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Deep Learning for Scientific Computing?
Still not a complete story.

Outline
Neural Network Approximation
• Exponential Approximation Rate
• Curse of dimensonality
• Deep network is powerful

Neural Network Optimization
• Global convergence for supervised learning
• Global convergence for solving PDEs
• But assumption is strong

Neural Network Generalization
• Generalization for supervised learning
• Generalization for solving PDEs
• But requires regularization
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Deep neural networks

y = h(x ; θ) := T ◦ φ(x) := T ◦ h(L) ◦ h(L−1) ◦ · · · ◦ h(1)(x)

where
h(i)(x) = σ(W (i)T

x + b(i));
T (x) = V T x ;
θ = (W (1), · · · ,W (L),b(1), · · · ,b(L),V ).
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Supervised deep learning

Conditions

Given data pairs {(xi , yi = f (xi ))}
from an unknown map f (x) defined
on Ω

{xi}n
i=1 are sampled randomly from

an unknown distribution U(x) on Ω

Goal
Recover the unknown map f (x)

Deep learning

Design a family of DNNs {h(x ; θ)}θ of
a given size
Find the best DNN h(x ; θ) ≈ f (x) on
Ω
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Supervised deep learning
Deep learning ideally

Quantify how good h(x ; θ) ≈ f (x) via the population loss:

RD(θ)
e.g.
= Ex∼U(Ω)

[
|h(x ; θ)− f (x)|2

]
The best solution is h(x ; θD) with

θD = argmin RD(θ)

But U(Ω) is not known

Deep learning in practice

Only the empirical loss is available:

RS(θ) :=
1
N

N∑
i=1

(h(xi ; θ)− yi )
2

The best empirical solution is h(x ; θS) with

θS = argmin RS(θ)

Numerical optimization to obtain a numerical solution h(x ; θN).
In practice, θN 6= θS 6= θD and how good RD(θN) is?
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Supervised deep learning

A full error analysis of RD(θN)

RD(θN) = [RD(θN)− RS(θN)] + [RS(θN)− RS(θS)] + [RS(θS)− RS(θD)]

+ [RS(θD)− RD(θD)] + RD(θD)

≤ RD(θD) + [RS(θN)− RS(θS)]

+ [RD(θN)− RS(θN)] + [RS(θD)− RD(θD)],

RD(θD) =
∫

Ω
(h(x ; θD)− f (x))2dµ(x) ≤

∫
Ω

(h(x ; θ̃)− f (x))2dµ(x)

can be bounded by a constructive approximation of θ̃
[RS(θN)− RS(θS)] is the optimization error
Other two terms are the generalization error
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Deep Learning for Solving PDEs

Goals
Learning the solutions of high-dimensional and highly nonlinear PDEs

Challenges for traditional methods

curse of dimensionality

Machine learning for PDEs

Owens and Filkin, 1989; Lee and Kang, 1990; Dissanayake and
Phan-Thien, 1994
RBM, Quantum Many-Body Problem, Giuseppe Carleo, Matthias
Troyer, 2016
BSDE, Han et al, 2017
DGM, Sirignano and Spiliopoulos, 2017
Deep Ritz, E and Yu, 2017
PINN, Raissi, Perdikaris, and Karniadakis, 2017
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Least Square Methods

Neural networks + least square for PDEs (date back to 1990s),

D(u) = f in Ω,

B(u) = g on ∂Ω.

A DNN φ(x ;θ∗) is constructed to approximate the solution u(x) via

θ∗ = argmin
θ
L(θ)

:= argmin
θ
‖Dφ(x ;θ)− f (x)‖2

2 + λ‖Bφ(x ;θ)− g(x)‖2
2
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Least Square Methods

We aim at the full error analysis:

Approximation theory
Optimization theory
Generalization theory
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Deep Network Approximation

Goals

The curse of dimensionality exist? e.g., # parameters not ( 1
ε )d

Is exponential approximation rate available? e.g., # parameters
log( 1

ε )

Why this goal?

