

)
Ω

+
(
E,∇×ψH + σψE

)
Ω
− (f ,ψH)Ω − (g,ψE)Ω|

‖((−∇×ψE + µψH)ᵀ, (∇×ψH + σψE)ᵀ)ᵀ‖Ω
.(3.9)

4. Deep Learning-Based Solver. To complete the introduction of Friedrichs learning,
we introduce a deep learning-based method to solve the minimax optimization in (2.22) or (2.23)
for the weak solution of (2.18) or (2.20) in this section. For simplicity, we will focus on the minimax
optimization (2.22) to identify the weak solution of (2.18).

4.1. Overview. In the deep learning-based method, one solution DNN, φs(x; θs), is ap-
plied to parametrize the weak solution u in (2.22) and another test DNN, φt(x; θt), is used to
parametrize the test function ψ in (2.22). Here, θs and θt are the parameters to be identified such
that

(θ̄s, θ̄t) = arg min
θs

max
θt

L(φs(x; θs), φt(x; θt))

= arg min
θs

max
θt

|(φs(x; θs), T̃ φt(x; θt))Ω − (f, φt(x; θt))Ω|
‖T̃ φt(x; θt)‖Ω

,
(4.1)

under the constraints
φs(x; θs) ∈ V and φt(x; θt) ∈ V ∗.

For simplicity, we use L(θs, θt) for short to represent L(φs(x; θs), φt(x; θt)) from now on.

10 Friedrichs Learning for Weak Solutions of PDEs

4.2. Network Implementation. Now, we will introduce the network structures of the
solution DNN and test DNN used in the previous section. In this paper, all DNNs are chosen as
ResNet [29] defined as follows. Let φ(x; θ) denote such a network with an input x and parameter
θ, which is defined recursively using a nonlinear activation function σ as follows:

h0 = V x, g` = σ(W`h`−1 + b`),h` = Ū`h`−2 +U`g`, ` = 1, 2, . . . , L, φ(x; θ) = aᵀhL,(4.2)

where V ∈ Rm×d, W` ∈ Rm×m, Ū` ∈ Rm×m, U` ∈ Rm×m, b` ∈ Rm for ` = 1, . . . , L, a ∈ Rm,
h−1 = 0. Throughout this paper, U` is set as an identity matrix in the numerical implementation
of ResNets for the purpose of simplicity. Furthermore, as used in [16], we set Ū` as the identify
matrix when ` is even and set Ū` = 0 when ` is odd. θ consists of all the weights and biases
{W l, bl}Ll=0. The number m and L are called the width and the depth of the network, respectively.
The activation function σ is problem-dependent. For example, if the DNN as a test function is
required to be continuously differentiable, the Tanh activation function can be chosen to guarantee
that our DNN is in C∞; if it is desired that φ(x; θ) is in the Hk space for k ∈ N, the activation
function ReLUk+1(x) could be used, where ReLU(x) := max{0, x}.

4.3. Unconstrained Minimax Problem. When the domain becomes relatively com-
plex, the penalty method may be employed to solve the constrained minimax optimization in (4.1).
For this purpose, we shall introduce a distance to quantify how good the solution DNN and test
DNN satisfy their constraints. Such a distance is specified according to the boundary conditions.
Denote by dist(φ(x; θ), V) the distance between a DNN φ(x; θ) and a space V . Therefore, the
penalty terms of boundary conditions can be written as

(4.3) Lb(θs, θt) := λ1dist(φs(x; θs), V) + λ2dist(φt(x; θt), V
∗),

where λ1 and λ2 are two positive hyper-parameters. Finally, the constraint minimax problem (4.1)
can be formulated into the following unconstrained minimax problem

(4.4) (θ̄s, θ̄t) = arg min
θs

max
θt

(
L(θs, θt) + Lb(θs, θt)

)
,

which can be solved to obtain the solution DNN φs(x; θ̄s) as the weak solution of the given PDE
in (2.18) by Friedrichs Learning.

4.4. Special Networks for Different Boundary Conditions. As discussed in [26, 25],
it is possible to build special networks to satisfy various boundary conditions automatically, which
can simplify the unconstrained optimization (4.4) into

(4.5) (θ̄s, θ̄t) = arg min
θs

max
θt

L(θs, θt).

This optimization problem (4.5) is easier to solve compared to (4.4) since two hyperparamters λ1

and λ2 in (4.3) are dropped. Note that for a regular PDE domain, e.g., a hypercube or a ball, it is
simple to construct such special networks satisfying various boundary conditions automatically.

Let us take the case of a homogeneous Dirichlet boundary condition as an example. For other
cases, the readers are referred to [26, 25]. A DNN satisfying Dirichlet boundary condition ψ(x) =
g(x) on ∂Ω can be constructed by φ(x; θ) = h(x)φ̂(x; θ) + b(x), where φ̂ is a generic network as
in (4.2), and h(x) is a specifically chosen function such that h(x) = 0 on ∂Ω, and b(x) is chosen
such that b(x) = g on ∂Ω. For example, if Ω is a d-dimensional unit ball, then φ(x; θ) can take the
form φ(x; θ) = (|x|2 − 1)φ̂(x; θ) + b(x). For another example, if Ω is the d-dimensional hyper-cube

[−1, 1]d, then φ(x; θ) can take the form φ(x; θ) =
d∏
i=1

(x2
i − 1)φ̂(x; θ) + b(x).

Friedrichs Learning for Weak Solutions of PDEs 11

4.5. Network Training. Once the solution DNN and test DNN have been set up, the
rest is to train them to solve the minimax problem in (4.4). The stochastic gradient descent (SGD)
method or its variants (e.g., RMSprop [30] and Adam [43]) is an efficient tool to solve this problem
numerically. Although the convergence of SGD for the minimax problem is still an active research
topic [54, 12, 60], empirical success shows that SGD can provide a good approximate solution. The
training algorithm and main numerical setup are summarized in Algorithm 1.

In Algorithm 1, the outer iteration loop takes n iterations. Each inner iteration loop contains ns
steps of θs updates and nt steps of θt updates. In each inner iteration for updating θs, we generate
two new sets of random samples {x1

i }Ni=1 ⊂ Ω and {x2
i }
Nb
i=1 ⊂ ∂Ω following uniform distributions.

