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Abstract. Learning time-dependent partial differential equations (PDEs) that govern evolutionary observations is one of4
the core challenges for data-driven inference in many fields. In this work, we propose to capture the essential dynamics of5
numerically challenging PDEs arising in multiscale modeling and simulation - kinetic equations. These equations are usually6
nonlocal and contain scales/parameters that vary by several orders of magnitude. We introduce an efficient framework, Densely7
Connected Recurrent Neural Networks (DC-RNNs), by incorporating high-order numerical schemes of time-dependent PDEs8
into RNN structure design to identify analytic representations of multiscale and nonlocal PDEs from discrete-time observations9
generated from heterogeneous experiments. If present in the observed data, our DC-RNN can capture transport operators,10
nonlocal projection or collision operators, equilibrium state dynamics (macroscopic diffusion limit), and other dynamics. We11
provide numerical results demonstrating the advantage of our proposed framework over existing methods.12
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1. Introduction. Data-driven discovery of partial differential equations is experiencing unprecedented15

development over the past few years, wherein various kinds of PDEs (featuring e.g., time dependence and16

nonlinearity) have been studied. In this work, we consider the learning problem for a class of PDEs that17

involve multiple time/spatial scales and nonlocal operators – kinetic equations. These are an important class18

of equations in multiscale modeling hieriarchy which bridges microscopic atomistic models (such as N-body19

Newton equations) and macroscopic continuum models (such as Navier-Stokes equations). For a variety of20

scientific problems ranging from gas/plasma dynamics, radiative transfer to social/biological systems, kinetic21

equations have demonstrated their ability to accurately model the dynamics of many complex systems [41].22

To the best of our knowledge, learning of multiscale kinetic equations, albeit important, has never been23

explored in the literature.24

Specifically, we are interested in developing an efficient symbolic neural network to fit time-dependent25

data for a large class of multiscale kinetic equations. The overall goal is to identify an explicit formula26

of the map F that determines the evolution u(x, t) → u(x, t + ∆t) for x ∈ Ω and ∆t > 0. Therefore, a27

symbolic neural network F(u;θ, wε) with parameters θ and wε is constructed and the following loss function28

is minimized to find the best parameter set:29

(1.1) L(θ, wε) =
1

Nt

Nt∑
j=1

∥∥∥∥∥u(x, tj+1)− u(x, tj)−
∫ tj+∆t

tj

F(u(x, s);θ, wε) ds

∥∥∥∥∥
L1(Ω)

.30

F approaches the correct model as L(θ, wε) → 0. The choice of the norm above is flexible. In this paper,31

we focus on the L1-norm because our numerical experiments show that it is slightly better than others, e.g.,32

the L2-norm. Due to the multiscale and nonlocal feature of our target equations, existing learning schemes33

may not be efficient. We will propose novel symbolic neural networks, new formulations of the loss function34

in (1.1), and new regularization methods in this paper to tackle this challenge.35

Our first main contribution is a new symbolic neural network F(u;θ, wε) build with multiscale and36

nonlocal features. The key idea for capturing multiscale phenomena is to construct F as a sum of different37

components at different scales of order εnpred, where n is an integer degree and εpred is a trainable multiscale38

separator defined by:39

(1.2) εpred(wε) =
1

2
(tanh(wε) + 1)40

with wε as a trainable parameter. In particular, we propose41

∗Submitted to the editors DATE.
Funding: RD was partially supported by the Fog Research Institute under contract no. FRI-454. JH was partially

supported by NSF CAREER grant DMS-1654152. HY was partially supported by NSF CAREER grant DMS-1945029.
†Department of Civil and Environmental Engineering, National University of Singapore, Singapore (ceerad@nus.edu.sg).
‡Department of Mathematics, Purdue University, West Lafayette, IN 47906, USA (jingweihu@purdue.edu).
§Department of Mathematics, Purdue University, West Lafayette, IN 47906, USA (haizhao@purdue.edu).

1

This manuscript is for review purposes only.

mailto:ceerad@nus.edu.sg
mailto:jingweihu@purdue.edu
mailto:haizhao@purdue.edu


2 D. RICARDO, H. JINGWEI, AND Y. HAIZHAO

(1.3) F(u;θ, wε) =

N∑
n=0

1

εnpred(wε)
Fn(u;θn).42

where θ := (θ1,θ2, · · · ,θn). Thus, unlike conventional deep learning recovery algorithms as in [34, 35, 34, 27,43

14, 43, 46], our algorithm is aware of different scales and thus more accurately captures different components44

at scale O(εnpred).45

The key idea to make F(u;θ, wε) capable of capturing nonlocal phenomena is to incorperate nonlocal46

operators in Fn in (1.3) to construct F . Conventionally, F is typically constructed as a linear combination47

of mathematical operators in a pre-specified dictionary, and the combination coefficients are learned via48

minimizing (1.1) with sparsity regularization to obtain sparse linear combinations as in [19, 37, 30, 6, 46].49

For high-dimensional problems, constructing such a dictionary can be very costly. Hence, we will apply50

symbolic recurring neural network (RNN) of mathematical operators as in [28, 27] without specifying a51

large dictionary. Intuitively, due to the high expressiveness of our symbolic RNNs, the class of RNNs with52

different parameters can form a large dictionary without pre-specifying a costly dictionary. It might be53

computationally more efficient to use symbolic RNNs to classify the dynamics of data and choose a trainable54

symbolic model to model data.55

The most basic elements of our RNN are a set of (either local or nonlocal) basic mathematical operators56

A1, · · · ,An from a function space to another function space commonly used in dynamics modeling for kinetic57

equations, such as transport, collision, and other nonlocal operators. The trainable compositions of these58

basic operators form a basis of our RNN, i.e., each term Fn in (1.3) is a trainable linear combination of the59

compositions defined below:60

(1.4) Aπ(1) ◦ · · · ◦ Aπ(m),61

where π =
(
π(1), · · · , π(m)

)
∈ Zm with entries in {1, · · · , n}. More precisely, we have62

(1.5) Fn(u;θn) =
∑
m≥1

∑
π∈D

aπ(1),··· ,π(m)(θn)Aπ(1) ◦ · · · ◦ Aπ(m)(u),63

where coefficients aπ(1),··· ,π(m)(θn) depend on trainable parameters θn, and D is a set of index vectors π64

specified by our symbolic RNN as we shall see later. Similar to polynomial regression [9, 13], our RNN65

returns a multivariate polynomial of the operators A1, · · · ,An. Due to the expressive power of neural66

networks [44, 38, 29, 23, 31, 24], our symbolic RNN of a small size can generate a sufficiently large index67

vector set D. The formulation in (1.5) is also natural in physics, equations derived from asymptotic analysis68

often have recursive structure similar to the compositional operators in (1.5), e.g., see [39].69

Our second main contribution is to propose novel loss functions based on high-order implicit-explicit70

schemes to discretize of the integral in (1.1). The most typical numerical method, the forward-Euler scheme,71

results in the loss function:72

(1.6) L(θ, wε) =
1

Nt

Nt∑
j=1

‖u(x, tj+1)− u(x, tj)−∆tF(u(x, tj);θ, wε)‖L1(Ω) ,73

which is commonly used in the discovery of governing equations. Though explicit higher order approximations74

using multistep methods have been investigated in [34, 20, 33, 12], there is no existing research on the75

effectiveness of implicit-explicit schemes in the literature of discovering governing equations. To predict76

future state dynamics, we propagate data using Implicit-Explicit Runge-Kutta (IMEX) schemes. We use77

IMEX schemes as they are especially suited to solve stiff problems in kinetic theory [25, 3], and they are able78

to describe systems either depending on the past or future states. The collection of RNNs together with our79

propagation scheme will make up our “densely connected recurrent neural network” (DC-RNN).80

Our third main contribution is to propose physics-based regularization to the loss function in (1.1) to81

improve optimization efficiency and avoid over-fitting. First, a physically correct model is usually described82

with a small number of mathematical operators in (1.5), while an over-fitting model would have a large83

number of operators for a better fitting capacity. Thus, inspired by the lasso approaches in [40, 5, 47], we84

This manuscript is for review purposes only.



MULTISCALE AND NONLOCAL LEARNING FOR PDES 3

propose sparse regularization to avoid over-fitting and remove undesirable features in the governing equation,85

e.g., adding a L1-norm penalty term to the coefficients in (1.5). Second, a micro-macro decomposition of86

kinetic equations [16, 18, 17, 22] are applied to transfer a challenging recovery problem with a single PDE to87

an easier recovery problem with a coupled PDE system, enforcing our recovery results to be more physically88

meaningful. Furthermore, the macroscopic part, denoted as g, satisfies89

(1.7) 〈g〉 :=

∫
[−1,1]

g(v, x, t)dv = 0,90

which will be used as a constraint of our recovery. Finally, in most cases, kinetic equations have spatial-91

dependent coefficients, which motivates us to design spatial-dependent parameters θ(x) in (1.5) and the92

regularity in terms of x can also be considered as a regularization penalty.93

To summarize, the main highlights of our learning algorithm are as follows:94

• DC-RNN built for transport, collision, and nonlocal operators typically involved in kinetic equations.95

• Multiscale-aware RNN structures and learning rates for the recovery of time-dependent PDEs.96

• Novel optimization loss function inspired by high-order IMEX for stiff equations.97

• Physics-aware loss function and regularization specialized for kinetic equations.98

• Efficient arithmetic and memory cost.99

We structure this manuscript as follows. In Section 2, an exemplary PDE for our learning problem is100

introduced to motivate our algorithm. In Section 3, we mathematically formulate an ansatz that we will use101

to fit data to PDEs. In Section 4, our physics-aware loss function is introduced to learn PDEs from data. In102

Section 5, we will carry out several numerical experiments to test our algorithm. Finally, concluding remarks103

are made in the Section 6.104

2. Model Equation: the Linear Transport Kinetic Equation. We now present a model equa-105

tion, the linear transport equation, to motivate our learning algorithm. The linear transport equation is a106

prototype kinetic equation describing particles such as neutrons or photons interacting with a background107

medium [8, 10]. This equation highlights some of the challenging aspects that an efficient learning algorithm108

should account for. That is, our model equation will allow us to understand the hypothesis space (the set109

of functions describing kinetic equations) better. This will lead us to devise ways to capture multiple scales,110

nonlocal operators, and regularity conditions. In addition, we will be able to discern appropriate numerical111

techniques needed to carry out our learning algorithm.112

In the simple 1D case, the linear transport equation reads113

(2.1) ∂tf +
1

ε
v∂xf =

σS

ε2
(〈f〉 − f)− σAf +G,114

where f = f(t, x, v) is the probability density function of time t ≥ 0, position x ∈ Ω ⊂ R, and velocity115

v ∈ [−1, 1]; 〈·〉 :=
1

2

∫ 1

−1
·dv is a projection operator; σS(x) and σA(x) are the scattering and absorption116

coefficients; and G(x) is a given source. Finally, ε is a dimensionless parameter indicating the strength of the117

scattering. Indeed, when ε ∼ O(1), the equation (2.1) is in the fully kinetic regime (all operators balance);118

when ε → 0, the scattering is so strong that (2.1) approaches a diffusion limit. To see this, consider the119

so-called micro-macro decomposition of f :120

(2.2) f = ρ+ εg, ρ := 〈f〉,121

where ρ is the macro part (density) of the solution, and g is the micro part. A crucial condition we use is122

