
Efficient Attention Network: Accelerate Attention by Searching Where to Plug

Zhongzhan Huang1*, Senwei Liang2*, Mingfu Liang3†, Wei He4†, Haizhao Yang 2‡

1Tsinghua University, 2Purdue University,
3Northwestern University, 4Nanyang Technological University,

hzz dedekinds@foxmail.com, liang339@purdue.edu,
mingfuliang2020@u.northwestern.edu, wei005@e.ntu.edu.sg

haizhao@purdue.edu

Abstract

Recently, many plug-and-play self-attention modules are
proposed to enhance the model generalization by exploit-
ing the internal information of deep convolutional neural
networks (CNNs). Previous works lay an emphasis on the
design of attention module for specific functionality, e.g.,
light-weighted or task-oriented attention. However, they
ignore the importance of where to plug in the attention
module since they connect the modules individually with
each block of the entire CNN backbone for granted, lead-
ing to incremental computational cost and number of pa-
rameters with the growth of network depth. Thus, we pro-
pose a framework called Efficient Attention Network (EAN)
to improve the efficiency for the existing attention mod-
ules. In EAN, we leverage the sharing mechanism [11] to
share the attention module within the backbone and search
where to connect the shared attention module via reinforce-
ment learning. Finally, we obtain the attention network
with sparse connections between the backbone and mod-
ules, while (1) maintaining accuracy (2) reducing extra
parameter increment and (3) accelerating inference. Ex-
tensive experiments on widely-used benchmarks and popu-
lar attention networks show the effectiveness of EAN. Fur-
thermore, we empirically illustrate that our EAN has the
capacity of transferring to other tasks and capturing the
informative features. The code is available at https:
//github.com/gbup-group/EAN-efficient-
attention-network.

1. Introduction

Recently, many plug-and-play and straightforward self-
attention modules that utilize the interior information of a

*Equal contribution
†Equal contribution
‡Corresponding author

Figure 1: Comparison of relative inference time increment
(see Eqn. 9), number of parameters, and test accuracy be-
tween various attention models on ImageNet 2012. We use
different colors to distinguish the type of attention models,
and the larger circle size means the larger number of pa-
rameters. Our models (EAN) achieve the smaller relative
inference time increment, parameters, and higher test accu-
racy than the attention models of same type.

network to enhance instance specifity [18] are proposed to
boost the generalization of deep convolutional neural net-
works (CNNs) [9, 27, 15, 11, 4, 26]. The self-attention
module is usually plugged into every block of a residual
network (ResNet) [7] (see Fig. 2 (a) for the structure of a
ResNet and Fig. 2 (b) for a network with attention mod-
ules). In general, the implementation of the attention mod-
ule can be divided into three steps [11]: (1) Extraction:
the plug-in module extracts internal features of a network
by computing their statistics, like mean, variance or higher-
order moments [9, 14]; (2) Processing: the module lever-
ages the extracted features to adaptively generate a mask
that measures the importance of the feature maps via a fully
connected layer [9], convolution layer [27], or feature-wise
linear transformation [18] etc.; (3) Recalibration: the mask
is used to calibrate the feature maps of the network by
element-wise multiplication or addition [9, 4]. The compu-

1

ar
X

iv
:2

01
1.

14
05

8v
1

 [
cs

.C
V

]
 2

8
N

ov
 2

02
0

https://github.com/gbup-group/EAN-efficient-attention-network
https://github.com/gbup-group/EAN-efficient-attention-network
https://github.com/gbup-group/EAN-efficient-attention-network

Figure 2: Comparison of network structures between (a) ResNet, (b) Org-full attention network, (c) Share-full attention
network, and (d) our EAN network. The detailed introduction of different networks is shown in Section 3.

tation operations and trainable module in the implementa-
tion of self-attention inevitably require extra computational
complexity and introduce many additional parameters. This
limits self-attention modules usage on more practical appli-
cations that require fast inference speed and small network
size. Therefore, previous works made efforts on reducing
the cost of individual self-attention module in terms of its
parameters or computational complexity:

Sharing Mechanism. Huang et al. [11] proposed to
share an attention module throughout different network
blocks in the same stage and to encourage the integration
of layer-wise information. As shown in Fig. 2 (c), the shar-
ing mechanism enables different blocks in the same stages
to use an attention module with the same set of parameters.
Since the parameter increment depends on the number of
stages, it significantly reduces the increment of trainable pa-
rameters. However, the computational complexity remains
the same.

Lightweight Module. Designing the lightweight atten-
tion module, e.g., feature-wise linear transformation [15,
18], to process the features can reduce the cost. However,
the lightweight module does not reduce the computational
cost of “extraction” and “recalibration” steps. For example,
in Fig. 1, a lightweight attention design like SGE [15] has
significantly smaller parameter increment than SE [9] but it
causes a longer inference time. Further, the attention mod-
ules are individually plugged into every block throughout
a CNN, and hence the cost still increases with the growing
number of blocks.

