0

N NN
c Q0

MULTISCALE AND NONLOCAL LEARNING FOR PDES USING DENSELY
CONNECTED RNNS*

RICARDO A. DELGADILLO!, JINGWEI HUf, AND HAIZHAO YANGS$

Abstract. Learning time-dependent partial differential equations (PDEs) that govern evolutionary observations is one of
the core challenges for data-driven inference in many fields. In this work, we propose to capture the essential dynamics of
numerically challenging PDEs arising in multiscale modeling and simulation - kinetic equations. These equations are usually
nonlocal and contain scales/parameters that vary by several orders of magnitude. We introduce an efficient framework, Densely
Connected Recurrent Neural Networks (DC-RNNs), by incorporating high-order numerical schemes of time-dependent PDEs
into RNN structure design to identify analytic representations of multiscale and nonlocal PDEs from discrete-time observations
generated from heterogeneous experiments. If present in the observed data, our DC-RNN can capture transport operators,
nonlocal projection or collision operators, equilibrium state dynamics (macroscopic diffusion limit), and other dynamics. We
provide numerical results demonstrating the advantage of our proposed framework over existing methods.
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1. Introduction. Data-driven discovery of partial differential equations is experiencing unprecedented
development over the past few years, wherein various kinds of PDEs (featuring e.g., time dependence and
nonlinearity) have been studied. In this work, we consider the learning problem for a class of PDEs that
involve multiple time/spatial scales and nonlocal operators — kinetic equations. These are an important class
of equations in multiscale modeling hieriarchy which bridges microscopic atomistic models (such as N-body
Newton equations) and macroscopic continuum models (such as Navier-Stokes equations). For a variety of
scientific problems ranging from gas/plasma dynamics, radiative transfer to social /biological systems, kinetic
equations have demonstrated their ability to accurately model the dynamics of many complex systems [41].
To the best of our knowledge, learning of multiscale kinetic equations, albeit important, has never been
explored in the literature.

Specifically, we are interested in developing an efficient symbolic neural network to fit time-dependent
data for a large class of multiscale kinetic equations. The overall goal is to identify an explicit formula
of the map F that determines the evolution u(x,t) — u(x,t + At) for x € Q and At > 0. Therefore, a
symbolic neural network F(u; 0, w,) with parameters € and w, is constructed and the following loss function
is minimized to find the best parameter set:

1 Ny ti+At
(1.1) L(0,we) = > @, ) — u(z, t)) —/ F(u(x, s); 0,w,.) ds
b=t t L)

F approaches the correct model as L(8,w.) — 0. The choice of the norm above is flexible. In this paper,
we focus on the L'-norm because our numerical experiments show that it is slightly better than others, e.g.,
the L2-norm. Due to the multiscale and nonlocal feature of our target equations, existing learning schemes
may not be efficient. We will propose novel symbolic neural networks, new formulations of the loss function
in (1.1), and new regularization methods in this paper to tackle this challenge.

Our first main contribution is a new symbolic neural network F(u;0,w.) build with multiscale and
nonlocal features. The key idea for capturing multiscale phenomena is to construct F as a sum of different
components at different scales of order EZT -q» Where n is an integer degree and €,,¢q is a trainable multiscale
separator defined by:

(1.2) Epred(We) = %(tanh(ws) +1)

with w. as a trainable parameter. In particular, we propose
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2 D. RICARDO, H. JINGWEI, AND Y. HAIZHAO

a 1
(1.3) Flu;0,w:) = —

" (u;0y).
2oty 0
where 6 := (01,602, --- ,0,,). Thus, unlike conventional deep learning recovery algorithms as in [34, 35, 34, 27,
14, 43, 46], our algorithm is aware of different scales and thus more accurately captures different components
at scale O(e7),.)-

The key idea to make F(u;60,w.) capable of capturing nonlocal phenomena is to incorperate nonlocal
operators in F™ in (1.3) to construct F. Conventionally, F is typically constructed as a linear combination
of mathematical operators in a pre-specified dictionary, and the combination coefficients are learned via
minimizing (1.1) with sparsity regularization to obtain sparse linear combinations as in [19, 37, 30, 6, 46].
For high-dimensional problems, constructing such a dictionary can be very costly. Hence, we will apply
symbolic recurring neural network (RNN) of mathematical operators as in [28, 27] without specifying a
large dictionary. Intuitively, due to the high expressiveness of our symbolic RNNs; the class of RNNs with
different parameters can form a large dictionary without pre-specifying a costly dictionary. It might be
computationally more efficient to use symbolic RNNs to classify the dynamics of data and choose a trainable
symbolic model to model data.

The most basic elements of our RNN are a set of (either local or nonlocal) basic mathematical operators
A1, -+, A, from a function space to another function space commonly used in dynamics modeling for kinetic
equations, such as transport, collision, and other nonlocal operators. The trainable compositions of these
basic operators form a basis of our RNN, i.e., each term F™ in (1.3) is a trainable linear combination of the
compositions defined below:

(14) ATr(l) ©---0 -ATr(’m)7

where m = (7r(1), e ,ﬂ(m)) € Z™ with entries in {1,--- ,n}. More precisely, we have

(1.5) Frwi0n) = > > (1) e im(m) (On) Ar(1y © -+ 0 Ay (),
m>1nmeD

where coefficients ar(1).... x(m)(0n) depend on trainable parameters 6,, and D is a set of index vectors 7
specified by our symbolic RNN as we shall see later. Similar to polynomial regression [9, 13], our RNN
returns a multivariate polynomial of the operators Aj,---,A,. Due to the expressive power of neural
networks [44, 38, 29, 23, 31, 24], our symbolic RNN of a small size can generate a sufficiently large index
vector set D. The formulation in (1.5) is also natural in physics, equations derived from asymptotic analysis
often have recursive structure similar to the compositional operators in (1.5), e.g., see [39].

Our second main contribution is to propose novel loss functions based on high-order implicit-explicit
schemes to discretize of the integral in (1.1). The most typical numerical method, the forward-Euler scheme,
results in the loss function:

Ny

1
(1.6) L(O,we) = & D e, ti) — ul@, b)) — AtF (u(z, t;);0,we) | 11 o
j=1

which is commonly used in the discovery of governing equations. Though explicit higher order approximations
using multistep methods have been investigated in [34, 20, 33, 12], there is no existing research on the
effectiveness of implicit-explicit schemes in the literature of discovering governing equations. To predict
future state dynamics, we propagate data using Implicit-Explicit Runge-Kutta (IMEX) schemes. We use
IMEX schemes as they are especially suited to solve stiff problems in kinetic theory [25, 3], and they are able
to describe systems either depending on the past or future states. The collection of RNNs together with our
propagation scheme will make up our “densely connected recurrent neural network” (DC-RNN).

Our third main contribution is to propose physics-based regularization to the loss function in (1.1) to
improve optimization efficiency and avoid over-fitting. First, a physically correct model is usually described
with a small number of mathematical operators in (1.5), while an over-fitting model would have a large
number of operators for a better fitting capacity. Thus, inspired by the lasso approaches in [40, 5, 47], we



85
86
87
88
89

115
116
117
118
119
120

MULTISCALE AND NONLOCAL LEARNING FOR PDES 3

propose sparse regularization to avoid over-fitting and remove undesirable features in the governing equation,
e.g., adding a L'-norm penalty term to the coefficients in (1.5). Second, a micro-macro decomposition of
kinetic equations [16, 18, 17, 22] are applied to transfer a challenging recovery problem with a single PDE to
an easier recovery problem with a coupled PDE system, enforcing our recovery results to be more physically
meaningful. Furthermore, the macroscopic part, denoted as g, satisfies

(1.7) (g9) := /[1 : g(v,z,t)dv =0,

which will be used as a constraint of our recovery. Finally, in most cases, kinetic equations have spatial-
dependent coefficients, which motivates us to design spatial-dependent parameters 6(x) in (1.5) and the
regularity in terms of z can also be considered as a regularization penalty.

To summarize, the main highlights of our learning algorithm are as follows:

e DC-RNN built for transport, collision, and nonlocal operators typically involved in kinetic equations.

e Multiscale-aware RNN structures and learning rates for the recovery of time-dependent PDEs.
Novel optimization loss function inspired by high-order IMEX for stiff equations.

e Physics-aware loss function and regularization specialized for kinetic equations.

e Efficient arithmetic and memory cost.

We structure this manuscript as follows. In Section 2, an exemplary PDE for our learning problem is
introduced to motivate our algorithm. In Section 3, we mathematically formulate an ansatz that we will use
to fit data to PDEs. In Section 4, our physics-aware loss function is introduced to learn PDEs from data. In
Section 5, we will carry out several numerical experiments to test our algorithm. Finally, concluding remarks
are made in the Section 6.

2. Model Equation: the Linear Transport Kinetic Equation. We now present a model equa-
tion, the linear transport equation, to motivate our learning algorithm. The linear transport equation is a
prototype kinetic equation describing particles such as neutrons or photons interacting with a background
medium [8, 10]. This equation highlights some of the challenging aspects that an efficient learning algorithm
should account for. That is, our model equation will allow us to understand the hypothesis space (the set
of functions describing kinetic equations) better. This will lead us to devise ways to capture multiple scales,
nonlocal operators, and regularity conditions. In addition, we will be able to discern appropriate numerical
techniques needed to carry out our learning algorithm.

In the simple 1D case, the linear transport equation reads

s

1
(2.1) o f + gvaxf = §(<f> — )=’ f+G,
where f = f(t,z,v) is the probability density function of time ¢ > 0, position x € Q C R, and velocity
1
ve[-11]; ()= 3 f_ll -dv is a projection operator; 0% (z) and o (z) are the scattering and absorption

coefficients; and G(z) is a given source. Finally, € is a dimensionless parameter indicating the strength of the
scattering. Indeed, when € ~ O(1), the equation (2.1) is in the fully kinetic regime (all operators balance);
when ¢ — 0, the scattering is so strong that (2.1) approaches a diffusion limit. To see this, consider the
so-called micro-macro decomposition of f:

(2.2) f=p+eg, p:={(f),
where p is the macro part (density) of the solution, and g is the micro part. A crucial condition we use is
(2.3) (g) = 0.