Computational efficiency especially in high dimension
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Literature Review

Active research directions
Cybenko, 1989; Hornik et al., 1989; Barron, 1993; Liang and Srikant,
2016; Yarotsky, 2017; Poggio et al., 2017; Schmidt-Hieber, 2017; E
and Wang, 2018; Petersen and Voigtlaender, 2018; Chui et al., 2018;
Yarotsky, 2018; Nakada and Imaizumi, 2019; Gribonval et al., 2019;
Gühring et al., 2019; Chen et al., 2019; Li et al., 2019; Suzuki, 2019;
Bao et al., 2019; E et al., 2019; Opschoor et al., 2019; Yarotsky and
Zhevnerchuk, 2019; Bölcskei et al., 2019; Montanelli and Du, 2019;
Chen and Wu, 2019; Zhou, 2020; Montanelli et al., 2020, etc.
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Literature Review

Functions spaces

Continuous functions
Smooth functions
Functions with integral representations
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ReLU DNNs, continuous functions C([0,1]d )

ReLU; Fixed network width O(N) and depth O(L)

Nearly tight error rate 5ωf (8
√

dN−2/dL−2/d ) simultaneously in N
and L with L∞-norm. Shen, Y., and Zhang (CiCP, 2020)
ωf is the modulas of continuity

Improved to a tight rate O
(√

d ωf

((
N2L2 log3(N + 2)

)−1/d
))

.
Shen, Y., and Zhang (J Math Pures Appl, 2021)

Curse of dimensionality exists!
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ReLU DNNs, smooth functions Cs([0,1]d )

Does smoothness help?

ReLU; Fixed network width O(N) and depth O(L)

Nearly tight rate 85(s + 1)d8s‖f‖Cs([0,1]d )N−2s/dL−2s/d

simultaneously in N and L with L∞-norm
Lu, Shen, Y., and Zhang (SIMA 2021)

The curse of dimensionality exists if s is fixed.
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DNNs with advanced activation function

Sine-ReLU; Fixed width O(d), varying depth L

exp(−cr ,d
√

L) with L∞-norm for Cr ([0,1]d )

Root exponential approximation rate achieved
Curse of dimensionality is not clear
arotsky and Zhevnerchuk, NeurIPS 2020

Floor and ReLU activation, width O(N) and depth O(dL), C([0,1]d )

Error rate ωf (
√

dN−
√

L) + 2ωf (
√

d)N−
√

L with L∞-norm
Merely based on the compositional structure of DNNs
NO curse of dimensionality for many continuous functions
Root exponential approximation rate
Shen, Y., and Zhang (Neural Computation, 2020)
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DNNs with advanced activation function

What if we use more activation functions?

Floor, Sign, and 2x activation, width O(N) and depth 3, C([0,1]d )

Error rate ωf (
√

d2−N) + 2ωf (
√

d)2−N with L∞-norm
Merely based on the compositional structure of DNNs
NO curse of dimensionality for many continuous functions
Exponential approximation rate
Shen, Y., and Zhang (Neural Networks, 2021)
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Further interpretation of our result

Explicit error bound

Floor, Sign, and 2x activation, width O(N) and depth 3,
Hölder([0,1]d , α, λ)

Error rate 3λ(2
√

d)α2−αN with L∞-norm
NO curse of dimensionality
Exponential approximation rate
Shen, Y., and Zhang (Neural Networks, 2021)
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Further interpretation of our result

Realistic consideration

Constructive approximation requires f or exponentially many
samples given
Constructed parameters require high precision computation
Floor and Sign are discontinuous functions leading to gradient
vanishing
The network size has to be increased when ε→ 0
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DNNs with advanced activation function

Elementary universal activation function (EUAF)
A continuous activation function without gradient vanishing

σ1(x) =
∣∣x − 2b x+1

2 c
∣∣,

σ2(x) :=
x

|x |+ 1
,

σ(x) :=

{
σ1(x) for x ∈ [0,∞),
σ2(x) for x ∈ (−∞,0).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1.0

−0.5

0.0

0.5

1.0

σ

Figure: An illustration of σ on [−10, 10].
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DNNs with advanced activation function

Theorem (EUAF approximation in d-dimensions)
Arbitrarily small error with a fixed number of neurons for C([0,1]d ).