As discussed above, the extra computational cost re-
mains large despite adopting the sharing mechanism or
lightweight module. To improve the efficiency of the atten-
tion modules in CNNs, in this paper, a simple idea is pro-
posed to reduce the number of interactions between blocks

and attention modules instead of plugging the attention
modules into each block. Meanwhile, we adopt the shar-
ing mechanism [11], as shown in Fig. 2 (d). Comparing to
Fig. 2 (b) and (c), our advantages are two-folded, 1© smaller
parameter increment 2© smaller computational cost incre-
ment because of less connections between backbone and
attention module. However, to achieve satisfactory perfor-
mance, the dense connections [10] and the adequate num-
ber of trainable parameters [25] in networks are two critical
factors generally. Thus, to balance efficiency and satisfac-
tory performance, we propose to use reinforcement learn-
ing to search for the optimal connection scheme. Our goal
is to obtain the attention network with sparse connections
between the backbone and modules while (1) maintaining
accuracy (2) reducing extra parameter increment and (3)
accelerating inference. Our framework is called the Effi-
cient Attention Network (EAN), which leverages the shar-
ing mechanism to implement the attention module within
the backbone and searches where to connect the shared at-
tention module via reinforcement learning.

Our Contribution. We summarize our contribution as
follows:

1. We propose an effective connection searching frame-
work to improve the efficiency of the given attention net-
work while maintaining the original accuracy, reducing the
extra parameters increment, and accelerating the inference.

2. Through our empirical experiments, we illustrate that
the attention network searched by our framework has the
capacity of transferring to other tasks and capturing the in-
formative features.

2

2. Related Works

Neural Architecture Search (NAS). Designing a sat-
isfactory neural architecture automatically without oracles,
also known as neural architecture search, is of significant
interest for academics and industrial AI research. Such a
problem may always be formulated as searching for the op-
timal combination of different network granularities.

The early NAS works require expensive computational
cost for scratch-training a massive number of architecture
candidates [30, 31]. To alleviate the searching cost, the re-
cent advances of one-shot approaches for NAS bring up the
concept of supernet based on the weight-sharing heuristic.
Supernet serves as the search space embodiment of the can-
didate architectures, and it is trained by optimizing differ-
ent sub-networks from the sampling paths, e.g., SPOS [6],
GreedyNAS [28] and FairNAS [5].

The most conceptually related work [16] aims to propose
a lightweight non-local (LightNL) block [26] and searches
for the optimal configuration to incorporate the non-local
block into mobile neural networks. Although the inserted
location of the LightNL is also considered in their NAS
objective, the construction of the LightNL blocks is also
jointly optimized in their objective. As both the inserted lo-
cation and the construction of LightNL are integrated com-
pletely after the searching, it is hard to differentiate the net
contribution of their proposed inserted location of LightNL
blocks. However, in our work, we tailor to identify the im-
portance of where to plug in the attention module, and we do
not concentrate on only one design of the existing attention
modules, compared to Li et al. [16] that only specializes on
non-local block [26]. To sum up, the difference in the re-
search target and more general consideration differentiate
our work with Li et al. [16].

Self-Attention Mechanism. The self-attention mecha-
nism is widely used in CNNs for computer vision [9, 26,
11, 4, 15, 18]. The self-attention module is modularized
as a network component and inserted into different layers
of the network to emphasize informative features and their
importance according to the internal information. Many
works focus on the design of the attention module for spe-
cific functionality. Squeeze-and-Excitation (SE) [9] mod-
ule leverages global average pooling to extract the channel-
wise statistics and learns the non-mutually-exclusive re-
lationship between channels. Spatial Group-wise En-
hance (SGE) [15] module learns to recalibrate features by
saliency factors learned from different groups of the fea-
ture maps. Dense-Implicit-Attention (DIA) [11] module
captures the layer-wise feature interrelation with a recurrent
neural network (RNN).

3. Preliminaries

In this section, we briefly review ResNet [7]. Then we
formulate two types of attention networks, Org-full network
(Fig. 2 (b)), and Share-full network (Fig. 2 (c)). The struc-
ture of ResNet is shown in Fig. 2 (a). In general, the ResNet
architecture has several stages, and each stage, whose fea-
ture maps have the same size, is a collection of consecutive
blocks. Suppose a ResNet hasm blocks. Let x` be the input
of the `th block and f`(·) be the residual mapping, and then
the output x`+1 of the `th block is defined as

x`+1 = x` + f`(x`). (1)

3.1. Org-full Attention Network

We describe an attention network as an Org-full network
(Fig. 2 (b)) if the attention module is individually defined
for each block. Note that the term “full” refers to a sce-
nario that all blocks in a network connect to the attention
modules, while “Org” is short for “Original”. Many popu-
lar attention modules adopt this way to connect the ResNet
backbone [9, 15, 27]. We denote the attention module in the
`th block as M(·;W`), where W` are the parameters. Then
the attention will be formulated as M(f`(x`);W`) which
consists of the extraction and processing operations intro-
duced in Section 1. In the recalibration step, the attention is
applied to the residual output f`(x`), i.e.,

x`+1 = x` +M(f`(x`);W`)� f`(x`), (2)

where ` = 1, · · · ,m and � is the element-wise multipli-
cation. Eqn. 2 indicates that the computational cost and
number of parameters grow with the increasing number of
blocks m.

3.2. Share-full Attention Network

We denote an attention network as a Share-full network
(Fig. 2 (c)) if the blocks within one stage are connected to
the same attention module, which is defined for the stage.
The idea of Share-full network is first proposed in Huang et
al. [11]. We denote attention module defined in the stage k
as M(·;Wk). If the `th block belongs to the k` stage, then
the attention is modeled as M(f`(x`);Wk`). The building
block becomes

x`+1 = x` +M(f`(x`);Wk`)� f`(x`), (3)

where ` = 1, · · · ,m. Distinct from the Org-full attention
network, the number of extra parameters of the Share-full
network depends on the number of stages, instead of the
number of blocks m. Typically, a ResNet has 3∼4 stages
but has tens of blocks, which indicates a Share-full network
can significantly reduce the extra parameters.