In most of the examples, the Latin Hyper-cube Sampling method is employed to generate random
points in order to simulate the distributional characteristics even for the relatively small number of
samples. We define the empirical loss of these training points for the Friedrichs’ system (2.11) as

Lt(θs, θt) := L̂(θs, θt) + L̂b(θs, θt),(4.6)

where L̂(θs, θt) := |L̂n(θs,θt)|
L̂d(θs,θt)

with

L̂n(θs, θt) :=
A(Ω)

N1

N1∑
i=1

(d∑
j=1

∂

∂xj
(−Ajφt(x

1
i ; θt)), φs(x

1
i ; θs)

)
+
A(Ω)

N1

N1∑
i=1

(
Cᵀφt(x

1
i ; θt), φs(x

1
i ; θs)

)
−A(Ω)

N1

N1∑
i=1

(
f(x1

i), φt(x
1
i ; θt)

)
+
A(∂Ω)

N2

N2∑
i=1

(
(
d∑
j=1

Ajnj)φs(x
2
i ; θs), φt(x

2
i ; θt)

)
,

L̂d(θs, θt) :=
A(Ω)

N1

N1∑
i=1

‖
d∑
j=1

∂

∂xj
(−Ajφt(x

1
i ; θt)) +Cᵀφt(x

1
i ; θt)‖22,

where (·, ·) denotes the inner product of two vectors, ‖ · ‖2 denotes the 2-norm of vectors and A(·)
is denoted as the area or volume of the integral region. As for the boundary loss, let us take the
Dirichlet boundary condition u(x) = gd(x) as an example. In this case, the boundary loss can be
formulated as

L̂b(θs, θt) :=
A(∂Ω)

N2

N2∑
i=1

‖φs(x2
i , θs)− gd(x2

i)‖22.

As mentioned in Section 4.4, if the solution DNN and test DNN are built to satisfy their boundary
conditions automatically, L̂b(θs, θt) is zero.

Next, we compute the gradient of Lt(θs, θt) with respect to θs, denoted by gs, which is known
as the gradient descent direction. The gradient is evaluated via the autograd in PyTorch, which is
essentially equivalent to a sequence of chain rules to compute the gradient since the loss function
is the composition of several simple functions with explicit formulas. Thus, θs can be updated by
applying one step of gradient descent with a step size ηs as follows: θs ← θs − ηsgs. In each outer
iteration of Algorithm 1, we repeatedly sample new training points and update θs for ns steps.

In each inner iteration, θt can be updated similarly to maximize the empirical loss Lt(θs, θt). In
each inner iteration for updating θt, we generate random samples and evaluate the gradient of the
empirical loss with respect to θt, denoted by gt. Then θt can be updated via one step of gradient
ascent with a step size ηt as follows: θt ← θt + ηtgt. In each outer iteration of Algorithm 1, we
repeatedly sample new training points and update θt for nt steps.

We would like to emphasize that minimax optimization problems are in general more challenging
to solve than minimization problems arising in network-based PDE solvers in the strong form. Note

12 Friedrichs Learning for Weak Solutions of PDEs

that, when the test DNN is fixed, the loss function in (4.1) is a convex functional of the solution
DNN. Hence, the difficulty of the minimization problem when the test DNN is fixed is the same as
the network-based least squares method. No matter what the test function is, the gradient descent
update of θs can improve the solution DNN as long as the gradient is not zero and the step size is
appropriate. For a fixed solution DNN, the maximization problem over the test DNN is not convex
both in the parameter space and in the DNN space.

To further facilitate the convergence of Friedrichs learning, a restarting strategy is employed
to obtain the restarted Friedrichs learning in Algorithm 1, which is in the same spirit of typical
restarted iterative solvers in numerical linear algebra, e.g., the restarted GMRES [40], or the restart
strategies in optimization [2, 28, 53, 32]. For simplicity and without loss of generality, the restarted
Friedrichs learning is introduced for PDEs with Dirichlet boundary conditions. For other boundary
conditions, the restarted Friedrichs learning can be designed similarly.

Algorithm 1 Friedrichs Learning for Weak Solutions of PDEs.

Require: The desired PDE.
Ensure: Parameters θt and θs solving the minimax problem in (4.4).

Set iteration parameters n, ns, and nt. Set sample size parameters N and Nb. Set step sizes η
(k)
s

and η
(k)
t in the k-th outer iteration.

Initialize φs(x; θ0,0
s) and φt(x; θ0,0

t).
for k = 1, · · · , n do

for j = 1, · · · , ns do
Generate uniformly distributed sample points {x1

i }Ni=1 ⊂ Ω and {x2
i }
Nb
i=1 ⊂ ∂Ω.

Compute the gradient of the loss function in (4.6) at the point (θk−1,j−1
s , θk−1,0

t) with respect

to θs and denote it as g(θk−1,j−1
s , θk−1,0

t).

Update θk−1,j
s ← θk−1,j−1

s − η(k)
s g(θk−1,j−1

s , θk−1,0
t) with a step size η

(k)
s .

end for
θk,0s ← θk−1,ns

s .
for j = 1, · · · , nt do

Generate uniformly distributed sample points {x1
i }Ni=1 ⊂ Ω and {x2

i }
Nb
i=1 ⊂ ∂Ω.

Compute the gradient of the loss function in (4.6) at (θk,0s , θk−1,j−1
t) with respect to θt and

denote it as g(θk,0s , θk−1,j−1
t).

