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ABSTRACT

Designing efficient and accurate numerical solvers for high-dimensional partial differential equations (PDEs) remains a challenging
and important topic in computational science and engineering, mainly due to the “curse of dimensionality" in designing numerical
schemes that scale in dimension. This paper introduces a new methodology that seeks an approximate PDE solution in the space
of functions with finitely many analytic expressions and, hence, this methodology is named the finite expression method (FEX). It
is proved in approximation theory that FEX can avoid the curse of dimensionality. As a proof of concept, a deep reinforcement
learning method is proposed to implement FEX for various high-dimensional PDEs in different dimensions, achieving high and
even machine accuracy with a memory complexity polynomial in dimension and an amenable time complexity. An approximate
solution with finite analytic expressions also provides interpretable insights into the ground truth PDE solution, which can further
help to advance the understanding of physical systems and design postprocessing techniques for a refined solution.

1 Introduction
Partial differential equations (PDEs) are fundamental in scientific fields modeling many physical phenomena such as
diffusion1, 2, fluid dynamics3, 4, and quantum mechanics5, 6. Developing efficient and accurate solvers for numerical
solutions to high-dimensional PDEs remains an important and challenging topic7. Many traditional solvers, such
as finite element method (FEM)8 and finite difference9, are usually limited to low-dimensional domains since the
computational cost increases exponentially in the dimension7, 10. Recently, neural networks (NNs) as mesh-free
parameterization are widely employed in solving high-dimensional PDEs11–16 and control problems17. In theory,
NNs have the capability of approximating various functions well and lessening the curse of dimensionality18–22. Yet
the highly non-convex objective function and the spectral bias towards fitting a smooth function in NN optimization
make it difficult to achieve high accuracy23–25. In practice, NN-based solvers can hardly achieve a highly accurate
solution even when the true solution is a simple function, especially for high-dimensional problems16, 26. Besides,
NN parametrization may still require large memory and high computation cost for high-dimensional problems27.
Finally, numerical solutions provided by traditional solvers and NN-based solvers are not interpretable, e.g., the
dependence of the solution on variables cannot be readily seen from numerical solutions.

In this paper, we propose the finite expression method (FEX), a methodology that aims to find a solution in
the function space of mathematical expressions with finitely many operators. Compared with the NN and FEM
methods, our FEX enjoys the following advantages (summarized in Fig. 1): (1) The expression may reproduce the
true solution and achieve a solution with high and even machine accuracy. (2) The expression requires a low cost on
memory (a line of string) for solution storage and computation for solution evaluation. (3) The expression has good
interpretability with an explicit and legible form. Besides, from the approximation perspective illustrated in Sec. 2.3,
the expression in FEX is capable of avoiding the curse of dimensionality in theory.

While many techniques can be used to implement the proposed FEX, we provide a numerically effective
implementation based on reinforcement learning (RL). We formulate the problem of searching for mathematical
expressions as a combinatorial optimization (CO) over both discrete and continuous variables. Many traditional
algorithms (e.g., genetic algorithms and simulated annealing28) solve the CO based on hand-crafted heuristics, which
highly rely on the problem statement and domain-specific knowledge29, 30. Recently, RL becomes a popular and
general tool to learn to construct the CO solution based on reward feedback, without much heuristic design. The
success of RL applications involving CO, such as automatic algorithm design31–33 and symbolic regression34, 35,
also inspires us to seek the mathematical expression solution with RL. Specifically, in our implementation, the
mathematical expression is represented by a binary tree, where each node is an operator along with parameters
(scaling and bias) as shown in Fig. 3b and elaborated in Sec. 3.1. The objective function is a functional whose
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Figure 1. Overview of various numerical solvers for PDEs. In our finite expression method, we aim to find a PDE
solution as a mathematical expression with finitely many operators. The resulting solution may reproduce the true
solution, and achieve high and even machine accuracy. Furthermore, the mathematical expression costs a memory
complexity polynomial in dimension and advances the understanding of physical systems and the design of
postprocessing techniques for a refined solution.

minimizer is the PDE solution (Sec. 2.2) so our problem becomes minimization over the discrete variables (operators)
and continuous variables (parameters) of the tree. Optimizing both discrete and continuous variables simultaneously
is essentially difficult. We propose a searching loop for this CO as shown in Fig. 2. Our idea is to first determine
good operator selection that has a high possibility of recovering the structure of the true solution and then optimize
over the parameters. The proposal of operator selection is drawn from a controller, which will be updated via the
policy gradient34 of RL. In Sec. 4, we numerically demonstrate the ability of this RL-based implementation to find
the mathematical expressions that solve high-dimensional PDEs with high and even machine accuracy. Furthermore,
FEX provides interpretable insights into the ground truth PDE solution, which can further help to advance the
understanding of physical systems and design postprocessing techniques for a refined solution.

2 An Abstract Methodology of Finite Expression Method
The goal of FEX is to find a mathematical expression to solve a PDE. This section will formally define the function
space of mathematical expressions and formulate the problem of FEX as a CO.

2.1 Function Space with Finite Expressions in FEX
Mathematical expressions will be introduced to form the function space of FEX.

Definition 2.1 (Mathematical expression). A mathematical expression is a combination of symbols, which is
well-formed by syntax and rules and forms a valid function. The symbols include operands (variables and numbers),
operators (e.g.,“+”, “sin”, integral, derivative), brackets, punctuation.

In the definition of mathematical expressions, we only consider the expression that forms a valid function. In
our context, “sin(x×y)+1” is a mathematical expression, but, for example, “5 > x” and “sin(x×y)+” are not a
mathematical expression as they do not form a valid function. The operands and operators comprise the structure
of an expression. The parentheses play a role in clarifying the operation order.