(2.3) 〈g〉 = 0.123

Equation (2.3) is the conservation condition and will be numerically indispensable since it allows us to impose124

exact conditions satisfied by kinetic equations. Substituting (2.2) into (2.1), one can derive the following125

coupled system for ρ and g, equivalent to (2.1):126

∂tρ = −∂x〈vg〉 − σAρ+G,(2.4)127

∂tg = −1

ε
(I − 〈 〉) (v∂xg)− 1

ε2
v∂xρ−

σS

ε2
g − σAg,(2.5)128

129
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4 D. RICARDO, H. JINGWEI, AND Y. HAIZHAO

where I denotes the identity operator.130

In (2.5), if ε→ 0, one obtains131

(2.6) g = − 1

σS
v∂xρ+O(ε),132

which, when substituted into (2.4), yields133

(2.7) ∂tρ = ∂x

(
1

3σS
∂xρ

)
− σAρ+G+O(ε).134

So ρ follows the dynamics of a diffusion equation. We now go through a few things that we can learn from135

the linear transport equation following the notations used in Section 1.136

• Involved Basic Mathematical Operators: Identity, Advection, and Projection. Notice that137

each of Equations (2.1), (2.4), and (2.5) can be recovered from the ansatz:138

∂tu = a1A1(g) + a2A2(g) + a3A3(g) +

3∑
i=1

3∑
j=1

ai,jAi ◦ Aj(g)

+ b1A1(ρ) + b2A2(ρ) + b3A3(ρ) +

3∑
i=1

3∑
j=1

bi,jAi ◦ Aj(ρ) +B

(2.8)139

for u = f , g, or ρ. For example, the equation for g(v, x, t) can be recovered provided140

(2.9) A1 = I, A2 = v∂x, A3 = 〈·〉,141

with coefficients142

a1 =
σS(x)

ε2
− σA(x), a2 = −1

ε
, a3,2 =

1

ε
, b2 = − 1

ε2

a3 = 0, ai 6=3,j 6=2 = 0, bi,j = 0, B = 0.

(2.10)143

Thus, at the very minimum, our hypothesis space in Equation (1.3) should involve operators in (2.9).144

We expect to see these operators for general kinetic equations. Potentially one can also have cubic or higher145

order nonlinearities in our hypothesis space. Therefore, we want to generalize Equation (2.8) to involve146

greater number of compositions.147

• Functions of x. Equations (2.1), (2.4), and (2.5) involve the functions σA(x), σS(x), and G(x).148

Therefore the coefficients {ai, ai,j , bi, bi,j , B} should be allowed to depend on x.149

• Scale Disparity. If we want to determine the correct order of each term, then we need to make an150

asymptotic expansion:151

ai = a0
i +

1

ε
a1
i +

1

ε2
a2
i , ai,j = a0

i,j +
1

ε
a1
i,j +

1

ε2
a2
i,j ,

bi = b0i +
1

ε
b1i +

1

ε2
b2i , bi,j = b0i,j +

1

ε
b1i,j +

1

ε2
b2i,j ,

B = B0 +
1

ε
B1 +

1

ε2
B2,

(2.11)152

where it is understood that the upper index labels the order of the scale. The multiscale phenomenon here153

is the main motivation of the multiscale model in Equation (1.3).154

• Exact Conditions. Typically, adding regularization to machine learning problems can vastly improve155

the outcome of the prediction. There is one obvious constraint for our target kinetic equation: Equation156

(2.3). An added feature about this condition is that it is independent of ε and thus helpful for modeling157

dynamics between the small and large scale limits. We also note that for ε � 1, potentially our learning158

algorithm could recover either Equation (2.7) or (2.4). Thus, we should not conclude that our algorithm159

made an error. Of course, Equation (2.7) is lower dimensional, thus it would be a welcomed surprise to be160

able to obtain (2.7).161
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• Sparsity. The large number of basis terms in our hypothesis space means that we might have162

overfitting issues. Thus, the following sparsity regularization term could be considered:163

∑
n

(
∑
i

||ani ||L1 + ||bni ||L1 + ||Bn||L1) + (
∑
i,j

||ani,j ||L1 + ||bni,j ||L1)

 ,(2.12)164

which can be enforced by adding the following regularization term to our loss function in Equation (1.1):165

(2.13) ||θ(x)||L1 ,166

since θ(x) is the actual parameters to be optimized in our model in Equation (1.3).167

• Numerical Techniques. Finally, we need to consider numerical methods for arriving at the correct168

set of trainable parameters. For this reason, we will use the class of implicit-explicit Runge-Kutta schemes169

for propagating u(tn) → u(tn+1), where the time rate of change is given by an ansatz like Equation (2.8).170

We will use gradient descent, specifically the Adam algorithm, to update trainable parameters.171

In sum, the discussion above illustrates the motivation of our optimization problem, model design, and172

regularization terms introduced in Section 1.173

3. Formulating an Ansatz to Fit Data to Kinetic Equations. In this section, we will construct174

an ansatz capable of representing Equations (2.4), (2.5), and other kinetic equations. For simplicity, let us175

focus on the case when the spatial variable x is one-dimensional. It is easy to generalize the evaluation to176

high-dimensional cases. We start by introducing notations which will be used through the paper.177

Notation. The functions involved in (2.4) or (2.5) are multidimensional, e.g. ρ = ρ(x, t) and g =178

g(v, x, t). The values of ρ and g will be defined on a mesh (xj , tk) and (vi, xj , tk) for i ∈ 1, · · ·Nv, j ∈179

1, · · ·Nx, and k ∈ 1, · · ·Nt. To further simplify the notation, we will use u := ui,j to denote u as a scalar180

function evaluated at the (i, j)-th position corresponding to (vi, xj). The upper index n in un := u(·, tn)181

will correspond to time with u1:Nt := {u(·, ti); for i ∈ 1 · · ·Nt} denoting u evaluated at a time sequence.182

Matrices will be written with capital letters while operators applied to the data will mainly be written using183

script letters.184

3.1. Operator Evaluation. We will describe the evaluation of commonly used operators in Equations185

(2.4), (2.5), and other kinetic equations below.186

1) Identity operator. The identity operator is defined by187

(3.1) I(u) := u.188

The evaluation of I(u) at the point (vi, xj) simply follows I(u)i,j := ui,j .189

2) Pseudo-upwind for the advection operator. We define the advection operator acting on u as the190

dot-product:191

(3.2) v · ∇xu,192

where v is a velocity distribution. We note that many stable schemes use an upwind stencil for the advection193

operator. The first-order upwind stencil gives:194

∂xu
+
i,j =

ui,j+1 − ui,j
∆x

for v > 0,195

196

∂xu
−
i,j =

ui,j − ui,j−1

∆x
for v < 0,197

and198

v∂xui,j = v−∂xu
+
i,j + v+∂xu

−
i,j ,199

which is the evaluation of the advection operator in (3.2) at the point (vi, xj) in the one-dimensional case.200

This stencil is suitable for a first-order-in-time IMEX-scheme. For higher-order IMEX schemes, one should201

use higher-order stencils.202
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6 D. RICARDO, H. JINGWEI, AND Y. HAIZHAO

3) Projection operators. We define the projection operator as an integral with respect to the variable v203

of a function u(v, x). In one-dimension, we have:204

(3.3) 〈u〉 :=
1

2

∫ 1

−1

u(v, x) dv,205

which can be discretized as a finite sum using Gaussian quadrature:206

〈u〉j ≈
1

2

Nv∑
i=1

ui,j · wi207

with quadrature weights {wi}. Note that the data corresponding to u is represented by a two-index tensor208

ui,j with i, j corresponding to the values vi and xj , respectively. The above quadrature maps u to a one-index209

tensor 〈u〉j . To make dimensions consistent, we extend this to a two-index tensor by 〈u〉i,j := 〈u〉j for each210

i.211

4) Other differential operators. Higher-order differential operators such as the Laplacian will be com-212

puted by using central difference formulas.213

3.2. Ansatz for Fitting PDEs to Data. In this section, we will form an ansatz that will be used to214

fit a PDE to data, i.e., identifying the governing PDE to which the observed data is a discrete solution. We215

will consider the following two typical examples for simplicity. The generalization to other cases is simple.216

Scalar equation ansatz. Let us consider a first-order in time PDE, then the equation ansatz is built217

as218

(3.4) ∂tu = F(u)219

with F split into M multiscale components following our main model in (1.3):220

F := F0(u) +
1

εpred
F1(u) +

1

ε2
pred

F2(u) + · · ·+ 1

εMpred
FM (u).221

The integer M depends on the number of multiscale components for the problem being considered. If one222

only expects one fast scale and one slow scale component, M is set to M = 1. For slow, medium, and fast223

scales, M is set to M = 2, etc. εpred is a learnable scaling number defined in (1.2) restricted to 0 < εpred ≤ 1224

but not necessarily equal to ε. The operators F0,F1,F2, · · · will be differential operators acting on u and225

constructed as in (1.5). The construction detail will be provided in the next section.226

Two-component vector equation ansatz. For vectorized equations, we build an ansatz for each227

component individually as228

∂tg = F1(g, ρ) =

M∑
m=0

1

εmpred
(Fm1,1(g) + Fm1,2(ρ))

∂tρ = F2(g, ρ) =

M∑
m=0

1

εmpred
(Fm2,1(g) + Fm2,2(ρ)).

(3.5)229

The Fmq,p are generally different operators for each q,p, and m following the construction in (1.5). Each Fmq,p230

has an individual set of network parameters. εpred is a learnable scaling number as in the previous example.231

For the remainder of the manuscript, F1 will denote the right hand side of the g-equation. F2 will denote232

the right hand side of the ρ-equation. The construction of Fmq,p using an RNN structure will be presented in233

detail in the next section.234

Remark 3.1. Equation (3.5) is our chosen ansatz. There are many alternative ways to construct an235

ansatz. For example, we only consider the linear combination of Fmq,p and it is also possible to explore the236

products of Fmq,p. We leave the exploration of different ansatz to the reader.237
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3.3. Building a Dictionary Using RNNs. We construct the operators Fm in Equation (3.4) for238

the single-component case. For the multicomponent case as in (3.5), we construct Fmq,p in the same manner.239

The only difference is that each Fmq,p will have a different set of parameters depending on (q, p). We will omit240

the (q, p) index for clarity. To begin with, we will need to supply the RNN with a few basic mathematical241

operators as mentioned in the introduction. In particular, we consider operators A1(u) = I(u), A2(u) =242

v ·∇u, and A3(u) = 〈u〉 discussed in Section 3.1. It is potentially better to include more basic mathematical243

operators such as A4(u) = ∇u, A5(u) = g2 · u, A6(u) = exp
(
−(u)2

)
, etc. Weather or not to include more244

basic mathematical operators will be a choice left to the reader.245

Next, a symbolic RNN will be introduced to generate a complicated operator Fm using basic math-246

ematical operators. Given basic mathematical operators {A1, · · · ,An}, we build a k-layer RNN for each247

m = 0, 1, 2, · · · , by successively applying a weight matrix W2,n ∈ R2×n to the operator vector [A1, · · · ,An]T248

and then adding a bias vector B2,1 = [b1, b2]T ∈ R2 times I:249

W2,n[A1, · · · ,An]T +B2,1I :=

[
w1,1A1 + w1,2A2 + · · ·+ w1,nAn + b1I
w2,1A1 + w2,2A2 + · · ·+ w2,nAn + b2I

]
:=

[
C1
C2

]
.