Equation (2.3) is the conservation condition and will be numerically indispensable since it allows us to impose
exact conditions satisfied by kinetic equations. Substituting (2.2) into (2.1), one can derive the following
coupled system for p and g, equivalent to (2.1):

(2.4) dip = —0,(vg) — ap+ G,

1 1 o 4
(2.5) Org = Tz (Z - () (v0zg) - ?vaﬂip - 679 —0g,
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4 D. RICARDO, H. JINGWEI, AND Y. HAIZHAO

where Z denotes the identity operator.
In (2.5), if ¢ = 0, one obtains

1
(2.6) g= fU—Svazp + O(e),

which, when substituted into (2.4), yields

1
(2.7) Op = 0y (?’Gsazp> — a4+ G+ 0%).

So p follows the dynamics of a diffusion equation. We now go through a few things that we can learn from
the linear transport equation following the notations used in Section 1.

e Involved Basic Mathematical Operators: Identity, Advection, and Projection. Notice that
each of Equations (2.1), (2.4), and (2.5) can be recovered from the ansatz:

Ou = a1 Ay (g) + agAg(g) + a3./43(g) + ai’j.Ai o .Aj (g)

M«
M-

(2.8) '

+ b1A1(p) + baAa(p) + b3 As(p) + bijAi o Aj(p) + B

(= 1
M= 5

J

Il
-
Il
-

%

for u = f, g, or p. For example, the equation for g(v,z,t) can be recovered provided

(29) Al = I, A2 = vax’ AS — <>7
with coefficients
o5 (x) a4 1 1 1
(2.10) == "¢ (2), a2 =—2» a2 = -, by = 3
az =0, aix3,542 = 0, b ; =0, B =0.

Thus, at the very minimum, our hypothesis space in Equation (1.3) should involve operators in (2.9).
We expect to see these operators for general kinetic equations. Potentially one can also have cubic or higher
order nonlinearities in our hypothesis space. Therefore, we want to generalize Equation (2.8) to involve
greater number of compositions.

e Functions of z. Equations (2.1), (2.4), and (2.5) involve the functions o (x), 0°(z), and G(z).
Therefore the coefficients {a;, a; ;, b;, b; j, B} should be allowed to depend on z.

e Scale Disparity. If we want to determine the correct order of each term, then we need to make an
asymptotic expansion:

1 1 1 1
a; = i + —a; + a7, @i = al;+ Zai;+ 5al;,
1, 1 1 1
0 1 2 0 1 2
(2.11) bi = b + ~b; + bi, bij=bi;+ “bi;+ 5biy

where it is understood that the upper index labels the order of the scale. The multiscale phenomenon here
is the main motivation of the multiscale model in Equation (1.3).

e Exact Conditions. Typically, adding regularization to machine learning problems can vastly improve
the outcome of the prediction. There is one obvious constraint for our target kinetic equation: Equation
(2.3). An added feature about this condition is that it is independent of £ and thus helpful for modeling
dynamics between the small and large scale limits. We also note that for ¢ < 1, potentially our learning
algorithm could recover either Equation (2.7) or (2.4). Thus, we should not conclude that our algorithm
made an error. Of course, Equation (2.7) is lower dimensional, thus it would be a welcomed surprise to be
able to obtain (2.7).
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e Sparsity. The large number of basis terms in our hypothesis space means that we might have
overfitting issues. Thus, the following sparsity regularization term could be considered:

(2.12) Do Qo + 167l + 1B 1) + Q llallzs + 167112:) |
i iJ

which can be enforced by adding the following regularization term to our loss function in Equation (1.1):
(2.13) 6 ()],

since O(x) is the actual parameters to be optimized in our model in Equation (1.3).

e Numerical Techniques. Finally, we need to consider numerical methods for arriving at the correct
set of trainable parameters. For this reason, we will use the class of implicit-explicit Runge-Kutta schemes
for propagating u(t,) — u(t,+1), where the time rate of change is given by an ansatz like Equation (2.8).
We will use gradient descent, specifically the Adam algorithm, to update trainable parameters.

In sum, the discussion above illustrates the motivation of our optimization problem, model design, and
regularization terms introduced in Section 1.

3. Formulating an Ansatz to Fit Data to Kinetic Equations. In this section, we will construct
an ansatz capable of representing Equations (2.4), (2.5), and other kinetic equations. For simplicity, let us
focus on the case when the spatial variable x is one-dimensional. It is easy to generalize the evaluation to
high-dimensional cases. We start by introducing notations which will be used through the paper.

Notation. The functions involved in (2.4) or (2.5) are multidimensional, e.g. p = p(x,t) and g =
g(v,z,t). The values of p and ¢ will be defined on a mesh (z;,¢) and (v;,x;,t;) for i € 1,---N,, j €
1,--Ng, and k € 1,--- N;. To further simplify the notation, we will use u := u; ; to denote u as a scalar
function evaluated at the (i, j)-th position corresponding to (v;,z;). The upper index n in u” := u(-,t,)
will correspond to time with u'Nt := {u(-,#;); fori € 1--- N;} denoting u evaluated at a time sequence.
Matrices will be written with capital letters while operators applied to the data will mainly be written using
script letters.

3.1. Operator Evaluation. We will describe the evaluation of commonly used operators in Equations
(2.4), (2.5), and other kinetic equations below.
1) Identity operator. The identity operator is defined by

(3.1) Z(u) :=u.

The evaluation of Z(u) at the point (v;,z;) simply follows Z(u); ; := u; ;.
2) Pseudo-upwind for the advection operator. We define the advection operator acting on u as the
dot-product:

(3.2) v - Vgu,

where v is a velocity distribution. We note that many stable schemes use an upwind stencil for the advection
operator. The first-order upwind stencil gives:

Ui j+1 — Usj
8xuj'j = % for v > 0,
’ x
- Ui j — Ujj—1
3xuij:7]A J for v < 0,
; x

and

— +
vazuivj = v_é)zum + ’U+6ru1,j,

which is the evaluation of the advection operator in (3.2) at the point (v;, ;) in the one-dimensional case.
This stencil is suitable for a first-order-in-time IMEX-scheme. For higher-order IMEX schemes, one should
use higher-order stencils.
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6 D. RICARDO, H. JINGWEI, AND Y. HAIZHAO

3) Projection operators. We define the projection operator as an integral with respect to the variable v
of a function u(v, z). In one-dimension, we have:

(3.3) (u) == %/ u(v,x) dv,

-1

which can be discretized as a finite sum using Gaussian quadrature:
1
(uhj m 5 Y iy - w;
24
=1

with quadrature weights {w;}. Note that the data corresponding to w is represented by a two-index tensor
u; ; with 4, j corresponding to the values v; and x;, respectively. The above quadrature maps u to a one-index
tensor (u);. To make dimensions consistent, we extend this to a two-index tensor by (u); ; := (u); for each
i.

4) Other differential operators. Higher-order differential operators such as the Laplacian will be com-
puted by using central difference formulas.

3.2. Ansatz for Fitting PDEs to Data. In this section, we will form an ansatz that will be used to
fit a PDE to data, i.e., identifying the governing PDE to which the observed data is a discrete solution. We
will consider the following two typical examples for simplicity. The generalization to other cases is simple.

Scalar equation ansatz. Let us consider a first-order in time PDE, then the equation ansatz is built
as

(3.4) Ou = F(u)

with F' split into M multiscale components following our main model in (1.3):

! F(u) + 21 FHu)+ -+ Ai FM(u).

Epred 8;zn“ed ZEpred

Fi=Fu) +

The integer M depends on the number of multiscale components for the problem being considered. If one
only expects one fast scale and one slow scale component, M is set to M = 1. For slow, medium, and fast
scales, M is set to M = 2, etc. €preq is a learnable scaling number defined in (1.2) restricted to 0 < gpreq < 1
but not necessarily equal to e. The operators F°, F!, 72 ... will be differential operators acting on u and
constructed as in (1.5). The construction detail will be provided in the next section.

Two-component vector equation ansatz. For vectorized equations, we build an ansatz for each
component individually as

M
1
0= Filo.0) = Y = (Fla(o) + FTap))
m=0 _pred
(3.5) v
0= Folg.0) = 3 o (FEul9) + FEa(0))
m=0 ~pred

The F,, are generally different operators for each ¢,p, and m following the construction in (1.5). Each F;",
has an individual set of network parameters. €,,¢q is a learnable scaling number as in the previous example.
For the remainder of the manuscript, F; will denote the right hand side of the g-equation. F5 will denote
the right hand side of the p-equation. The construction of F7", using an RNN structure will be presented in
detail in the next section.

Remark 3.1. Equation (3.5) is our chosen ansatz. There are many alternative ways to construct an
ansatz. For example, we only consider the linear combination of F/", and it is also possible to explore the
products of F",. We leave the exploration of different ansatz to the reader.
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MULTISCALE AND NONLOCAL LEARNING FOR PDES 7

3.3. Building a Dictionary Using RNNs. We construct the operators ™ in Equation (3.4) for
the single-component case. For the multicomponent case as in (3.5), we construct Fq in the same manner.
The only difference is that each F", will have a different set of parameters depending on (¢,p). We will omit
the (q,p) index for clarity. To begin with, we will need to supply the RNN with a few basic mathematical
operators as mentioned in the introduction. In particular, we consider operators A;j(u) = Z(u), Az(u) =
v-Vu, and Az(u) = (u) discussed in Section 3.1. It is potentially better to include more basic mathematical
operators such as Ay(u) = Vu, As(u) = g% - u, Ags(u) = exp (—(u)?), etc. Weather or not to include more
basic mathematical operators will be a choice left to the reader.

Next, a symbolic RNN will be introduced to generate a complicated operator F™ using basic math-
ematical operators. Given basic mathematical operators {A1, - ,.A,}, we build a k-layer RNN for each
m=0,1,2,---, by successively applying a weight matrix Wa,, € R?*" to the operator vector [Ay,- -+, A,]T
and then adding a bias vector By = [b1, ba]? € R? times Z:

T _wi AL w4 - Fwy Ay 01T
WanlA1, -, Ap]" + BT = {w271A1 gy 4+ WAy + byT

- {g] .

