### A Few Thoughts on Deep Learning-Based Scientific Computing

Haizhao Yang Department of Mathematics Purdue University

Inverse Problems Seminar Department of Mathematics and Computer Science University College London February 5, 2021

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三 ・ の � (^ 1/41

# Deep Learning for Scientific Computing? Still not a complete story.

#### Outline

#### Neural Network Approximation

- Exponential Approximation Rate
- Curse of dimensionality
- Deep network is powerful

### Neural Network Optimization

- Global convergence for supervised learning
- Global convergence for solving PDEs
- But assumption is strong

#### Neural Network Generalization

Generalization for supervised learning

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Generalization for solving PDEs
- But requires regularization

## Deep neural networks

$$y = h(x; \theta) := T \circ \phi(x) := T \circ h^{(L)} \circ h^{(L-1)} \circ \cdots \circ h^{(1)}(x)$$

where

$$h^{(i)}(x) = \sigma(W^{(i)^{T}}x + b^{(i)});$$
  

$$T(x) = V^{T}x;$$
  

$$\theta = (W^{(1)}, \cdots, W^{(L)}, b^{(1)}, \cdots, b^{(L)}, V).$$



## Conditions

- Given data pairs {(x<sub>i</sub>, y<sub>i</sub> = f(x<sub>i</sub>))} from an unknown map f(x) defined on Ω
- {x<sub>i</sub>}<sup>n</sup><sub>i=1</sub> are sampled randomly from an unknown distribution U(x) on Ω

#### Goal

Recover the unknown map f(x)

### Deep learning

- Design a family of DNNs {h(x; θ)}<sub>θ</sub> of a given size
- Find the best DNN  $h(x; \theta) \approx f(x)$  on  $\Omega$



Deep learning ideally

Quantify how good  $h(x; \theta) \approx f(x)$  via the population loss:

$$R_D(\theta) \stackrel{\text{e.g.}}{=} \mathsf{E}_{x \sim \boldsymbol{U}(\Omega)} \left[ |h(x; \theta) - f(x)|^2 \right]$$

The best solution is  $h(x; \theta_D)$  with

$$\theta_D = \operatorname{argmin} R_D(\theta)$$

But  $U(\Omega)$  is not known

## Deep learning in practice

Only the empirical loss is available:

$$R_{\mathcal{S}}(\theta) := \frac{1}{N} \sum_{i=1}^{N} (h(x_i; \theta) - y_i)^2$$

• The best empirical solution is  $h(x; \theta_S)$  with

$$\theta_{\mathcal{S}} = \operatorname{argmin} R_{\mathcal{S}}(\theta)$$

- Numerical optimization to obtain a numerical solution  $h(x; \theta_N)$ .
- In practice,  $\theta_N \neq \theta_S \neq \theta_D$  and how good  $R_D(\theta_N)$  is?

A full error analysis of  $R_D(\theta_N)$ 

$$\begin{split} R_{D}(\theta_{N}) &= [R_{D}(\theta_{N}) - R_{S}(\theta_{N})] + [R_{S}(\theta_{N}) - R_{S}(\theta_{S})] + [R_{S}(\theta_{S}) - R_{S}(\theta_{D})] \\ &+ [R_{S}(\theta_{D}) - R_{D}(\theta_{D})] + R_{D}(\theta_{D}) \\ &\leq R_{D}(\theta_{D}) + [R_{S}(\theta_{N}) - R_{S}(\theta_{S})] \\ &+ [R_{D}(\theta_{N}) - R_{S}(\theta_{N})] + [R_{S}(\theta_{D}) - R_{D}(\theta_{D})], \end{split}$$

A full error analysis of  $R_D(\theta_N)$ 

$$\begin{aligned} R_D(\theta_N) &= [R_D(\theta_N) - R_S(\theta_N)] + [R_S(\theta_N) - R_S(\theta_S)] + [R_S(\theta_S) - R_S(\theta_D)] \\ &+ [R_S(\theta_D) - R_D(\theta_D)] + R_D(\theta_D) \\ &\leq R_D(\theta_D) + [R_S(\theta_N) - R_S(\theta_S)] \\ &+ [R_D(\theta_N) - R_S(\theta_N)] + [R_S(\theta_D) - R_D(\theta_D)], \end{aligned}$$

■  $R_D(\theta_D) = \int_{\Omega} (h(x; \theta_D) - f(x))^2 d\mu(x) \le \int_{\Omega} (h(x; \tilde{\theta}) - f(x))^2 d\mu(x)$ can be bounded by a constructive approximation of  $\tilde{\theta}$ 

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < ⊙ 6/41

A full error analysis of  $R_D(\theta_N)$ 

$$\begin{aligned} R_D(\theta_N) &= [R_D(\theta_N) - R_S(\theta_N)] + [R_S(\theta_N) - R_S(\theta_S)] + [R_S(\theta_S) - R_S(\theta_D)] \\ &+ [R_S(\theta_D) - R_D(\theta_D)] + R_D(\theta_D) \\ &\leq R_D(\theta_D) + [R_S(\theta_N) - R_S(\theta_S)] \\ &+ [R_D(\theta_N) - R_S(\theta_N)] + [R_S(\theta_D) - R_D(\theta_D)], \end{aligned}$$