Update θk−1,j
t ← θk−1,j−1

t + η
(k)
t g(θk,0s , θk−1,j−1

t) with a step size η
(k)
t .

end for
θk,0t ← θk−1,nt

t .
if Stopping criteria is satisfied then

Return θs = θk,0s and θt = θk,0t .
end if

end for

5. Numerical Experiments. In this section, all hyperparameters are listed in Table 5.1.
We set the solution DNN φs(x, θs) as a fully connected ResNet with ReLU activation functions,
depth 7, and width ms, where ms is problem dependent. The activation of φs(x, θs) is chosen as
ReLU due to its ability to approximate functions with low regularity. The test DNN φt(x, θt) has
the same structure with depth 7 and width mt. To ensure the smoothness of φt(x, θt), we employ
the Tanh activation function. The optimizers for updating φs(x, θs) and φt(x, θt) are chosen as
Adam and RMSprop, respectively. All of our experiments share the same setting for network
structures and optimizers. At the pre-training phase we always set the learning rate to be larger

Friedrichs Learning for Weak Solutions of PDEs 13

Notation Meaning

d the dimension of the problem

np the number of pre-training iterations

n the number of outer iterations

ηps the pre-training learning rate for optimizing the solution network

ηpt the pre-training learning rate for optimizing the test network

η
(0)
s the initial learning rate for optimizing the solution network

η
(0)
t the initial learning rate for optimizing the test network

νs the decaying rate for ηs
νt the decaying rate for ηt
ms the width of each layer in the solution network

mt the width of each layer in the test network

ns the number of inner iterations for the solution network

nt the number of inner iterations for the test network

N the number of training points inside the domain

Nb the number of training points on the domain boundary
Table 5.1

Parameters in the model and algorithm.

than the following training phase. Thereafter, to ensure an effective and stable training process, the
learning rate in the optimization is updated in an exponentially decaying scheme. More precisely,

at the k-th iteration, we set the learning rate η
(k)
s = η

(0)
s (1

10)(k/νs) for the solution DNN, where η
(0)
s

is the initial learning rate and νs is the decaying rate. Similarly, we set η
(k)
t = η

(0)
t (1

10)(k/νt) for test
DNN.

Throughout this section, special networks satisfying boundary conditions automatically are
used to avoid tuning the parameters λ1 and λ2 in (4.3); the inner iteration numbers are set as
ns = 1 and nt = 1. The values of other parameters listed in Table 5.1 will be specified later.

To measure the solution accuracy, the following discrete relative L2 error at uniformly dis-
tributed test points in the domain is applied; i.e.,

eL2(θs) :=


∑
i
‖φs(xi; θs)− u∗(xi)‖22∑

i
‖u∗(xi)‖22


1
2

,

where u∗ is the exact solution, ‖ · ‖2 denotes the 2-norm of a vector. In the case when the true
solution is continuous, the following discrete relative L∞ error at uniformly distributed test points
in the domain is also applied; i.e.,

eL∞(θs) :=
maxi(‖φs(xi; θs)− u∗(xi)‖∞)

maxi(‖u∗(xi)‖∞)
,

where ‖ · ‖∞ denotes the L∞-norm of a vector. In most examples, we choose at least 10, 000 testing
points for error evaluation. When the dimension is high or the value of function surges, we may
choose 50, 000 or even 100, 000 testing points.

5.1. Advection-Reaction Equation with Plain Discontinuity. In the first example,
we identify the weak solution in L2(Ω) of the advection-reaction equation in (3.1) with discontinuous

14 Friedrichs Learning for Weak Solutions of PDEs

solutions. Following Example 2 in [31], we choose the velocity β = (1, 9/10)ᵀ and µ = 1 in the
domain Ω = [−1, 1]2. We choose the right-hand-side function f and the boundary function g such
that the exact solution is

(5.1) u∗(x, y) =

{
sin(π(x+ 1)2/4) sin(π(y − 9

10x)/2) for − 1 ≤ x ≤ 1, 9
10x < y ≤ 1,

e−5(x2+(y− 9
10
x)2) for − 1 ≤ x ≤ 1, −1 ≤ y < 9

10x.

The exact solution is visualized in Figure 5.1(b). The discontinuity of the initial value function will
propagate along the characteristic line y = 9x/10. Hence, the derivative of the exact solution does
not exist along that line. Classical network-based least square algorithms in the strong form will
encounter a large residual error near the characteristic line and hence its accuracy may not be very
attractive, which motivates our Friedrichs Learning in the weak form.

As discussed in [31], a priori knowledge of the characteristic line is crucial for conventional
finite element methods with adaptive mesh to obtain high accuracy. In [31], the streamline dif-
fusion method (SDFEM) can obtain a solution with O(10−2) accuracy using O(104) degrees of
freedom when the mesh is aligned with the discontinuity, i.e., when the priori knowledge of the
characteristic line is used in the mesh generation. The discontinuous Galerkin method (DGFEM)
in [31] can obtain O(10−8) accuracy under the same setting. When the mesh is not aligned with the
discontinuity, e.g., when the characteristic line is not used in mesh generation, DGFEM converges
as slow as SDFEM and the accuracy is not better than O(10−2) with O(104) degrees of freedom
according to the discussion in [31].

As a deep learning algorithm, Friedrichs Learning is a mesh-free method and the weak solution
can be identified without the priori knowledge of the characteristic line. By the discussion in Section
4.4, a special network φs(x, θs) is constructed as follows to fulfill the boundary condition of the
solution:

(5.2) φs(x, θs) = cos(−π
4

+
π

4
x) cos(−π

4
+
π

4
y)φ̂s(x, θs) + b(x, y),

where b(x, y) is constructed directly from the boundary condition as
(5.3)

b(x, y) =


0, for − 1 ≤ x ≤ 1, −0.4 + x/2 < y ≤ 1,

e−5[x2+(−1−9/10x)2] + e−5[(−1)2+(y+9/10)2]

−e−5[(−1)2+(−1+9/10)2],
for − 1 ≤ x ≤ 1, −1 ≤ y ≤ −0.4 + x/2,

satisfying b(x, y) = u(x, y) on the outflow boundary ∂Ω−. For test function, we fix its structure so
that φt(x, θt) = 0 on ∂Ω+ defined in (3.3).

First of all, pre-training the base function is employed. The special network structure satisfying
the Dirichlet boundary conditions for solution DNN φs is constructed as

(5.4) φs(x; θs) = h(x)φ̂s(x; θs) + b(x),

where b(x) satisfies the boundary condition which also can be regarded as an initial guess; h(x) = 0
on the Dirichlet boundary. We observe that if b(x) is closer to the true solution, it is easier to
train a generic DNN φ̂s to obtain the solution DNN φs that approximates the true solution more
accurately. Therefore, after a few rounds of outer iterations in the original Friedrichs learning, we
obtain a rough solution DNN, which can be served as a better b function in (5.4) to construct a
new solution DNN. After that, we will continue training to obtain a more accurate solution.