Because C; and Cy are operators, they can be applied to generate a more expressive formulation with a
special “composition” denoted as ® defined below:

(3.6)

C1 ©Cy :=wywa A0 Ay + - - +wiwa Ay 0 Ay + - -
(3.7) +wypwe 1Ay 0 Ay + -+ wy pwe n Ay 0 Ay
+ (w1,1b2 + wa,101) A1 + - - - + (W1,b2 + w2 ,b1) Ay,

where o denotes the standard composition.
Now we define F™:

eW . = zl,fbn[ALA% e AT+ B;TI
b= oc)
€@ . = 22’,;11[“417/427 s A, BT +B§,’TI

By:=C? ocd?
€0 =W AL Ao, o, A, By, BT + BT
Bs:=cY oc

¢ = 21,(73,TK—1[A17¢42,"' JAn, By, B )" + BT
B :=Cc" ol
Fm. = fnﬁkm[AMAZ,"' ,.An,[ﬁ,"' aBK]T>

where the weight matrices are given by:
wk,m wk,m wk,m
k,m L 1,1 1,2 e 1,n+k—1
(3.9) W mth—1 = | & k k,m
2 2 Wo k-1
fork=1,--- K and,

K+1m  _ K+1,m K+1,m K+1,m
1% = [wl Wy WL ]
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Input Hidden1 Hidden2 output
layer layer layer layer
Ay Ax

Fm =

(w{(-‘erAl N Wf+1’m62)

Fia. 1. Example RNN with K = 2 hidden layers. The output F™ makes up the order €™ part of the right hand side of the
PDE. Opl is the mathematical operation in Equation (3.6) and 3.7 which takes linear combination plus bias of the previous
layer and performing a composition. Op2 is the operation of forming a linear combination of the previous layer (the last line
of Equation (3.8)).

with each wf ]m € R. The biases are given by:

with b5 € R.

The operator built by the recursive compositions in (3.8) is a symbolic RNN operator, the evaluation
of which on a given function follows in the basic evaluation rules introduced in Section 3.1. will have to be
evaluated at both data sets {g(v,z,t;)} and {p(z,t;)}, since our model problem depends on both g and p.
A diagrammatic representation of this RNN is shown in Figure 1.

Remark 3.2. We have adopted the recursive framework introduced in [27] to build our RNN. The main
difference between the RNN in this manuscript and the RNN in [27] is that our RNN can learn nonlocal
and multiscale operators. Other RNN frameworks may also be good alternatives. Optimizing the RNN
framework is not a focus in this paper.

Remark 3.3. The weights and biases can be trainable space-dependent functions such that our algorithm
can learn more space-dependent operators, e.g., let

(3.10) wi"(z) : R — R, and by (z) : R —R.

In more particular, one can also replace these weights and biases with neural networks in the spatial variable
x at the cost of using more parameters. We will let the reader explore these possibilities but, we will also
present a yet different alternative to treating space-dependent weights and biases in the next section.
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3.4. An Example when K = 1. Using K = 1 and two basic mathematical operators A; and A in
(3.8), for the PDE model in (3.4), we produce an RNN as a scalar PDE ansatz of the form:

1
Opu = Z om (w%mAl +wy ™ Ay + wp™ [(wl 1AL+ wl 5 Az
m=0 ~pred

5

=3

1)) AL (u)

I\DH

M
1
(3.11) =Y [wg Ty M (W™ wy ™ (wy Ty ™ by w

with €,,eq given by Equation (5.1) or (5.2).
The weights and biases are determined by minimizing a loss function defined in the next section.

4. Loss Functions for Learning PDEs. To deduce the weights and biases for our PDE ansatz, we
need to minimize a loss function. We begin by describing an unregularized loss function for learning PDEs
from data.

4.1. Unregularized Loss Function. Let us first focus on the case of a single scalar equation ansatz
n (3.4). We build an unregularized loss that will be a data-dependent function with the following abstract
notation:

Ni—q
(4.1) L(0)

W (D™ 0)]].

where 6 denotes the set of all parameters in our RNN and
(4.2) K (D™ 0)
relates ¢ + 1-tuple data points:

D™= A{u(z, tn), w(x, tng1), - s u(@,tnag)}y, n=1,---N,—q.

The idea is that as L — 0 with respect to a suitable norm || - ||, F approaches the correct PDE. Commonly
used norms for loss minimization include ¢, ¢2, and the Huber loss (see [27, 34]).

To be precise, the relation of D™? is specified by a time-stepping scheme, e.g., the Implicit-Explicit
Runge-Kutta scheme. However, to give the reader a greater understanding of K'(D™?; 8), we will start with
simpler schemes here. The the symbolic RNN introduced in the previous section together with our IMEX
schemes here will make up our Densely Connected Recurrent Neural Network (DC-RNN).

Forward Euler scheme. The forward Euler scheme only involves two time steps and, hence, ¢ = 1.
We can specify K7(D™!;8) to relate the data pair

(43) Dn’l = {U(xvtn>7u(x7tn+1)}

using a forward finite difference approximation for dyu = F(u(z,t);0), the right hand side of which is a
symbolic RNN as an equation ansatz. This gives us the forward Euler fitting scheme:

(4.4) ICZ(D”’l; 0) = u(x,tyi1) —ulx, t,) — At - F(u(z, t,);0).

Minimizing the loss in Equation (4.1) will determine a PDE governing the training data with time accuracy
At. We display in Figure 2 a DC-RNN for determining the equation satisfied by g(v,z,t) based on the
Forward Euler scheme.
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g(va%t) . ) \
—_— .7:1’1 = RNNM(Al,Ag)

g(v,z,t) FWD
—————1Fi; = RNN{ (A1, As)

BW D
p(x,t)
- ]:?,2 = RNN?,z(Alw‘b) \

p(l?,t) 1 1 \ ]:;np
— ]:1,2 = RNNl,z(A17A2) \f1(97p) =3 Eml
pred

Fic. 2. Ezample DC-RNN for determining the g-Equation (2.5) based on Forward Euler (Red) and Backward Euler (Blue)
schemes. The inputs are p(tn) and g(tn) forn =10,1,2,--- , Ny. The dictionary contains order O(1) and O(e) operators. These
operators are generated by the RNNs corresponding to orders ™™ m = 0,1 using A1, A2. The output Ky (m=0,1,--- ,N;—1)
is to be minimized with respect to a chosen norm.

Backward Euler scheme. The Backward Euler scheme for d;u = F(u(x,t); @) relates the data pair
(4.5) D™ = {u(z, t,), u(z, thr1)}
using the backward Euler fitting scheme:
(4.6) K (D™ 0) = u(w,tyy1) — u(w, tp) — At - F(u(z,tny1); 6).

Minimizing the loss in Equation (4.1) will determine a PDE governing the training data with accuracy
At. We display in Figure 2 a DC-RNN for determining the equation satisfied by g(v,z,t) based on the
Backward-Euler scheme.

Fourth-order Explicit Runge-Kutta. Higher-order schemes like the K-stage Runge-Kutta scheme
can also be used to relate D™! = {u(z,t,), u(z,tp11)} for du = F(u(z,t);0):

At

’CZ(D”’I; 0) = ’U,(.%‘,tn+1) — u(;v,tn) — ? . (Kl + 2K + 23 + ’C4) R
K1 = F(u(x,t,);0),
At At
(4.7) Ko = Flu(x, t, + ?) + 7’C1§ ),
At At
’Cg = ]:(’LL($,tn + ?) + 7’(:2; 0),

Ky = F(u(z, t, + At) + AtK3;0)

with IC; as the I-th stage. The Runge-Kutta schemes tend to be more computationally expensive as they
require computation of the intermediate stages IC;.

We only focused on the scalar equation in (3.4) to illustrate the loss function for the above schemes.
The construction for the two-component vector equation in (3.5) is similar. The loss function is the sum of
the loss function for each component

Ni—q

1
nipmn4. N n Dn,q; N
N, =g 2 IOl + KD 0)]

(4.8) L(9) =
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where K¢ (D™?;0) and K7)(D™9; 8) relate the data in

D™= {g(xvtn)ag(xﬂfnﬁ-l)v o 7g(xatn+q)a P(%tn)ap(%tn-i-l), T 7p(x7tn+q)}a n= 17 e Nt —q.

In this paper, we are interested in Equations (2.4) and (2.5) and, hence, will use schemes specialized for
them. Specifically, we consider the class of schemes belonging to the Implicit-Explicit Runge-Kutta (IMEX)
methods as in [3]. First, we define the first-order IMEX scheme. Then, we use this scheme to specify
Ky (D™%0) and K (D™9; ) in the loss (4.8) for learning Equations (2.4) and (2.5) using DC-RNN.

First-Order IMEX Runge-Kutta. We introduce the first-order IMEX Runge-Kutta [22] for solving
Equations (2.4) and (2.5). The first-order IMEX scheme is given by:

n n 1 9iv12 = 9it1j2 - _Yivsse ~ 9ir1)e
9 = 9y + A {5 =) <v+ : : +om = -

Az Az
(4.9) s
Ti%1/2 pp1 L Pl =P 4,
T2 Jiv2T 2 Ar  Ji129i1/2 (o
gn+1 _ g’{’lﬁFl
(4.10) pitt =p?+At{<vw> —Uf‘p?+Gi},
+ vty ] . . . . .

where vT = ——— and v~ = ————. From this, we see that Equation (4.9) gives a relationship among

D™! that can be generalized to the ansatz:

US x
K3 (0%:0) =(1+ 8 70,2, 1) — (1~ At (@)g(v. 1)

_At : fl(g(’U,.’E,tn), p(x7tn)7 0)7

(4.11)

where F; is the operator ansatz introduced in (3.5).
Equation (4.10) gives a relationship between data in D™! via:

K5 (D™1:0) = p(x,tns1) — (1 = Atoa(x))p(@, tn) — AtG(x)

(4.12)
—At- FQ(Q(U,$7tn+1),p($7tn); 0)

F1 and Fy will be learned by minimizing the loss function (4.8). In fact, one does not need to assume
that the functions o°(x), o (x), and G(z) are known. One can learn these functions during the training
process by replacing them with neural networks. For the special case when ¢°(z) and o (z) are constants,
we can replace them with trainable parameters wg and w4, respectively.