Definition 2.2 (k-finite expression). A mathematical expression is called a k-finite expression if the number of
operators in this expression is k.

“sin(x×y)+1” is a 3-finite expression since there are three operators in it (“×”, “sin”, and “+”). The series,
such as “1 + x1 + x2

2 + x3

6 + · · ·”, belongs to a mathematical expression, but it is not a finite expression since the
amount of the operators is infinite. Formally, with the concept of finite expression, we can define FEX as follows,

Definition 2.3 (Finite expression method). The finite expression method is a methodology to solve a PDE
numerically by seeking a finite expression such that the resulting function solves the PDE approximately.

We denote Sk as a set of functions that are formed by finite expressions with the number of operators not larger
than k. Sk forms the function space of FEX. Clearly, S1 ⊂ S2 ⊂ S3 · · · .

2/18



PDE

Expression

Tree Controller

Score

Update

Expression 1 Expression 2

Candidate pool

Solution 1 Solution 2
a Searching loop

b

Weight optimization

Expression generation

C
on

tro
lle

r 
 

Sample

Sample

Sample

exp

sin

Tree

Binary Unary

Loss

...

...

Sample Id

Expression

exp sin

Id

=

Figure 2. Representation of the components of our FEX implementation. (a) The searching loop for the symbolic
solution consists of expression generation, score computation, controller update, and candidate optimization. (b)
Depiction of the expression generation with a binary tree and a controller χ. The controller outputs the probability
mass functions for each node of the tree, from which the node values are sampled. The expression with learnable
scaling and bias parameters is generated based on the predefined tree and the sampled node values.

2.2 Identifying PDE Solutions in FEX
We denote a functional L : S→ R associated with a given PDE, where S is a function space and the minimizer of L
is the best solution to solve the PDE in S. In FEX, given the number of operators k, the problem of seeking a finite
expression solution is formulated as a CO over Sk via

min{L(u)|u ∈ Sk}. (1)

The choice of the functional L is problem-dependent and one may conceive a better functional for a specific
PDE with a specific constraint or domain. Some popular choices include a least-square method15, 36, 37, a variation
formulation16, 38, and a weak formulation39, 40 (see Appx. 7.1).

2.3 Approximation Theory of Elementary Expressions in FEX
The most important theoretical question in solving high-dimensional problems is whether or not a solver suffers
from the curse of dimensionality. It will be shown that the function space of k-finite expressions, i.e., Sk in (1), is
a powerful function space that avoids the curse of dimensionality in approximating high-dimensional continuous
functions, leveraging the recent development of advanced approximation theory of deep neural networks21, 22. First
of all, it can be proved that Sk is dense in C([0,1]d) for an arbitrary d ∈ N in the following theorem.

Theorem 2.1. The function space Sk, generated with operators including “+”, “−”, “×”, “/”, “| · |”, “sign(·)”, and
“⌊·⌋”, is dense in C([a,b]d) for arbitrary a, b ∈ R and d ∈ N if k ≥ O(d4).

Here “| · |”, “sign(·)”, and “⌊·⌋” denote the absolute, sign and floor functions21, respectively. The proof of Thm. 2.1
can be found in Appx. 7.2. The denseness of Sk means that the function space of k-finite expressions can approximate
any d-dimensional continuous functions to any accuracy, while k is only required to be O(d4) independent of the
approximation accuracy. The proof of Thm. 2.1 takes the advantage of operators “sign(·)” and “⌊·⌋”, which might
not be frequently used in mathematical expressions. If it is more practical to restrict the operator list to regular
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operators like “+”, “×”, “sin(·)”, exponential functions, and the rectified linear unit (ReLU), then it can be proved
that Sk can approximate Hölder functions without the curse of dimensionality in the following theorem.

Theorem 2.2. Suppose the function space Sk is generated with operators including “+”, “−”, “×”, “÷”, “max{0,x}”,
“sin(x)”, and “2x”. Let p ∈ [1,+∞). For any f in the Hölder function class Hα

µ([0,1]d) and ε > 0, there exists a
k-finite expression ϕ in Sk such that ∥f −ϕ∥Lp ≤ ε, if k ≥ O(d2(logd+log 1

ε )2).

The proof of Thm. 2.2 can be found in Appx. 7.2. Although finite expressions have a powerful approximation
capacity for high-dimensional functions, it is challenging to theoretically prove that our FEX solver to be introduced
in Sec. 3 can identify the desired finite expressions with this power. However, Sec. 4 shows numerically that our FEX
solver can identify desired finite expressions up to machine accuracy for several classes of high-dimensional PDEs.

3 An Implementation of FEX
After the introduction of the abstract methodology of FEX in Sec. 2, numerical implementation of FEX is proposed
here for various PDEs. First, binary trees are applied to construct finite expressions in Sec. 3.1. Next, our CO (1)
is formulated in terms of the parameter and operator selection to seek the expression that approximates a PDE
solution in Sec. 3.2. To resolve this CO, a searching loop is proposed to search for good operators such that the
expression with this operator selection will potentially recover the true solution.

Binary
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Figure 3. Computational rule of a binary tree. For a binary tree, the value of each node is either a unary or a
binary operator. We first define the computation flow of a depth-1 tree that contains only one operator. Then for
the binary tree with more than one layer, the computation is conducted by recursion.

3.1 Finite Expressions with Binary Trees
A finite expression can be reformulated as a binary tree T as illustrated in Fig. 3. Each tree node takes a value
from an operator set and all the node values form an operator sequence e according to a fixed order to traverse the
tree. In each node of the unary operator, a scaling parameter α and a bias parameter β are added to the operator
to enhance expressiveness. All these parameters are denoted by θ. Therefore, a finite expression is denoted by
u(x;T,e,θ) as a function in x. Given a fixed T, then the maximal number of operators is upper bounded by a
constant denoted as kT . In FEX, SkT

= {u(x;T,e,θ)|e,θ} is the function space in the CO to solve a PDE, which is
also a subset of functions with at most kT-finite expressions.