Secondly, we choose b(x, y) to be discontinuous along a random line rather than the true discon-
tinuous line of the exact solution. This could be a reasonable reproduction of the real application

Friedrichs Learning for Weak Solutions of PDEs 15

Parameters n ms mt N Nb

Value 50, 000 pre-train 50, after 250 150 90, 000 45, 000

Parameters η
(0)
s η

(0)
t νs νt parameter number

Value 3× 10−4 3× 10−3 9, 000 9, 000 327, 700

Table 5.2
The parameters for the Friedrichs learning solver of the experiment in Section 5.1.

Parameters n ms N η
(0)
s νs

Value 50, 000 250 90, 000 1× 10−3 10, 000

Table 5.3
The parameters of the comparative experiment in Section 5.1.

scenarios. Indeed, our choice of b(x, y) above actually make the problem more challenging. The
true solution is discontinuous along the characteristic line, the blue line in Figure 5.1(a), and b(x, y)
is discontinuous along the orange line in Figure 5.1(a). Hence, to make the solution DNN φs in
(5.2) approximate the true solution well, one algorithm needs to find and correct these two lines
automatically and the DNN φ̂s in (5.2) should be approximately discontinuous along these two
lines. As shown by Figure 5.1(d), with Friedrichs learning the solution DNN φs has a configuration
similar to the true solution in Figure 5.1(b), which means that it has successfully learned these two
lines. This feature can be significant because no prior knowledge of the discontinuity of the exact
solution is needed during the training, as long as the boundary condition is satisfied.

Thirdly, we can observe the mechanism of Friedrichs learning from Figure 5.1(e), where the
test DNN φt surges and has a larger magnitude near these two lines to emphasize the error of the
solution DNN φs. It can make the update of the configuration of φs more focused on these two
lines than other places, which in turns facilitates the expected convergence of the solution DNN.

The whole training process can be divided into two phases. In Phase I of pre-training, we
train a ResNet of width 50 for 1, 000 outer iterations to get a rough solution with an L2 relative
error 2.76e − 1. All other parameters are shown in Table 5.2. As shown in Figure 5.1(c), the
rough solution has already captured basically the shape of the solution. In Phase II of training,
we set this rough solution as base function b(x) and again set up a ResNet with width 150. It is
shown that 50, 000 outer iterations are enough to make the L2 error of the solution DNN decrease
to 2.27e − 2, as shown in Figure 5.1(d) and Figure 5.1(f). Our method is comparable with the
SDFEM in [31] considering the same order of degrees of freedom summarized in Table 5.2. However,
SDFEM in [31] requires the prior knowledge of the characteristic line while our method does not.
Therefore, from the perspective of practical computation, our method would be more convenient
in real applications.

To compare Friedrichs Learning and the DNN-based least square (LS) algorithm [13, 44, 55],
we conduct comparative experiments with very similar hyper-parameters shown in Table 5.3. After
50, 000 iterations we obtain a solution with the relative error in L2 norm which is 3.29e−2. Though
Friedrichs learning is more accurate, the DNN-based least square algorithm and the Friedrichs
learning have errors of the same order in this numerical test.

5.2. Advection-Reaction Equation with Curved Discontinuity. Consider a domain
Ω = {(x, y)|x2 + y2 ≤ 1, y ≥ 0}. The velocity β = (sin θ,− cos θ)ᵀ = (y/

√
x2 + y2,−x/

√
x2 + y2)

with θ being the polar angle and µ = 0. The Dirichlet boundary condition on the inflow boundary

16 Friedrichs Learning for Weak Solutions of PDEs

(a) The characteristic line (blue) of
the exact solution and the line (or-
ange) along which b(x, y) in (5.2) is
discontinuous.

(b) Exact solution. (c) The solution DNN right before
restarting.

(d) The point-wise error of approx-
imate solution at epoch 50, 000 by
Friedrichs learning.

(e) The test DNN value at epoch
50, 000.

(f) The relative L2 error curve
by DNN-based least square and
Friedrichs learning

Fig. 5.1. Numerical results of Equation (3.1) when the exact solution is chosen as (5.1).

is given as u(x, 0) = 1 for −1 ≤ x ≤ −1
2 , u(x, 0) = 0 for −1

2 < x ≤ 0. The true solution is

(5.5) u∗(x, y) =

{
0, x2 + y2 < 1/4
1, x2 + y2 ≥ 1/4

.

Again, without the prior knowledge of the characteristic line, to create a network satisfying the
boundary condition, we choose a solution DNN φs as

(5.6) φs(x, θs) =
(π

2
− arctan(

−x
y

)
)

sin(
π

2
r)φ̂s(x, θs) + b(x, y),

where

b(x, y) =

{
0, x ≥ −1/2
1, x < −1/2

, and r =
√
x2 + y2.

φs will be applied as the solution network of Friedrichs learning. Similarly,

(5.7) φt(x, θt) =
(
− π

2
− arctan(

−x
y

)
)
φ̂t(x, θt).

By applying Friedrichs learning with φs and φt as the solution and test DNN, respectively, we get an
approximate solution with an L2 relative error 2.48e−2 with the iteration error visualized in Figure
5.3(b). Figure 5.2(a) shows the point-wise error after 100,000 iterations by Friedrichs learning.
Friedrichs learning can capture the discontinuous locations well with a sharp characterization. The
test function value is relatively large around the discontinuous location, resulting in a large weight
for samples around there, which can help to obtain a more accurate PDE solution.

Friedrichs Learning for Weak Solutions of PDEs 17

Parameters n ms mt N Nb

Value 100, 000 150 150 45, 000 5, 000

Parameters η
(0)
s η

(0)
t νs νt parameter number

Value 3× 10−4 3× 10−3 15, 000 15, 000 113,850

Table 5.4
The parameters for the Friedrichs learning solver of the experiment in Section 5.2.