3

Algorithm 1 Searching optimal connection scheme
Input: Training set Dtrain; validation set Dval; a Share-
full network Ω(x|1); learning rate η; pre-training step K;
searching step T ; time step h to apply PPO.
Output: The trained controller χθ(x0).

1: . Pre-train the supernet
2: for t from 1 to K do
3: a ∼ [Bernoulli(0.5)]m

4: train Ω(x|a) with Dtrain
5: end for
6: . Policy-gradient-based search
7: for t from 1 to T do
8: pθ ← χθ(x0)
9: a ∼ pθ

10: gspa ← Eqn. 6
11: gval ← Ω(Dval|a), grnd ← ‖σ1(a)− σ2(a;φ)‖22
12: calculate the reward G(a) by Eqn. 7
13: update θ by Eqn. 5
14: update φ by minimizing ‖σ1(a)− σ2(a;φ)‖22
15: put (pθ,a, G(a)) into replay buffer
16: . Update θ from buffer
17: if t ≥ h then
18: sample (pθ,a, G(a)) from replay buffer
19: update θ by Eqn. 8
20: end if
21: end for
22: return χθ(x0)

4. Proposed Method
In this section, we systematically introduce the proposed

Efficient Attention Network (EAN) framework, which con-
sists of two parts: First, we pre-train a supernet as the search
space, which has the same network structure as a Share-full
network. Second, we use a policy-gradient-based method to
search for an optimal connection scheme from the supernet.
The basic workflow of our method is shown in Alg. 1.

4.1. Problem Description

We consider a supernet Ω(x|a) with m blocks and in-
put x, which has the same network structure as a Share-full
network. A sequence a = (a1, a2, · · · , am) denotes an at-
tention connection scheme, where ai = 1 when the ith block
is connected to the shared attention module, otherwise it is
equal to 0. A sub-network specified by a scheme a can be
formulated as follows:

x`+1 = x` +
(
a` ·M(f`(x`);Wk`) + (1− a`)1

)
� f`(x`),

(4)

where 1 denotes an all-one vector and ` is from 1 to m.
In particular, Ω(x|a) becomes a Share-full network if a is
all-one vector, or a vanilla ResNet while a is a zero vector.

Figure 3: The illustration of our policy-gradient-based
method to search an optimal scheme.

Our goals are: (1) to find a connection scheme a, which is
sparse enough for less computation cost, from 2m possibil-
ities; (2) to ensure that the network Ω(x|a) possesses good
generalization.

4.2. Pre-training the Supernet

To determine the optimal architecture from the pool of
candidates, it is costly to evaluate all their individual perfor-
mance after training. In many related works on NAS, can-
didates’ validation accuracy from a supernet serve as a sat-
isfactory performance proxy [6, 28, 5]. Similarly, to obtain
the optimal connection scheme for the attention module, we
propose to train the supernet as the search space following
the idea of co-adaption [19]. We consider the validation
performance of the sampled sub-networks as the proxy for
their stand-alone performance1.

Specifically, given a dataset, we split all training sam-
ples into the training set Dtrain and the validation set Dval.
To train the supernet, we activate or deactivate the atten-
tion module in each block of it randomly during optimiza-
tion. We first initialize a supernet Ω(x|a(0)), where a(0) =
(1, · · · , 1). At iteration t, we randomly draw a connection
scheme a(t) = (at1, · · · , atm), where ati is sampled from a
Bernoulli distribution B(0.5). Then, we train sub-network
Ω(x|a(t)) with the scheme a(t) from Ω(x|a(0)) onDtrain via
weight-sharing.

4.3. Training Controller with Policy Gradient

In this part, we introduce the step to search the opti-
mal scheme, which uses a controller to generate connection
schemes and updates the controller by policy gradient, as
illustrated in Fig. 3.

We use a fully connected network as controller χθ(x0) to
produce the connection schemes, where θ are the learnable
parameters, and x0 is a constant vector 0. The output of
χθ(x0) is pθ, where pθ = (p1θ, p

2
θ, ..., p

m
θ) and piθ represents

the probability of connecting the attention to the ith block. A
realization of a is sampled from the controller output, i.e.,
a ∼ pθ. The probability associated with the scheme a is
p̂θ = (p̂1θ, p̂

2
θ, ..., p̂

m
θ), where p̂iθ = (1−ai)(1− piθ) +aip

i
θ.

1Train the sub-networks from scratch

4

Dataset Model
Test Accuracy (%) Parameters (M) Relative Inference Time Increment (%)

Org-full Share-full EAN Org-full Share-full EAN Org-full Share-full EAN

C
IF

A
R

10
0 Org 74.29 - - 1.727 - - 0.00 - -

SE [9] 75.80 76.09 76.93 1.929 1.739 1.739 54.46 52.09 23.52
SGE [15] 75.75 76.17 76.36 1.728 1.727 1.727 93.60 93.41 50.49
DIA [11] - 77.26 77.12 - 1.946 1.946 - 121.11 65.46

Im
ag

eN
et Org 76.01 - - 25.584 - - 0.00 - -

SE [9] 77.01 77.35 77.40 28.115 26.284 26.284 25.94 25.92 10.35
SGE [15] 77.20 77.51 77.62 25.586 25.584 25.584 40.60 40.50 19.66
DIA [11] - 77.24 77.56 - 28.385 28.385 - 27.26 16.58

Table 1: Comparison of relative inference time increment (see Eqn. 9), number of parameters, and test accuracy between var-
ious attention models on CIFAR100 and ImageNet 2012. “Org” stands for ResNet164 backbone in CIFAR100 and ResNet50
backbone in ImageNet. EAN networks have faster inference speed among the networks with the same type of attention
module and reduce over 39% growth rate of inference time compared with the same type Share-full attention network.