The configuration of the tree of various depths can be designed as in Fig. 3. Each tree node is either a binary
operator or a unary operator that takes value from the corresponding binary or unary set. The binary set can be
B := {+,−,×,÷, · · ·}. The unary set can be U := {sin,exp, log, Id,(·)2,

∫
·dxi,

∂·
∂xi

, · · ·}, which contains elementary
functions (e.g., polynomial and trigonometric function) and integral or differentiation operators. Here “Id” denotes
the identity map. Notice that if an integration or a derivative is used in the expression, the operator can be applied
numerically. Each entry of the operator sequence e is one-to-one associated with the tree traversal. The length of e
is the total number of tree nodes. For example, Fig. 2b shows a tree with 4 nodes and e = (Id,×,exp,sin).

The computation flow of the binary tree is conducted recursively. The operator of a node is granted higher
precedence than that of its parent node. First, as in Fig. 3, we present the computation flow of the basic trees (a
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tree has a depth of 1 with only 1 operator). For a basic tree with a unary operator u1, when the input is i0, then the
output o1 = αu1(i0)+β, where α and β are scaling and bias parameters, respectively. For a basic tree with a binary
operator b1, when the input is i01 and i02, the output becomes o1 = b1(i01, i02). With these two basic trees, we are
ready to define the computation for arbitrary depth by recursion, as the examples shown in Fig. 3. Specifically, the
input of a parent node is the output of the child node(s). In our implementation, the tree input at the bottom layer
is a d-dimensional variable x (Fig. 2b). The unary operator directly linked to x is applied element-wisely to each
entry of x, and then the scaling α becomes a d-dimensional vector used for a linear transformation from Rd to R1.

3.2 Implementation of FEX
Given a tree T, we aim to seek the PDE solution from the function space SkT

. The mathematical expression can be
identified via the minimization of the associated functional L, i.e.,

min{L(u(·;T,e,θ))|e,θ}. (2)

We introduce the framework for implementing FEX, as displayed in Fig. 2a, to seek a minimizer of (2). The basic
idea is to find a good operator sequence e that may uncover the structure of the true solution, and then optimize
the parameter θ to minimize the functional (2). In our framework, the searching loop consists of four parts (see
Sec. 6 for details): 1) Score computation (i.e., rewards in RL). A mix-order optimization algorithm is proposed to
efficiently assess the score of the operator sequence e to uncover the true structure. A higher score suggests a higher
possibility to help to identify the true solution. 2) Operator sequence generation (i.e., taking actions in RL). A
controller is proposed to generate operator sequences with high scores (see Fig. 2b). 3) Controller update (i.e., policy
optimization in RL). The controller is updated to increase the probability of producing a good operator sequence
via the score feedback of the generated ones. While the controller can be modeled in many ways (e.g., heuristic
algorithm), we introduce the policy gradient in RL to optimize the controller. 4) Candidate optimization (i.e., a
non-greedy strategy). During searching, we maintain a candidate pool to store the operator sequence with a high
score. After searching, the parameters θ of high-score operator sequences are optimized to approximate the PDE
solution.

4 Numerical Examples
Numerical results will be provided to demonstrate the effectiveness of our FEX implementation introduced in Sec. 3.2
using two classical PDE problems: high-dimensional PDEs with constraints (such as Dirichlet boundary conditions
and integration constraints) and eigenvalue problems. The computational tools for high-dimensional problems are
very limited and NNs are probably the most popular ones. Therefore, FEX will be compared with NN-based solvers.
Through our examples, the goal is to numerically demonstrate that:

• Accuracy. FEX can achieve high and even machine accuracy for high-dimensional problems, while NN-based
solvers can only achieve the accuracy of O(10−4) to O(10−2).

• Scalability. FEX is scalable in the problem dimension with an almost constant accuracy and a low memory
requirement, i.e., the accuracy of FEX remains essentially the same when the dimension grows, while NN-based
solvers have a worse accuracy when the dimension becomes larger.

• Interpretability. FEX provides interpretable insights of the ground truth PDE solution and helps to design
postprocessing techniques for a refined solution.

In particular, to show the benefit of interpretability, we will provide examples to show that the explicit formulas
of FEX solutions help to design better NN-parametrization in NN-based solvers to achieve higher accuracy. The
FEX-aided NN-based solvers are referred to as FEX-NN in this paper. Finally, we will show the convergence of FEX
with the growth of the tree size when the true solution can not be exactly reproduced by finite expressions using the
available operators and a binary tree. All results of this section are obtained with 6 independent experiments to
achieve their statistics.

4.1 Experimental Setting
This part provides the setting of FEX and NN-based solvers. Specific hyper-parameters for each experiment are
reported in Sec. 6.5. The accuracy of a numerical solution ũ compared with the true solution u is measured by a
relative L2 error, i.e., ∥ũ−u∥L2(Ω)/∥u∥L2(Ω). The integral in the L2 norm is estimated by the Monte Carlo integral
for high-dimensional problems.
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Implements of FEX. The depth-3 binary tree (Fig. 2b) with 3 unary operators and 1 binary operator
is used to generate mathematical expressions. The binary set is B = {+,−,×} and the unary set is U =
{0,1, Id,(·)2,(·)3,(·)4,exp,sin,cos}. A fully connected NN is used as a controller χΦ with constant input. The
output size of the controller NN is n1|B|+ n2|U|, where n1 = 1 and n2 = 3 represent the number of binary and
unary operators, respectively, and | · | denotes the cardinality of a set.