■  $R_D(\theta_D) = \int_{\Omega} (h(x; \theta_D) - f(x))^2 d\mu(x) \le \int_{\Omega} (h(x; \tilde{\theta}) - f(x))^2 d\mu(x)$ can be bounded by a constructive approximation of  $\tilde{\theta}$ ■  $[R_S(\theta_N) - R_S(\theta_S)]$  is the optimization error

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 の < ⊙ 6/41

#### A full error analysis of $R_D(\theta_N)$

$$\begin{aligned} R_D(\theta_N) &= [R_D(\theta_N) - R_S(\theta_N)] + [R_S(\theta_N) - R_S(\theta_S)] + [R_S(\theta_S) - R_S(\theta_D)] \\ &+ [R_S(\theta_D) - R_D(\theta_D)] + R_D(\theta_D) \\ &\leq R_D(\theta_D) + [R_S(\theta_N) - R_S(\theta_S)] \\ &+ [R_D(\theta_N) - R_S(\theta_N)] + [R_S(\theta_D) - R_D(\theta_D)], \end{aligned}$$

■  $R_D(\theta_D) = \int_{\Omega} (h(x; \theta_D) - f(x))^2 d\mu(x) \le \int_{\Omega} (h(x; \tilde{\theta}) - f(x))^2 d\mu(x)$ can be bounded by a constructive approximation of  $\tilde{\theta}$ 

(ロ)、(団)、(三)、(三)、(三)、(0)(0) 6/41

- $\blacksquare [R_S(\theta_N) R_S(\theta_S)]$  is the optimization error
- Other two terms are the generalization error

# Deep Learning for Solving PDEs

Goals

Learning the solutions of high-dimensional and highly nonlinear PDEs

Challenges for traditional methods

curse of dimensionality

## Machine learning for PDEs

- Owens and Filkin, 1989; Lee and Kang, 1990; Dissanayake and Phan-Thien, 1994
- RBM, Quantum Many-Body Problem, Giuseppe Carleo, Matthias Troyer, 2016
- BSDE, Han et al, 2017
- DGM, Sirignano and Spiliopoulos, 2017
- Deep Ritz, E and Yu, 2017
- PINN, Raissi, Perdikaris, and Karniadakis, 2017

Neural networks + least square for PDEs (date back to 1990s),

$$\mathcal{D}(u) = f \quad ext{in } \Omega, \ \mathcal{B}(u) = g \quad ext{on } \partial \Omega.$$

A DNN  $\phi(\mathbf{x}; \boldsymbol{\theta}^*)$  is constructed to approximate the solution  $u(\mathbf{x})$  via

$$\begin{array}{ll} \boldsymbol{\theta}^{*} &=& \operatorname*{argmin}_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}) \\ &:=& \operatorname*{argmin}_{\boldsymbol{\theta}} \| \mathcal{D} \phi(\boldsymbol{x}; \boldsymbol{\theta}) - f(\boldsymbol{x}) \|_{2}^{2} + \lambda \| \mathcal{B} \phi(\boldsymbol{x}; \boldsymbol{\theta}) - g(\boldsymbol{x}) \|_{2}^{2} \end{array}$$

<ロト < 団 > < 三 > < 三 > 三 の < で 8/41

## Least Square Methods

#### We aim at the full error analysis:

- Approximation theory
- Optimization theory
- Generalization theory

# **Deep Network Approximation**

### Goals

- The curse of dimensionality exist? e.g., # parameters not  $(\frac{1}{\epsilon})^d$
- Is exponential approximation rate available? e.g., # parameters  $\log(\frac{1}{\epsilon})$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ の Q @ 10/41

## Why this goal?

Computational efficiency especially in high dimension

#### Literature Review

#### Active research directions

Cybenko, 1989; Hornik et al., 1989; Barron, 1993; Liang and Srikant, 2016; Yarotsky, 2017; Poggio et al., 2017; Schmidt-Hieber, 2017; E and Wang, 2018; Petersen and Voigtlaender, 2018; Chui et al., 2018; Yarotsky, 2018; Nakada and Imaizumi, 2019; Gribonval et al., 2019; Gühring et al., 2019; Chen et al., 2019; Li et al., 2019; Suzuki, 2019; Bao et al., 2019; E et al., 2019; Opschoor et al., 2019; Yarotsky and Zhevnerchuk, 2019; Bölcskei et al., 2019; Montanelli and Du, 2019; Chen and Wu, 2019; Zhou, 2020; Montanelli et al., 2020, etc.

### Literature Review

### **Functions spaces**

- Continuous functions
- Smooth functions
- Functions with integral representations

◆□ ▶ ◆ @ ▶ ◆ 差 ▶ ◆ 差 ● ⑦ � ℃ 12/41

# ReLU DNNs, continuous functions $C([0, 1]^d)$

#### ReLU; Fixed network width O(N) and depth O(L)

- Nearly tight error rate 5ω<sub>f</sub>(8√dN<sup>-2/d</sup>L<sup>-2/d</sup>) simultaneously in N and L with L<sup>∞</sup>-norm. Shen, Y., and Zhang (CiCP, 2020)
- $\omega_f$  is the modulas of continuity
- Improved to a tight rate  $O\left(\sqrt{d}\omega_f\left(\left(N^2L^2\log_3(N+2)\right)^{-1/d}\right)\right)$ . Shen, Y., and Zhang (J Math Pures Appl, 2021)

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q @ 13/41

Curse of dimensionality exists!