As a comparison with traditional PDE solvers, note that the same PDE was solved by the
adaptive least-squares finite element method (LSFEM) in [49] with the same order of degrees of
freedom (≈ 1.1× 105) as in Friedrichs learning. The L2 relative error of LSFEM is 4.59e−2, which
is larger than the one by Friedrichs learning. We would like to emphasize that LSFEM in [49] has
applied extra computational resources to adaptively generate discretization mesh, without which
the error would be poorer. Besides, the DGFEM1 with adaptive mesh is also applied to solve the
same PDE with the same order of degrees of freedom (107,332) as in Friedrichs learning. The
L2 relative error of DGFEM is 2.05e−2, which is very similar to the error by Friedrichs learning.
Following the idea in [49] to visualize the solution, we project the approximate solutions by DGFEM
and Friedrichs learning to the radius axis in Figure 5.3(b) and plot the scatters corresponding to
the angle θ ranging from 0 to π. This visualization makes it easier to compare the solutions near
the discontinuous location. It is easy to see that the solution by DGFEM has a larger error than
the one by Friedrichs learning near the discontinuous location.

DNN-based least square is also applied to solve the same problem as comparison. Two options
of DNN-based least square are tested: one with φs as the solution network so that there is no
penalty terms to enforce the boundary condition in the loss function; another one with a standard
neural network as the solution network and, hence, a penalty term in the loss function is required
to enforce the boundary condition. The first option, i.e., DNN-based least square with the special
network structure described in (5.6) to parametrize the PDE solution, fails to find a reasonable
solution even though the optimization loss is almost zero as shown by Figure 5.2(b). One possible
reason is due to the fact that the square loss in the strong form is 0 for b(x, y), since DNN-based
least square samples points randomly in the “interior” but not on the discontinuous line with
probability almost 1. Therefore, even if the generic network φ̂s(x, θs) is not 0 at the beginning,
no information of the discontinuity is captured by the strong form in DNN-based least square and,
hence, the solution network will converge to 0, resulting in a fake solution satisfying the equation
almost everywhere in the strong sense. However, this solution is mathematically wrong in the weak
sense. For instance, the derivatives across the discontinuity contain Diracs delta functions.

The second option of DNN-based least square can provide a meaningful solution and serves as
a good baseline for Friedrichs learning. Figure 5.2(a) shows the point-wise error after 100,000 itera-
tions by DNN-based least square with a boundary penalty term and Friedrichs learning. Friedrichs
learning can capture the location of discontinuous line with better accuracy than DNN-based least
square. The error curve of DNN-based least square in the L2 norm is shown in 5.2(b) (the red
line) and the iteration error cannot be improved anymore at the early beginning. DNN-based least
square with a boundary penalty term provides a solution with an L2 error 9.35e−2 after 100, 000
iterations and this error is almost 4 times of the error by Friedrichs learning.

1Available at https://github.com/dealii/dealii.

18 Friedrichs Learning for Weak Solutions of PDEs

(a) Top, the point-wise error for solution by DNN-
based least square; Middle, the point-wise error
for solution by Friedrichs learning; Bottom, the
point-wise test function value by Friedrichs learn-
ing.

(b) Upper, the relative L2 error curve with re-
spect to the iteration number for three different
algorithm setting; Lower, the running DNN-based
least square loss with respect to the iteration num-
ber.

Fig. 5.2. Numerical results of Equation (3.1) when the exact solution is chosen as (5.5).

(a) Projected solution of DGFEM with adaptive
mesh grid.

(b) Projected solution of Friedrichs learning. The
value of points 0.005 Euclid distance away from
x = − 1

2
is adjusted to true value.

Fig. 5.3. Numerical results of Equation (3.1) when the exact solution is chosen as (5.5).

5.3. Green’s Function. The next example is to identify the Green’s function of the
Laplacian operator by solving

(5.8) ∆u(x) = δ0(x),

where δ0(x) is the Dirac’s delta function at the origin. In this example, we solve the above equation
on a 3D unit ball Ω = {x ∈ R3||x| ≤ 1}, where | · | is the standard L2 norm of a vector. The true
solution is

(5.9) u∗(x) =
1

8π|x|
,

Friedrichs Learning for Weak Solutions of PDEs 19

Parameters n N η
(0)
s νs ms

Value 100, 000 45, 000 1× 10−3 15, 000 150

Table 5.5
The parameters of the comparative experiment in Section 5.2.

Parameters n ms mt N Nb ηps
Value 20, 000 100 100 45, 000 5, 000 1× 10−4

Parameters ηpt η
(0)
s η

(0)
t νs νt parameter number

Value 2× 10−4 1× 10−5 2× 10−5 10, 000 10, 000 51, 000

Table 5.6
The parameters for the Friedrichs learning solver of the experiment in Section 5.3.

and the given Dirichlet boundary condition is u(x) = 1
8π on ∂Ω. Although the exact solution is

in H1 and has strong singularity near the origin, Friedrichs learning can provide an approximate
solution with a small error as shown in Figure 5.4(a) and 5.4(b). Figure 5.4(b) visualizes the
point-wise relative error of the solution by Friedrichs learning. We can see that, except for those
locations that are very close to the origin, the relative errors are not greater than 1e−1. In Table
5.7, we summarize the relative L2 errors of the solution by Friedrichs learning in the region of
Ω\B(0, ε) with ε equal to 0.001, 0.01, 0.1, 0.2, respectively. Therefore, the solution is accurate when
the location is not very close to the origin.

As a comparison, the DNN-based least square method cannot find a meaningful solution for
the Green’s function. The right hand side function of (5.8) is a Dirac Delta function and, hence,
cannot be captured by the discrete analog of the least square loss function via random sampling.
Therefore, even if the DNN-based least square method can be applied to form an optimization
problem, the minimizer of this problem will return a constant function as a solution, which has a
large error.

(a) The cross section of the Green’s
function at x3 = 0. The Green’s
function has strong singularity near
the origin.

(b) The projected point-wise rela-
tive error by Friedrichs learning on
the slice x3 = 0.

(c) The relative L2 and maximum
error curve with respect to the iter-
ation number.

Fig. 5.4. Numerical results of Equation (3.1) when the exact solution is chosen as (5.9).

5.4. High-Dimensional Advection-Reaction Equation. We consider a 10D advection
equation with discontinuity in the domain [0, 1]10. In particular, we find u = u(x) such that

(5.10) 2
(
1 + exp(−(

10∑
i=3

xi)
2)
)
ux1 + exp(2x1)ux2 = 0,

20 Friedrichs Learning for Weak Solutions of PDEs

ε mean

0.2 3.47e−2
0.1 4.43e−2
0.01 8.16e−2
0.001 9.39e−2

Table 5.7
The relative L2 errors by Friedrichs learning in the region of Ω\B(0, ε) for the Green’s function experiment in

Section 5.3.