Implements of NN-based Solvers. Residual networks (ResNets)16, 41 u(x;Θ) parameterized by Θ are used to
approximate a solution and a minimization problem minΘ L(u(·;Θ)) is solved to identify a numerical solution7, 15, 16.

4.2 High-dimensional PDEs
Several numerical examples for high-dimensional PDEs including linear and nonlinear cases are provided here. In
these tests, the true solutions of PDEs have explicit formulas that can be reproduced by the binary tree defined in
Sec. 3.1 and B,U defined in Sec. 4.1.

4.2.1 Poisson Equation
We consider a Poisson equation16 with a Dirichlet boundary condition on a d-dimensional domain Ω = [−1,1]d,

−∆u = f for x ∈ Ω, u = g for x ∈ ∂Ω. (3)

Let the true solution be 1
2

∑d
i=1 x2

i , and then f becomes a constant function −d. The functional L is defined by
least-square error (21) is applied in the NN-based solver and FEX to seek the PDE solution for various dimensions
(d = 10, 20, 30, 40 and 50).

4.2.2 Linear Conservation Law
The linear conservation law42 is considered here with a domain T ×Ω = [0,1]× [−1,1]d and an initial value problem

πd

4 ut−
d∑

i=1
uxi = 0 for x = (x1, · · · ,xd) ∈ Ω, t ∈ [0,1], u(0,x) = sin(π

4

d∑
i=1

xi) for x ∈ Ω, (4)

where the true solution is u(t,x) = sin(t+ π
4

∑d
i=1 xi), and d = 5, 11, 17, 23, 29, 35, 41, 47 and 53 in our tests. The

functional L in the NN-based solver and FEX to identify the solution is defined by

L(u) := ∥ut−
d∑

i=1
uxi∥

2
L2(T ×Ω) +λ∥u(0,x)− sin(π

4

d∑
i=1

xi)∥2L2(Ω). (5)

4.2.3 Nonlinear Schrödinger Equation
We consider a nonlinear Schrödinger equation43 with a cubic term on a d-dimensional domain Ω = [−1,1]d,

−∆u+u3 +V u = 0 for x ∈ Ω, (6)

where V (x) =−1
9 exp( 2

d

∑d
i=1 cosxi)+

∑d
i=1( sin2 xi

d2 − cosxi
d ) for x = (x1, · · · ,xd). û(x) = exp( 1

d

∑d
j=1 cos(xj))/3 is

the solution of the PDE (6). To avoid the trivial zero solution, we apply different strategies during the score
computation and candidate optimization phases. During the score computation phase, the norm of the test function
u, i.e., ∥u∥L2(Ω), is used as a penalty for the function that is close to zero by

L1(u) := ∥−∆u+u3 +V u∥2L2(Ω)/∥u∥
3
L2(Ω). (7)

During the candidate optimization phase, an integration constraint is imposed to (6), i.e.,
∫

Ω u(x)dx =
∫

Ω û(x)dx.
The functional L in the NN-based solver and FEX to identify the solution is defined by

L2(u) := ∥−∆u+u3 +V u∥2L2(Ω) +λ
(∫

Ω
u(x)dx−

∫
Ω

û(x)dx
)2

, (8)

where the second term imposes the integration constraint. Various dimensions are tested in the numerical results,
e.g., d = 6, 12, 18, 24, 30, 36, 42 and 48.
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4.3 Results
Three main sets of numerical results for the PDE problems above will be presented. First, the errors of the numerical
solutions by NN-based solvers and FEX are compared. Second, a convergence test is analyzed when the tree size of
FEX increases. Finally, FEX is applied to design special NN parametrization to solve PDEs in NN-based solvers.

Estimated Solution Error. The depth-3 binary tree (Fig. 3) is used in FEX with four nodes (a root node (R),
a middle node (M), and two leave nodes (L1 and L2)). Fig. 4 shows the operator distribution obtained by FEX and
the error comparison between the NN method and our FEX. The results show that NN solutions have numerical
errors between O(10−4) and O(10−2) and the errors grow in the problem dimension d, agreeing with the numerical
observation in the literature. Meanwhile, FEX can identify the true solution structure for the Poisson equation and
the linear conservation law with errors of order 10−7, reaching the machine accuracy since the single-float precision
is used. In the results of the nonlinear Schrödinger equation, FEX identifies the solutions of the form exp(cos(·))
but achieves errors of order 10−5. Note that

∫
Ω û(x)dx in (8) is estimated by the Monte-Carol integration with

millions of points as an accurate and precomputed constant, but
∫

Ω u(x)dx can only be estimated with fixed and
small batch size, typically less than 10,000, in the optimization iterations. As the dimension grows, the estimation
error of

∫
Ω u(x)dx increases, and, hence, even the ground true solution has an increasingly large error according to

(8). Therefore, the optimization solver may return an approximate solution without machine accuracy. Designing a
functional L free of the Monte-Carol error (e.g., Eqn. (21) and (5)) for the nonlinear Schödinger equation could
ensure machine accuracy.

Numerical Convergence. The numerical convergence analysis is performed using the Poisson equation as an
example. Binary trees of depths 2, 3, 4, 6 and 8 are used (see Fig. 3). The square operator (·)2 is excluded in U
so that the binary tree defined in Sec. 3.1 can not reproduce the true solution (sum of the square of coordinates)
exactly. This setting can mimic the case of a complicated solution while a small binary tree was used. Fig. 5 shows
the error distribution of FEX with the growth of dimensions and the change of tree depths. FEX obtains smaller
errors with increasing tree size. Notice that, compared with the errors of NN-based solvers reported in Fig. 4, FEX
gets a higher accuracy when a larger tree is used.