# ReLU DNNs, smooth functions $C^{s}([0, 1]^{d})$

Does smoothness help?

ReLU; Fixed network width O(N) and depth O(L)

Nearly tight rate  $85(s+1)^d 8^s ||f||_{C^s([0,1]^d)} N^{-2s/d} L^{-2s/d}$ simultaneously in N and L with  $L^{\infty}$ -norm

▲□▶▲□▶▲三▶▲三▶ 三 のへで 14/41

Lu, Shen, Y., and Zhang (SIMA 2021)

The curse of dimensionality exists if s is fixed.

Sine-ReLU; Fixed width O(d), varying depth L

- $\exp(-c_{r,d}\sqrt{L})$  with  $L^{\infty}$ -norm for  $C^{r}([0,1]^{d})$
- Root exponential approximation rate achieved
- Curse of dimensionality is not clear
- arotsky and Zhevnerchuk, NeurIPS 2020

Floor and ReLU activation, width O(N) and depth O(dL),  $C([0, 1]^d)$ 

- Error rate  $\omega_f(\sqrt{d}N^{-\sqrt{L}}) + 2\omega_f(\sqrt{d})N^{-\sqrt{L}}$  with  $L^{\infty}$ -norm
- Merely based on the compositional structure of DNNs
- NO curse of dimensionality for many continuous functions
- Root exponential approximation rate
- Shen, Y., and Zhang (Neural Computation, 2020)

What if we use more activation functions?

Floor, Sign, and  $2^x$  activation, width O(N) and depth 3,  $C([0, 1]^d)$ 

- Error rate  $\omega_f(\sqrt{d}2^{-N}) + 2\omega_f(\sqrt{d})2^{-N}$  with  $L^{\infty}$ -norm
- Merely based on the compositional structure of DNNs
- NO curse of dimensionality for many continuous functions

- Exponential approximation rate
- Shen, Y., and Zhang (Neural Networks, 2021)

# Further interpretation of our result

### Explicit error bound

Floor, Sign, and  $2^x$  activation, width O(N) and depth 3, Hölder( $[0, 1]^d, \alpha, \lambda$ )

- Error rate  $3\lambda(2\sqrt{d})^{\alpha}2^{-\alpha N}$  with  $L^{\infty}$ -norm
- NO curse of dimensionality
- Exponential approximation rate
- Shen, Y., and Zhang (Neural Networks, 2021)

▲□▶▲□▶▲∃▶▲∃▶ ∃ のへで 17/41

# Further interpretation of our result

### Realistic consideration

- Constructive approximation requires f or exponentially many samples given
- Constructed parameters require high precision computation
- Floor and Sign are discontinuous functions leading to gradient vanishing

▲□▶▲□▶▲三▶▲三▶ 三 のへで 18/41

The network size has to be increased when  $\epsilon \rightarrow 0$ 

## Elementary universal activation function (EUAF) A continuous activation function without gradient vanishing

$$\sigma_1(\mathbf{x}) = \big|\mathbf{x} - \mathbf{2}\lfloor \frac{\mathbf{x}+1}{2} \rfloor\big|,$$

$$\sigma_2(x) \coloneqq \frac{x}{|x|+1},$$
  
$$\sigma(x) \coloneqq \begin{cases} \sigma_1(x) & \text{for } x \in [0,\infty), \\ \sigma_2(x) & \text{for } x \in (-\infty,0). \end{cases}$$



<ロト < 団ト < 三ト < 三ト 三 ・ のへで 19/41

### Theorem (EUAF approximation in *d*-dimensions)

Arbitrarily small error with a fixed number of neurons for  $C([0, 1]^d)$ .

For any ε > 0, there exists φ of width 36d(2d + 1) and depth 11 s.t.

$$\|f(\mathbf{x}) - \phi(\mathbf{x})\|_{L^{\infty}([0,1]^d)} \leq \epsilon$$

・ロト \* 
一 
・ 
・ 
三 
・ 
・ 
三 
・ 
の 
へ 
や 
20/41

Shen, Y., and Zhang (arXiv:2107.02397)

#### Theorem (EUAF representation in *d*-dimensions)

Exact representation with a fixed number of neurons for classification functions.

For any classification function f(x) with K classes, there exists φ of width 36d(2d + 1) and depth 12 s.t.

 $f(\mathbf{x}) = \phi(\mathbf{x})$ 

on the supports of each class.

Shen, Y., and Zhang (arXiv:2107.02397)



# Two main ideas

Theorem (Kolmogorov-Arnold Superposition Theorem)  $\forall f(\mathbf{x}) \in C([0, 1]^d)$ , there exist  $\psi_p(x)$  and  $\phi(x)$  in  $C(\mathbb{R})$  and  $b_{pq} \in \mathbb{R}$  s.t.

$$f(\mathbf{x}) = \sum_{q=1}^{2d+1} a_q \phi(\sum_{p=1}^d b_{pq} \psi_p(x_p)).$$

(ロト (個) (E) (E) (E) E のQC 22/41

 Lemma (EUAF approximation in 1D (Shen, Y., and Zhang (arXiv:2107.02397))
 NNs with width 36 and depth 5 constructed with EUAF is dense in C([0, 1]).