Parameters n ms mt N Nb ηps
Value 50, 000 150 150 45, 000 5, 000 3× 10−4

Parameters ηpt η
(0)
s η

(0)
t νs νt parameter number

Value 3× 10−3 5× 10−5 5× 10−4 20, 000 20, 000 115, 050

Table 5.8
The parameters for the Friedrichs learning solver of the experiment in Section 5.4.

where ux1 = ∂u
∂x1

and ux2 = ∂u
∂x2

. The exact solution is

(5.11) u∗(x) = g
(

exp(2x1)− 4
(
1 + exp(−(

10∑
i=3

xi)
2)
)
x2

)
,

where

g(x) =

{
1, x > 0
0, x ≤ 0

.

The Dirichlet boundary condition is given on the inflow boundary {x|x1 = 0 or x2 = 0}.
Figure 5.5(a) and Figure 5.5(c) show that Friedrichs learning can identify the location of low

regularization by test DNNs in this high-dimensional problem. After 50,000 outer iterations, we
obtain an approximate solution with a relative L2 error 4.034e−2. As a comparison, the DNN-based
least square is also applied to solve the same problem and the relative L2 error is 1.015e−1, which
is much larger than the one by Friedrichs learning. In Figure 5.5(d), we observe that DNN-based
least square is not stable in optimization due to the curved discontinuity, and stops ultimately at
a solution with a large error.

5.5. Maxwell Equations. In the last example, we consider Maxwell equations (3.8) de-
fined in the domain Ω = [0, π]3. Let H and E be the solutions of the Maxwell equations (3.8) with
µ = σ = 1. Let f , g ∈ [L2(Ω)]3 be f = (0, 0, 0)ᵀ and g = (3 sin y sin z, 3 sin z sinx, 3 sinx sin y)ᵀ.
The boundary condition is set as E×n = 0, which is an ideal conductor boundary condition. The
exact solutions to these equations are H∗ = (sinx(cos z − cos y), sin y(cosx − cos z), sinx(cos y −
cosx))ᵀ and E∗ = (sin y sin z, sin z sinx, sinx sin y)ᵀ. Considering test functions (ϕᵀ

H , ϕ
ᵀ
E)ᵀ in the

space V ∗ = V mentioned in (3.4), we set up DNNs to satisfy the boundary conditions ϕE · n = 0
and ϕH × n = 0, where n is the unit outward normal direction to the boundary. Note that the
domain is a cube, the normal vector is parallel to one of the unit vectors. The boundary condition
above is indeed a Dirichlet boundary. For example, S1 = {x = π}∩∂Ω on the right surface, implies
that E2|S1 = E3|S1 = 0. It is worth pointing out that the Dirichlet boundary for (Eᵀ

i , (ϕH)i)
ᵀ

closes the faces of the cube as shown in Figure 5.6(a). Here, we denote by Ei(i = 1, 2, 3) the i-th
component of the vector E and the same applies to other notations.

Friedrichs Learning for Weak Solutions of PDEs 21

(a) The projected point-wise error by Friedrichs learn-
ing on the slice xi = 1

2
, i = 3, 4, . . . , 10.

(b) The projected point-wise error by DNN-based least
square on the slice xi = 1

2
, i = 3, 4, . . . , 10.

(c) The projected point-wise test function value on the
slice xi = 1

2
, i = 3, 4, . . . , 10.

(d) The relative L2 error curve with respect to the
iteration number by DNN-based least square and
Friedrichs learning.

Fig. 5.5. Numerical results of Equation (3.1) when the exact solution is chosen as (5.11).

Parameters n N η
(0)
s νs ms

Value 50, 000 45, 000 1× 10−3 20, 000 150

Table 5.9
The parameters of the comparative experiment in Section 5.4.

To solve the Maxwell equations by Friedrichs learning, we initialize sub-networks with width
ms for vector functions and each sub-network decides one output value of the vector function. The
other test networks are set up similarly. We list all the parameters used in this experiment in Table
5.10. After 20, 000 outer iterations, we obtain an L2 relative error 1.766e − 2 and an L∞ relative
error 3.467e− 2. Figure 5.6(c) and Figure 5.6(d) illustrate the absolute difference between E1 and
(φE)1 and the absolute difference between H1 and (φH)1 after 20, 000 outer iterations.

22 Friedrichs Learning for Weak Solutions of PDEs

(a) The boundary conditions of (E1, (φH)1). (b) The relative error versus iterations.

(c) The absolute difference between E1 and (φE)1 after
20, 000 outer iterations.

(d) The absolute difference between H1 and (φH)1 af-
ter 20, 000 outer iterations.

Fig. 5.6. Numerical results of Maxwell equations in (3.8).

Parameters n ms mt N

Value 20, 000 250 50 50, 000

Parameters η
(0)
s η

(0)
t νs νt

Value 3× 10−6 3× 10−3 8, 000 15, 000

Table 5.10
The parameters for Friedrichs learning solver of the experiment in Section 5.5.

6. Conclusion. Friedrichs learning was proposed as a new deep learning methodology to
learn the weak solutions of PDEs via Friedrichs seminal minimax formulation. Extensive numerical
results imply that our mesh-free method provides reasonably accurate solutions for a wide range
of PDEs defined on regular and irregular domains in various dimensions, where classical numerical
methods may be difficult to be employed. In particular, Friedrichs learning infers the solution
without the knowledge of the location of discontinuity when the solution is discontinuous. Our
numerical experiments show that Friedrichs learning can solve PDEs with a discontinuous solution
to O(10−2) accuracy, while the DNN-based least square method can typically only get O(10−1)
accuracy. This demonstrate the advantage of the loss function in Friedrichs learning over the naive
least square loss function. Compared with traditional FEM methods, Friedrichs learning performs
as well as DGFEM with adaptive mesh when no prior knowledge about the discontinuous location

Friedrichs Learning for Weak Solutions of PDEs 23

is known. Friedrichs learning is better than LSFEM with adaptive mesh when no prior knowledge
about the discontinuous location is known. In the future, it is interesting to develop adaptive
Friedrichs learning to further reduce the error or the network size.