FEX-NN. FEX provides interpretable insights of the ground truth PDE solution by the operator distribution
obtained from the searching loop. It may be beneficial to design NN models with a special structure to increase
the accuracy of NN-based solvers. In the results of the Poisson equation, we observe that the square operator has
a high probability to appear at the leave nodes, which suggests that the true solution may contain the structure
x2 := (x2

1, · · · ,x2
d) at the input x. As a result, we define the FEX-NN by v(x2;Θ) for the Poisson equation. Similarly,

we use FEX-NNs sin(v(x;Θ)) for the linear conservation law and exp(v(x2;Θ)) for the nonlinear Schrödinger
equation. Fig. 4 shows the errors of FEX-NN with the growth of dimensions, and it is clear that FEX-NN
outperforms the vanilla NN-based method by a significant margin.

4.4 Eigenvalue Problem
Consider identifying the smallest eigenvalue γ and the associated eigenfunction u of the eigenvalue problem16,

−∆u+w ·u = γu, x ∈ Ω, for u = 0 on ∂Ω. (9)

The minimization of the Rayleigh quotient I(u) =
∫

Ω
∥∇u∥2

2dx+
∫

Ω
w·u2dx∫

Ω
u2dx

, s.t., u|∂Ω = 0, gives the smallest eigenvalue

and the corresponding eigenfunction. In the NN-based solver16, the following functional is defined

L(u) := I(u)+λ1

∫
∂Ω

u2dx+λ2
(∫

Ω
u2dx−1

)2 (10)

to seek an NN solution. Considering an example of w = ∥x∥22 and Ω = Rd, the smallest eigenvalue of (9) is d and the
associated eigenfunction is exp(−∥x∥2

2
0.5 ). The domain Ω is truncated from Rd to [−3,3]d for simplification16.

In FEX, the functional (10) is also used to estimate a solution. FEX discovers a high probability to have the
“exp” operator at the tree root (100% for d = 2, 4, 6, 8, and 93.3% for d = 10 as shown in Fig. 6). Therefore, it is
reasonable to assume that the eigenfunction is of the form exp(v(x)). Let u(x) be exp(v(x)) and then Eqn. (9) is
simplified to

−∆v−∥∇v∥22 +∥x∥22 = γ. (11)

Eqn. 11 does not have a trivial zero solution so we can avoid the integration constraint used in Eqns. (8) and (10),
which leads to Monte-Carol errors. Utilizing Eqn. (11) and the Rayleigh quotient I, v and γ are alternatively updated
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until convergence. The detail of this iterative algorithm is presented in Appx. 7.3. Fig. 6 shows the relative absolute
error of the estimated eigenvalues with the growth of the dimensions. We can see that directly optimizing (10) with
the NN method produces a large error on the eigenvalue estimation, especially when the dimension is high (e.g.,
the relative error is up to 20% when d = 10). With the postprocessing algorithm with FEX, we can identify the
eigenvalue with an error close to zero.

5 Discussion
This paper proposed the finite expression method, a methodology to find a PDE solution in the form of a simple
mathematical expression. Our theory shows that mathematical expression can overcome the curse of dimensionality.
We provided one implementation of FEX based on reinforcement learning. Our results demonstrated the effectiveness
of FEX to achieve a solution with high and even machine accuracy for solving high-dimensional PDEs, while existing
solvers suffer from low accuracy.

6 Methods
We present the pseudo-code of FEX in Alg. 1 for searching for a solution with a fixed tree. Algorithm 2 shows the
process of searching the solution from an expanding tree set {T1,T2, · · ·} (e.g., the trees grow with depth). For the
reader’s convenience, we summarize the key notations used in this section in Table 1.

Notation Explanation
T a binary tree
e operator sequence
θ trainable scaling and bias parameters
L the functional associated with the PDE solution
S the score function mapping from a operator sequence to [0,1]
χΦ the controller parameterized by Φ
J the objective function for the policy-gradient approach

Table 1. A summary of notations in the FEX implementation.

6.1 Score Computation
The score of an operator sequence e is critical to guide the controller toward generating good operator sequences
and help to maintain a candidate pool of high scores. Intuitively, the score of e is defined in the range [0,1], namely
S(e), by

S(e) :=
(
1+L(e)

)−1
, (12)

where L(e) := min{L(u(·;T,e,θ))|θ}). When L(e) tends to 0, the expression represented by e is close to the true
solution, and the score S(e) goes to 1. Otherwise, S(e) goes to 0. The global minimizer of L(u(·;T,e,θ)) over θ is
difficult and expensive to obtain. Instead of exhaustively searching for a global minimizer, a first-order optimization
algorithm and a second-order one are combined to accelerate the evaluation of S(e).

First-order algorithms (e.g., the stochastic gradient descent44 and Adam45) that utilize gradient to update
are popular in machine learning. They usually require a small learning rate and a large number of iterations for
convergence. It may be time-consuming to optimize L(e) using a first-order algorithm. Alternatively, second-order
algorithms (e.g., the Newton method46 and the Broyden-Fletcher-Goldfarb-Shanno method (BFGS)47) use the
Hessian matrix for faster convergence, but obtaining a good minimizer requires a good initial guess. To reduce
the time of optimizing L(e) in our implementation, a first-order algorithm is used for T1 steps to obtain a good
initial guess and then a second-order algorithm is applied for T2 steps. Let θe

0 be an initialization and θe
T1+T2

be the parameter set after T1 + T2 steps of this hybrid optimization. Then θe
T1+T2

serves as an approximate
argminθ L(u(·;T,e,θ)). Finally, S(e) is estimated by

S(e)≈
(
1+L(u(·;T,e,θe

T1+T2))
)−1

. (13)
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6.2 Operator Sequence Generation
The role of the controller is to generate operator sequences with high scores during the searching loop. Let χΦ be a
controller with model parameter Φ, and Φ is updated to increase the probability for good operator sequences during
the searching loop. e∼ χΦ is used to denote the process to sample an e according to the controller χΦ.