<ロト < 回 ト < 三 ト < 三 ト 三 の へ C 23/41

## Other EUAF

- C<sup>s</sup> EUAF
- Sigmod EUAF

## Summary

- Deep Neural Networks are powerful
- Quantitative approximation results are available
- How to quantify deep learning optimization and generalization errors?

◆□▶ ◆ □▶ ◆ □▶ ◆ □▶ ○ □ · · ○ Q · · · 24/41

# Optimization and Generalization of Deep Learning

In the setting of supervised learning:

Mean-field analysis

- Chizat and Bach 2018; Mei et al. 2018; Mei et al. 2019, Lu et al. 2020, etc.
- Idea:

1) a two-layer neural network can be seen as an approximation to an infinitely wide neural network with parameters following a distribution  $p_t$ ;

・ロト \* 
一 
・ 
・ 
三 
・ 
・ 
三 
・ 
の 
へ 
や 
25/41

2) understanding network training via the evolution of  $p_t$ .

In the setting of solving PDEs: vastly open

# Optimization and Generalization of Deep Learning

In the setting of supervised learning:

Neural tangent kernel/Lazy training

- Idea: in the limit of infinite width, deep learning becomes kernel methods
- Global optimization convergence:
  - Jacot et al. 2018 (two layers);
  - Du et al. 2019 (L layers, DNN);
  - Z Allen-Zhu, Y Li, Z Song 2018 (L layers, DNN, RNN);
  - D Zou\*, Y Cao\*, D. Zhou, and Q Gu 2018 (L layers, DNN, milder conditions)
  - Chizat et al. 2018
- Generalization theory
  - Y Cao and Q Gu, 2019a (GD)
  - Y Cao and Q Gu, 2019b (SGD)
- Consistent optimization and generalization for classification
  - Z Ji and M Telgarsky 2020
  - Z Chen\*, Y Cao\*, D Zou, and Q Gu 2020 (SOTA)

In the setting of solving PDEs: vastly open

Optimization objective function:

$$R_{\mathcal{S}}(\boldsymbol{\theta}) := \frac{1}{N} \sum_{i=1}^{N} (h(\boldsymbol{x}_i; \boldsymbol{\theta}) - f(\boldsymbol{x}_i))^2$$

Introduce  $\mathcal{X} := [\mathbf{x}_1, \dots, \mathbf{x}_N]^T \in \mathbb{R}^{N \times d}$ , then

- $h(\mathcal{X}; \boldsymbol{\theta}(t)) := [h(\boldsymbol{x}_i; \boldsymbol{\theta}(t))] \in \mathbb{R}^N$
- $\nabla_{\boldsymbol{\theta}} h(\mathcal{X}; \boldsymbol{\theta}(t)) := [\nabla_{\boldsymbol{\theta}_i} h(\boldsymbol{x}_i; \boldsymbol{\theta}(t))] \in \mathbb{R}^{N \times W}$
- $\nabla_{h(\mathcal{X};\boldsymbol{\theta}(t))} R_{\mathcal{S}} := \frac{2}{N} (h(\mathcal{X};\boldsymbol{\theta}(t)) f(\mathcal{X})) := [\frac{2}{N} (h(\boldsymbol{x}_i;\boldsymbol{\theta}(t)) f(\boldsymbol{x}_i))] \in \mathbb{R}^N$

#### Gradient descent

$$\begin{aligned} \boldsymbol{\theta}(t+1) &= \boldsymbol{\theta}(t) - \tau \frac{2}{N} \sum_{i=1}^{N} (h(\boldsymbol{x}_{i}; \boldsymbol{\theta}(t)) - f(\boldsymbol{x}_{i})) \nabla_{\boldsymbol{\theta}(t)} h(\boldsymbol{x}_{i}; \boldsymbol{\theta}) \\ &= \boldsymbol{\theta}(t) - \tau \nabla_{\boldsymbol{\theta}} h(\boldsymbol{\mathcal{X}}; \boldsymbol{\theta}(t))^{T} \nabla_{h(\boldsymbol{\mathcal{X}}; \boldsymbol{\theta}(t))} R_{S}, \end{aligned}$$

Gradient flow

$$\partial_t \boldsymbol{\theta}(t) = -\nabla_{\boldsymbol{\theta}} h(\boldsymbol{\mathcal{X}}; \boldsymbol{\theta}(t))^T \nabla_{h(\boldsymbol{\mathcal{X}}; \boldsymbol{\theta}(t))} \boldsymbol{R}_{\mathcal{S}},$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ · □ · ○ Q @ 27/41

#### Gradient flow

$$\partial_t \boldsymbol{\theta}(t) = -\nabla_{\boldsymbol{\theta}} h(\boldsymbol{\mathcal{X}}; \boldsymbol{\theta}(t))^T \nabla_{h(\boldsymbol{\mathcal{X}}; \boldsymbol{\theta}(t))} \boldsymbol{R}_{\mathcal{S}},$$