We denote G(a) as a reward for a. The parameter set θ
can be updated via policy gradient with learning rate η, i.e.,

Rθ = G(a) ·
m∑
i=1

log p̂iθ,

θ = θ + η · ∇Rθ.
(5)

In this way, the controller tends to output the probabil-
ity that results in a large reward G. Therefore, designing a
reasonable G can help us search for a good structure.

Sparsity Reward. One of our goals is to accelerate the
inference of the attention network. To achieve, we comple-
ment a sparsity reward gspa to encourage the controller to
generate the schemes with fewer connections between at-
tention modules and backbone. We define gspa by

gspa = 1−
‖a‖0
m

, (6)

where ‖·‖0 is a zero norm that counts the number of non-
zero entities, and m is the number of blocks.

Validation Reward. The other goal is to find the
schemes with which the networks can maintain the origi-
nal accuracy. Hence, we use the validation accuracy of the
sub-network Ω(x|a) sampled from the supernet as a reward,
which depicts the performance of its structure. The accu-
racy of Ω(x|a) on Dval is denoted as gval. In fact, it is pop-
ular to use validation accuracy of a candidate network as a
reward signal in NAS [21, 30, 6, 31, 28]. Furthermore, it has
been empirically proven that the validation performance of
the sub-networks sampled from a supernet can be positively
correlated to their stand-alone performance [1].

Curiosity Bonus. To encourage the controller to explore
more potentially useful connection schemes, we add the
Random Network Distillation (RND) curiosity bonus [2] in
our reward. Two extra networks with input a are involved
in the RND process, including a target network σ1(·) and

a predictor network σ2(·;φ), where φ is the parameter set.
The parameters of σ1(·) are randomly initialized and fixed
after initialization, while σ2(·;φ) is trained with the connec-
tion schemes collected by the controller.

The basic idea of RND is to minimize the difference be-
tween the outputs of these two networks, which is denoted
by term σφ(·) = ‖σ1(·)− σ2(·;φ)‖22, over the seen con-
nection schemes. If the controller generates a new scheme
a, σφ(a) is expected to be larger because the predictor
σ2(·;φ) never trains on scheme a. Then, we denote the
term ‖σ1(a)− σ2(a;φ)‖22 as grnd, which is used as curiosity
bonus to reward the controller for exploring a new scheme.
Besides, in Fig. 5, we empirically show that RND bonus
mitigates the fast convergence of early training iterations,
leading to exploration for more schemes.

To sum up, our reward G(a) becomes

G(a) = λ1 · gspa + λ2 · gval + λ3 · grnd, (7)

where λ1, λ2, λ3 are the coefficient for each bonus.
Data Reuse. To improve the utilization efficiency of

sampled connection schemes and speed up the training of
the controller, we incorporate Proximal Policy Optimiza-
tion (PPO) [23] in our framework. As shown in Alg. 1,
after the update of parameter θ and φ, we put the tuple
(pθ, a, G(a)) into a buffer. At the later step, we retrieve
some used connection scheme and update θ as follows:

κ = Ea∼pθold

[
G(a)

m∑
i=1

p̂iθ
p̂iθold

∇θ log p̂iθ

]
,

θ = θ + η · κ,
(8)

where η is learning rate and the θold denotes the θ sampled
from buffer.

5

Figure 4: Comparison of the validation accuracy distribu-
tion between EAN and Random sampling for SE module.
The validation accuracy is obtained by training from scratch
the model specified by the connection scheme from these
methods on CIFAR100 with ResNet164 backbone.

5. Experiments
5.1. Datasets and Settings

On CIFAR100 [13] and ImageNet 2012 [22] datasets, we
conduct experiments on ResNet [7] backbone with different
attention modules, including SE (Squeeze-Excitation) [9],
SGE (Spatial Group-wise Enhance) [15] and DIA (Dense-
Implicit-Attention) [11] modules. In our Supplementary,
we describe these modules as well as the training settings
of controller and networks. Since the networks with at-
tention modules have extra more computational cost from
the vanilla backbone inevitably, we formulate the inference
time increment to represent the relative speed of different
attention networks, i.e.,

It(w. Attention)− It(wo. Attention)

It(wo. Attention)
× 100%, (9)

where It(·) denotes the inference time of the network and
the notation w/wo. Attention represents the network with
the attention module or the vanilla backbone network. All
results are measured by forwarding the data of batch size
50 for 1000 times on the server with Intel(R) Xeon(R) Gold
5122 CPU @ 3.60GHz and 1 Tesla V100 GPU.

CIFAR100. CIFAR100 consists of 50k training images
and 10k test images of size 32 by 32. In our implementation,
we choose 10k images from the training images as a vali-
dation set (100 images for each class, 100 classes in total),
and the remainder images as a sub-training set. Regarding
the experimental settings of ResNet164 [7] backbone with
different attention modules, the supernet is trained for 150
epochs, and the search step T is set to be 1000.