We display in Figure 3 a DC-RNN for determining the equation satisfied by g(v, z,t) based on the First
order IMEX scheme. One can go higher order with higher-order IMEX schemes. These will either introduce
more intermediate stages or relate more data points to each other by increasing g. For larger ¢, we will use
the IMEX-BDF schemes. We leave details concerning higher-order schemes in the Appendix section.

4.2. Physics-aware loss function. To improve physically accurate predictions, we propose to add a
physics-based regularization term R(0) to the unregularized loss function in (4.1) or (4.8). Let us take the
example of (4.1) below:

Ni—q

> IKy(D; 0)|| + R(6).

n=1

_ 1
Ny —q

(4.13) L(6)

We will discuss three kinds of regularization terms R(8).

Regularization via (g) = 0.

As seen in Equation (2.3), the true g-solution must satisfy the (g) = 0 constraint. This can be incorpo-
rated by imposing

(4.14) (Fi(g,p)) =0,
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—(1 = Ato?(x))g"Ne—1

g(v,z,1) \ At

T Py = RNND (A1 o) | (1 oS (@)g
pred

glo,z,t) | )
]:1’1 = RNNLl(Al,AQ)

0:N;—1
p(x,t) —At T
- ]:?,2 = RNN?,z(Alw‘b)
p(x,t) m
—)

F
- ]:11,2 = RNNll,Z(AhA?) ]:1(97p) = Zf_:mﬂ

pred

Fic. 3. Ezample DC-RNN for determining the g-Equation (2.5) based on the First order IMEX scheme. The inputs are
p(tn) and g(tn) forn=0,1,2,--- , N¢. The dictionary contains order O(1) and O(e) operators. These operators are generated
by the RNNs corresponding to orders =™ m = 0,1 using A1, Az. The output K (n =0,1,---, Ny — 1) is to be minimized
with respect to a chosen norm.

to the right hand side of the first component (g-equation) during training. The loss enforcing Equation
(4.14) is:
Ni—q

> g (D; 0l + | At - (Fi(g, p; 0))]]-

q n=1

1

(4.15) L(8) = —

The constraint in Equation (4.14) for the Forward-Euler case can be justified by performing the following
calculation:

(g(v,z,tns1)) = (g(v,x,tn) + At - Fi) (using Forward Euler)

(4.16) = At (Fy) (by linearity and (g) = 0).

Thus, (g) = 0 implies (4.14). The justification of (4.14) for other Runge-Kutta schemes is similar.

Remark 4.1. The factor At is multiplied to F; and remains in the loss (4.15) during training. At is our
Lagrange-multiplier.

Regularization via Sparsity. If the size of the dictionary is too large, one is more likely to over-fit
data to an incorrect PDE. To help omit terms that do not appear in the PDE, we impose sparsity in weights
and biases in the DC-RNN. Denote the set of all trainable parameters excluding weps, the parameter which
trains €preq, by 0. The regularization term

(4.17) R(0) =~ [|6]|p with v € R*

is one natural choice to produce a PDE with the fewest possible terms. -y is typically chosen to be a small
number. In our numerical examples, v is chosen to be of order 1074.

Regularization via the Continuity of Weights and Biases. We note that if 0°(z), o4 (z), G(z),
weights, or biases are not constant in x, we need to introduce neural networks to parametrize them to
capture the dynamics of these functions of x. in this paper, each of these neural networks have N, trainable
parameters. In this case the parameter set @ of our RNN is a function in x. To promote the continuity in x,
one choice is to add an extra regularization term R(€) to the loss function of the form:

(4.18) R(0) =~ -||V.0(z)||;» with v € R™T.

Physically, Equation (4.18) is used to lessen the jump discontinuity in the learned functions in x.
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5. Optimization. In this section we discuss how we update parameters (gpreq, 8) to reach a minimum
for our loss function. Since we do not assume that € is known a priori, we will have to train this parameter.
At the end of this section, we argue why our algorithm is expected to be superior to existing algorithms.
Our reasoning suggests that terms of order O(¢™) should be updated with a learning rate proportional to
e™. We will verify this claim through several numerical experiments in the next section.

5.1. Training of ),.q4. A major goal for our algorithm is to determine approximately the magnitude of
the scale € involved in the multiscale dynamics. To fulfill the condition 0 < € < 1, the &p,.¢q in our algorithm
is set to

1
(5.1) Epred = i(tanh(we) =+ 1)7

where w, is a trainable parameter. However, if one can parallelize, it makes more sense to restrict epr.q Over
several intervals spanning (0, 1]. For instance, let s(i) = 0.1* and

s(i) —s(i+1)
2
where (0, 1] = [s(1),s(2)] U [s(2), s(3)] U [s(3),s(4)] U ---. After training over each interval, one can choose

the PDE corresponding to the lowest loss. Thus, with Equation (5.2), one has better control over where
local minimums of the loss function occur.

(5.2) Epred = (tanh(w?) + min;),

5.2. Training of parameters. The parameters for the loss function (4.13), can be trained using our
suggested algorithm: Adam method [21]. This algorithm is great at training a relatively large number of
parameters efficiently. Other gradient descent methods are possible including stochastic gradient descent.
We will discuss an implementation of stochastic gradient descent below using loss equation (4.13) with
respect to the L; and Ls. While not necessary, we will simplify the calculations by using the forward Euler
approximation and assuming R(#) involves only sparse regularity. We can rewrite equation (4.13) as:

(5.3) L(w.,0,z) = L(w,, 0, %) + Ry
where the regularization is

Ry = |0
(54) =N Z 10|

and L is given by

1 Ny ti+At 1
5.5 L(w,0,x) = — w(x,tjyr) — u(x,t; +/ F(u(x, s),0,) ds||..
63 Lwe02)= 3 e o) —ulet)+ | 3 o wl9), 0

Using the Forward Euler approximation,

L(UJE, 0, w) = Lerd(w&‘)va)
1 Qh g
= & S (1), 0l
Jj=1

1

e(we)

Ny
1 0
=N D lu@, ti) —ula,t;) + Aty S F " (u(@, 1)), 6n)]]«
Jj=1 n

where (w., 0) := (we, 6,01, --). The gradient of equation (5.3) with respect to Ly and Lo is given by

1 1
Viw..o)L = ¥ sign(L) (D, L, AtV e, F°, At Vo, F', - ) + visign(6) using L'
ti &(we)
(5.7) N
v — i2L(8 L, AtVe, F°, At L Vo, F',-+) + y1sign(8) using L?
(we,0) Nt we 4y o B E(U}E) 1 5

Jj=1
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If one records many data (large N;), the summation in equation (5.7) can be slow to compute. Thus,
one can reduce computational resources by using our suggested stochastic gradient descent: The sum is

taken over a random smaller subset of {1,2,---, N;} of size N, < N; and we replace N; with N, in equation
(5.7).
5.3. Discussion. We will now discuss the effect of asymptotic expansion and our sparse regularization

method. Because it is difficult to obtain clean algebraic expressions using “all of” /L:\, we will consider a
quadratic Taylor series truncation of K := K7 (u(x, t;), 8) near the point that minimizes L which we denote by

(w?,0§,07,---). We will again assume the forward Euler approximation for K. The point (wgo), 0(()0), 050), o)
will denote the initial values for the training parameters and (wék), Bék)7 Hgk), --+) will denote the k-th step
taken by the gradient descent process. The gradient at the k-th step is given by,

2 :=V (. 0K (W), 0P

(5:5) =(0w. K2, AtV o, F°, Ats(;e) Vo, F', - 7At&_(wlg)MV"M]:M)|(w§’“),eé"),9§k)w' 05y
=(0w. K4, 2)
=(0u. K%, 20, 21, -+ Zur)
where we defined
z:= (20,21, ,ZM)
(5.9) = (AtVe, F°, At@vglﬁ, e ,Ats(wls)MVgM}'M)
in order to simplify the notation. The hessian is given by
H:= V2K (w®), 0"
T, 1 L2 _—
anf Kl [0]1xa —6—28w55V91]-' —6—38w55V92]:
Vo, (0w k)T [V, FClaxa [0laxa [0]axa
(5.10) = At | Ve (0w KT [0]axa [évij"l]dxd [0]dxa
Vo, (0w K3)" [0laxa [0]axa [E%ngp]dxd

where d is the dimension of each 6,,. We also denote the (d- M — 1) x (d- M — 1) submatrix of H by

[V, Flaxd . [0]axa [0]dxa
_ [0]axa [gv?glfl]dxd [0]axa
5.11 H=At 1
(B.11 [0]axd [0]axd [?th]ﬂ}dxd

The effect of asymptotic expansion on learning rate. We now consider the effect of updating
the parameters 6 via gradient descent. To further simplify algebraic expressions, we will assume that

*

e(w}) = &* = ¢ is the constant optimal value. According to the gradient descent method:

) o) _ @z
(5.12) " o N
:=(0") = (apzo, 121, -+ ,anZ0)

where the parameter o := (g, @1, g, -+ ) will denote the learning rate which updates step k — k + 1. «,
will denote the learning rate for the terms of order O(e~"). Our goal is to understand the optimal behaviour
of the learning rates c,. Substituting equation (5.12) into our quadratic truncation of K7, yields:
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ws (513) K (w2, 60+D) = K (w7, 0%)) — (@ @ 2)TE + (a @ 2)T Ha @ 2)
437 when (a® 2)TH(a ® 2) is positive we can solve for the optimal values for a:
2Tz ez, 2
138 (5.14 === = n == e
(5.14) *= sz = RGBTV, Foloxiis

439  The meaning of the above calculations is summarize below:
440 Observation. If 7™ is well approximated by a quadratic function with e(w.) = €*, then 0£k+1) — O%k)
441 should be updated (according to equations (5.13) and (5.14)) in the direction of Vy F™. The optimal

442 learning rate is proportional to —. The eigenvalues and vectors of [VZ F"axa determine the stability of
- n

443 the learning process. In the worst case scenario, z,, is in the direction corresponding to the largest eigenvector
114 of [V F"axa-

445 EXAMPLE 5.1. Because the observation above made use of several simplifying assumptions, we provide
446 some numerical evidence to support this claim. What we observe through repeated numerical tests is that
447  the multiscale fitting methods tend to converge to the correct model using less training time and iterations.
448 Bvidence of this is shown in figure /.