Treating tree node values of T as random variables, the controller χΦ outputs probability mass functions
p1

Φ,p2
Φ, · · · ,ps

Φ to characterize their distributions, where s is the total number of nodes. Each tree node value ej

is sampled from pj
Φ to obtain an operator. Then e := (e1,e2, · · · ,es) is the operator sequence sampled from χΦ.

See Fig. 2b for an illustration. Besides, we adopt the ϵ-greedy strategy48 to enhance exploration of a potentially
high-score e. With probability ϵ < 1, ei is sampled from a uniform distribution of the operator set. With probability
1− ϵ, ei ∼ pi

Φ. A larger ϵ leads to a higher probability to explore new sequences.

6.3 Controller Update
The goal of the controller update is to guide the controller toward generating high-score operator sequences e. The
updating rule of a controller can be designed based on heuristics (e.g., genetic and simulated annealing algorithms)
and gradient-based methods (e.g., policy gradient and darts49). As proof of concept, we introduce a policy-gradient-
based updating rule in RL. The policy gradient method aims to maximize the return by optimizing a parameterized
policy and the controller in our problem plays the role of a policy.

In this paper, the controller χΦ is modeled as a neural network parameterized by Φ. The training objective of
the controller is to maximize the expected score of a sampled e, i.e.,

J(Φ) := Ee∼χΦS(e). (14)

Taking the derivative of (14) with respect to Φ, we have

∇ΦJ(Φ) = Ee∼χΦ

{
S(e)

s∑
i=1
∇Φ log(pi

Φ(ei))
}

, (15)

where pi
Φ(ei) is the probability corresponding to the sampled ei. When the batch size is N and {e(1),e(2), · · · ,e(N)}

are sampled under χΦ each time, the expectation can be approximated by

∇ΦJ(Φ)≈ 1
N

N∑
k=1

{
S(e(k))

s∑
i=1
∇Φ log(pi

Φ(e(k)
i ))

}
. (16)

Next, the model parameter Φ is updated via the gradient ascent with a learning rate η, i.e.,

Φ← Φ+η∇ΦJ(Φ). (17)

The objective in (14) helps to improve the average score of generated sequences. In our problem, the goal is to find
e with the best score. To increase the probability of obtaining the best case, the objective function proposed in34 is
applied to seek the optimal solution via

J(Φ) = Ee∼χΦ{S(e)|S(e)≥ Sν,Φ}, (18)

where Sν,Φ represents the (1−ν)×100%-quantile of the score distribution generated by χΦ. In a discrete form, the
gradient computation becomes

∇ΦJ(Φ)≈ 1
N

N∑
k=1

{
(S(e(k))− Ŝν,Φ)1{S(e(k))≥Ŝν,Φ}

s∑
i=1
∇Φ log(pi

Φ(e(k)
i ))

}
. (19)

where 1 is an indicator function that takes value 1 if the condition is true otherwise 0, and Ŝν,Φ is the (1−ν)-quantile
of the scores {S(e(i))}Ni=1.

6.4 Candidate Optimization
As introduced in Sec. 6.1, the score of e is based on the optimization of a nonconvex function at a random
initialization. Therefore, the optimization may get stuck at poor local minimizers and the score sometimes may
not reflect whether e reveals the structure of the true solution. The operator sequence e corresponding to the true
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solution (or approximately) may not have the best score. For the purpose of not missing good operator sequences, a
candidate pool P with capacity K is maintained to store several e’s of a high score.

During the search loop, if the size of P is less than the capacity K, e will be put in P. If the size of P reaches K
and S(e) is larger than the smallest score in P, then e will be appended to P and the one with the least score will be
removed. After the searching loop, for every e ∈ P, the objective function L(u(·;T,e,θ)) is optimized over θ using a
first-order algorithm with a small learning rate for T3 iterations.

6.5 Experimental Details
This part provides the setting of FEX and NN-based solvers. Specific hyper-parameters for each experiment are
reported in Appx. 6.5.

Implements of FEX. There are four main parts in the implementation of FEX as introduced in Section 3.2.
We will only briefly describe the key numerical choices here. (1) Score computation. The score is updated first by
Adam with a learning rate 0.001 for T1 = 20 iterations and then by BFGS with a learning rate 1 for maximum
T2 = 20 iterations. (2) Operator sequence generation. The depth-3 binary tree (Fig. 2b) with 3 unary operators and
1 binary operator is used to generate mathematical expressions. The binary set is B= {+,−,×} and the unary
set is U= {0,1, Id,(·)2,(·)3,(·)4,exp,sin,cos}. A fully connected NN is used as a controller χΦ with constant input.
The output size of the controller NN is n1|B|+ n2|U|, where n1 = 1 and n2 = 3 represent the number of binary and
unary operators, respectively, and | · | denotes the cardinality of a set. (3) Controller update. The batch size for the
policy gradient update is N = 10 and the controller is trained for 1000 iterations using Adam with a fixed learning
rate 0.002. We adopt the ϵ-greedy strategy to increase the exploration of new e. The probability ϵ of sampling an ei

by random is 0.1. (4) Weight optimization. The candidate pool capacity is set to be K = 10. For any e ∈ P, the
parameter θ is optimized using Adam with an initial learning rate 0.01 for T3 = 20,000 iterations. The learning rate
decays according to the cosine decay schedule50.