ImageNet 2012. ImageNet 2012 comprises 1.28 mil-
lion training images, which we split 100k images (100 from

Figure 5: Comparison of the convergence speed between
ENAS and EAN. The controller tends to generate a deter-
ministic scheme when p̄ is close to 1.

each class and 1000 classes in total) as the validation set
and the remainder as the sub-training set. The testing set
includes 50k images. Besides, the random cropping of size
224 by 224 is used in ImageNet experiments. Regarding the
experimental settings of ResNet50 [7] backbone with differ-
ent attention modules, the supernet is trained for 40 epochs,
and the search step T is set to be 300.

5.2. Results

The concrete connection schemes found by EAN are pre-
sented in our Supplementary. Table 1 shows the test accu-
racy, the number of parameters, and relative inference time
increment on CIFAR100 and ImageNet 2012. Fig. 1 vi-
sualizes the ImageNet results from Table 1. Since EAN
and Share-full network use sharing mechanism [11] for
the attention module, over the vanilla ResNet, they both
have fewer parameters increment than the Org-full network.
Note that EAN networks have faster inference speed among
the networks with the same type of attention and reduce
over 39% growth rate of inference time compared with
the same type Share-full attention network. Furthermore,
Share-full networks have higher accuracy than Org-full net-
works, but in most cases, the accuracy of EAN networks
surpass that of Share-full networks. It implies that discon-
necting the interaction between the attention and backbone
in the appropriate location can maintain or even improve the
performance of attention models.

6. Analysis

6.1. Comparison with Random Sampling

In this part, we illustrate that our EAN framework can
find efficient attention structures with good performance.
For the SE module with CIFAR100, we compare the 180
different connection schemes obtained by random sampling

6

Method Stage1 Stage2 Stage3 Test Accuracy (%)

ENAS (a) 001001001001001001 001001001001001001 001001001001001001 75.80
ENAS (b) 100100101100100100 101101100100101101 100100101101100100 75.11
ENAS (c) 110110110110110110 110110110110110110 110110110110110110 76.08

EAN (a) 001100100101110101 001100000111001111 101100000111110001 76.93
EAN (b) 001100000001010111 011100001000010111 101000100110000000 76.71

Table 2: The connection schemes searched by ENAS [21] or EAN. The experiment is conducted on CIFAR100 with SE
module and ResNet164 backbone.

Dataset Model
MAE/MSE Relative Inference Time Increment (%)

Org-full Share-full EAN Org-full Share-full EAN

SHHB
SE [9] 9.5/15.93 8.9/14.6 8.6/14.7 19.19 19.19 6.16
DIA [11] - 9.1/14.9 8.2/13.9 - 16.93 8.71

SHHA
SGE [15] 93.9/144.5 91.6/143.1 88.4/140.0 58.98 58.85 30.55
SE [9] 89.9/140.2 89.9/140.2 79.4/127.7 49.50 49.00 21.07
DIA [11] - 92.5/130.4 90.3/141.6 - 51.75 29.43

Table 3: Transfer the optimal architecture searched by EAN from image classification to crowd counting task.

and 40 connection schemes found by EAN. We train net-
works specified by these schemes from scratch on Dtrain
and evaluate their performances on Dval. Fig. 4 shows the
validation accuracy distribution between EAN and random
sampling. The validation accuracy associated with EAN
(average: 75.10) is greater than random sampling (average:
74.29) with P-value 4× 10−7 < 0.05 under t-test. Besides,
standard derivation of EAN (std: 0.45) is smaller than ran-
dom sampling (std: 0.81), suggesting that the EAN frame-
work can find good structures stably.

6.2. Comparison with ENAS

In this part, we compare our EAN with ENAS [21], a
prevailing method in NAS, which trains the target network
and RNN controller alternatively as well. However, it is
infeasible to solve our problem of searching for an opti-
mal scheme by implementing ENAS directly. We com-
pare EAN and ENAS on CIFAR100 with Share-full-SE and
ResNet164 backbone.

From our empirical results, the controller of ENAS tends
to converge to some periodic-alike schemes at a fast speed.
In this case, it will conduct much less exploration of the
potential efficient structures. The majority of the schemes
searched by ENAS are “111...111” (Share-full network)
or “000...000” (Vanilla network), which shows that it can
not get the balance between the performance and inference
time. The list of schemes searched by ENAS is presented
in Supplementary. In Table 2, the minority of the periodic-
alike schemes searched by ENAS are shown, e.g., “001” in
ENAS (a). Such schemes may come from the input mode of
ENAS, i.e., for a connection scheme a = (a1, a2, ..., am),

the value of component al depends on al−1, al−2, ..., a1.
Such strong sequential correlations let the sequential infor-
mation dominate in the RNN controller instead of the pol-
icy rewards. Compared with the periodic-alike connection
schemes from ENAS, the schemes from EAN demonstrate
better performance.

Besides, our experiment indicates that ENAS explores a
much smaller number of candidate schemes. We quantify
the convergence of the controller using p̄ = 1

m

∑m
i=1 p̂

i
θ,

which is the mean of the probability p̂ associated with the
scheme. When p̄ is close to 1, the controller tends to gener-
ate a deterministic scheme. Fig. 5 shows the curve of p̄ with
the growth of searching iterations, where p̄ of ENAS shows
the significant tendency for convergence in 20 iterations and
converges very fast within 100 iterations. Generally speak-
ing, methods in NAS [21, 30] require hundreds or thousands
of iterations for convergence.