Log of loss for various fitting methods e = 1/32 Log of loss for various fitting methods ¢ = 1/64

-4

—Forward — Forward
—Multiscale Forward — Multiscale Forward
6} —IMEX 4t —IMEX
— Multiscale IMEX — Multiscale IMEX
g 8 3 6
=~ 10+ ~ -8
121 10!
-14 : ‘ : : : -12 : : : |
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 2.5 3
iteration «10° iteration «10°
Log of loss for various fitting methods e = 1/128 Log of loss for various fitting methods ¢ = 1/256
-2 ‘ ' ' —Forward -2 ‘ ‘ ‘ ' '
Mq —Multiscale Forward
—IMEX
-4 —Multiscale IMEX
_4 +
<) <)
s 6 B
=2 ~ 5l
-8r —Forward
—Multiscale Forward
—IMEX
10 ‘ ) ) ‘ ‘ -8 |— Multiscale IMEX
0 0.5 1 1.5 2 25 3 0 0.5 1 1.5 2 2.5 3
iteration «10° iteration «10°

FiG. 4. The behaviour of the loss function for example 6.1 is displayed above. We see quick convergence to the correct
answer when using the multiscale fitting methods.

449 Remark 5.1. We would like to remark that the efficiency of the proposed DC-RNN is demonstrated
450 experimentally. As we made some simplifying assumptions on the terms F"(6,,) generated by our RNNs, we
451 acknowledge that theoretical analysis remains vastly open, though several seminal works have been available
452 [1, 2, 20, 45, 23].

453 Remark 5.2. other algorithms such as [26, 28, 34, 35, 32, 7, 42], do not have an adaptive €,eq. Numeri-
154 cally, having an adaptive ;,..q mimics adaptive gradient descent methods. The behavior of the loss functions
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vs iteration, has typically converged with respect to the number of iterations when compared to using the
Adam algorithm with no multiscale expansion.

The effect of sparse regularization. The conventional Lasso method uses sparse regularization where
one fits the data to an ansatz with an Ly penalty as in equation (5.3). Typically the coefficients for the basis
set of functions in the hypothesis space is set to be a sparse vector. Using our notation, this means

(5.15) Ri:=m Z Z Gr(1),e m(m)(0)] (for some 7; € RT)

m>1neD

is added to the loss function (1.1). However, in the case that some of these coefficients are large O(e™") for
n >0 and 0 < ¢ < 1, equation (5.15) will create problems for the learning process. The issue is that there
will be conflicting goals: keeping a particular set of coefficients ar(1),... x(m)(@) large in magnitude while at
the same time minimizing R; as much as possible. Even if one sets «; to be a very small value, one will still
run into the trouble of setting appropriate learning rates as mentioned earlier. This conflict is clearly solved
by our algorithm using the regularization

(5.16) Ryi=m D an() e n(m) (00)] + lar(), e mwim) (O] + -+ + [@n(1). . m(m) (Oa1)]
m>1reD

and setting the coefficients of the basis terms to

aﬂ-l,u.,ﬂ—m(el) Ar(1),-- ~,7rm(01Vf)
(5.17) Ar(1),..- 77r(m)(90) + % 4t 1) E]\(4 )
With this design we are able to have both sparsity and large O(¢~™) coefficients. The only drawback is that
we had to introduce more parameters for our design.

6. Numerical Examples. In this section, we test our DC-RNN using the PDE example in (2.4) and
(2.5) with various values of . In the numeral results presented in this section, the predicted coefficients are
of the form

(6.1) predicted = (exact + difference),

where in red we highlight the difference from the predicted to the exact value. The smaller the magnitude
of the difference, the better the prediction. We also include the percentage error:

exact coefficients — predicted coefficients
2| P | 100%.

(6.2) percentage error = S Jexact coefficients|

The right hand side of the learned PDE will contain many terms, for the sake of readability, we display
only the terms involved in either Equation (2.4) or (2.5). The terms that we don’t present are typically
minute in magnitude due to our sparsity regularization.

Data Gathering. The data that we produce in our examples are computed with IMEX-ARS(2,2,2)
schemes using small mesh size Ax = ﬁ and At = %sz. Thus, the data can be assumed to be nearly an
exact solution to Equations (2.4) and (2.5). The CourantFriedrichsLewy (CFL) condition given in [22] for
the first order IMEX scheme is given by

(6.3) At < (2&1:2 + Eéz> .

We note that the fitting method should also satisfy the appropriate CourantFriedrichsLewy conditions. For
the Forward-Euler scheme, the stability depends on the stiffness of the PDE. Typically At has to be quiet
small for which we choose

(6.4) At = O(Ax?)

to preform our Forward Euler fititng. The velocity distribution we use in our examples is the standard
16-point Gaussian quadrature set in [—1, 1] as in [22].

The training data is prepared by taking a subset of the exact data to reduce the memory cost. We
define the training set number of grid points by N, and N; and note that for all examples N, = N, = 16.
To obtain a subset of the data points a coarser grid is chosen: Az > Az and At > At with Az and At
satisfying Equation (6.3) and (6.4). Code will be made available at https://github.com/Ricard0000.
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e MULTISCALE LEARNED ¢-EQUATION USING FOWARD EULER SCHEME ERROR
1/ 16 No g = —(16% +0.836 - 107 )g — (16 +2.052 - 10" v - Dpg
+(16 4 2.066 - 10" 1) (v, g) — (16% — 1.145 - 10" Dv - Oup + - - 0.11 %
1/ 32 No Org = — (322 — 1.855)g — (32 4+ 3.220 - 10" )v - Bag
+(3243.272- 107 ) (0d,g) — (32% —2.061)v - Dpp + - - - 0.21%
1/ 64 No 0:g = —(64> —3.302- 10" )g — (64 4+ 1.389 - 10" v - Osg
+(64 4 1.321 - 10~ ") (v8ag) — (64° — 3.317- 10" )v - Bup + - -- 0.79 %
1/ 128 No g = —(128% — 0.524 - 10%)g — (128 — 3.512)v - D9
+(128 — 3.541) (v, g) — (16384 — 0.524 - 10*)v - Oyp + - - - 3.19 %
1/ 256 No Org = —(256% — 0.788 - 10*)g — (256 — 3.059 - 10" )v - Oxg
+(256 — 3.066 - 10") (v, g) — (256% — 0.788 - 10w - Dpp +---  12.03 %
1/ 512 No 0rg = —(512% + —2.348 - 10°)g — (512 — 4.590 - 10%)v - Dg
+(512 — 4.592 - 10*) (v g) — (512° +2.348 - 10°)v - Dup+ -+ 89.59 %
TABLE 1

Learned g-equation using the DC-RNN algorithm based on Forward-Euler schemes.

€ MULTISCALE LEARNED g-EQUATION USING IMEX1 SCHEME ERROR
1/ 16 No g = —(16% +3.344 - 107" )g — (16 + 2.210 - 10" v - Dpg
+(16 +2.227 - 10 1) (v9zg) — (16% + 1.542 - 10" Dv - Opp + - - - 0.17 %
1/ 32 No g = — (322 — 1.319)g — (32 4+ 3.478 - 10 ) - Bag
+(32 4 3.539 - 107 ) (vd,g) — (32% — 1.538)v - Dup + - - - 0.16 %
1/ 64 No Org = —(64% +2.291 - 10")g — (64 + 1.000)v - Drg
+(64 + 1.004) (v9rg) — (64% +2.224 - 10" v - Dyp + - - - 0.56 %
1/ 128 No g = —(128% +4.745 - 10%)g — (128 + 4.348)v - D9
+(128 + 4.335) (v0,g) — (1282 +4.755 - 10%)v - pp + - - - 2.90 %
1/ 256 No drg = —(256% +2.915 - 10%)g — (256 + 1.1598 - 10")v - Dug
+(256 + 1.156 - 10") (v, g) — (2562 — 2.931 - 10*)v - Dyp + - - - 4.46 %
1/ 512 No g = —(512%2 — 2.575 - 10°)g — (512 — 0.503 - 10%)v - Bz g
+(512 — 0.503 - 10%) (0dzg) — (5122 — 2.575-10° v - Bup+ -+ 98.25 %
TABLE 2

Learned g-equation using the DC-RNN algorithm based on IMEX1 schemes.

ExampLE 6.1. Forward Euler vs IMEX: Multiscale vs Non-multiscale. In this example, we
show that when it comes to multiscale data, choosing a low-order Forward Euler scheme or the First-order
IMEX time-stepping scheme is not enough to obtain an accurate prediction to data dynamics. It is crucial
to assume a correct multiscale ansatz as in Equation (3.4). FEwvidence of this is provided in Tables 1,2 3,
and 4. It is clear that after assuming a multiscale ansatz, a more accurate prediction is obtained. For this
numerical example, we ran our algorithm using the ansatz produced by our RNN (3.8) using one layer. For
non-multiscale methods we run our algorithm using M = 0 in Equation (3.4). For the multiscale method,
we use M = 2. The data was produced with o°(x) = 1, 0(x) = 0. We choose Nm = 1000 and Nt =56. We
only attempt to learn the dynamics of the g-Equation (2.5).