Implements of NN-based Solvers. The ResNet comprises 7 fully connected layers and 3 skip connections.
The skip connection is placed between every two layers. The number of neurons in each hidden layer is 50. The NN
is optimized by Adam with an initial learning rate 0.001 for 15,000 iterations. The learning rate decays following the
cosine decay schedule.

Poisson equation. The coefficient λ in the functional (21) is 100. The batch size for the interior and boundary is
5,000 and 1,000, respectively. In the NN method, we use a ResNet with ReLU2, i.e., (max{x,0})2, to approximate
the solution. Especially in Numerical Convergence, since the deeper trees are used, the controller is updated for
5000 iterations for trees with different depth.

Linear conservative law. The coefficient λ in the functional (5) is 100. In the NN method, we use ReLU
(max{x,0}) activation. The batch size for the interior and boundary is 5,000 and 1,000, respectively. We use the
same batch size as the NN method except that we increase the batch size to 20,000 for the interior and 4,000 for the
boundary when the dimension is not smaller than 36.

Schrödinger equation. The coefficient λ in the functional (8) is 1. The batch size for estimating the first term
and second term of (8) is 2,000 and 10,000, respectively. In the NN method, ReLU2 is used in ResNet.

Data and Code Availability
Source codes for reproducing the results in this paper are available at the online data warehouse: https://github.
com/LeungSamWai/Finite-expression-method. The source codes are released under MIT license.
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7 Appendix
7.1 Functionals for solving PDEs
The choice of functionals to solve a PDE is problem-dependent. We present three popular choices (a least-square
method, a variation formulation, and a weak formulation) and discuss examples of the boundary value problems
without loss of generality, which can be generalized to other kinds of PDEs in a similar manner.
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7.1.1 Least Square Method
Suppose that the PDE is given by

Du(x) = f(u(x),x), x ∈ Ω, Bu(x) = g(x), x ∈ ∂Ω, (20)

where D is a differential operator, f(u(x),x) can be a nonlinear function in u, Ω is a bounded domain in Rd,
and Bu = g characterizes the boundary condition (e.g., Dirichlet, Neumann and Robin51). The least square
method15, 36, 37 defines a straightforward functional to characterize the error of the estimated solution by

L(u) := ∥Du(x)−f(u,x)∥2L2(Ω) +λ∥Bu(x)−g(x)∥2L2(∂Ω), (21)

where λ is a positive coefficient to enforce the boundary constraint.

7.1.2 Variation Formulation
We next introduce the variation formulation that is widely used in identifying a numerical solution16, 38. Consider
an example of an elliptic PDE with a homogeneous Dirichlet boundary condition. The PDE is given by

−∆u(x)+ c(x)u(x) = f(x), x ∈ Ω, u(x) = 0, x ∈ ∂Ω, (22)

where c is a bounded function and f ∈ L2. The solution u of PDE (22) minimizes a variation formulation
1
2

∫
Ω ∥∇u∥2 + cu2dx−

∫
Ω fudx. By imposing the boundary condition penalty in the variation form, one may obtain

the functional

L(u) := 1
2

∫
Ω
∥∇u∥2 + cu2dx−

∫
Ω

fudx+λ

∫
∂Ω

u2dx. (23)

7.1.3 Weak Formulation
Another alternative method is to find the weak solution of the PDE based on the weak formulation. Let v ∈H1

0 (Ω) be
a test function, where H1

0 (Ω) denotes the Sobolev space whose weak derivative is L2 integrable with zero boundary
values. The weak solution u of Eqn. (22) is defined as the function that satisfies the bilinear equations:

a(u,v) : =
∫

Ω
∇u∇v + cuv−fvdx = 0, ∀v ∈H1

0 (Ω),

u(x) = 0, x ∈ ∂Ω,

(24)

where a(u,v) is constructed by multiplying (22) and v, and integration by parts. One can transfer all the derivatives
of the solution function to the test function by conducting integration by parts several times39. The weak solution is
rewritten as the solution of a saddle-point problem40,

min
u∈H1

0 (Ω)
max

v∈H1
0 (Ω)
|a(u,v)|2/∥v∥2L2(Ω). (25)

We may define the functional L to identify the PDE solution by

L(u) := max
v∈H1

0 (Ω)
|a(u,v)|2/∥v∥2L2(Ω) +λ

∫
∂Ω

u2dx. (26)

7.2 Proofs of Theorems
Proof of Thm. 2.1. By Thm. 1.1 of Shen et al (2021)21, for any f ∈ C([a,b]d) as a continuous function on [a,b]d,
there exists a fully connected neural network (FNN) ϕ with width N = 36d(2d+1) and depth L = 11 (i.e., 11 hidden
layers) such that, for an arbitrary ε > 0, ∥ϕ−f∥L∞([a,b]d) < ε. This FNN is constructed via an activation function
with an explicit formula σ(x) = σ1(x) :=

∣∣x− 2⌊x+1
2 ⌋

∣∣ for x ∈ [0,∞) and σ(x) = σ2(x) := x
|x|+1 for x ∈ (−∞,0).