6.3. Transferring Connection Schemes

To further investigate the generalization of EAN, we con-
duct experiments on transferring the optimal architecture
from image classification to crowd counting task [29, 3,
17, 8]. Crowd counting aims to estimate the density map
and predict the total number of people for a given image,
whose efficiency is also crucial for many real-world appli-
cations, e.g., video surveillance and crowd analysis. How-
ever, most state-of-the-art works still rely on the heavy pre-
trained backbone networks [20] for obtaining satisfactory
performance on such dense regression problems. The ex-
periments show that our EAN serves as an efficient back-
bone network and can extract the representative features for

7

crowd counting.
The networks pre-trained on the ImageNet dataset serve

as the backbone of crowd counting models. We evaluated
the transferring performance on the commonly-used Shang-
hai Tech dataset [29], which includes two parts. Shang-
hai Tech part A (SHHA) has 482 images with 241,677
people counting, and Shanghai Tech part B (SHHB) con-
tains 716 images with 88,488 people counting. Follow-
ing the previous works, SHHA and SHHB are split into
train/validation/test set with 270/30/182 and 360/40/316
images, respectively. The performance on the test set is re-
ported using the standard Mean Square Error (MSE) and
Mean Absolute Error (MAE), as shown in Table 3. Our
EAN can outperform the baseline (Org-full and Share-full)
while reducing the inference time increment by over 40%
compared with the baseline.

6.4. Capturing Discriminative Features

To study the ability of EAN in capturing and exploit-
ing features of a given target, we apply Grad-CAM [24]
to compare the regions where different models localize on
with respect to their target prediction. Grad-CAM is a tech-
nique to generate the heatmap highlighting network atten-
tion by the gradient related to the given target. Fig. 6 shows
the visualization results and the softmax scores for the tar-
get with vanilla ResNet50, Share-full-SE, and EAN-SE on
the validation set of ImageNet 2012. The red region indi-
cates an essential place for a network to obtain a target score
while the blue region is the opposite. The results show that
EAN-SE can extract similar features as Share-full-SE, and
in some cases, EAN can even capture much more details
of the target associating with higher confidence for its pre-
diction. This implies that the searched attention connection
scheme may have a more vital ability to emphasize the more
discriminative features for each class than the two baselines
(Vanilla ResNet and Share-full-SE). Therefore it is reason-
able to bring additional improvement on the final classifi-
cation performance with EAN in that the discrimination is
crucial for the classification task, which is also validated
from ImageNet test results in Table 1.

6.5. Removing Batch Normalization Layer

Batch Normalization (BN) [12] is widely used to stabi-
lize the training by normalizing each layerwise input in the
deep network. Even after removing all BNs, the DIA atten-
tion module can stabilize the training and achieve a good
generalization due to the dense connections [11].

In this part, we argue that the EAN-DIA can also inherit
that property to some extent. Table 4, we compare the per-
formance of Share-full DIA, EAN-DIA, and vanilla ResNet
in different settings of BNs removal. Since the connection
scheme searched by our EAN possesses certain sparsity, it
has sacrificed the capability of stabilizing the optimization

Figure 6: Grad-CAM visualization of different attention
models. The red region indicates an essential place for a
network to obtain a target score (P) while the blue region is
the opposite.

to some degree. However, the results show that a part of
such capability is still reserved in our EAN-DIA, e.g., in
config1 and config2.

7. Conclusion

To improve the efficiency of using the attention module
in a network, we propose an effective EAN framework to
search for an optimal connection scheme to plug the mod-
ules. Our numerical results show that the attention network
searched by our framework can preserve the original accu-
racy while reducing the extra parameters and accelerating
the inference. We empirically illustrate that our attention

8

Model Config1 Config2 Config3

Vanilla ResNet 73.95(±0.52) 71.73(±0.82) nan
Share-full-DIA 76.95(±0.13) 76.59(±0.14) 73.80(±0.45)
EAN-DIA 76.24(±0.59) 76.02(±0.60) nan

Table 4: The test accuracy of different attention network
after removing the BN layer with different configurations in
each Bottleneck block. The experiments are conducted on
CIFAR100 with ResNet164 backbone. “nan” indicates the
numerical explosion. (Config1: remove the first BN layer;
Config2: remove the first two BN layers; Config3: remove
all the BN layers.)

networks have the capacity of transferring to other tasks and
capturing the informative features.

References
[1] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay

Vasudevan, and Quoc Le. Understanding and simplifying
one-shot architecture search. In International Conference on
Machine Learning, pages 550–559, 2018. 5

[2] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg
Klimov. Exploration by random network distillation. In In-
ternational Conference on Learning Representations, 2019.
5

[3] Xinkun Cao, Zhipeng Wang, Yanyun Zhao, and Fei Su. Scale
aggregation network for accurate and efficient crowd count-
ing. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 734–750, 2018. 7

[4] Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, and Han
Hu. Gcnet: Non-local networks meet squeeze-excitation
networks and beyond. In Proceedings of the IEEE Inter-
national Conference on Computer Vision Workshops, pages
0–0, 2019. 1, 3

[5] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fair-
nas: Rethinking evaluation fairness of weight sharing neural
architecture search. arXiv preprint arXiv:1907.01845, 2019.
3, 4

[6] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-
shot neural architecture search with uniform sampling. In
European Conference on Computer Vision, pages 544–560.
Springer, 2020. 3, 4, 5

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 3, 6

[8] Mohammad Hossain, Mehrdad Hosseinzadeh, Omit Chanda,
and Yang Wang. Crowd counting using scale-aware attention
networks. In 2019 IEEE Winter Conference on Applications
of Computer Vision (WACV), pages 1280–1288. IEEE, 2019.
7