### DNN evolution

 $\partial_t h(\mathcal{X}; \theta(t)) = \nabla_{\theta} h(\mathcal{X}; \theta(t)) \partial_t \theta(t) = -\hat{\Theta}_t(\mathcal{X}, \mathcal{X}) \nabla_{h(\mathcal{X}; \theta(t))} R_S$ with the neural tangent kernel (NTK)  $\hat{\Theta}_t = \nabla_{\theta} h(\mathcal{X}; \theta(t)) \nabla_{\theta} h(\mathcal{X}; \theta(t))^T.$ 

・ロト・日本・モート・モージーのへで 28/41

Nonlinear ODEs and challenging to analyze

#### Linearization

 $h^{\text{lin}}(\boldsymbol{x};\boldsymbol{\theta}(t)) := h(\boldsymbol{x};\boldsymbol{\theta}(0)) + \nabla_{\boldsymbol{\theta}} h(\boldsymbol{x};\boldsymbol{\theta}(0))(\boldsymbol{\theta}(t) - \boldsymbol{\theta}(0)) \approx h(\boldsymbol{x};\boldsymbol{\theta}(t)),$ 

Approximate DNN evolution

$$\begin{array}{lll} \partial_t h^{\mathrm{lin}}(\boldsymbol{x};\boldsymbol{\theta}(t)) &=& -\hat{\Theta}_0(\boldsymbol{x},\mathcal{X}) \nabla_{h^{\mathrm{lin}}(\boldsymbol{x};\boldsymbol{\theta}(t))} R_{\mathcal{S}} \\ &=& -\hat{\Theta}_0(\boldsymbol{x},\mathcal{X}) \frac{2}{N} (h^{\mathrm{lin}}(\boldsymbol{x};\boldsymbol{\theta}(t)) - f(\mathcal{X})) \end{array}$$

Linear ODE with a solution

$$h^{\mathsf{lin}}(\boldsymbol{x};\boldsymbol{\theta}(t)) = h(\boldsymbol{x};\boldsymbol{\theta}(0)) - \hat{\Theta}_0(\boldsymbol{x},\mathcal{X}) \hat{\Theta}_0^{-1} \left(I - \boldsymbol{e}^{-\hat{\Theta}_0 t}\right) \left(h(\mathcal{X};\boldsymbol{\theta}(0)) - \mathcal{Y}\right)$$

and

$$h^{\text{lin}}(\mathcal{X}; \boldsymbol{\theta}(t)) = \left(I - e^{-\hat{\Theta}_0 t}\right) \mathcal{Y} + e^{-\hat{\Theta}_0 t} h(\mathcal{X}; \boldsymbol{\theta}(0)).$$

with  $\mathcal{Y} := [\mathbf{y}_1, \ldots, \mathbf{y}_N]^T \in \mathbb{R}^N$ .

#### Approximate DNN evolution

 $h^{\text{lin}}(\boldsymbol{x};\boldsymbol{\theta}(t)) = h(\boldsymbol{x};\boldsymbol{\theta}(0)) - \hat{\Theta}_0(\boldsymbol{x},\mathcal{X})\hat{\Theta}_0^{-1}\left(I - \boldsymbol{e}^{-\hat{\Theta}_0 t}\right)\left(h(\mathcal{X};\boldsymbol{\theta}(0)) - \mathcal{Y}\right)$ 

and

$$h^{\text{lin}}(\mathcal{X}; \boldsymbol{\theta}(t)) = \left(I - \boldsymbol{e}^{-\hat{\Theta}_0 t}\right) \mathcal{Y} + \boldsymbol{e}^{-\hat{\Theta}_0 t} h(\mathcal{X}; \boldsymbol{\theta}(0))$$

#### Insight for numerical performance

- Spectral bias of deep learning (Rahaman et al, 2018; Xu et al, 2018, Cao et al, 2019)
- sin activation to lessen spectral bias (Tancik et al, 2020; Sitzmann et al, 2020)
- Wendland activation for non-singular NTK (Benson, Damle, and Townsend, 2020)
- Reproducing activation function to reduce the condition number of NTK (Liang, Lyu, Wang, Y., 2021)

### **Optimization for PDE Solvers**

Question: can we apply existing optimization analysis for PDE solvers?

A simple example

- Two-layer network:  $\phi(\mathbf{x}; \mathbf{\theta}) = \sum_{k=1}^{N} a_k \sigma(\mathbf{w}_k^T \mathbf{x}).$
- A second order differential equation:  $\mathcal{L}u = f$  with

$$\mathcal{L} u = \sum_{\alpha,\beta=1}^{d} A_{\alpha\beta}(\mathbf{x}) u_{\mathbf{x}_{\alpha}\mathbf{x}_{\beta}}.$$

- $f(\mathbf{x}; \boldsymbol{\theta}) := \mathcal{L}\phi(\mathbf{x}; \boldsymbol{\theta}) = \sum_{k=1}^{N} a_k \mathbf{w}_k^T \mathbf{A}(\mathbf{x}) \mathbf{w}_k \sigma''(\mathbf{w}_k^T \mathbf{x}) \text{ to fit } f(\mathbf{x})$
- Much more difficult nonlinearity in x and w in the fitting than the original NN fitting.