(3.6)250

Because C1 and C2 are operators, they can be applied to generate a more expressive formulation with a251

special “composition” denoted as � defined below:252

C1 � C2 := w1,1w2,1A1 ◦ A1 + · · ·+ w1,1w2,nA1 ◦ An + · · ·
+ w1,nw2,1An ◦ A1 + · · ·+ w1,nw2,nAn ◦ An
+ (w1,1b2 + w2,1b1)A1 + · · ·+ (w1,nb2 + w2,nb1)An,

(3.7)253

where ◦ denotes the standard composition.254

Now we define Fm:255

ξ(1) : = W 1,m
2,n [A1,A2, · · · ,An]T +B1,m

2,1 I

B1 : = C(1)
1 � C(1)

2

ξ(2) : = W 2,m
2,n+1[A1,A2, · · · ,An,B1]T +B2,m

2,1 I

B2 : = C(2)
1 � C(2)

2

ξ(3) : = W 3,m
2,n+2[A1,A2, · · · ,An,B1,B2]T +B3,m

2,1 I

B3 : = C(3)
1 � C(3)

2

...

ξ(K) : = WK,m
2,n+K−1[A1,A2, · · · ,An,B1, · · · ,BK−1]T +BK,m2,1 I

BK : = C(K)
1 � C(K)

2

Fm : = WK+1,m
1,n+K [A1,A2, · · · ,An,B1, · · · ,BK ]T ,

(3.8)256

where the weight matrices are given by:257

(3.9) W k,m
2,n+k−1 :=

[
wk,m1,1 wk,m1,2 · · · wk,m1,n+k−1

wk,m2,1 wk,m2,2 · · · wk,m2,n+k−1

]
258

for k = 1, · · · ,K and,259

WK+1,m
1,n+K :=

[
wK+1,m

1 wK+1,m
2 · · · wK+1,m

n+K

]
260
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Op1

Op1

Op2
Fm =

(wK+1,m
1 A1 + · · ·+ wK+1,m

4 B2)
A1

A2

A1

A2

B1

A1

A2

B1

B2

Input
layer

Hidden1
layer

Hidden2
layer

output
layer

Fig. 1. Example RNN with K = 2 hidden layers. The output Fm makes up the order εm part of the right hand side of the
PDE. Op1 is the mathematical operation in Equation (3.6) and 3.7 which takes linear combination plus bias of the previous
layer and performing a composition. Op2 is the operation of forming a linear combination of the previous layer (the last line
of Equation (3.8)).

with each wk,mi,j ∈ R. The biases are given by:261

Bk,m2,1 :=

[
bk,m1

bk,m2

]
262

with bk,mj ∈ R.263

The operator built by the recursive compositions in (3.8) is a symbolic RNN operator, the evaluation264

of which on a given function follows in the basic evaluation rules introduced in Section 3.1. will have to be265

evaluated at both data sets {g(v, x, ti)} and {ρ(x, ti)}, since our model problem depends on both g and ρ.266

A diagrammatic representation of this RNN is shown in Figure 1.267

Remark 3.2. We have adopted the recursive framework introduced in [27] to build our RNN. The main268

difference between the RNN in this manuscript and the RNN in [27] is that our RNN can learn nonlocal269

and multiscale operators. Other RNN frameworks may also be good alternatives. Optimizing the RNN270

framework is not a focus in this paper.271

Remark 3.3. The weights and biases can be trainable space-dependent functions such that our algorithm272

can learn more space-dependent operators, e.g., let273

(3.10) wk,mi,j (x) : R→ R, and bk,mj (x) : R→ R.274

In more particular, one can also replace these weights and biases with neural networks in the spatial variable275

x at the cost of using more parameters. We will let the reader explore these possibilities but, we will also276

present a yet different alternative to treating space-dependent weights and biases in the next section.277
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3.4. An Example when K = 1. Using K = 1 and two basic mathematical operators A1 and A2 in278

(3.8), for the PDE model in (3.4), we produce an RNN as a scalar PDE ansatz of the form:279

∂tu =

M∑
m=0

1

εmpred

(
w2,m

1 A1 + w2,m
2 A2 + w2,m

3

[
(w1,m

1,1 A1 + w1,m
1,2 A2

+ b1,m1 I.d.) ◦ (w1,m
2,1 A1 + w1,m

2,2 A2 + b1,m2 I.d.)
])

(u)

=

M∑
m=0

1

εmpred

[
w2,m

3 b1,m1 b1,m2 u+ (w2,m
1 + w2,m

3 (w1,m
1,1 b

1,m
2 + b1,m1 w1,m

2,1 ))A1(u)

+ (w2,m
2 + w2,m

3 (w1,m
1,2 b

1,m
2 + b1,m1 w1,m

2,1 ))A2(u)

+ w2,m
3 (w1,m

1,1 w
1,m
2,1 A1 ◦ A1(u) + w1,m

1,1 w
1,m
2,2 A1 ◦ A2(u))

+ w2,m
3 (w1,m

1,2 w
1,m
2,1 A2 ◦ A1(u) + w1,m

1,2 w
1,m
2,2 A2 ◦ A2(u))

]
,

(3.11)280

with εpred given by Equation (5.1) or (5.2).281

The weights and biases are determined by minimizing a loss function defined in the next section.282

4. Loss Functions for Learning PDEs. To deduce the weights and biases for our PDE ansatz, we283

need to minimize a loss function. We begin by describing an unregularized loss function for learning PDEs284

from data.285

4.1. Unregularized Loss Function. Let us first focus on the case of a single scalar equation ansatz286

in (3.4). We build an unregularized loss that will be a data-dependent function with the following abstract287

notation:288

(4.1) L(θ) =
1

Nt − q

Nt−q∑
n=1

||Knu(Dn,q;θ)||∗289

where θ denotes the set of all parameters in our RNN and290

(4.2) Knu(Dn,q;θ)291

relates q + 1-tuple data points:292

Dn,q := {u(x, tn), u(x, tn+1), · · · , u(x, tn+q)}, n = 1, · · ·Nt − q.293

The idea is that as L→ 0 with respect to a suitable norm ‖ · ‖∗, F approaches the correct PDE. Commonly294

used norms for loss minimization include `1, `2, and the Huber loss (see [27, 34]).295

To be precise, the relation of Dn,q is specified by a time-stepping scheme, e.g., the Implicit-Explicit296

Runge-Kutta scheme. However, to give the reader a greater understanding of Knu(Dn,q;θ), we will start with297

simpler schemes here. The the symbolic RNN introduced in the previous section together with our IMEX298

schemes here will make up our Densely Connected Recurrent Neural Network (DC-RNN).299

Forward Euler scheme. The forward Euler scheme only involves two time steps and, hence, q = 1.300

We can specify Knu(Dn,1;θ) to relate the data pair301

(4.3) Dn,1 = {u(x, tn), u(x, tn+1)}302

using a forward finite difference approximation for ∂tu = F(u(x, t);θ), the right hand side of which is a303

symbolic RNN as an equation ansatz. This gives us the forward Euler fitting scheme:304

(4.4) Knu(Dn,1;θ) = u(x, tn+1)− u(x, tn)−∆t · F(u(x, tn);θ).305

Minimizing the loss in Equation (4.1) will determine a PDE governing the training data with time accuracy306

∆t. We display in Figure 2 a DC-RNN for determining the equation satisfied by g(v, x, t) based on the307

Forward Euler scheme.308
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g(v, x, tj)

g(v, x, t)
F0

1,1 := RNN0
1,1(A1,A2)

g(v, x, t)
F1

1,1 := RNN1
1,1(A1,A2)

ρ(x, t)
F0

1,2 := RNN0
1,2(A1,A2)

ρ(x, t)
F1

1,2 := RNN1
1,2(A1,A2) F1(g, ρ) :=

∑ Fmq,p
εmpred

g1:Nt

−g0:Nt−1

−∆t · F1:Nt
1

−∆t · F0:Nt−1
1

FWD

BWD

∑ K0:Nt−1
g

Fig. 2. Example DC-RNN for determining the g-Equation (2.5) based on Forward Euler (Red) and Backward Euler (Blue)
schemes. The inputs are ρ(tn) and g(tn) for n = 0, 1, 2, · · · , Nt. The dictionary contains order O(1) and O(ε) operators. These
operators are generated by the RNNs corresponding to orders ε−m m = 0, 1 using A1, A2. The output Kn

g (n = 0, 1, · · · , Nt−1)
is to be minimized with respect to a chosen norm.

Backward Euler scheme. The Backward Euler scheme for ∂tu = F(u(x, t);θ) relates the data pair309

(4.5) Dn,1 = {u(x, tn), u(x, tn+1)}310

using the backward Euler fitting scheme:311

(4.6) Knu(Dn,1;θ) = u(x, tn+1)− u(x, tn)−∆t · F(u(x, tn+1);θ).312

Minimizing the loss in Equation (4.1) will determine a PDE governing the training data with accuracy313

∆t. We display in Figure 2 a DC-RNN for determining the equation satisfied by g(v, x, t) based on the314

Backward-Euler scheme.315

Fourth-order Explicit Runge-Kutta. Higher-order schemes like the K-stage Runge-Kutta scheme316

can also be used to relate Dn,1 = {u(x, tn), u(x, tn+1)} for ∂tu = F(u(x, t);θ):317

Knu(Dn,1;θ) = u(x, tn+1)− u(x, tn)− ∆t

6
· (K1 + 2K2 + 2K3 +K4) ,

K1 = F(u(x, tn);θ),

K2 = F(u(x, tn +
∆t

2
) +

∆t

2
K1;θ),

K3 = F(u(x, tn +
∆t

2
) +

∆t

2
K2;θ),

K4 = F(u(x, tn + ∆t) + ∆tK3;θ)

(4.7)318

with Kl as the l-th stage. The Runge-Kutta schemes tend to be more computationally expensive as they319

require computation of the intermediate stages Kl.320

We only focused on the scalar equation in (3.4) to illustrate the loss function for the above schemes.321

The construction for the two-component vector equation in (3.5) is similar. The loss function is the sum of322

the loss function for each component323

(4.8) L(θ) =
1

Nt − q

Nt−q∑
n=1

||Kng (Dn,q;θ)||∗ + ||Knρ (Dn,q;θ)||∗,324
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where Kng (Dn,q;θ) and Knρ (Dn,q;θ) relate the data in325

Dn,q := {g(x, tn), g(x, tn+1), · · · , g(x, tn+q), ρ(x, tn), ρ(x, tn+1), · · · , ρ(x, tn+q)}, n = 1, · · ·Nt − q.326

In this paper, we are interested in Equations (2.4) and (2.5) and, hence, will use schemes specialized for327

them. Specifically, we consider the class of schemes belonging to the Implicit-Explicit Runge-Kutta (IMEX)328

methods as in [3]. First, we define the first-order IMEX scheme. Then, we use this scheme to specify329

Kng (Dn,q;θ) and Knρ (Dn,q;θ) in the loss (4.8) for learning Equations (2.4) and (2.5) using DC-RNN.330

First-Order IMEX Runge-Kutta. We introduce the first-order IMEX Runge-Kutta [22] for solving331

Equations (2.4) and (2.5). The first-order IMEX scheme is given by:332

gn+1
i+1/2 = gni+1/2 + ∆t

{
1

ε
(I − 〈 〉)