[9] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 7132–7141, 2018. 1,
2, 3, 5, 6, 7, 10

[10] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 2

[11] Zhongzhan Huang, Senwei Liang, Mingfu Liang, and
Haizhao Yang. Dianet: Dense-and-implicit attention net-
work. In AAAI, pages 4206–4214, 2020. 1, 2, 3, 5, 6, 7,
8, 10

[12] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. arXiv preprint arXiv:1502.03167, 2015. 8

[13] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009. 6

[14] HyunJae Lee, Hyo-Eun Kim, and Hyeonseob Nam. Srm:
A style-based recalibration module for convolutional neural
networks. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 1854–1862, 2019. 1

[15] Xiang Li, Xiaolin Hu, and Jian Yang. Spatial group-wise en-
hance: Improving semantic feature learning in convolutional
networks. arXiv preprint arXiv:1905.09646, 2019. 1, 2, 3,
5, 6, 7, 10

[16] Yingwei Li, Xiaojie Jin, Jieru Mei, Xiaochen Lian, Linjie
Yang, Cihang Xie, Qihang Yu, Yuyin Zhou, Song Bai, and
Alan L Yuille. Neural architecture search for lightweight
non-local networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10297–10306, 2020. 3

[17] Yuhong Li, Xiaofan Zhang, and Deming Chen. Csrnet: Di-
lated convolutional neural networks for understanding the
highly congested scenes. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
1091–1100, 2018. 7

[18] Senwei Liang, Zhongzhan Huang, Mingfu Liang, and
Haizhao Yang. Instance enhancement batch normalization:
An adaptive regulator of batch noise. In AAAI, pages 4819–
4827, 2020. 1, 2, 3

[19] Senwei Liang, Yuehaw Khoo, and Haizhao Yang. Drop-
activation: Implicit parameter reduction and harmonic reg-
ularization. arXiv preprint arXiv:1811.05850, 2018. 4

[20] Lingbo Liu, Jiaqi Chen, Hefeng Wu, Tianshui Chen, Guan-
bin Li, and Liang Lin. Efficient crowd counting via struc-
tured knowledge transfer. In ACM International Conference
on Multimedia, 2020. 7

[21] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In International Conference on Machine Learning,
pages 4095–4104, 2018. 5, 7

[22] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 6

9

[23] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms. arXiv preprint arXiv:1707.06347, 2017. 5

[24] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das,
Ramakrishna Vedantam, Devi Parikh, and Dhruv Batra.
Grad-cam: Visual explanations from deep networks via
gradient-based localization. In Proceedings of the IEEE in-
ternational conference on computer vision, pages 618–626,
2017. 8

[25] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2

[26] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7794–7803, 2018. 1, 3

[27] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In
So Kweon. Cbam: Convolutional block attention module.
In Proceedings of the European conference on computer vi-
sion (ECCV), pages 3–19, 2018. 1, 3

[28] Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen
Qian, and Changshui Zhang. Greedynas: Towards fast
one-shot nas with greedy supernet. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1999–2008, 2020. 3, 4, 5

[29] Yingying Zhang, Desen Zhou, Siqin Chen, Shenghua Gao,
and Yi Ma. Single-image crowd counting via multi-column
convolutional neural network. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 589–597, 2016. 7, 8

[30] Barret Zoph and Quoc V Le. Neural architecture search with
reinforcement learning. arXiv preprint arXiv:1611.01578,
2016. 3, 5, 7

[31] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 8697–8710,
2018. 3, 5

8. Supplementary

8.1. Review of Attention Modules

In this part, we review the attention modules used in our
paper, i.e., SE [9], SGE [15] and DIA [11]. We follow some
notations of Section 3 in the main text. Let x` be the input of
the `th block, f`(·) be the residual mapping, and M(·;W`)
be the attention module in the `th block with the parameters
W`. The attention is formulated as M(f`(x`);W`). We
denote f`(x`) as X(`) of size C × H × W , where C,H
and W denote channel, height and width respectively. For
simplicity, we denote X`

chw = X`[c, h, w] as the value of
pixel (h,w) at the channel c and X`

c = X`[c, :, :] as the
tensor at the channel c.

SE Module. SE module utilizes average pooling to ex-
tract the features and processes the extracted features by a
one-hidden-layer fully connected network.

First, the SE module squeezes the information of chan-
nels by the average pooling,

m`
c = AVG(X`

c) =
1

H ·W

H∑
h=1

W∑
w=1

X`
chw, (10)

where c = 1, · · · , C. Then, an one-hidden-layer fully con-
nected layer FC(·;W`) with ReLU activation is used to fuse
the information of all the channels and here W` is the pa-
rameter. The hidden layer node size is C//r, where “//”
is exact division and “r” denotes reduction rate. The reduc-
tion rate is 16 in our experiments. Finally, a Sigmoid func-
tion(i.e., sig(z) = 1/(1 + e−z)) is applied to the processed
features and we get the attention as follows,

[δ1; · · · ; δC] = sig(FC([m`
1; · · · ;m`

C];W`)). (11)

DIA Module. DIA module integrates the block-wise in-
formation by an LSTM (Long Short-Term Memory). Let
m`
c be the output of average pooling as Eqn. 10. Then m`

c

is passed to LSTM along with a hidden state vector h`−1

and a cell state vector c`−1, where h0 and c0 are initialized
as zero vectors. The LSTM generates h` and c` at the `th

block, i.e.,

(h`, c`) = LSTM([m`
1; · · · ;m`

C], h`−1, c`−1;W), (12)

where W is the trainable parameter of the LSTM. The hid-
den state vector ht is used as attention to recalibrate feature
maps. The reduction ratio within LSTM introduced in [11]
is 4 for CIFAR100 or 20 for ImageNet 2012.