・ロト・日本・日本・日本・日本・日本・ション・1/41

## **Optimization for PDE Solvers**

Assumption

• Two-layer network:  $\phi(\mathbf{x}; \boldsymbol{\theta}) = \sum_{k=1}^{N} a_k \sigma(\mathbf{w}_k^T \mathbf{x})$  on  $[0, 1]^d$ .

A second order differential equation:  $\mathcal{L}u = f$  with

$$\mathcal{L}u = \sum_{\alpha,\beta=1}^{d} A_{\alpha\beta}(\boldsymbol{x}) u_{x_{\alpha}x_{\beta}} + \sum_{\alpha=1}^{d} b_{\alpha}(\boldsymbol{x}) u_{x_{\alpha}} + c(\boldsymbol{x})u.$$

•  $\mathcal{L}$  satisfies the condition: there exists  $M \ge 1$  such that for all  $\mathbf{x} \in \Omega = [0, 1]^d$ ,  $\alpha, \beta \in [d]$ , we have  $A_{\alpha\beta} = A_{\beta\alpha}$  $|A_{\alpha\beta}(\mathbf{x})| \le M$ ,  $|b_{\alpha}(\mathbf{x})| \le M$ , and  $|c(\mathbf{x})| \le M$ .

Fixed *n* samples in the PDE domain.

Empirical loss

$$R_{\mathcal{S}}(\boldsymbol{\theta}) = \frac{1}{2n} \sum_{\{\boldsymbol{x}_i\}_{i=1}^n} |\mathcal{L}\phi(\boldsymbol{x}_i;\boldsymbol{\theta}) - f(\boldsymbol{x}_i)|^2$$

and population loss

$$R_{\mathcal{D}}(\boldsymbol{\theta}) = \frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim \mathcal{D}} \left[ |\mathcal{L}\phi(\boldsymbol{x}_i; \boldsymbol{\theta}) - f(\boldsymbol{x}_i)|^2 \right]$$

with  $\phi$  satisfying boundary conditions.

#### **Optimization for PDE Solvers**

Luo and Y., preprint, 2020

Theorem (Linear convergence rate)

Let  $\theta^0 := \operatorname{vec} \{a_k^0, w_k^0\}_{k=1}^N$  be the GD initialization, where  $a_k^0 \sim \mathcal{N}(0, \gamma^2)$  and  $w_k^0 \sim \mathcal{N}(\mathbf{0}, \mathbb{I}_d)$  with any  $\gamma \in (0, 1)$ . Let  $C_d := \mathbb{E} \| \mathbf{w} \|_1^{12} < +\infty$  with  $\mathbf{w} \sim \mathcal{N}(\mathbf{0}, \mathbb{I}_d)$  and  $\lambda_S$  be a positive constant. For any  $\delta \in (0, 1)$ , if width

$$\begin{split} N \geq \max & \left\{ \frac{512n^4 M^4 C_d}{\lambda_S^2 \delta}, \frac{200\sqrt{2}Md^3 n \log(4N(d+1)/\delta)\sqrt{R_S(\theta^0)}}{\lambda_S}, \\ & \frac{2^{23}M^3 d^9 n^2 (\log(4N(d+1)/\delta))^4 \sqrt{R_S(\theta^0)}}{\lambda_S^2} \right\}, \end{split}$$

then with probability at least  $1 - \delta$  over the random initialization  $\theta^0$ , we have, for all  $t \ge 0$ ,

$$R_{\mathcal{S}}(oldsymbol{ heta}(t)) \leq \exp\left(-rac{N\lambda_{\mathcal{S}}t}{n}
ight)R_{\mathcal{S}}(oldsymbol{ heta}^0).$$

### Generalization of PDE solvers

#### Luo and Y., preprint, 2020

#### Theorem (A posteriori generalization bound)

For any  $\delta \in (0, 1)$ , with probability at least  $1 - \delta$  over the choice of random sample locations  $S := \{\mathbf{x}_i\}_{i=1}^n$ , for any two-layer neural network  $\phi(\mathbf{x}; \theta)$ , we have

$$\begin{aligned} |R_{\mathcal{D}}(\theta) - R_{\mathcal{S}}(\theta)| &\leq \frac{(\|\theta\|_{\mathcal{P}} + 1)^2}{\sqrt{n}} 2M^2 \left(14d^2\sqrt{2\log(2d)} + \log[\pi(\|\theta\|_{\mathcal{P}} + 1)] + \sqrt{2\log(1/3\delta)}\right) \end{aligned}$$

(ロト (日) (三) (三) (三) (三) (34/41)

 $\begin{array}{l} \text{Proof: } |R_{\mathcal{D}}(\theta) - R_{\mathcal{S}}(\theta)| \leq \text{Rademacher complexity + Stat error} \\ \leq O\left(\frac{\|\theta\|_{\mathcal{P}}}{\sqrt{n}}\right) + O\left(\frac{1}{\sqrt{n}}\right) \end{array}$ 