(
v+

gni+1/2 − g
n
i−1/2

∆x
+ v−

gni+3/2 − g
n
i+1/2

∆x

)
−
σSi+1/2

ε2
gn+1
i+1/2 −

1

ε2
v
ρni+1 − ρni

∆x
− σAi+1/2g

n
i+1/2

}
,

(4.9)333

334

(4.10) ρn+1
i = ρni + ∆t

{〈
v
gn+1
i+1/2 − g

n+1
i−1/2

∆x

〉
− σAi ρni +Gi

}
,335

where v+ =
v + |v|

2
and v− =

v − |v|
2

. From this, we see that Equation (4.9) gives a relationship among336

Dn,1 that can be generalized to the ansatz:337

Kng (Dn,1;θ) =(1 + ∆t
σS(x)

ε2
)g(v, x, tn+1)− (1−∆tσA(x))g(v, x, tn)

−∆t · F1(g(v, x, tn), ρ(x, tn);θ),

(4.11)338

where F1 is the operator ansatz introduced in (3.5).339

Equation (4.10) gives a relationship between data in Dn,1 via:340

Knρ (Dn,1;θ) = ρ(x, tn+1)− (1−∆tσA(x))ρ(x, tn)−∆tG(x)

−∆t · F2(g(v, x, tn+1), ρ(x, tn);θ).
(4.12)341

F1 and F2 will be learned by minimizing the loss function (4.8). In fact, one does not need to assume342

that the functions σS(x), σA(x), and G(x) are known. One can learn these functions during the training343

process by replacing them with neural networks. For the special case when σS(x) and σA(x) are constants,344

we can replace them with trainable parameters wS and wA, respectively.345

We display in Figure 3 a DC-RNN for determining the equation satisfied by g(v, x, t) based on the First346

order IMEX scheme. One can go higher order with higher-order IMEX schemes. These will either introduce347

more intermediate stages or relate more data points to each other by increasing q. For larger q, we will use348

the IMEX-BDF schemes. We leave details concerning higher-order schemes in the Appendix section.349

4.2. Physics-aware loss function. To improve physically accurate predictions, we propose to add a350

physics-based regularization term R(θ) to the unregularized loss function in (4.1) or (4.8). Let us take the351

example of (4.1) below:352

(4.13) L(θ) =
1

Nt − q

Nt−q∑
n=1

||Kng (D;θ)||+R(θ).353

We will discuss three kinds of regularization terms R(θ).354

Regularization via 〈g〉 = 0.355

As seen in Equation (2.3), the true g-solution must satisfy the 〈g〉 = 0 constraint. This can be incorpo-356

rated by imposing357

(4.14) 〈F1(g, ρ)〉 = 0,358
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g(v, x, tj)

g(v, x, t)
F0

1,1 := RNN0
1,1(A1,A2)

g(v, x, t)
F1

1,1 := RNN1
1,1(A1,A2)

ρ(x, t)
F0

1,2 := RNN0
1,2(A1,A2)

ρ(x, t)
F1

1,2 := RNN1
1,2(A1,A2) F1(g, ρ) :=

∑ Fmq,p
εmpred

−(1−∆tσA(x))g0:Nt−1

(1 +
∆t

ε2
pred

σS(x))g1:Nt

−∆t · F0:Nt−1
1

∑ K0:Nt−1
g

Fig. 3. Example DC-RNN for determining the g-Equation (2.5) based on the First order IMEX scheme. The inputs are
ρ(tn) and g(tn) for n = 0, 1, 2, · · · , Nt. The dictionary contains order O(1) and O(ε) operators. These operators are generated
by the RNNs corresponding to orders ε−m m = 0, 1 using A1, A2. The output Kn

g (n = 0, 1, · · · , Nt − 1) is to be minimized
with respect to a chosen norm.

to the right hand side of the first component (g-equation) during training. The loss enforcing Equation359

(4.14) is:360

(4.15) L(θ) =
1

Nt − q

Nt−q∑
n=1

||Kng (D;θ)||+ ||∆t · 〈F1(g, ρ;θ)〉||.361

The constraint in Equation (4.14) for the Forward-Euler case can be justified by performing the following362

calculation:363

〈g(v, x, tn+1)〉 ≈ 〈g(v, x, tn) + ∆t · F1〉 (using Forward Euler)

= ∆t · 〈F1〉 (by linearity and 〈g〉 = 0).
(4.16)364

Thus, 〈g〉 = 0 implies (4.14). The justification of (4.14) for other Runge-Kutta schemes is similar.365

Remark 4.1. The factor ∆t is multiplied to F1 and remains in the loss (4.15) during training. ∆t is our366

Lagrange-multiplier.367

Regularization via Sparsity. If the size of the dictionary is too large, one is more likely to over-fit368

data to an incorrect PDE. To help omit terms that do not appear in the PDE, we impose sparsity in weights369

and biases in the DC-RNN. Denote the set of all trainable parameters excluding weps, the parameter which370

trains εpred, by θ. The regularization term371

(4.17) R(θ) = γ · ||θ||l1 with γ ∈ R+
372

is one natural choice to produce a PDE with the fewest possible terms. γ is typically chosen to be a small373

number. In our numerical examples, γ is chosen to be of order 10−4.374

Regularization via the Continuity of Weights and Biases. We note that if σS(x), σA(x), G(x),375

weights, or biases are not constant in x, we need to introduce neural networks to parametrize them to376

capture the dynamics of these functions of x. in this paper, each of these neural networks have Nx trainable377

parameters. In this case the parameter set θ of our RNN is a function in x. To promote the continuity in x,378

one choice is to add an extra regularization term R(θ) to the loss function of the form:379

(4.18) R(θ) = γ · ||∇xθ(x)||l1 with γ ∈ R+.380

Physically, Equation (4.18) is used to lessen the jump discontinuity in the learned functions in x.381
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5. Optimization. In this section we discuss how we update parameters (εpred,θ) to reach a minimum382

for our loss function. Since we do not assume that ε is known a priori, we will have to train this parameter.383

At the end of this section, we argue why our algorithm is expected to be superior to existing algorithms.384

Our reasoning suggests that terms of order O(εn) should be updated with a learning rate proportional to385

εn. We will verify this claim through several numerical experiments in the next section.386

5.1. Training of εpred. A major goal for our algorithm is to determine approximately the magnitude of387

the scale ε involved in the multiscale dynamics. To fulfill the condition 0 < ε ≤ 1, the εpred in our algorithm388

is set to389

(5.1) εpred =
1

2
(tanh(wε) + 1),390

where wε is a trainable parameter. However, if one can parallelize, it makes more sense to restrict εpred over391

several intervals spanning (0, 1]. For instance, let s(i) = 0.1i and392

(5.2) εpred =
s(i)− s(i+ 1)

2
(tanh(wiε) + mini),393

where (0, 1] = [s(1), s(2)] ∪ [s(2), s(3)] ∪ [s(3), s(4)] ∪ · · · . After training over each interval, one can choose394

the PDE corresponding to the lowest loss. Thus, with Equation (5.2), one has better control over where395

local minimums of the loss function occur.396

5.2. Training of parameters. The parameters for the loss function (4.13), can be trained using our397

suggested algorithm: Adam method [21]. This algorithm is great at training a relatively large number of398

parameters efficiently. Other gradient descent methods are possible including stochastic gradient descent.399

We will discuss an implementation of stochastic gradient descent below using loss equation (4.13) with400

respect to the L1 and L2. While not necessary, we will simplify the calculations by using the forward Euler401

approximation and assuming R(θ) involves only sparse regularity. We can rewrite equation (4.13) as:402

(5.3) L̂(wε,θ,x) = L(wε,θ,x) +R1403

where the regularization is404

R1 := γ1||θ||L1

= γ1

∑
i

|θi|(5.4)405

and L is given by406

(5.5) L(wε,θ,x) =
1

Nt

Nt∑
j=1

||u(x, tj+1)− u(x, tj) +

∫ tj+∆t

tj

∑
n

1

ε(wε)n
Fn(u(x, s),θn) ds||∗.407

Using the Forward Euler approximation,408

L(wε,θ,x) = LFwrd(wε,θ,x)

=
1

Nt

Nt∑
j=1

||Kju(u(x, tj),θ)||∗

=
1

Nt

Nt∑
j=1

||u(x, tj+1)− u(x, tj) + ∆t
∑
n

1

ε(wε)n
Fn(u(x, tj),θn)||∗

(5.6)409

where (wε,θ) := (wε,θ0,θ1, · · · ). The gradient of equation (5.3) with respect to L1 and L2 is given by410

∇(wε,θ)L̂ =
1

Nt

Nt∑
j=1

sign(L)(∂wεL,∆t∇θ0F0,∆t
1

ε(wε)
∇θ1F1, · · · ) + γ1sign(θ) using L1

∇(wε,θ)L̂ =
1

Nt

Nt∑
j=1

2L(∂wε
L,∆t∇θ0

F0,∆t
1

ε(wε)
∇θ1
F1, · · · ) + γ1sign(θ) using L2

(5.7)411
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If one records many data (large Nt), the summation in equation (5.7) can be slow to compute. Thus,412

one can reduce computational resources by using our suggested stochastic gradient descent: The sum is413

taken over a random smaller subset of {1, 2, · · · , Nt} of size Ns < Nt and we replace Nt with Ns in equation414

(5.7).415

5.3. Discussion. We will now discuss the effect of asymptotic expansion and our sparse regularization416

method. Because it is difficult to obtain clean algebraic expressions using “all of” L̂, we will consider a417

quadratic Taylor series truncation of K := Kju(u(x, tj),θ) near the point that minimizes L̂ which we denote by418

(w∗ε ,θ
∗
0 ,θ
∗
1 , · · · ). We will again assume the forward Euler approximation forK. The point (w

(0)
ε ,θ

(0)
0 ,θ

(0)
1 , · · · )419

will denote the initial values for the training parameters and (w
(k)
ε ,θ

(k)
0 ,θ

(k)
1 , · · · ) will denote the k-th step420

taken by the gradient descent process. The gradient at the k-th step is given by,421

z :=∇(wε,θ)Kju(w(k)
ε ,θ(k))

=(∂wε
Kju,∆t∇θ0

F0,∆t
1

ε(wε)
∇θ1
F1, · · · ,∆t 1

ε(wε)
M
∇θM

FM )|
(w

(k)
ε ,θ

(k)
0 ,θ

(k)
1 ,··· ,θ(k)

M )

=(∂wεKju, z̃)

=(∂wε
Kju, z̃0, z̃1, · · · , z̃M )

(5.8)422

where we defined423

z̃ := (z̃0, z̃1, · · · , z̃M )

:= (∆t∇θ0F0,∆t
1

ε(wε)
∇θ1F1, · · · ,∆t 1

ε(wε)
M
∇θM

FM )
(5.9)424

in order to simplify the notation. The hessian is given by425

H : = ∇2Kju(w(k)
ε ,θ(k))

= ∆t



1

∆t
∂2
wε
Kju [0]1×d − 1

ε2
∂wε

ε∇θ1
F1 − 2

ε3
∂wε

ε∇θ2
F2 · · ·

∇θ0(∂wεKju)T [∇2
θ0
F0]d×d [0]d×d [0]d×d

∇θ1(∂wεKju)T [0]d×d [
1

ε
∇2

θ1
F1]d×d [0]d×d

∇θ2(∂wεKju)T [0]d×d [0]d×d [
1

ε2
∇2

θ2
F2]d×d

...
. . .


(5.10)426

where d is the dimension of each θn. We also denote the (d ·M − 1)× (d ·M − 1) submatrix of H by427

(5.11) H̃ = ∆t


[∇2

θ0
F0]d×d [0]d×d [0]d×d

[0]d×d [
1

ε
∇2

θ1
F1]d×d [0]d×d

[0]d×d [0]d×d [
1

ε2
∇2

θ2
F2]d×d

...
. . .