SGE Module. SGE divides the feature maps into dif-
ferent groups and then utilizes the global information from
the group to recalibrate its features. Let G be the number of
groups and then each group has C//G feature maps. De-
note Y ` of size (C//G) × H × W as a group of feature

10

maps within X`. The extracted feature for the group Y ` is

g`c = AVG(Y `c) =
1

H ·W

H∑
h=1

W∑
w=1

Y `chw. (13)

Let g be [g`1; · · · ; g`C//G]. The importance coefficient for
each pixel (h,w) is defined as

phw = g · Y [:, h, w], (14)

where · is dot product. Then phw is normalized by

p̂hw =
phw − µ
σ + ε

, (15)

where the mean µ and variance σ2 are defined by

µ =
1

HW

H∑
h=1

W∑
w=1

phw, σ
2 =

1

HW

H∑
h=1

W∑
w=1

(phw − µ)2.

(16)

An additional pair of parameters (γ, β) are introduced for
the group Y ` to rescale and shift the normalized features,
and SGE modules get the attention for Y [:, h, w] as follows,

sig(γp̂hw + β). (17)

TheG is set to be 4 for CIFAR100 or 64 for ImageNet 2012
experiments.

8.2. Connection Scheme Searched by EAN

We show the connection schemes searched by EAN in
Table 5 and Table 6.

8.3. List of Schemes Searched by ENAS

We show the list of connection schemes by ENAS (an ex-
ample) in Table 7. From our empirical results, the controller
of ENAS tends to converge to some periodic-alike schemes.
In this example, the majority of the schemes searched by
ENAS are “111...111” (Share-full network).

8.4. Training Setting for Controller

CIFAR100. We optimize the controller for 1000 itera-
tions with momentum SGD. The learning rate is set to be
5×10−2. The time step h to apply PPO is 10.

ImageNet 2012. We optimize the controller for 300 iter-
ations with momentum SGD. The learning rate is set to be
5×10−2. The time step h to apply PPO is 10.

8.5. Training Setting for Stand-alone Performance

In this part, we introduce the parameter setting for the
model trained from scratch. In our experiments, we use
cross-entropy loss and optimize the model by SGD with

momentum 0.9 and initial learning rate 0.1. The weight de-
cay is set to be 10−4.

CIFAR100. On CIFAR, we use ResNet164 backbone.
The model is trained for 164 epochs with the learning rate
dropped by 0.1 at 81, 122 epochs.

ImageNet 2012. On ImageNet 2012, we use the
ResNet50 backbone. The model is trained for 120 epochs
with the learning rate dropped by 0.1 at every 30 epochs.

11

Dataset Model Stage1 Stage2 Stage3 Stage4 Test Accuracy (%)

ImageNet 2012
SE 010 0010 110011 001 77.40
SGE 100 1011 010011 011 77.62
DIA 110 0011 110010 011 77.56

Table 5: The connection scheme searched by EAN with ResNet50 backbone and different attention modules on ImageNet
2012. ResNet50 has 4 stages and each stage has 3, 4, 6 and 3 blocks respectively.

Dataset Model Stage1 Stage2 Stage3 Test Accuracy (%)

CIFAR100
SE 001100100101110101 001100000111001111 101100000111110001 76.93
SGE 010101101111011010 101110101011000000 101101101110100010 76.36
DIA 111000101111000110 100000010010010110 000111111000000001 77.12

Table 6: The connection scheme searched by EAN with ResNet164 backbone and different attention modules on CIFAR100.
ResNet164 has 3 stages and each stage has 18 blocks respectively.

Iteration Connection Scheme Sparse p̄

0 000110000001111101110010000001000110111110110110010011 0.52 0.50
5 100100111101010011110001110101011111011100110001000011 0.44 0.51

10 100001001011110110001000110011011101110111110111000011 0.44 0.50
15 111001000110011110111000111001011011111011011110111001 0.37 0.57
20 111111001111111111000111001111001011101100111111110111 0.26 0.67
25 101111111111111100111111110000010001101111111100111111 0.26 0.64
30 011110011111111111111110001111111111111001111111101111 0.17 0.85
35 111111110001111111111011111111111111111111111111111111 0.07 0.91
40 1011 0.02 0.96
45 111111111111111110111111111111111111111111111111111111 0.02 0.98
50 011111111111111111111000111111111111111111111111111111 0.07 0.98
55 1111111111100111 0.04 0.98
60 11 0.00 0.98
65 11 0.00 0.99
70 111111111111111110011111111111111111111111111111111111 0.04 0.96
75 0111 0.02 0.99
80 11 0.00 1.00
85 11 0.00 1.00
90 11 0.00 1.00
95 11 0.00 0.98

100 11 0.00 0.99
105 11 0.00 1.00
110 11 0.00 1.00
115 11 0.00 1.00
120 11 0.00 1.00
125 11 0.00 1.00
130 11 0.00 1.00
135 11 0.00 0.99

Table 7: The connection scheme searched by ENAS. p̄ is the average of the probability associated with the scheme. The
controller tends to generate a deterministic scheme when p̄ is close to 1. The experiment is conducted on CIFAR100 with
ResNet164 and SE modules.

12