#### Generalization of PDE solvers

Regression: E, Ma, and Wu, CMS, 2019 PDE solvers: Luo and Y., preprint, 2020

Theorem (A priori generalization bound)

Suppose that  $f(\mathbf{x})$  is in the Barron-type space  $\mathcal{B}([0,1]^d)$  and  $\lambda > 4M^{2}[2 + 14d^{2}\sqrt{2\log(2d)} + \sqrt{2\log(2/3\delta)}]$ . Let

$$\boldsymbol{\theta}_{\mathcal{S},\lambda} = \arg\min_{\boldsymbol{\theta}} J_{\mathcal{S},\lambda}(\boldsymbol{\theta}) := \boldsymbol{R}_{\mathcal{S}}(\boldsymbol{\theta}) + \frac{\lambda}{\sqrt{n}} \|\boldsymbol{\theta}\|_{\mathcal{P}}^2 \log[\pi(\|\boldsymbol{\theta}\|_{\mathcal{P}} + 1)].$$

Then for any  $\delta \in (0, 1)$ , with probability at least  $1 - \delta$  over the choice of random samples  $S := \{\mathbf{x}_i\}_{i=1}^n$ , we have

$$\begin{split} \mathcal{R}_{\mathcal{D}}(\boldsymbol{\theta}_{\mathcal{S},\lambda}) &:= \mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}\frac{1}{2}(\mathcal{L}\phi(\boldsymbol{x};\boldsymbol{\theta}_{\mathcal{S},\lambda}) - f(\boldsymbol{x}))^2 \\ &\leq \frac{6M^2 \|f\|_{\mathcal{B}}^2}{N} + \frac{\|f\|_{\mathcal{B}}^2 + 1}{\sqrt{n}}(4\lambda + 16M^2)\left\{\log[\pi(2\|f\|_{\mathcal{B}} + 1)]\right. \\ &+ 14d^2\sqrt{\log(2d)} + \sqrt{\log(2/3\delta)}\right\}. \end{split}$$

Proof:  $R_{\mathcal{D}}(\theta_{S,\lambda}) \leq \text{Approximation error} + \text{Rademacher complexity} +$ Stat error  $\leq O\left(\frac{\|f\|_{\mathcal{B}}^2}{N}\right) + O\left(\frac{\|\theta\|_{\mathcal{P}}}{\sqrt{n}}\right) + O\left(\frac{1}{\sqrt{n}}\right) \leq O\left(\frac{\|f\|_{\mathcal{B}}^2}{N}\right) + O\left(\frac{\|f\|_{\mathcal{B}}^2}{\sqrt{n}}\right)$ (ロト (個) (目) (目) (目) (10,000 35/41)

# Acknowledgment

#### Collaborators

Qiang Du, Yiqi Gu, Jianguo Huang, Senwei Liang, Jianfeng Lu, Tao Luo, Liyao Lyu, Hadrien Montanelli, Zuowei Shen, Chunmei Wang, Haoqin Wang, Chunmei Wang, Shijun Zhang, Chao Zhou

#### Funding

National Science Foundation under the grant award 1945029



・ロト \* 回 ト \* 三 ト \* 三 \* の へ ??
36/41

For  $\boldsymbol{x} \in \boldsymbol{Q}_{\boldsymbol{\beta}}$ :  $\boldsymbol{x} \to \phi_1(\boldsymbol{x}) = \boldsymbol{\beta} \to \phi_2(\boldsymbol{\beta}) = \boldsymbol{k}_{\boldsymbol{\beta}} \to \phi_3(\boldsymbol{k}_{\boldsymbol{\beta}}) = \boldsymbol{f}(\boldsymbol{x}_{\boldsymbol{\beta}}) \approx \boldsymbol{f}(\boldsymbol{x})$ 

- Piecewise constant approximation:  $f(\mathbf{x}) \approx f_{\rho}(\mathbf{x}) \approx \phi_3 \circ \phi_2 \circ \phi_1(\mathbf{x})$
- 2<sup>N</sup> pieces per dim and 2<sup>Nd</sup> pieces with accuracy 2<sup>-N</sup>
- Floor NN  $\phi_1(\boldsymbol{x})$  s.t.  $\phi_1(\boldsymbol{x}) = \beta$  for  $\boldsymbol{x} \in Q_\beta$  and  $\beta \in \mathbb{Z}^d$ .
- Linear NN  $\phi_2$  mapping  $\beta$  to an integer  $k_{\beta} \in \{1, \dots, 2^{Nd}\}$
- Key difficulty: NN  $\phi_3$  of width O(N) and depth O(1) fitting  $2^{Nd}$  samples in 1D with accuracy  $O(2^{-N})$
- ReLU NN fails



Figure: Uniform domain partitioning.



Figure: Floor function.



Figure: ReLU function.

< □ > < □ > < □ > < Ξ > < Ξ > Ξ - の Q (~ 37/41)

#### Binary representation and approximation

 $\theta = \sum_{\ell=1}^{\infty} \theta_{\ell} 2^{-\ell}$  with  $\theta_{\ell} \in \{0, 1\}$  is approximated by  $\sum_{\ell=1}^{N} \theta_{\ell} 2^{-\ell}$  with an error  $2^{-N}$ .