428

The effect of asymptotic expansion on learning rate. We now consider the effect of updating429

the parameters θ via gradient descent. To further simplify algebraic expressions, we will assume that430

ε(w∗ε) = ε∗ = ε is the constant optimal value. According to the gradient descent method:431

θ(k+1) ←θ(k) −α⊗ z̃
: = (θ(k))− (α0z̃0, α1z̃1, · · · , αM z̃M )

(5.12)432

where the parameter α := (α0, α1, α2, · · · ) will denote the learning rate which updates step k → k + 1. αn433

will denote the learning rate for the terms of order O(ε−n). Our goal is to understand the optimal behaviour434

of the learning rates αn. Substituting equation (5.12) into our quadratic truncation of Kjn yields:435
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Kjn(w∗ε ,θ
(k+1)) = Kjn(w∗ε ,θ

(k))− (α⊗ z̃)T z̃ + (α⊗ z̃)T H̃(α⊗ z̃)(5.13)436

when (α⊗ z̃)TH(α⊗ z̃) is positive we can solve for the optimal values for α:437

(5.14) α =
z̃T z̃

z̃T H̃z̃
⇐⇒ αn =

ε∗nz̃Tn z̃n
∆tz̃Tn [∇2

θn
Fn]d×dz̃n

438

The meaning of the above calculations is summarize below:439

Observation. If Fn is well approximated by a quadratic function with ε(wε) = ε∗, then θ
(k+1)
n ← θ

(k)
n440

should be updated (according to equations (5.13) and (5.14)) in the direction of ∇θnFn. The optimal441

learning rate is proportional to
1

εn
. The eigenvalues and vectors of [∇2

θn
Fn]d×d determine the stability of442

the learning process. In the worst case scenario, z̃n is in the direction corresponding to the largest eigenvector443

of [∇2
θn
Fn]d×d.444

Example 5.1. Because the observation above made use of several simplifying assumptions, we provide445

some numerical evidence to support this claim. What we observe through repeated numerical tests is that446

the multiscale fitting methods tend to converge to the correct model using less training time and iterations.447

Evidence of this is shown in figure 4.448

Fig. 4. The behaviour of the loss function for example 6.1 is displayed above. We see quick convergence to the correct
answer when using the multiscale fitting methods.

Remark 5.1. We would like to remark that the efficiency of the proposed DC-RNN is demonstrated449

experimentally. As we made some simplifying assumptions on the terms Fn(θn) generated by our RNNs, we450

acknowledge that theoretical analysis remains vastly open, though several seminal works have been available451

[1, 2, 20, 45, 23].452

Remark 5.2. other algorithms such as [26, 28, 34, 35, 32, 7, 42], do not have an adaptive εpred. Numeri-453

cally, having an adaptive εpred mimics adaptive gradient descent methods. The behavior of the loss functions454
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16 D. RICARDO, H. JINGWEI, AND Y. HAIZHAO

vs iteration, has typically converged with respect to the number of iterations when compared to using the455

Adam algorithm with no multiscale expansion.456

The effect of sparse regularization. The conventional Lasso method uses sparse regularization where457

one fits the data to an ansatz with an L1 penalty as in equation (5.3). Typically the coefficients for the basis458

set of functions in the hypothesis space is set to be a sparse vector. Using our notation, this means459

(5.15) R1 := γ1

∑
m≥1

∑
π∈D
|aπ(1),··· ,π(m)(θ)| (for some γ1 ∈ R+)460

is added to the loss function (1.1). However, in the case that some of these coefficients are large O(ε−n) for461

n > 0 and 0 < ε � 1, equation (5.15) will create problems for the learning process. The issue is that there462

will be conflicting goals: keeping a particular set of coefficients aπ(1),··· ,π(m)(θ) large in magnitude while at463

the same time minimizing R1 as much as possible. Even if one sets γ1 to be a very small value, one will still464

run into the trouble of setting appropriate learning rates as mentioned earlier. This conflict is clearly solved465

by our algorithm using the regularization466

(5.16) R1 := γ1

∑
m≥1

∑
π∈D
|aπ(1),··· ,π(m)(θ0)|+ |aπ(1),··· ,π(m)(θ1)|+ · · ·+ |aπ(1),··· ,π(m)(θM )|467

and setting the coefficients of the basis terms to468

(5.17) aπ(1),··· ,π(m)(θ0) +
aπ(1),··· ,π(m)(θ1)

ε
+ · · ·+

aπ(1),··· ,π(m)(θM )

εM
.469

With this design we are able to have both sparsity and large O(ε−n) coefficients. The only drawback is that470

we had to introduce more parameters for our design.471

6. Numerical Examples. In this section, we test our DC-RNN using the PDE example in (2.4) and472

(2.5) with various values of ε. In the numeral results presented in this section, the predicted coefficients are473

of the form474

(6.1) predicted = (exact + difference),475

where in red we highlight the difference from the predicted to the exact value. The smaller the magnitude476

of the difference, the better the prediction. We also include the percentage error:477

(6.2) percentage error =

∑
|exact coefficients− predicted coefficients|∑

|exact coefficients|
× 100%.478

The right hand side of the learned PDE will contain many terms, for the sake of readability, we display479

only the terms involved in either Equation (2.4) or (2.5). The terms that we don’t present are typically480

minute in magnitude due to our sparsity regularization.481

Data Gathering. The data that we produce in our examples are computed with IMEX-ARS(2,2,2)482

schemes using small mesh size ∆x = 1
1000 and ∆t = 1

2∆x2. Thus, the data can be assumed to be nearly an483

exact solution to Equations (2.4) and (2.5). The CourantFriedrichsLewy (CFL) condition given in [22] for484

the first order IMEX scheme is given by485

(6.3) ∆t ≤
(

3

2
∆x2 +

ε∆x

2

)
.486

We note that the fitting method should also satisfy the appropriate CourantFriedrichsLewy conditions. For487

the Forward-Euler scheme, the stability depends on the stiffness of the PDE. Typically ∆t has to be quiet488

small for which we choose489

(6.4) ∆t = O(∆x2)490

to preform our Forward Euler fititng. The velocity distribution we use in our examples is the standard491

16-point Gaussian quadrature set in [−1, 1] as in [22].492

The training data is prepared by taking a subset of the exact data to reduce the memory cost. We493

define the training set number of grid points by Ñx and Ñt and note that for all examples Ñv = Nv = 16.494

To obtain a subset of the data points a coarser grid is chosen: ∆̃x ≥ ∆x and ∆̃t ≥ ∆t with ∆̃x and ∆̃t495

satisfying Equation (6.3) and (6.4). Code will be made available at https://github.com/Ricard0000.496
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ε Multiscale learned g-equation using Foward Euler Scheme Error

1/ 16 No ∂tg = −(162 + 0.836 · 10−1)g − (16 + 2.052 · 10−1)v · ∂xg
+(16 + 2.066 · 10−1)〈v∂xg〉 − (162 − 1.145 · 10−1)v · ∂xρ+ · · · 0.11 %

1/ 32 No ∂tg = −(322 − 1.855)g − (32 + 3.220 · 10−1)v · ∂xg
+(32 + 3.272 · 10−1)〈v∂xg〉 − (322 − 2.061)v · ∂xρ+ · · · 0.21%

1/ 64 No ∂tg = −(642 − 3.302 · 101)g − (64 + 1.389 · 10−1)v · ∂xg
+(64 + 1.321 · 10−1)〈v∂xg〉 − (642 − 3.317 · 101)v · ∂xρ+ · · · 0.79 %

1/ 128 No ∂tg = −(1282 − 0.524 · 103)g − (128− 3.512)v · ∂xg
+(128− 3.541)〈v∂xg〉 − (16384− 0.524 · 103)v · ∂xρ+ · · · 3.19 %

1/ 256 No ∂tg = −(2562 − 0.788 · 104)g − (256− 3.059 · 101)v · ∂xg
+(256− 3.066 · 101)〈v∂xg〉 − (2562 − 0.788 · 104)v · ∂xρ+ · · · 12.03 %

1/ 512 No ∂tg = −(5122 +−2.348 · 105)g − (512− 4.590 · 102)v · ∂xg
+(512− 4.592 · 102)〈v∂xg〉 − (5122 + 2.348 · 105)v · ∂xρ+ · · · 89.59 %

Table 1
Learned g-equation using the DC-RNN algorithm based on Forward-Euler schemes.

ε Multiscale learned g-equation using IMEX1 Scheme Error

1/ 16 No ∂tg = −(162 + 3.344 · 10−1)g − (16 + 2.210 · 10−1)v · ∂xg
+(16 + 2.227 · 10−1)〈v∂xg〉 − (162 + 1.542 · 10−1)v · ∂xρ+ · · · 0.17 %

1/ 32 No ∂tg = −(322 − 1.319)g − (32 + 3.478 · 10−1)v · ∂xg
+(32 + 3.539 · 10−1)〈v∂xg〉 − (322 − 1.538)v · ∂xρ+ · · · 0.16 %

1/ 64 No ∂tg = −(642 + 2.291 · 101)g − (64 + 1.000)v · ∂xg
+(64 + 1.004)〈v∂xg〉 − (642 + 2.224 · 101)v · ∂xρ+ · · · 0.56 %

1/ 128 No ∂tg = −(1282 + 4.745 · 102)g − (128 + 4.348)v · ∂xg
+(128 + 4.335)〈v∂xg〉 − (1282 + 4.755 · 102)v · ∂xρ+ · · · 2.90 %

1/ 256 No ∂tg = −(2562 + 2.915 · 103)g − (256 + 1.1598 · 101)v · ∂xg
+(256 + 1.156 · 101)〈v∂xg〉 − (2562 − 2.931 · 103)v · ∂xρ+ · · · 4.46 %

1/ 512 No ∂tg = −(5122 − 2.575 · 105)g − (512− 0.503 · 103)v · ∂xg
+(512− 0.503 · 103)〈v∂xg〉 − (5122 − 2.575 · 105)v · ∂xρ+ · · · 98.25 %

Table 2
Learned g-equation using the DC-RNN algorithm based on IMEX1 schemes.