ExXaMPLE 6.2. Higher Order Methods: Multiscale vs Non-multiscale. In this example, we again
show that if the dynamics of the data is multiscale, then it is crucial that the ansatz should also be multiscale.
We show that it is not enough to choose a higher-order (second order in time) IMEX scheme to obtain a
good fitting to the data. In this experiment, we again set o°(z) = 1 and o”(z) = 0 and use two layers in
our RNN. Tests are done using the IMEX fitting schmes ARS(2,2,2), BDF-2 (see Appendiz), and different
values for e. Results are recorded in Tables 5, 6,7, and 8 for multiscale (M = 2) and non-multiscale (M =0)
ansatz. For this example we use N, = 1000 and N; = 56, thus we are using the same data as in the the
Forward Euler and IMEX methods of the previous example. It is clear that the ARS(2,2,2) method with the
multiscale assumption out-preforms the IMEX-BDF-2 and the first order methods from the previous example.
We note that the results can be further improved by using a greater Ny.
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e MULTISCALE LEARNED ¢-EQUATION USING FOWARD EULER SCHEME ERROR
1/ 16 YES 0rg = —(16% — 3.616 - 107 ?)g — (16 + 2.161 - 10~ )v - Dug
+(16 +2.116 - 10 1) (v9zg) — (16% — 0.866 - 10" v - Oup + - - 0.10 %
1/ 32 YES Org = — (322 — 2.113)g — (32 + 3.833 - 10" )v - Oag
+(32 4 3.623 - 107 ) (00,g) — (32% — 1.882)v - Dup + - - 0.22 %
1/ 64 YES 0rg = —(64% —3.325-10")g — (64 + 1.774 - 10" v - Osg
+(64 4 1.887 - 10~ ") (v8ag) — (64° — 3.414- 10" )v - Bup + - - - 0.81 %
1/ 128 YES Org = —(128% — 0.522 - 10°)g — (128 — 3.225)v - Bzg
+(128 — 3.259)(v0,g) — (128% — 0.526 - 10*)v - up + - - - 3.19 %
1/ 256 YES Org = —(256% + 0.787 - 10*)g — (256 — 2.884 - 10" )v - Oug
+(256 — 3.067 - 10") (v, g) — (256 + 0.787 - 10w - Dpp + -+ 12.01 %
1/ 512 YES g = —(512% — 0.996 - 10°)g — (512 — 1.936 - 10*)v - Oz g
+(512 — 1.946 - 10%) (08, g) — (5122 — 0.997 - 10°)v - Dup+---  38.03 %
TABLE 3

Learned g-equation using the DC-RNN algorithm based on Forward-Euler schemes.

€ MULTISCALE LEARNED g-EQUATION USING IMEX1 SCHEME ERROR
1/ 16 YES drg = —(16% — —0.617 - 107?)g — (16 + 2.033 - 10~ )v - Bug
+(16 +2.094 - 107" ) (vdzg) — (162 — 1.282 - 10" v - Dpp + - - - 0.10 %
1/ 32 YES 0rg = —(32% — 1.863)g — (324 3.303 - 10" v - dag
+(32 + 3.466 - 107 (v02g) — (322 — 1.826)v - Dup + - - - 0.20 %
1/ 64 YES g = —(64* —2.672-10")g — (64 +2.679- 10" v - Dpg
+(64 4+ 2.887 - 10 1) (v0zg) — (642 — 2.758 - 10M)v - Oup + - - - 0.65 %
1/ 128 YES Org = —(128% — 2.488 - 10%)g — (128 — 1.139)v - D29
+(128 — 1.011){(v0yg) — (128% — 2.523 - 10*)v - Dyp + - - - 1.52 %
1/ 256 YES 0rg = —(256% — 0.586 - 10*)g — (256 — 2.537 - 10*)v - Dz g
+(256 — 2.156 - 10")(v0,g) — (256 — 0.586 - 10")v - Dup + - - - 8.94 %
1/ 512 YES 0rg = —(512% — 3.472 - 10%)g — (512 — 0.626 - 10%)v - Dyg
+(512 — 0.692 - 10?)(v0zg) — (5122 — 3.472 - 10H)v - Dup + - - - 13.24 %
TABLE 4

Learned g-equation using the DC-RNN algorithm based on IMEX1 schemes.

EXAMPLE 6.3. Regularity Assumptions. When the number of layers is large (large dictionary), or
when data are lacking or noisy, over-fitting becomes an issue. We described a few physics-aware regularization
terms in Section 3. We summarize these conditions below:

1. Regularization via sparsity;

2. Regularization via (g) = 0;

3. Regularization via the continuity of weights and biases.
We numerically verify that further improvements can be made by applying these physics-aware regularization
terms. For data that does not satisfy a smooth PDE, the reqularization via the continuilty of weights and
biases might not be necessary. We record our results concerning the other two regularization methods in
Tables 9 and 10. We explore the regularization via the continuity of weights and biases (Equation (4.18)) in
the next example.

EXAMPLE 6.4. Learning Space-Dependent Functions. We demonstrate that functions such as
o%(x), o (x), or G(x) can be learned using space-dependent weights and biases. In this example, we choose

(6.5) o (x) =14 10022,

o4(z) =0, and G(x) = 0. We use ¢ = 1 and use our DC-RNN based on the IMEX-BDF-2 fitting. The
predicted PDE for the g-equation is:

g = (1 —0.011)vdzg — (1 — 0.016){vd,.g)

6.6
(6.6) + (14 0.005)00,p + [1 +0.100,100 — 3.757]g + - - - ,
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SCHEME  MULTISCALE LEARNED ¢g-EQUATION ERROR
1/ 16 No g = —(16% +3.073-107")g — (16 — 0.531 - 10" v - Dpg

+(16 — 0.715 - 10 *)(v9zg) — (16% + 1.354 - 10" H)v - Opp + - - - 0.06 %
1/ 32 No drg = —(322 +1.736 - 107 1)g — (32 4+ 0.615 - 10" )v - Bug

+(32 4 1.243 - 1072)(v0sg) — (322 +2.441 - 10" *)v - Opp + - - - 0.01 %
1/ 64 No 0rg = —(64% 4+0.784 - 10%)g — (64 — 0.777 - 10" )v - Oug

+(64 —1.195 - 107 %) (v8ag) — (64° —2.922- 10 v - ep + - -- 0.01 %
1/ 128 No g = —(128% — 2.857 - 10" )g — (128 — 0.953 - 10" ")v - D9

+(128 — 2.176 - 10~ 1) (vOsg) — (128% —2.392- 10" )v - Oup + - - - 0.15 %
1/ 256 No drg = —(256% — 2.105 - 10*)g — (256 — 2.411 - 10?)v - Oz g

+(256 — 0.821 - 10%) (v g) — (2562 — 2.102 - 10" )v - Dyp + - - - 32.22 %
1/ 512 No g = —(512% — 2.621 - 10°)g — (512 — 0.511 - 10*)v - Oy g

+(512 — 0.511 - 10*) (08, g) — (5122 — 2.621 - 10°)v - Dup+ -+ 99.99 %

TABLE 5

Learned g-equation using IMEX-BDF-2 scheme assuming no dependence on € (Non-multiscale).

€ MULTISCALE LEARNED g-EQUATION ERROR
1/ 16 No g = —(16% 4+ 1.707 - 107" )g — (16 + 2.886 - 107 %)v - D,g
+(16 +3.391 - 10 3)(v0zg) — (16% — 1.251 - 10 *)v - Bup + - - - 0.03 %
1/ 32 No g = —(322 +3.706 - 107 )g — (32 — 0.822 - 10" H)v - Dug
+(32 — 4.989 - 107%)(v0,g) — (322 +3.662 - 10" *)v - Dpp + - - - 0.01 %
1/ 64 No Org = — (642 4+ 0.842 - 10®)g — (64 — 3.800 - 10")v - Oag
+(64 — 3.819 - 10" )(v8,g) — (64% — 4.054 - 10%)v - Dpp + - - - 59.76 %
1/ 128 No g = —(128% — 1.424 - 10*)g — (128 — 1.044 - 10*)v - Oy g
+(128 — 1.049 - 10*)(v0xg) — (128% — 1.634 - 10*)v - Oup+---  93.243 %
1/ 256 No drg = —(256% — 0.655 - 10°)g — (256 — 2.551 - 10%)v - Bug
+(256 — 2.550 - 10%)(v0yg) — (2562 — 0.654 - 10°)v - Oyp + - - - 99.96 %
1/ 512 No Org = —(5122 — 2.621 - 10°)g — (512 — 0.511 - 10*)v - Drg
+(512 — 0.511 - 10*)(vdrg) — (512% — 2.621 - 10°)v - Dyp + - - - 99.98 %
TABLE 6

Learned g-equation using IMEX-ARS(2,2,2) scheme assuming no dependence on & (Non-multiscale).

where [1 + 0.100,100 — 3.757] is the minimum and mazimum values of o°(x). We display the predicted o

533
531 on the left of Figure 5. We also impose continuity of o°(z) to our loss function. Our predicted PDE with
535  continuity is given by:
Org = (1 — 0.008)v0,g — (1 — 0.017)(v0zg)
536 (6.7)

+ (14 0.001)v8,p + [1 + 0.060,100 — 3.893]g + - - - ,

537 with predicted o plotted on the right of Figure 5. We note that the jumyp discontinuities the left of Figure 5
538 s due to over fitting of the data. As we can see from this example, utilizing the continuity condition (4.18)
539  these jumps are removed.

00 00
@ Predicted Sigma S, K @ Predicted Sigma S, K

FIG. 5. Left: Predicted 0% with no continuity constraints. Right: Predicted o° with continuity constraints.
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€ MULTISCALE LEARNED g-EQUATION ERROR
1/ 16 YES g = —(16% — 0.782-10%)g — (16 — 1.056 - 10" v - D,
+(16 — 0.737 - 10 ) {v9zg) — (16% +3.311 - 10" H)v - Oup + - - - 0.16 %
1/ 32 YES Org = — (322 4+ 1.307)g — (32 + 4.107 - 10" )v - Bag
+(32 4+ 1.753 - 107 (00, g) — (322 +1.289 - 10 H)v - Dypp + - - - 0.08 %
1/ 64 YES Org = — (64 4+ 1.593)g — (64 + 0.576 - 10~ " )v - Dag
+(64 + 3.793 - 1072)(v02g) — (642 + 1.709)v - Bpp + - - - 0.04%
1/ 128 YES g = —(128% +4.817-10")g — (128 — 0.573 - 10" ")v - O.g
+(128 + 1.349 - 10~ ") (v0,g) — (128% + 0.506 - 10*)v - Opp + - - - 0.29 %
1/ 256 YES g = —(256% + 4.745 - 10%)g — (256 + 1.118 - 10" )v - Drg
+(256 + 1.851)(v05g) — (256% + 4.688 - 10%)v - Opp + - - - 0.72 %
1/ 512 YES Org = —(512% — 2,602 - 10°)g — (512 — 0.508 - 10*)v - Oxg
+(512 — 0.508 - 10%)(vdzg) — (512 — 2.602 - 10°)v - Oap + - - - 99.27 %
TABLE 7

Learned g-equation using IMEX-BDF-2 scheme assuming dependence on € (Multiscale).