Bit extraction via a floor NN of width 2 and depth 1

$$\phi_k( heta) := \lfloor 2^k heta 
floor - 2 \lfloor 2^{k-1} heta 
floor = heta_k$$

Bit extraction via a floor NN of width 2N and depth 1 Given  $\theta = \sum_{\ell=1}^{\infty} \theta_{\ell} 2^{-\ell}$ 

$$\phi(\theta) := \begin{pmatrix} \phi_1(\theta) \\ \vdots \\ \phi_N(\theta) \end{pmatrix} = \begin{pmatrix} \theta_1 \\ \vdots \\ \theta_N \end{pmatrix} \in \mathbb{Z}^N$$

(ロト (日) (三) (三) (三) (三) (38/41)

Encoding K numbers to one number

- Extract bits  $\{\theta_1^{(k)}, \dots, \theta_N^{(k)}\}$  from  $\theta^{(k)} = \sum_{\ell=1}^{\infty} \theta_{\ell}^{(k)} 2^{-\ell}$  for  $k = 1, \dots, K$
- sum up to get  $a = \sum_{\ell=1}^{N} \theta_{\ell}^{(1)} 2^{-\ell} + \sum_{\ell=N+1}^{2N} \theta_{\ell}^{(2)} 2^{-\ell} + \dots + \sum_{\ell=(K-1)N+1}^{KN} \theta_{\ell}^{(K)} 2^{-\ell}$

Decoding one number to get the k-th numbers

• Extract bits 
$$\{\theta_1^{(k)}, \dots, \theta_N^{(k)}\}$$
 from *a* via  
 $\psi(k) := \phi(2^{(k-1)N}a - \lfloor 2^{(k-1)N}a \rfloor)$ 

of width O(N) and depth O(1).

• sum up to get  $\theta^{(k)} \approx \sum_{\ell=1}^{N} \theta_{\ell}^{(k)} 2^{-\ell} = [2^{-1}, \dots, 2^{-N}] \psi(k) := \gamma(k)$ , •  $\gamma(k)$  is an NN of width O(N) and depth O(1).

#### Key Lemma

There exists an NN  $\gamma$  of width O(N) and depth O(1) that can memorize arbitrary samples  $\{(k, \theta^{(k)})\}_{k=1}^{K}$  with a precision  $2^{-N}$ .

$$\begin{array}{l} \mathsf{For} \ \boldsymbol{x} \in \boldsymbol{Q}_{\boldsymbol{\beta}} \\ \boldsymbol{x} \to \phi_1(\boldsymbol{x}) = \boldsymbol{\beta} \to \phi_2(\boldsymbol{\beta}) = k_{\boldsymbol{\beta}} \to \phi_3(k_{\boldsymbol{\beta}}) = f(\boldsymbol{x}_{\boldsymbol{\beta}}) \approx f(\boldsymbol{x}_{\boldsymbol{\beta}}) \end{array}$$

Piecewise constant approximation:  

$$f(\mathbf{x}) \approx f_p(\mathbf{x}) \approx \phi_3 \circ \phi_2 \circ \phi_1(\mathbf{x})$$

2<sup>N</sup> pieces per dim and 2<sup>Nd</sup> pieces with accuracy 2<sup>-N</sup>

Floor NN 
$$\phi_1(\boldsymbol{x})$$
 s.t.  $\phi_1(\boldsymbol{x}) = \beta$  for  $\boldsymbol{x} \in Q_\beta$  and  $\beta \in \mathbb{Z}^d$ .

- Linear NN  $\phi_2$  mapping  $\beta$  to an integer  $k_{\beta} \in \{1, \dots, 2^{Nd}\}$
- Key difficulty: NN  $\phi_3$  of width O(N) and depth O(1) fitting  $2^{Nd}$  samples in 1D with accuracy  $O(2^{-N})$
- Key Lemma: There exists an NN  $\gamma$  of width O(N) and depth O(1) that can memorize arbitrary samples  $\{(k, \theta^{(k)})\}_{k=1}^{K}$  with a precision  $2^{-N}$ .



Figure: Uniform domain partitioning.



Figure: Floor function.



Figure: ReLU function.

# EUAF is more powerful than bit extraction.

Lemma (Curve filling in *K*-dimensions (Shen, Y., and Zhang (arXiv:2107.02397))

For any  $K \in \mathbb{N}^+$ , the following point set

$$\left\{\left[\sigma_1(\frac{w}{\pi+1}), \ \sigma_1(\frac{w}{\pi+2}), \ \cdots, \ \sigma_1(\frac{w}{\pi+K})\right]^T \ : \ w \in \mathbb{R}\right\} \subseteq [0,1]^K$$

is dense in  $[0, 1]^K$ , where  $\pi$  is the ratio of the circumference of a circle to its diameter.

### Proof.

Ideas:

- $\blacksquare$  Transcendental number + distinct rational numbers  $\rightarrow$  rationally independent numbers
- Rationally independent numbers + periodic functions → dense set in  $[0, 1]^{K}$

For arbitrary K, NN with width 1 and depth 2 constructed with EAUF can fit K points up to arbitrary accuracy.