Example 6.1. Forward Euler vs IMEX: Multiscale vs Non-multiscale. In this example, we497

show that when it comes to multiscale data, choosing a low-order Forward Euler scheme or the First-order498

IMEX time-stepping scheme is not enough to obtain an accurate prediction to data dynamics. It is crucial499

to assume a correct multiscale ansatz as in Equation (3.4). Evidence of this is provided in Tables 1,2 3,500

and 4. It is clear that after assuming a multiscale ansatz, a more accurate prediction is obtained. For this501

numerical example, we ran our algorithm using the ansatz produced by our RNN (3.8) using one layer. For502

non-multiscale methods we run our algorithm using M = 0 in Equation (3.4). For the multiscale method,503

we use M = 2. The data was produced with σs(x) = 1, σA(x) = 0. We choose Ñx = 1000 and Ñt = 56. We504

only attempt to learn the dynamics of the g-Equation (2.5).505

Example 6.2. Higher Order Methods: Multiscale vs Non-multiscale. In this example, we again506

show that if the dynamics of the data is multiscale, then it is crucial that the ansatz should also be multiscale.507

We show that it is not enough to choose a higher-order (second order in time) IMEX scheme to obtain a508

good fitting to the data. In this experiment, we again set σS(x) = 1 and σA(x) = 0 and use two layers in509

our RNN. Tests are done using the IMEX fitting schmes ARS(2,2,2), BDF-2 (see Appendix), and different510

values for ε. Results are recorded in Tables 5, 6,7, and 8 for multiscale (M = 2) and non-multiscale (M = 0)511

ansatz. For this example we use Ñx = 1000 and Ñt = 56, thus we are using the same data as in the the512

Forward Euler and IMEX methods of the previous example. It is clear that the ARS(2,2,2) method with the513

multiscale assumption out-preforms the IMEX-BDF-2 and the first order methods from the previous example.514

We note that the results can be further improved by using a greater Ñt.515
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ε Multiscale learned g-equation using Foward Euler Scheme Error

1/ 16 Yes ∂tg = −(162 − 3.616 · 10−2)g − (16 + 2.161 · 10−1)v · ∂xg
+(16 + 2.116 · 10−1)〈v∂xg〉 − (162 − 0.866 · 10−1)v · ∂xρ+ · · · 0.10 %

1/ 32 Yes ∂tg = −(322 − 2.113)g − (32 + 3.833 · 10−1)v · ∂xg
+(32 + 3.623 · 10−1)〈v∂xg〉 − (322 − 1.882)v · ∂xρ+ · · · 0.22 %

1/ 64 Yes ∂tg = −(642 − 3.325 · 101)g − (64 + 1.774 · 10−1)v · ∂xg
+(64 + 1.887 · 10−1)〈v∂xg〉 − (642 − 3.414 · 101)v · ∂xρ+ · · · 0.81 %

1/ 128 Yes ∂tg = −(1282 − 0.522 · 103)g − (128− 3.225)v · ∂xg
+(128− 3.259)〈v∂xg〉 − (1282 − 0.526 · 103)v · ∂xρ+ · · · 3.19 %

1/ 256 Yes ∂tg = −(2562 + 0.787 · 104)g − (256− 2.884 · 101)v · ∂xg
+(256− 3.067 · 101)〈v∂xg〉 − (2562 + 0.787 · 104)v · ∂xρ+ · · · 12.01 %

1/ 512 Yes ∂tg = −(5122 − 0.996 · 105)g − (512− 1.936 · 102)v · ∂xg
+(512− 1.946 · 102)〈v∂xg〉 − (5122 − 0.997 · 105)v · ∂xρ+ · · · 38.03 %

Table 3
Learned g-equation using the DC-RNN algorithm based on Forward-Euler schemes.

ε Multiscale learned g-equation using IMEX1 Scheme Error

1/ 16 Yes ∂tg = −(162 −−0.617 · 10−2)g − (16 + 2.033 · 10−1)v · ∂xg
+(16 + 2.094 · 10−1)〈v∂xg〉 − (162 − 1.282 · 10−1)v · ∂xρ+ · · · 0.10 %

1/ 32 Yes ∂tg = −(322 − 1.863)g − (32 + 3.303 · 10−1)v · ∂xg
+(32 + 3.466 · 10−1)〈v∂xg〉 − (322 − 1.826)v · ∂xρ+ · · · 0.20 %

1/ 64 Yes ∂tg = −(642 − 2.672 · 101)g − (64 + 2.679 · 10−1)v · ∂xg
+(64 + 2.887 · 10−1)〈v∂xg〉 − (642 − 2.758 · 101)v · ∂xρ+ · · · 0.65 %

1/ 128 Yes ∂tg = −(1282 − 2.488 · 102)g − (128− 1.139)v · ∂xg
+(128− 1.011)〈v∂xg〉 − (1282 − 2.523 · 102)v · ∂xρ+ · · · 1.52 %

1/ 256 Yes ∂tg = −(2562 − 0.586 · 104)g − (256− 2.537 · 101)v · ∂xg
+(256− 2.156 · 101)〈v∂xg〉 − (2562 − 0.586 · 104)v · ∂xρ+ · · · 8.94 %

1/ 512 Yes ∂tg = −(5122 − 3.472 · 104)g − (512− 0.626 · 102)v · ∂xg
+(512− 0.692 · 102)〈v∂xg〉 − (5122 − 3.472 · 104)v · ∂xρ+ · · · 13.24 %

Table 4
Learned g-equation using the DC-RNN algorithm based on IMEX1 schemes.

Example 6.3. Regularity Assumptions. When the number of layers is large (large dictionary), or516

when data are lacking or noisy, over-fitting becomes an issue. We described a few physics-aware regularization517

terms in Section 3. We summarize these conditions below:518

1. Regularization via sparsity;519

2. Regularization via 〈g〉 = 0;520

3. Regularization via the continuity of weights and biases.521

We numerically verify that further improvements can be made by applying these physics-aware regularization522

terms. For data that does not satisfy a smooth PDE, the regularization via the continuity of weights and523

biases might not be necessary. We record our results concerning the other two regularization methods in524

Tables 9 and 10. We explore the regularization via the continuity of weights and biases (Equation (4.18)) in525

the next example.526

Example 6.4. Learning Space-Dependent Functions. We demonstrate that functions such as527

σS(x), σA(x), or G(x) can be learned using space-dependent weights and biases. In this example, we choose528

(6.5) σS(x) = 1 + 100x2,529

σA(x) = 0, and G(x) = 0. We use ε = 1 and use our DC-RNN based on the IMEX-BDF-2 fitting. The530

predicted PDE for the g-equation is:531

∂tg = (1− 0.011)v∂xg − (1− 0.016)〈v∂xg〉
+ (1 + 0.005)v∂xρ+ [1 + 0.100, 100− 3.757]g + · · · ,

(6.6)532
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Scheme Multiscale learned g-equation Error

1/ 16 No ∂tg = −(162 + 3.073 · 10−1)g − (16− 0.531 · 10−1)v · ∂xg
+(16− 0.715 · 10−3)〈v∂xg〉 − (162 + 1.354 · 10−2)v · ∂xρ+ · · · 0.06 %

1/ 32 No ∂tg = −(322 + 1.736 · 10−1)g − (32 + 0.615 · 10−1)v · ∂xg
+(32 + 1.243 · 10−2)〈v∂xg〉 − (322 + 2.441 · 10−2)v · ∂xρ+ · · · 0.01 %

1/ 64 No ∂tg = −(642 + 0.784 · 100)g − (64− 0.777 · 10−2)v · ∂xg
+(64− 1.195 · 10−2)〈v∂xg〉 − (642 − 2.922 · 10−1)v · ∂xρ+ · · · 0.01 %

1/ 128 No ∂tg = −(1282 − 2.857 · 101)g − (128− 0.953 · 10−1)v · ∂xg
+(128− 2.176 · 10−1)〈v∂xg〉 − (1282 − 2.392 · 101)v · ∂xρ+ · · · 0.15 %

1/ 256 No ∂tg = −(2562 − 2.105 · 104)g − (256− 2.411 · 102)v · ∂xg
+(256− 0.821 · 102)〈v∂xg〉 − (2562 − 2.102 · 104)v · ∂xρ+ · · · 32.22 %

1/ 512 No ∂tg = −(5122 − 2.621 · 105)g − (512− 0.511 · 103)v · ∂xg
+(512− 0.511 · 103)〈v∂xg〉 − (5122 − 2.621 · 105)v · ∂xρ+ · · · 99.99 %

Table 5
Learned g-equation using IMEX-BDF-2 scheme assuming no dependence on ε (Non-multiscale).

ε Multiscale learned g-equation Error

1/ 16 No ∂tg = −(162 + 1.707 · 10−1)g − (16 + 2.886 · 10−2)v · ∂xg
+(16 + 3.391 · 10−3)〈v∂xg〉 − (162 − 1.251 · 10−3)v · ∂xρ+ · · · 0.03 %

1/ 32 No ∂tg = −(322 + 3.706 · 10−1)g − (32− 0.822 · 10−2)v · ∂xg
+(32− 4.989 · 10−3)〈v∂xg〉 − (322 + 3.662 · 10−2)v · ∂xρ+ · · · 0.01 %

1/ 64 No ∂tg = −(642 + 0.842 · 103)g − (64− 3.800 · 101)v · ∂xg
+(64− 3.819 · 101)〈v∂xg〉 − (642 − 4.054 · 103)v · ∂xρ+ · · · 59.76 %

1/ 128 No ∂tg = −(1282 − 1.424 · 104)g − (128− 1.044 · 102)v · ∂xg
+(128− 1.049 · 102)〈v∂xg〉 − (1282 − 1.634 · 104)v · ∂xρ+ · · · 93.243 %

1/ 256 No ∂tg = −(2562 − 0.655 · 105)g − (256− 2.551 · 102)v · ∂xg
+(256− 2.550 · 102)〈v∂xg〉 − (2562 − 0.654 · 105)v · ∂xρ+ · · · 99.96 %

1/ 512 No ∂tg = −(5122 − 2.621 · 105)g − (512− 0.511 · 103)v · ∂xg
+(512− 0.511 · 103)〈v∂xg〉 − (5122 − 2.621 · 105)v · ∂xρ+ · · · 99.98 %

Table 6
Learned g-equation using IMEX-ARS(2,2,2) scheme assuming no dependence on ε (Non-multiscale).

where [1 + 0.100, 100 − 3.757] is the minimum and maximum values of σS(x). We display the predicted σS533

on the left of Figure 5. We also impose continuity of σS(x) to our loss function. Our predicted PDE with534

continuity is given by:535

∂tg = (1− 0.008)v∂xg − (1− 0.017)〈v∂xg〉
+ (1 + 0.001)v∂xρ+ [1 + 0.060, 100− 3.893]g + · · · ,

(6.7)536

with predicted σS plotted on the right of Figure 5. We note that the jump discontinuities the left of Figure 5537

is due to over fitting of the data. As we can see from this example, utilizing the continuity condition (4.18)538

these jumps are removed.539

Fig. 5. Left: Predicted σS with no continuity constraints. Right: Predicted σS with continuity constraints.
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ε Multiscale learned g-equation Error

1/ 16 YES ∂tg = −(162 − 0.782 · 100)g − (16− 1.056 · 10−1)v · ∂xg
+(16− 0.737 · 10−3)〈v∂xg〉 − (162 + 3.311 · 10−2)v · ∂xρ+ · · · 0.16 %

1/ 32 YES ∂tg = −(322 + 1.307)g − (32 + 4.107 · 10−1)v · ∂xg
+(32 + 1.753 · 10−2)〈v∂xg〉 − (322 + 1.289 · 10−2)v · ∂xρ+ · · · 0.08 %

1/ 64 YES ∂tg = −(642 + 1.593)g − (64 + 0.576 · 10−1)v · ∂xg
+(64 + 3.793 · 10−2)〈v∂xg〉 − (642 + 1.709)v · ∂xρ+ · · · 0.04%

1/ 128 YES ∂tg = −(1282 + 4.817 · 101)g − (128− 0.573 · 10−1)v · ∂xg
+(128 + 1.349 · 10−1)〈v∂xg〉 − (1282 + 0.506 · 102)v · ∂xρ+ · · · 0.29 %

1/ 256 YES ∂tg = −(2562 + 4.745 · 102)g − (256 + 1.118 · 101)v · ∂xg
+(256 + 1.851)〈v∂xg〉 − (2562 + 4.688 · 102)v · ∂xρ+ · · · 0.72 %

1/ 512 YES ∂tg = −(5122 − 2.602 · 105)g − (512− 0.508 · 103)v · ∂xg
+(512− 0.508 · 103)〈v∂xg〉 − (5122 − 2.602 · 105)v · ∂xρ+ · · · 99.27 %

Table 7
Learned g-equation using IMEX-BDF-2 scheme assuming dependence on ε (Multiscale).