IS MULTISCALE LEARNED g-EQUATION ERROR
1/ 16 YES g = —(16% —2.177-10%)g — (16 + 3.167 - 10" %)v - Dpg
+(16 — 1.269 - 107 2)(v0zg) — (162 +1.997 - 10" v - dep+---  0.41 %
1/ 32 YES 0rg = —(322 —1.251-10%)g — (32 — 2.309 - 10" %)v - Oag
+(3242.640 - 1072)(vBrg) — (322 — 4.427 - 107 v - ep+---  0.08 %
1/ 64 YES g = —(64% — 3.075-1072)g — (64 — 0.866 - 10~ ")v - pg
+(64 — 1.748 - 10 1) (v0zg) — (642 + 1.17T)v - Dpp + - - - 0.01 %
1/ 128 YES drg = —(128% 4+ 1.018 - 10*)g — (128 + 1.068 - 10°)v - B9
+(128 +2.269 - 107 ") (v g) — (1282 +1.044 - 10" )v - Gup+ -+ 0.06 %
1/ 256 YES Org = —(256% — 1.093 - 10%)g — (256 — 3.649 - 10 *)v - Dz g
+(256 — 0.812) (v9yg) — (2562 — 4.311 - 10 v - up + - - - 0.86 %
1/ 512 YES g = —(512% — —3.861 - 10")g — (512 + 1.296 - 10*)v - Dg
+(512 — 0.518 - 10%) (v, g) — (5122 — 1.102 - 10")v - Opp + -+ 9.70 %
TABLE 8

Learned g-equation using ARS(2,2,2) scheme assuming dependence on & (Multiscale).

EXAMPLE 6.5. Higher-Order Methods We test the performance of our algorithm using second-order
and fourth-order time schemes. As expected, higher-order methods produce more accurate results as shown
by Table 11.

EXAMPLE 6.6. Comparison with Conventional Methods. (Part 1)

The Lasso method [40, 15] is a popular tool for determining features involved in the dynamics of the data.
This method does not assume a Chapman-Enskog like expansion as in (3.4). Since the dictionary has to be
recorded in a matriz, the memory requirements for using the Lasso method are typically larger compared to
our algorithm. We perform tests of our algorithm vs Lasso using o°(z) = 1, 0?(z) =0, and G(x) = 0. We
record results for the g-equation in Table 12. Our ansatz assumed 18 terms, those involved in the dynamics:
g, V0zp, v05g, (VO,g) and 14 others not involved (built by compositions of advection and projection operators
(3.2) and (3.3)). We ran the Lasso method several times using several values of the reqularization parameter
. However, we only present the results associated with the best oo. The Lasso method performed fairly well
but, it typically predicted more undesirable features for the dynamics and thus had a greater error.

EXAMPLE 6.7. Comparison with Conventional Methods. (Part 2)

Neat, we try the STRidge method in [36]. Similar to the Lasso method, a matriz of the dictionary is
formed. Unlike the Lasso method, [36] makes more efficient use of memory requirements and also features
a hard threshold, i.e., large coefficients are assumed to be likely candidates for the dynamics of the PDE.
Again, we use 18 terms for our dictionary as in the previous example. After running the STRidge algorithm,
the predicted weights for the involved terms g, vO,p, vOzg, (VO.g), were accurate. However, the STRidge
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MULTISCALE  SPARSE LEARNED ¢g-EQUATION
No No g = —(2562 — [65457.219])g — (256 — [253.605])v - Oug
—|—(256 — [218.651])(U81g> + (2562 — [65417.618])1) “Ogp+ -+
YES No og = (—2562 + [3151.269])9 — (256 — [2.398])1} - Oug
+(256 — [20.289])(1;8399) — (2562 — [3089.949])1) cOzp+ -+
YES YES og = (—2562 + [1613.457])9 — (256 + [4.126])1} - Oxg
+(256 — [6.598])(1)&9) — (2562 + [1600.326])1; cOzp+ -+

TABLE 9

Learned g-equation with and without sparse reqularity assumptions.

€ (9) = 0 APPLIED LEARNED ¢-EQUATION ERROR
1/4 No g = (—4% +[0.197))g — (4 + [0.105])v - Dxrg

+(4 4 [0.063]))(v05g) — (4> +[0.030))v - Ozp +---  0.98%
1/4 YES 0rg = (—4% +[0.318])g — (4 + [0.006])v - Drg

+(4 + [0.006)) (005 g) — (4> +[0.028))v - Ozp +---  0.89%
1/8 No g = (—8% — [3.183])g — (8 — [0.342])v - Dxg

+(8 — [0.174]) (v, g) — (82 +[0.004))v - Opp +---  2.57T%
1/8 YES g = (—8% — [1.886])g — (8 — [0.104])v - Dxg

+(8 — [0.107]){(vrg) — (8% — [0.036))v - Opp +---  1.48%

TABLE 10

Learned g-equation with and without (g) = 0 regularity.

algorithm also identified terms that are not supposed to be involved in the dynamics. The weights of the
erroneous terms were so large that overall, the algorithm had a large error. For the STRidge algorithm, the
main source of error is likely in the hard threshold assumption.

EXAMPLE 6.8. Comparison with Conventional Methods. (Part 8) Now we discuss a purely ma-
chine learning based algorithm presented in [34, 35]. In [3], 35], the authors suggest forming neural net
approzimations to the data which we denote by Ny and N,. The differential operator:

(6.8) F(p,g) = 0tg — (AMv0,g + A2 (v0,g) + A3v0pp + Asg)
can be computed using backpropagation. The loss is given by:
(6.9) Loss = [|F(p, g)ll + llg = Nyl + llp = Noll,

For small e, we obtain a mediocre fit to the data using the loss given by Equation (6.9). Motivated by
Equation (3.4), we redefine F(p,g) to:

A A A A
Flp,g) =09 — (A0 + == + 575)00,g — (Aa0 + = + 325)(00,9)
Epred Epred Epred <C‘—preoi
(6.10) Noa | Aas M L
- (/\3,0 + + 5 )anp - (>‘4,0 + + ) )ga
Epred spred Epred 8pred

and use sparse \; j parameters. Equation (6.10) yields a much better fit to the data. The results are recorded
in Table 13 where “No PT-Expansion” corresponds to fitting with Equation (6.8) and “Yes PT-FExpansion”
corresponds to fitting with Equation (6.10). We note that our algorithm is more adept as we do not already
assume to know the terms involved in the dynamics as in [34, 35].
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ORDER LEARNED ¢g-EQUATION ERROR
2ND Org = —(64* — 3.03)g — (64 + 0.006)v - Ozg  0.043%
+(64 + 0.009) (v0zg) — (647 — 0.58)v - Dup
4TH g = —(64> — 1.43)g — (64 — 0.002)v - 9zg  0.018%
+(64 + 0.011)(vd5g) — (64% + 0.12)v - zp
TABLE 11

Learned g-equation using second and fourth order schemes.

METHOD LEARNED g-EQUATION ERROR

LASSO Org = —(128% — 10.04)g — (128 + 0.00)v - 0»g  0.18%
+(128 + 26.35)(v0,g) — (1282 + 23.42)v - Oup

PT-BASED ML 0yg = —(128% — 16.92)g — (128 — 1.09)v - 9.g  0.072%
+(128 + 0.24) (v g) — (1282 + 5.62)v - Oup

LASSO Drg = —(256% — 1271.98)g — (256 + 4.13)v - Dpg  1.77%
+(256 — 70.52) (vdg) — (2562 — 985.73)v - Oup

PT-BASED ML 9ig = —(256 4 72.69)g — (256 — 3.61)v-Og  0.08%
+(256 4 0.44)(v0,g) — (2567 — 32.29)v - Oup

TABLE 12
Learned g-equation. Comparison with Lasso method.

EXAMPLE 6.9. Comparison with Conventional Methods. (Part 4) We now compare our results
with the multiscale hierarchical deep learning (MS-HDL) approach proposed in [26]. The approach in [26] is
to train separate feed-forward neural networks Fj(x, At;) for different time scales At;:

(611) wt+Atj =X + .FJ(SE, Atj)

At
For example, At; could be set to slow, medium, and fast scales by setting At; = = for some fized e
€

and j = 0,1,2. Unfortunately, [26] does not provide a method for determining operators involved for each
F;(x, At;). Since we are interested in discovering the dynamics, we fit the F; using the same 18 terms
(denoted by A;(v,x,t) fori=1,2,cdots,18) as in example 6.6:

18

(6.12) Fj(a,t,) =Y i jAi(v,2,1,).

=1

As suggested in Equation (6.11), we propagate data using the forward Euler scheme. Thus, the \;; are
determined using the loss in Equation (4.4).

To be clear, Equation (6.11) is used to determine the dynamics of each map Fj(x,t) separately. Thus,
the desired equations the MS-HDL would like to uncover are:

A
o 1
6tgfast = _?gfast - ?U@;p,
6.13
( ) atgmedium = _g(vaxgmedium - <'Uaxgmedium>)a
8tgslow = _aAgslow~

We use 0% =1, 04 = 0, and G(z) = 0 to produce the data so that only fast and medium scales are
present. For the MS-HDL, we choose At; = At 5 =0,1,2 with the correct value of €. In [26], the authors

ed ’
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PT-EXPANSION LEARNED ¢g-EQUATION ERROR

No Org = — (64 +4057.11)g — (64 + 30.64)v - 9,9 LARGE
+(64 + 30.91)(v0,g) — (647 + 4057.01)v - Dzp

YES g = —(642 — .075)g — (64 — 0.00)v - O, g SMALL
+(64 + 0.00) (v0,g) — (642 4+ 0.87)v - Bup

TABLE 13
Learned g-equation using alternate machine learning fitting.