Therefore, σ(x) = sign(x)+1
2 σ1(x)− sign(x)−1

2 σ2(x). Hence, it requires at most 18 operators to evaluate σ(x). For an
FNN of width N and depth L, there are N(d+1)+(L−1)N2 operators “×", Nd−1+(L−1)N(N −1) operators
“+", and NL evaluations of σ(x) to evaluate an output of the FNN. Therefore, the FNN ϕ is a mathematical
expression with at most kd := 103680d4 + 103824d3 + 39600d2 + 6804d−1 = O(d4) operators. Therefore, for any
ε > 0, any continuous function f on [a,b]d, there is a kd-finite expression that can approximate f uniformly well on
[a,b]d within ε accuracy. Since kd is independent of ε, it is clear that the function space of kd-finite expressions is
dense in C([a,b]d).
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Proof of Thm. 2.2. By Cor. 3.8 of Jiao et al (2021)22, let p ∈ [1,+∞), for any f ∈Hα
µ([0,1]d) and ε > 0, there

exists an FNN ϕ with width N = max{2d

⌈
log2

(√
d

(
3µ
ε

)1/α
)⌉

,2
⌈
log2

3µdα/2

2ε

⌉
+ 2} and depth L = 6 such that

∥ϕ−f∥Lp([0,1]d) < ε. This FNN is constructed via activation functions chosen from the set {sin(x),max{0,x},2x}.
Similar to the proof for Thm. 2.1, there are N(d+1)+(L−1)N2 operators “×", Nd−1+(L−1)N(N−1) operators
“+", and NL evaluations of activation functions to evaluate an output of the FNN. Therefore, the total number of
operators in ϕ as a mathematical expression is O(d2(logd+log 1

ε )2), which completes the proof.

Algorithm 1 FEX with a fixed tree
Input: PDE and the associated functional L; A tree T; Searching loop iteration T ; Coarse-tune iteration T1 with
Adam; Coarse-tune iteration T2 with BFGS; Fine-tune iteration T3 with Adam; Pool size K; Batch size N .
Output: The solution u(x;T, ê, θ̂).

1: Initialize the agent χ for the tree T

2: P←{}
3: for _ from 1 to T do
4: Sample N sequences {e(1),e(2), · · · ,e(N)} from χ
5: for n from 1 to N do
6: Optimize L(u(x;T,e(n),θ)) by coarse-tune with T1 +T2 iterations.
7: Compute the reward R(e(n)) of e(2)

8: if e(n) belongs to the top-K of S then
9: P.append(e(n))

10: P pops some e with the smallest reward when overloading
11: end if
12: end for
13: Update χ using (19)
14: end for
15: for e in P do
16: Fine-tune L(u(x;T,e,θ)) with T3 iterations.
17: end for
18: return the expression with the smallest fine-tune error.

Algorithm 2 FEX with progressively expanding trees
Input: Tree set {T1,T2, · · ·}; Error tolerance ϵ;
Output: the solution u(x; T̂, ẽ, θ̃).

1: for T in {T1,T2, · · ·} do
2: Initialize the agent χ for the tree T

3: Obtain u(x;T, ê, θ̂) from Algorithm 1
4: if L(u(·;T, ê, θ̂)) ≤ ϵ then
5: Break
6: end if
7: end for
8: return the expression with the smallest functional value.

7.3 Iterative method for eigenpairs
First, by solving Eqn. (10) with our FEX, we obtain an estimated eigenfunction u(x;T, ê, θ̂) and get the initial
estimation of the eigenvalue through the Rayleigh quotient γ0 = I(u(·;T, ê, θ̂)). Then we can utilize Eqn. (11) to
iteratively find the eigenpair. We define the function for Eqn. (11) by

L2(v,γ) :=
∥∥−∆v−∥∇v∥22 +∥x∥22−γ

∥∥2
L2(Ω). (27)

Given γi, we aim to find v that is expressed by mathematical expression and minimizes L2(v,γi). Assume v is
expressed by a binary tree (v := v(·;T,e,θ)), and then we can search the solution using our FEX with the following
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optimization,

e∗
i ,θ∗

i ≈ argmin
e,θ

L2(v(·;T,e,θ),γi). (28)

Next, we can compute the current estimated eigenvalue by γi+1 = I(exp(v(·;T,e∗
i ,θ∗

i ))).
If continuing this loop for G times, we will obtain the eigenpair γG and exp(v(·;T,e∗

G,θ∗
G)).

Implementation. In our iteration method, the number of the iterative loop is G = 10. λ1 = λ2 = 500 in (10).
The batch size for estimating the first term and third term of (10) is 10,000 while that of the second term (boundary)
is 2,000. ReLU2 is used in ResNet, following16.
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Figure 4. Distribution of the node values and the error comparison. We use Fex to search the optimal sequence of
node values and show the frequency of the node values of the binary tree in the candidate pool, consisting of the
root (Root), middle node (Middle), and two leaves (Leaf 1 and Leaf 2). Based on the observation of the distribution,
we readily design the new NN parameterization (FEX-NN) to estimate the solution. The last column displays the
relative L2 error as the function of the dimension. Rows (a), (b) and (c) represent the results for Poisson
equation (3), Linear conservation law (4) and Nonlinear Schrödinger equation (6) respectively. For various
dimensions, FEX identifies the true solution, approximating solutions of almost the machine accuracy.
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Figure 5. Relative L2 error of solutions estimated by trees with increasing depth for the problems of various
dimensions. We exclude the square operator (·)2 in the unary set U, and the binary tree defined in Sec. 3.1 can not
reproduce the true solution (sum of the square of coordinates) exactly in the example of the Poisson equation. We
found that smaller errors could be obtained with larger tree sizes.
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Figure 6. Eigenvalue problems and postprocessing algorithm design with FEX. Bottom left: We observed that the
exponent operator “exp(·)” dominates the tree root in the FEX searching loop. Based on this observation, we
assume the solution is exp(v(x)) and simplify the original PDE to a new PDE that avoids the trivial solution.
Bottom right: The NN-based method produces a large error on the eigenvalue estimation, especially when the
dimension is high (d = 10). With the postprocessing algorithm with FEX, we can identify the eigenvalue with an
error close to zero.
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