ε Multiscale learned g-equation Error

1/ 16 YES ∂tg = −(162 − 2.177 · 100)g − (16 + 3.167 · 10−2)v · ∂xg
+(16− 1.269 · 10−2)〈v∂xg〉 − (162 + 1.997 · 10−2)v · ∂xρ+ · · · 0.41 %

1/ 32 YES ∂tg = −(322 − 1.251 · 100)g − (32− 2.309 · 10−2)v · ∂xg
+(32 + 2.640 · 10−3)〈v∂xg〉 − (322 − 4.427 · 10−1)v · ∂xρ+ · · · 0.08 %

1/ 64 YES ∂tg = −(642 − 3.075 · 10−2)g − (64− 0.866 · 10−1)v · ∂xg
+(64− 1.748 · 10−1)〈v∂xg〉 − (642 + 1.177)v · ∂xρ+ · · · 0.01 %

1/ 128 YES ∂tg = −(1282 + 1.018 · 101)g − (128 + 1.068 · 100)v · ∂xg
+(128 + 2.269 · 10−1)〈v∂xg〉 − (1282 + 1.044 · 101)v · ∂xρ+ · · · 0.06 %

1/ 256 YES ∂tg = −(2562 − 1.093 · 103)g − (256− 3.649 · 10−1)v · ∂xg
+(256− 0.812)〈v∂xg〉 − (2562 − 4.311 · 101)v · ∂xρ+ · · · 0.86 %

1/ 512 YES ∂tg = −(5122 −−3.861 · 104)g − (512 + 1.296 · 103)v · ∂xg
+(512− 0.518 · 102)〈v∂xg〉 − (5122 − 1.102 · 104)v · ∂xρ+ · · · 9.70 %

Table 8
Learned g-equation using ARS(2,2,2) scheme assuming dependence on ε (Multiscale).

Example 6.5. Higher-Order Methods We test the performance of our algorithm using second-order540

and fourth-order time schemes. As expected, higher-order methods produce more accurate results as shown541

by Table 11.542

Example 6.6. Comparison with Conventional Methods. (Part 1)543

The Lasso method [40, 15] is a popular tool for determining features involved in the dynamics of the data.544

This method does not assume a Chapman-Enskog like expansion as in (3.4). Since the dictionary has to be545

recorded in a matrix, the memory requirements for using the Lasso method are typically larger compared to546

our algorithm. We perform tests of our algorithm vs Lasso using σS(x) = 1, σA(x) = 0, and G(x) = 0. We547

record results for the g-equation in Table 12. Our ansatz assumed 18 terms, those involved in the dynamics:548

g, v∂xρ, v∂xg, 〈v∂xg〉 and 14 others not involved (built by compositions of advection and projection operators549

(3.2) and (3.3)). We ran the Lasso method several times using several values of the regularization parameter550

α. However, we only present the results associated with the best α. The Lasso method performed fairly well551

but, it typically predicted more undesirable features for the dynamics and thus had a greater error.552

Example 6.7. Comparison with Conventional Methods. (Part 2)553

Next, we try the STRidge method in [36]. Similar to the Lasso method, a matrix of the dictionary is554

formed. Unlike the Lasso method, [36] makes more efficient use of memory requirements and also features555

a hard threshold, i.e., large coefficients are assumed to be likely candidates for the dynamics of the PDE.556

Again, we use 18 terms for our dictionary as in the previous example. After running the STRidge algorithm,557

the predicted weights for the involved terms g, v∂xρ, v∂xg, 〈v∂xg〉, were accurate. However, the STRidge558
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Multiscale sparse learned g-equation

No No ∂tg = −(2562 − [65457.219])g − (256− [253.605])v · ∂xg
+(256− [218.651])〈v∂xg〉+ (2562 − [65417.618])v · ∂xρ+ · · ·

Yes No ∂tg = (−2562 + [3151.269])g − (256− [2.398])v · ∂xg
+(256− [20.289])〈v∂xg〉 − (2562 − [3089.949])v · ∂xρ+ · · ·

Yes Yes ∂tg = (−2562 + [1613.457])g − (256 + [4.126])v · ∂xg
+(256− [6.598])〈v∂xg〉 − (2562 + [1600.326])v · ∂xρ+ · · ·

Table 9
Learned g-equation with and without sparse regularity assumptions.

ε 〈g〉 = 0 applied learned g-equation Error

1/4 No ∂tg = (−42 + [0.197])g − (4 + [0.105])v · ∂xg
+(4 + [0.063])〈v∂xg〉 − (42 + [0.030])v · ∂xρ+ · · · 0.98%

1/4 Yes ∂tg = (−42 + [0.318])g − (4 + [0.006])v · ∂xg
+(4 + [0.006])〈v∂xg〉 − (42 + [0.028])v · ∂xρ+ · · · 0.89%

1/8 No ∂tg = (−82 − [3.183])g − (8− [0.342])v · ∂xg
+(8− [0.174])〈v∂xg〉 − (82 + [0.004])v · ∂xρ+ · · · 2.57%

1/8 Yes ∂tg = (−82 − [1.886])g − (8− [0.104])v · ∂xg
+(8− [0.107])〈v∂xg〉 − (82 − [0.036])v · ∂xρ+ · · · 1.48%

Table 10
Learned g-equation with and without 〈g〉 = 0 regularity.

algorithm also identified terms that are not supposed to be involved in the dynamics. The weights of the559

erroneous terms were so large that overall, the algorithm had a large error. For the STRidge algorithm, the560

main source of error is likely in the hard threshold assumption.561

Example 6.8. Comparison with Conventional Methods. (Part 3) Now we discuss a purely ma-562

chine learning based algorithm presented in [34, 35]. In [34, 35], the authors suggest forming neural net563

approximations to the data which we denote by Ng and Nρ. The differential operator:564

(6.8) F (ρ, g) = ∂tg − (λ1v∂xg + λ2〈v∂xg〉+ λ3v∂xρ+ λ4g)565

can be computed using backpropagation. The loss is given by:566

(6.9) Loss = ||F (ρ, g)||+ ||g −Ng||+ ||ρ−Nρ||,567

For small ε, we obtain a mediocre fit to the data using the loss given by Equation (6.9). Motivated by568

Equation (3.4), we redefine F (ρ, g) to:569

F (ρ, g) =∂tg − (λ1,0 +
λ1,1

εpred
+

λ1,2

ε2
pred

)v∂xg − (λ2,0 +
λ2,1

εpred
+

λ2,2

ε2
pred

)〈v∂xg〉

− (λ3,0 +
λ3,1

εpred
+

λ3,2

ε2
pred

)v∂xρ− (λ4,0 +
λ4,1

εpred
+

λ4,2

ε2
pred

)g,

(6.10)570

and use sparse λi,j parameters. Equation (6.10) yields a much better fit to the data. The results are recorded571

in Table 13 where “No PT-Expansion” corresponds to fitting with Equation (6.8) and “Yes PT-Expansion”572

corresponds to fitting with Equation (6.10). We note that our algorithm is more adept as we do not already573

assume to know the terms involved in the dynamics as in [34, 35].574
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Order learned g-equation Error

2nd ∂tg = −(642 − 3.03)g − (64 + 0.006)v · ∂xg 0.043%
+(64 + 0.009)〈v∂xg〉 − (642 − 0.58)v · ∂xρ

4th ∂tg = −(642 − 1.43)g − (64− 0.002)v · ∂xg 0.018%
+(64 + 0.011)〈v∂xg〉 − (642 + 0.12)v · ∂xρ

Table 11
Learned g-equation using second and fourth order schemes.

Method learned g-equation Error

Lasso ∂tg = −(1282 − 10.04)g − (128 + 0.00)v · ∂xg 0.18%
+(128 + 26.35)〈v∂xg〉 − (1282 + 23.42)v · ∂xρ

PT-based ML ∂tg = −(1282 − 16.92)g − (128− 1.09)v · ∂xg 0.072%
+(128 + 0.24)〈v∂xg〉 − (1282 + 5.62)v · ∂xρ

Lasso ∂tg = −(2562 − 1271.98)g − (256 + 4.13)v · ∂xg 1.77%
+(256− 70.52)〈v∂xg〉 − (2562 − 985.73)v · ∂xρ

PT-based ML ∂tg = −(2562 + 72.69)g − (256− 3.61)v · ∂xg 0.08%
+(256 + 0.44)〈v∂xg〉 − (2562 − 32.29)v · ∂xρ

Table 12
Learned g-equation. Comparison with Lasso method.

Example 6.9. Comparison with Conventional Methods. (Part 4) We now compare our results575

with the multiscale hierarchical deep learning (MS-HDL) approach proposed in [26]. The approach in [26] is576

to train separate feed-forward neural networks Fj(x,∆tj) for different time scales ∆tj:577

(6.11) xt+∆tj = xt + Fj(x,∆tj).578

For example, ∆tj could be set to slow, medium, and fast scales by setting ∆tj =
∆t

εj
for some fixed ε579

and j = 0, 1, 2. Unfortunately, [26] does not provide a method for determining operators involved for each580

Fj(x,∆tj). Since we are interested in discovering the dynamics, we fit the Fj using the same 18 terms581

(denoted by Ai(v, x, t) for i = 1, 2, cdots, 18) as in example 6.6:582

(6.12) Fj(x, tn) :=

18∑
i=1

λi,jAi(v, x, tn).583

As suggested in Equation (6.11), we propagate data using the forward Euler scheme. Thus, the λi,j are584

determined using the loss in Equation (4.4).585

To be clear, Equation (6.11) is used to determine the dynamics of each map Fj(x, t) separately. Thus,586

the desired equations the MS-HDL would like to uncover are:587

∂tgfast = −σ
A

ε2
gfast −

1

ε2
v∂xρ,

∂tgmedium = −1

ε
(v∂xgmedium − 〈v∂xgmedium〉),

∂tgslow = −σAgslow.

(6.13)588

We use σS = 1, σA = 0, and G(x) = 0 to produce the data so that only fast and medium scales are589

present. For the MS-HDL, we choose ∆tj = ∆t
εj , j = 0, 1, 2 with the correct value of ε. In [26], the authors590
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PT-expansion learned g-equation Error

No ∂tg = −(642 + 4057.11)g − (64 + 30.64)v · ∂xg Large
+(64 + 30.91)〈v∂xg〉 − (642 + 4057.01)v · ∂xρ

Yes ∂tg = −(642 − .075)g − (64− 0.00)v · ∂xg Small
+(64 + 0.00)〈v∂xg〉 − (642 + 0.87)v · ∂xρ

Table 13
Learned g-equation using alternate machine learning fitting.