METHOD LEARNED g-EQUATION ERROR

MS-HDL —(64% — 3.64)g + (64 + 1.99)v0, g 0.094%
—(64 4 0.87)(v0,g) + (64* + 1.36)v0.p

DC-RNN — (642 + 0.56)g + (64 + 3.43)v0sg 0.066%
—(64 + 0.76)(v0x9g) (4096 4 0.78)v0xp

MS-HDL —(128% — 10.09)g + (128 + 4.84)v0.g 0.070%
—(128 + 1.87)(vdyg) + (128% + 6.54)v0,p

DC-RNN —(128% — 15.89)g + (128 + 7.34)v0.g 0.010%
—(128 + 1.18) (v, g) + (128% — 8.85)v0.p

TABLE 14
Learned g-equation using Multiscale Deep Learning methods.

suggest gathering data for each time scale:

gfast(’l],l',tn) = g(U,$, nAtQ)a n= 07 17 2a EEES) Nfast
(614) gmedium(vy Zz, tn) = g(v, Z, nAtl)a n=012,.., Nredium
gslow(vvxvtn) = g(’U,.’E, TLAto), n= 07 ]-7 27 ceey NSZOUM

i.e. the coarseness of the time grid determines the time scales. Of course, gathering data as in (6.14) can
be a problem. Namely, (6.14) is only an approximation to the dynamics of (6.13). Thus, for our numerical
example, we made the extra effort to perfectly split the data into different orders. In practice, it may be
difficult to accurately split the data into different orders. For our DC-RNN algorithm, we do not need to
split the data. The data for the DC-RNN is collected by:

(6.15) g(v,x,t,) = g(v, x,nAt) n=0,1,2,...,N;.

Thus, one reason to prefer using DC-RNN over the MS-HDL is that one does not need to make the extra
effort to split the data into different orders. Also, in the DC-RNN method we do not have to choose At; before
hand, the DC-RNN algorithm learns appropriate time scales via Equation (5.1) in an automatic manner.

We compare our DC-RNN method with the MS-HDL method in Table 1/.

EXAMPLE 6.10. The diffusion limit. As mentioned in Section 2, the equation for p is given by equation
(2.4). However, after applying the Chapman-Enskog expansion, one obtains Equation (2.7). Thus, if € is
small enough, each equation is nearly equally likely to be predicted. Whether Equation (2.4) or (2.7) gets
predicted likely depends on the algorithm used to minimize the loss. For our experiments, we use the Adam
method followed by L-BFGS-B optimization.

In this example, we choose 0° = 1/3, 04 =0, and G = 0. This means that in the limit € — 0, the
dynamics of p depends on either the terms (vV0yg) or Oyzp. The algorithm may deduce that each term has
equal weights. However, because of the {1 sparsity condition, the algorithm tends to place all the weights on
either (vV0zg) or Opep. We summarize the numerical experiments in Table 15.
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EPSILON LEARNED P-EQUATION

1/16 Oep = (—0.000141)Dap — (0.993171) (v g) +

1/256  Oip = (—0.0436861)0,ap — (1.042619)(v0ag) +
1/2048 9ep = (0.985353)50p — (0.003806) (vdzg) +

1/4096  8ip = (0.985596)8,p — (0.010862) (v g) +

TABLE 15
Learned p-equation for various values of €.

7. Conclusion. We propose a deep learning algorithm capable of learning time-dependent multiscale
and nonlocal partial differential equations (PDEs) from data. The key to achieving our goal is to construct a
Densely Connected Recurring Neural Network (DC-RNN) that accounts for potential multiscale and nonlocal
structures in the data. The DC-RNN is a symbolic network with relationship among the symbols given by
high-order IMEX schemes used to target dynamics of stiff PDEs describing kinetic equations. Incorporated
into the training of the network are physics-aware constraints. Through various numerical experiements, we
verify that our DC-RNN accurately and efficiently recovers multiscale PDEs which the data satisfies. As a
byproduct, our DC-RNN determines appropriate multiscale parameters and can potentially discover lower
dimensional representations for kinetic equations.

8. Appendix. Here we present details on how to define a loss function which makes use of high-order
IMEX schemes to fit data to Equations (2.4) and (2.5).

8.1. Higher-order IMEX Runge-Kutta fitting. Higher-order fitting can be done following the
high-order IMEX schemes for solving Equations (2.4) and (2.5). For the remainder of this section, we
omit the spatial discritization of the spacial operators. Generally, higher-order spacial discritization should
be used for higher-order IMEX schemes for numerical stability (see [4]). The time-steps are denoted by
superscripts while stages are denoted by superscripts enclosed in parenthesis. The higher-order K-stage
IMEX Runge-Kutta scheme is given by:

1 ‘ ,
AtZa”< — ) (v0,g")) + 62U&Cp(”—ka“‘g(]))

o .
— Atzai,j (8290)> ’
j=1

(8.2) AtZa,J oApl AtZa”

1 i A (i
AtZwl ( )(U6z9 ) ?anp( ) 4+ 04! ))
(8.3)
o .
_ Atzwi <€2g(3)) ,
Jj=1

K K
(8.4) Pttt = pn — Atz Wi (04p — @) — At Z w; Dy (vg™

i=1 i=1

Equations (8.1) and (8.2) are intermediate stages and Equations (8.3) and (8.4) are the approximate
solution at the next time step. Here A = (a; ;) with @; ; =0 for j > i and A = (a;,;) with a; ; =0 for j > i
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are K x K matrices. Along with the coefficient vectors w = (w1, - ,Wwx)T, w = (wy,--- ,wx)?, they can
be represented by a double Butcher tableau:

T

where the vectors ¢ = (¢, ,¢x)? and ¢ = (c1,--- ,cx)?) are defined as:
i—1 i—1
(85) El = ZZL}J and C; = Zai,j.
j=1 j=1
For convenience, we provide the tableau for the ARS(2,2,2) scheme:
010 0 0 010 0 0
Yyiv 0 0 Y0 v 0
and ,
106 1-6 0 110 1—7 ~
0 1-6 0 0 1—~v ~
2 1
where’yzl—iandézl——.
2 2y
The loss function based on this fitting scheme is defined by:
;N
(8.6) 1 > K+l
n=1
with,
(8.7) Ky = Kg({gv,z,t0), g(v, 2, tni1)}),
(8'8) ’CZ = ICZ({p(x7tn),p(x,tn+1)})7

to be defined below.

K S
. . x .
]C;l = g(v,x,tn+1) — g(’U, (E,tn) + At <Z O—A(x)wig(l) + 0—;2)wlg(l)>
i=1
(8.9) X ;
+ At (Filg D (0,2), 00 (2))
i=1

K
Ky = p(a, i) — pla, tn) + At Y i(0 (2)p!) — G(x))
(8.10) =

K
+ Atz w; (fg(g(i) (v, ), p(i)(:lc))> .

i=1

The operators Fi(g, p), Fa(g,p) are given by (3.5) and are generated by the RNN in Equation (3.8).
The intermediate stages are given by:

g9 =g(v,z,t,) Atz i

- Atzam‘ (J'—l (9", P(j)))
=1

(8.11)
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TABLE 16

q a 0 B
1 (-1,1) 1 1
2 (557%71) (7%a%) %

2 9 8 6 18 18 6
3 (&% a-m T 11) i
4 (2,-1036 48 3y (12 48 72 48y 12
257 257 257 257 257 25° 257 25 25

P = p(z,t,) AtZaU )9 — @)

(8.12)

— At Zaz’,j (]:Q(Q(j)7 P(j)))

j=1
We note that o4(x), 0°(z), and G(x) do not need to be assumed known. These functions can be part
of the fitting process by replacing them with feed-forward neural nets, say.

8.2. Higher-order IMEX-BDF fitting. Another way to go higher-order in time is through the
IMEX-BDF scheme [11]:

q g—1
4 1 .
S g+ ALY (eu — () wdg™)
(8.13) i=0 i=0 )
*’U@wp"'ﬂ +0_A n+z) + BAt <U2gn+q) =0,
5 13

and
q ' q—1 4
(8.14) D i+ ALY (0t = G) + BALD, (vg" ) = 0.
i=0 i=0
We display some coefficients o = (ag, -+ ,aq), v = (Y0, -+, V¢g—1), and S for the above scheme in Table
16.
The loss function for the fitting scheme based on the IMEX-BDF method, is defined by:
Nt—q
(8.15) (D;0)]
with,
(8.16) D = {u(z,t), u(z, tng1) - (T, tryqg) b
For the g equation K¢ is given by:
q .
=> aig N OFATEN Z gt
i=0
(8.17) o1
AtZ% (F1(9(v, 2, tnti), p(2, tgi))) -
i=0

=

The operator Fi(g, p) is given by (3.5) and is generated by the RNN in Equation (3.8).
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g(v,z,t;) (1+ %Atg)gzwt
M f?,1<90:Nt> _%g1:Nﬁ1
A NS 102
P ~2ArFoN
e oy | rm s 2 fysr

Fic. 6. Ezxample DC-RNN based on IMEX-BDF-2 scheme for predicting the g-equation. The inputs are p(t),
The dictionary contains order O(1) and O(e) operators. These operators are generated by the RNNs of orders e~™ m

and g(t).
=0,1

The output IngNt72 is to be minimized with respect to a chosen norm.

For the p equation K is given by:

(8.18)

Ag
Figure

q q—1

K, = Z a;g"tt + AtZ% (aAp"'H -G)
i=0 i=0

- ﬂAt (‘FQ(Q(Uaxatﬂ-i'q)vp(xatn-i-q))) .

ain, 04 (z), o(x), and G(z) can be learned by including them in the fitting process. We display in
6 a DC-RNN for determining the equation satisfied by g(v, z,t) based on the IMEX-BDF-2 scheme.
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