Acknowledgements. The work of J. H. was partially supported by NSFC (Grant No.
12071289) and the National Key Research and Development Project (2020YFA0709800). C. W.
was partially supported by National Science Foundation Award DMS-2136380. H. Y. was partially
supported by the US National Science Foundation under award DMS-1945029.

REFERENCES

[1] J.-L. Guermond A. Ern and G. Caplain. An intrinsic criterion for the bijectivity of hilbert operators related to
friedrichs systems. Comm. Partial Differential Equations, 32(05):317341, 2007.

[2] Abdullah Al-Dujaili, Shashank Srikant, Erik Hemberg, and Una-May OReilly. On the application of danskins
theorem to derivative-free minimax problems. AIP Conference Proceedings, 2070(1):020026, 2019.

[3] Martin Anthony and Peter L. Bartlett. Neural Network Learning: Theoretical Foundations. Cambridge Univer-
sity Press, New York, NY, USA, 1st edition, 2009.

[4] N. Antonic and K. Burazin. Graph spaces of first-order linear partial differential operators. Math. Commun.,
14:135155, 2009.

[5] Nenad Antoni and Kreimir Burazin. Intrinsic boundary conditions for friedrichs systems. Communications in
Partial Differential Equations, 35(9):1690–1715, 2010.

[6] Gang Bao, Xiaojing Ye, Yaohua Zang, and Haomin Zhou. Numerical solution of inverse problems by weak
adversarial networks. Inverse Problems, 36(11):115003, nov 2020.

[7] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions
on Information Theory, 39(3):930–945, May 1993.

[8] Christian Beck, Sebastian Becker, Patrick Cheridito, Arnulf Jentzen, and Ariel Neufeld. Deep splitting method
for parabolic PDEs. arXiv e-prints, arXiv:1907.03452, Jul 2019.

[9] Jens Berg and Kaj Nystrm. A unified deep artificial neural network approach to partial differential equations
in complex geometries. Neurocomputing, 317:28 – 41, 2018.

[10] Tan Bui-Thanh, Leszek Demkowicz, and Omar Ghattas. A Unified Discontinuous PetrovGalerkin Method and
its Analysis for Friedrichs Systems. SIAM J. NUMER. ANAL., page 19331958, 2013.

[11] Wei Cai, Xiaoguang Li, and Lizuo Liu. A phase shift deep neural network for high frequency approximation
and wave problems. SIAM Journal on Scientific Computing, 42(5):A3285–A3312, 2020.

[12] Constantinos Daskalakis and Ioannis Panageas. The limit points of (optimistic) gradient descent in min-max op-
timization. In Proceedings of the 32Nd International Conference on Neural Information Processing Systems,
NIPS’18, pages 9256–9266, USA, 2018. Curran Associates Inc.

[13] M. W. M. G. Dissanayake and N. Phan-Thien. Neural-network-based approximations for solving partial differ-
ential equations. Communications in Numerical Methods in Engineering, 10(3):195–201, 1994.

[14] Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods for high-dimensional
parabolic partial differential equations and backward stochastic differential equations. Communications in
Mathematics and Statistics, 5(4):349–380, Dec 2017.

[15] Weinan E, Chao Ma, and Lei Wu. Barron Spaces and the Compositional Function Spaces for Neural Network
Models. arXiv e-prints, arXiv:1906.08039, Jun 2019.

[16] Weinan E and Bing Yu. The deep ritz method: A deep learning-based numerical algorithm for solving variational
problems. Commun. Math. Stat., 6:1–12, 2018.

[17] Matthias Ehrhardt and Ronald E. Mickens. A fast, stable and accurate numerical method for the blackscholes
equation of american options. International Journal of Theoretical and Applied Finance, 11(05):471–501,
2008.

[18] A. Ern and J. L. Guermond. Discontinuous Galerkin methods for Friedrichs systems. Part I. General theory.
SIAM J. Numer. Anal., page 753778, 2006.

[19] A. Ern and J. L. Guermond. Discontinuous Galerkin methods for Friedrichs systems. Part II. Second-order
elliptic PDEs. SIAM J. Numer. Anal., page 23632388, 2006.

[20] A. Ern and J. L. Guermond. Discontinuous Galerkin methods for Friedrichs systems. Part III. Multifield theories
with partial coercivity. SIAM J. Numer. Anal., page 776 804, 2008.

[21] Alexandre Ern, Jean-Luc Guermond, and Gilbert Caplain. An intrinsic criterion for the bijectivity of hilbert
operators related to friedrich’ systems. Communications in Partial Differential Equations, 32(2):317–341,
2007.

24 Friedrichs Learning for Weak Solutions of PDEs

[22] K. O. Friedrichs. Symmetric positive linear differential equations. Communications on Pure and Applied
Mathematics, 11(3):333–418, 1958.

[23] Abhijeet Gaikwad and Ioane Muni Toke. Gpu based sparse grid technique for solving multidimensional options
pricing pdes. In Proceedings of the 2Nd Workshop on High Performance Computational Finance, WHPCF
’09, pages 6:1–6:9, New York, NY, USA, 2009. ACM.

[24] D. Gobovic and M. E. Zaghloul. Analog cellular neural network with application to partial differential equations
with variable mesh-size. In Proceedings of IEEE International Symposium on Circuits and Systems - ISCAS
’94, volume 6, pages 359–362 vol.6, May 1994.

[25] Yiqi Gu, Chunmei Wang, and Haizhao Yang. Structure probing neural network deflation, 2020.
[26] Yiqi Gu, Haizhao Yang, and Chao Zhou. Selectnet: Self-paced learning for high-dimensional partial differential

equations, 2020.
[27] Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations using deep

learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.
[28] Kenta Hanada, Takayuki Wada, and Yasumasa Fujisaki. A Restart Strategy with Time Delay in Distributed

Minimax Optimization, pages 89–100.
[29] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages 770–778, 2016.
[30] Geoffrey Hinton. Neural Networks for Machine Learning - Lecture 6a - Overview of mini-batch gradient descent.,

2012.
[31] Paul Houston, Christoph Schwab, and Endre Sli. Stabilized hp-finite element methods for first-order hyperbolic

problems. SIAM Journal on Numerical Analysis, 37(5):1618–1643, 2000.
[32] X. Hu, R. Shonkwiler, and M. Spruill. Random restarts in global optimization. 2009.
[33] Jianguo Huang, Haoqin Wang, and Haizhao Yang. Int-deep: A deep learning initialized iterative method for

nonlinear problems. Journal of Computational Physics, 419:109675, 2020.
[34] M. Hutzenthaler, A. Jentzen, Th. Kruse, and T. A. Nguyen. A proof that rectified deep neural networks overcome

the curse of dimensionality in the numerical approximation of semilinear heat equations. Technical report,
2020.