Method Learned g-equation Error

MS-HDL −(642 − 3.64)g + (64 + 1.99)v∂xg 0.094%
−(64 + 0.87)〈v∂xg〉+ (642 + 1.36)v∂xρ

DC-RNN −(642 + 0.56)g + (64 + 3.43)v∂xg 0.066%
−(64 + 0.76)〈v∂xg〉(4096 + 0.78)v∂xρ

MS-HDL −(1282 − 10.09)g + (128 + 4.84)v∂xg 0.070%
−(128 + 1.87)〈v∂xg〉+ (1282 + 6.54)v∂xρ

DC-RNN −(1282 − 15.89)g + (128 + 7.34)v∂xg 0.010%
−(128 + 1.18)〈v∂xg〉+ (1282 − 8.85)v∂xρ

Table 14
Learned g-equation using Multiscale Deep Learning methods.

suggest gathering data for each time scale:591

gfast(v, x, tn) = g(v, x, n∆t2), n = 0, 1, 2, ..., Nfast

gmedium(v, x, tn) = g(v, x, n∆t1), n = 0, 1, 2, ..., Nmedium

gslow(v, x, tn) = g(v, x, n∆t0), n = 0, 1, 2, ..., Nslow,

(6.14)592

i.e. the coarseness of the time grid determines the time scales. Of course, gathering data as in (6.14) can593

be a problem. Namely, (6.14) is only an approximation to the dynamics of (6.13). Thus, for our numerical594

example, we made the extra effort to perfectly split the data into different orders. In practice, it may be595

difficult to accurately split the data into different orders. For our DC-RNN algorithm, we do not need to596

split the data. The data for the DC-RNN is collected by:597

(6.15) g(v, x, tn) = g(v, x, n∆t) n = 0, 1, 2, ..., Nt.598

Thus, one reason to prefer using DC-RNN over the MS-HDL is that one does not need to make the extra599

effort to split the data into different orders. Also, in the DC-RNN method we do not have to choose ∆tj before600

hand, the DC-RNN algorithm learns appropriate time scales via Equation (5.1) in an automatic manner.601

We compare our DC-RNN method with the MS-HDL method in Table 14.602

Example 6.10. The diffusion limit. As mentioned in Section 2, the equation for ρ is given by equation603

(2.4). However, after applying the Chapman-Enskog expansion, one obtains Equation (2.7). Thus, if ε is604

small enough, each equation is nearly equally likely to be predicted. Whether Equation (2.4) or (2.7) gets605

predicted likely depends on the algorithm used to minimize the loss. For our experiments, we use the Adam606

method followed by L-BFGS-B optimization.607

In this example, we choose σS = 1/3, σA = 0, and G = 0. This means that in the limit ε → 0, the608

dynamics of ρ depends on either the terms 〈v∂xg〉 or ∂xxρ. The algorithm may deduce that each term has609

equal weights. However, because of the `1 sparsity condition, the algorithm tends to place all the weights on610

either 〈v∂xg〉 or ∂xxρ. We summarize the numerical experiments in Table 15.611
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epsilon Learned ρ-equation

1/16 ∂tρ = (−0.000141)∂xxρ− (0.993171)〈v∂xg〉+ · · ·

1/256 ∂tρ = (−0.0436861)∂xxρ− (1.042619)〈v∂xg〉+ · · ·

1/2048 ∂tρ = (0.985353)∂xxρ− (0.003806)〈v∂xg〉+ · · ·

1/4096 ∂tρ = (0.985596)∂xxρ− (0.010862)〈v∂xg〉+ · · ·

Table 15
Learned ρ-equation for various values of ε.

7. Conclusion. We propose a deep learning algorithm capable of learning time-dependent multiscale612

and nonlocal partial differential equations (PDEs) from data. The key to achieving our goal is to construct a613

Densely Connected Recurring Neural Network (DC-RNN) that accounts for potential multiscale and nonlocal614

structures in the data. The DC-RNN is a symbolic network with relationship among the symbols given by615

high-order IMEX schemes used to target dynamics of stiff PDEs describing kinetic equations. Incorporated616

into the training of the network are physics-aware constraints. Through various numerical experiements, we617

verify that our DC-RNN accurately and efficiently recovers multiscale PDEs which the data satisfies. As a618

byproduct, our DC-RNN determines appropriate multiscale parameters and can potentially discover lower619

dimensional representations for kinetic equations.620

8. Appendix. Here we present details on how to define a loss function which makes use of high-order621

IMEX schemes to fit data to Equations (2.4) and (2.5).622

8.1. Higher-order IMEX Runge-Kutta fitting. Higher-order fitting can be done following the623

high-order IMEX schemes for solving Equations (2.4) and (2.5). For the remainder of this section, we624

omit the spatial discritization of the spacial operators. Generally, higher-order spacial discritization should625

be used for higher-order IMEX schemes for numerical stability (see [4]). The time-steps are denoted by626

superscripts while stages are denoted by superscripts enclosed in parenthesis. The higher-order K-stage627

IMEX Runge-Kutta scheme is given by:628

g(i) = gn −∆t

i−1∑
j=1

ãi,j

(
1

ε
(I − 〈〉)(v∂xg(j)) +

1

ε2
v∂xρ

(j) + σAg(j)

)

−∆t

i∑
j=1

ai,j

(
σS

ε2
g(j)

)
,

(8.1)629

630

(8.2) ρ(i) = ρn −∆t

i−1∑
j=1

ãi,j(σ
Aρ(j) −G)−∆t

i∑
j=1

ai,j∂x〈vg(j)〉,631

632

gn+1 = gn −∆t

K∑
i=1

w̃i

(
1

ε
(I − 〈〉)(v∂xg(i)) +

1

ε2
v∂xρ

(i) + σAg(i)

)

−∆t

K∑
j=1

wi

(
σS

ε2
g(j)

)
,

(8.3)633

634

(8.4) ρn+1 = ρn −∆t

K∑
i=1

w̃i(σ
Aρ(i) −G)−∆t

K∑
i=1

wi∂x〈vg(i)〉.635

Equations (8.1) and (8.2) are intermediate stages and Equations (8.3) and (8.4) are the approximate636

solution at the next time step. Here Ã = (ãi,j) with ãi,j = 0 for j ≥ i and A = (ai,j) with ai,j = 0 for j > i637
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are K ×K matrices. Along with the coefficient vectors w̃ = (w̃1, · · · , w̃K)T , w = (w1, · · · , wK)T , they can638

be represented by a double Butcher tableau:639

c̃ Ã

w̃T
and

c A

wT
,640

where the vectors c̃ = (c̃1, · · · , c̃K)T and c = (c1, · · · , cK)T ) are defined as:641

(8.5) c̃i =

i−1∑
j=1

ãi,j and ci =

i−1∑
j=1

ai,j .642

For convenience, we provide the tableau for the ARS(2,2,2) scheme:643

0 0 0 0

γ γ 0 0

1 δ 1− δ 0

δ 1− δ 0

and

0 0 0 0

γ 0 γ 0

1 0 1− γ γ

0 1− γ γ

,644

where γ = 1−
√

2

2
and δ = 1− 1

2γ
.645

The loss function based on this fitting scheme is defined by:646

(8.6) L =
1

Nt− 1

Nt−1∑
n=1

||Kng ||+ ||Knρ ||,647

with,648

(8.7) Kng = Kng ({g(v, x, tn), g(v, x, tn+1)}),649

650

(8.8) Knρ = Knρ ({ρ(x, tn), ρ(x, tn+1)}),651

to be defined below.652

Kng := g(v, x, tn+1)− g(v, x, tn) + ∆t

(
K∑
i=1

σA(x)w̃ig
(i) +

σS(x)

ε2
wig

(i)

)

+ ∆t

K∑
i=1

w̃i

(
F1(g(i)(v, x), ρ(i)(x))

) ,(8.9)653

Knρ := ρ(x, tn+1)− ρ(x, tn) + ∆t

K∑
i=1

w̃i(σ
A(x)ρ(i) −G(x))

+ ∆t

K∑
i=1

wi

(
F2(g(i)(v, x), ρ(i)(x))

)
.

(8.10)654

The operators F1(g, ρ), F2(g, ρ) are given by (3.5) and are generated by the RNN in Equation (3.8).655

The intermediate stages are given by:656

g(i) = g(v, x, tn)−∆t

i∑
j=1

ai,j
σS(x)

ε2
g(j)

−∆t

i−1∑
j=1

ãi,j

(
F1(g(j), ρ(j))

)(8.11)657
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Table 16

q α γ β

1 (−1, 1) 1 1
2 ( 1

3
,− 4

3
, 1) (− 2

3
, 4
3
) 2

3

3 (− 2
11
, 9
11
,− 18

11
, 1) ( 6

11
,− 18

11
, 18
11
) 6

11

4 ( 3
25
,− 16

25
, 36
25
,− 48

25
, 1) (− 12

25
, 48
25
,− 72

25
, 48
25
) 12

25

ρ(i) = ρ(x, tn)−∆t

i−1∑
j=1

ãi,j(σ
A(x)ρ(j) −G)

−∆t

i∑
j=1

ãi,j

(
F2(g(j), ρ(j))

)(8.12)658

We note that σA(x), σS(x), and G(x) do not need to be assumed known. These functions can be part659

of the fitting process by replacing them with feed-forward neural nets, say.660

8.2. Higher-order IMEX-BDF fitting. Another way to go higher-order in time is through the661

IMEX-BDF scheme [11]:662

q∑
i=0

αig
n+i + ∆t

q−1∑
i=0

γi

(
1

ε
(I − 〈〉)(v∂xgn+i)

+
1

ε2
v∂xρ

n+i + σAgn+i

)
+ β∆t

(
σS

ε2
gn+q

)
= 0,

(8.13)663

and664

(8.14)

q∑
i=0

αiρ
n+i + ∆t

q−1∑
i=0

γi(σ
Aρn+i −G) + β∆t∂x〈vgn+q〉 = 0.665

We display some coefficients α = (α0, · · · , αq), γ = (γ0, · · · , γq−1), and β for the above scheme in Table666

16.667

The loss function for the fitting scheme based on the IMEX-BDF method, is defined by:668

(8.15) L =
1

Nt − q

Nt−q∑
n=1

||Kn(D;θ)||,669

with,670

(8.16) D = {u(x, tn), u(x, tn+1) · · · , u(x, tn+q)}.671

For the g equation Kng is given by:672

Kng =

q∑
i=0

αig
n+i − β∆t

σS(x)

ε2
gn+q −∆t

q−1∑
i=0

σA(x)gn+i

+ ∆t

q−1∑
i=0

γi (F1(g(v, x, tn+i), ρ(x, tn+i))) .

(8.17)673

The operator F1(g, ρ) is given by (3.5) and is generated by the RNN in Equation (3.8).674
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g(v, x, tj)

g(·, ·, t)
F0

1,1(g0:Nt)

g(·, ·, t)
F1

1,1(g0:Nt)

ρ(x, tj)
F0

1,2(ρ0:Nt)

ρ(x, tj)
F1

1,2(ρ0:Nt) F :=
∑ Fmq,p

εmpred

(1 + 2
3∆t

σs

ε2
)g2:Nt

− 4
3g

1:Nt−1

1
3g

0:Nt−2

4
3∆tF1:Nt−1

− 2
3∆tF0:Nt−2

∑ K0:Nt−2
g

Fig. 6. Example DC-RNN based on IMEX-BDF-2 scheme for predicting the g-equation. The inputs are ρ(t), and g(t).
The dictionary contains order O(1) and O(ε) operators. These operators are generated by the RNNs of orders ε−m m = 0, 1.

The output K0:Nt−2
g is to be minimized with respect to a chosen norm.

For the ρ equation Kng is given by:675

Knρ =

q∑
i=0

αig
n+i + ∆t

q−1∑
i=0

γi
(
σAρn+i −G

)
− β∆t (F2(g(v, x, tn+q), ρ(x, tn+q))) .

(8.18)676

Again, σA(x), σS(x), and G(x) can be learned by including them in the fitting process. We display in677

Figure 6 a DC-RNN for determining the equation satisfied by g(v, x, t) based on the IMEX-BDF-2 scheme.678
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