[35] Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, and Tuan Anh Nguyen. A proof that rectified deep neural
networks overcome the curse of dimensionality in the numerical approximation of semilinear heat equations.
arXiv e-prints, arXiv:1901.10854, Jan 2019.

[36] Martin Hutzenthaler, Arnulf Jentzen, Thomas Kruse, Tuan Anh Nguyen, and Philippe von Wurstemberger.
Overcoming the curse of dimensionality in the numerical approximation of semilinear parabolic partial
differential equations. arXiv e-prints, arXiv:1807.01212, Jul 2018.

[37] Martin Hutzenthaler, Arnulf Jentzen, and von Wurstemberger Wurstemberger. Overcoming the curse of dimen-
sionality in the approximative pricing of financial derivatives with default risks. Electron. J. Probab., 25:73
pp., 2020.

[38] Ameya D. Jagtap and George Em Karniadakis. Extended physics-informed neural networks (xpinns): A gen-
eralized space-time domain decomposition based deep learning framework for nonlinear partial differential
equations. Communications in Computational Physics, 28(5):2002–2041, 2020.

[39] M. Jensen. Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions. Ph.D. thesis,
University of Oxford, Oxford, 2004.

[40] Wayne Joubert. On the convergence behavior of the restarted gmres algorithm for solving nonsymmetric linear
systems. Numerical Linear Algebra with Applications, 1(5):427–447, 1994.

[41] Ehsan Kharazmi, Zhongqiang Zhang, and George E.M. Karniadakis. hp-vpinns: Variational physics-informed
neural networks with domain decomposition. Computer Methods in Applied Mechanics and Engineering,
374:113547, 2021.

[42] Yuehaw Khoo, Jianfeng Lu, and Lexing Ying. Solving parametric pde problems with artificial neural networks.
European Journal of Applied Mathematics, page 115, 2020.

[43] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. arXiv e-prints, 2014.
[44] I. E. Lagaris, A. Likas, and D. I. Fotiadis. Artificial neural networks for solving ordinary and partial differential

equations. IEEE Transactions on Neural Networks, 9(5):987–1000, Sep. 1998.
[45] Hyuk Lee and In Seok Kang. Neural algorithm for solving differential equations. Journal of Computational

Physics, 91(1):110 – 131, 1990.
[46] T.T. Lee, F.Y. Wang, and R.B. Newell. Robust model-order reduction of complex biological processes. Journal

of Process Control, 12(7):807 – 821, 2002.
[47] Ke Li, Kejun Tang, Tianfan Wu, and Qifeng Liao. D3M: A deep domain decomposition method for partial

differential equations. arXiv e-prints, arXiv:1909.12236, Sep 2019.
[48] Qianxiao Li, Bo Lin, and Weiqing Ren. Computing committor functions for the study of rare events using deep

learning. The Journal of Chemical Physics, 151(5):054112, 2019.

Friedrichs Learning for Weak Solutions of PDEs 25

[49] Q. Liu and S. Zhang. Adaptive least-squares finite element methods for lin-ear transport equations based on
an H(div) flux reformulation. Computer Methods in Applied Mechanics and Engineering, 366:113041, 2020.

[50] Ziqi Liu, Wei Cai, and Zhi-Qin John Xu. Multi-scale deep neural network (mscalednn) for solving poisson-
boltzmann equation in complex domains, 2020.

[51] Hadrien Montanelli and Haizhao Yang. Error bounds for deep ReLU networks using the Kolmogorov–Arnold
superposition theorem. arXiv e-prints, arXiv:1906.11945, Jun 2019.

[52] Hadrien Montanelli, Haizhao Yang, and Qiang Du. Deep ReLU networks overcome the curse of dimensionality
for bandlimited functions. arXiv e-prints, arXiv:1903.00735, Mar 2019.

[53] Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D. Lee, and Meisam Razaviyayn. Solving a class of
non-convex min-max games using iterative first order methods. pages 14905–14916, 2019.

[54] Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao Yang. Non-convex min-max optimization: Provable
algorithms and applications in machine learning. ArXiv, abs/1810.02060, 2018.

[55] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning framework
for solving forward and inverse problems involving nonlinear partial differential equations. Journal of
Computational Physics, 378:686 – 707, 2019.

[56] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Deep network with approximation error being reciprocal of
width to power of square root of depth. arXiv:2006.12231, 2020.

[57] Zuowei Shen, Haizhao Yang, and Shijun Zhang. Neural network approximation: Three hidden layers are enough.
arxiv:2010.14075, 2020.

[58] Jonathan W. Siegel and Jinchao Xu. Approximation rates for neural networks with general activation functions.
Neural Networks, 128:313 – 321, 2020.

[59] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial differential
equations. Journal of Computational Physics, 375:1339 – 1364, 2018.

[60] Christopher Srinivasa, Inmar Givoni, Siamak Ravanbakhsh, and Brendan J Frey. Min-max propagation. In
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors,
Advances in Neural Information Processing Systems 30, pages 5565–5573. Curran Associates, Inc., 2017.

[61] David J. Wales and Jonathan P. K. Doye. Stationary points and dynamics in high-dimensional systems. The
Journal of Chemical Physics, 119(23):12409–12416, 2003.

[62] H. Yserentant. Sparse grid spaces for the numerical solution of the electronic schrödinger equation. Numerische
Mathematik, 101(2):381–389, Aug 2005.

[63] Yaohua Zang, Gang Bao, Xiaojing Ye, and Haomin Zhou. Weak Adversarial Networks for High-dimensional
Partial Differential Equations. arXiv e-prints, arXiv:1907.08272, Jul 2019.