For any ε > 0, there exists φ of width 36d(2d + 1) and depth 11
s.t.

‖f (x)− φ(x)‖L∞([0,1]d ) ≤ ε
Shen, Y., and Zhang (arXiv:2107.02397)
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DNNs with advanced activation function

Theorem (EUAF representation in d-dimensions)
Exact representation with a fixed number of neurons for classification
functions.

For any classification function f (x) with K classes, there exists φ
of width 36d(2d + 1) and depth 12 s.t.

f (x) = φ(x)

on the supports of each class.
Shen, Y., and Zhang (arXiv:2107.02397)
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DNNs with advanced activation function

Two main ideas

Theorem (Kolmogorov-Arnold Superposition Theorem)
∀f (x) ∈ C([0,1]d ), there exist ψp(x) and φ(x) in C(R) and bpq ∈ R s.t.

f (x) =
2d+1∑
q=1

aqφ(
d∑

p=1

bpqψp(xp)).

Lemma (EUAF approximation in 1D (Shen, Y., and Zhang
(arXiv:2107.02397))
NNs with width 36 and depth 5 constructed with EUAF is dense in
C([0,1]).
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DNNs with advanced activation function

Other EUAF

Cs EUAF
Sigmod EUAF
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Summary

Deep Neural Networks are powerful
Quantitative approximation results are available
How to quantify deep learning optimization and generalization
errors?
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Optimization and Generalization of Deep Learning

In the setting of supervised learning:

Mean-field analysis

Chizat and Bach 2018; Mei et al. 2018; Mei et al. 2019, Lu et al.
2020, etc.
Idea:
1) a two-layer neural network can be seen as an approximation to
an infinitely wide neural network with parameters following a
distribution pt ;
2) understanding network training via the evolution of pt .

In the setting of solving PDEs: vastly open
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Optimization and Generalization of Deep Learning

In the setting of supervised learning:

Neural tangent kernel/Lazy training

Idea: in the limit of infinite width, deep learning becomes kernel
methods
Global optimization convergence:
• Jacot et al. 2018 (two layers);
• Du et al. 2019 (L layers, DNN);
• Z Allen-Zhu, Y Li, Z Song 2018 (L layers, DNN, RNN);
• D Zou∗, Y Cao∗, D. Zhou, and Q Gu 2018 (L layers, DNN, milder conditions)
• Chizat et al. 2018

Generalization theory
• Y Cao and Q Gu, 2019a (GD)
• Y Cao and Q Gu, 2019b (SGD)

Consistent optimization and generalization for classification
• Z Ji and M Telgarsky 2020
• Z Chen∗, Y Cao∗, D Zou, and Q Gu 2020 (SOTA)

In the setting of solving PDEs: vastly open
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Neural Tangent Kernel of Deep Learning Optimization

Optimization objective function:

RS(θ) :=
1
N

N∑
i=1

(h(xi ;θ)− f (xi ))2

Introduce X := [x1, . . . ,xN ]T ∈ RN×d , then
• h(X ; θ(t)) := [h(xi ; θ(t))] ∈ RN

• ∇θh(X ; θ(t)) := [∇θj
h(xi ; θ(t))] ∈ RN×W

• ∇h(X ;θ(t))RS := 2
N (h(X ; θ(t))− f (X )) := [ 2

N (h(xi ; θ(t))− f (xi ))] ∈ RN

Gradient descent

θ(t + 1) = θ(t)− τ 2
N

N∑
i=1

(h(xi ;θ(t))− f (xi ))∇θ(t)h(xi ;θ)

= θ(t)− τ∇θh(X ;θ(t))T∇h(X ;θ(t))RS,

Gradient flow

∂tθ(t) = −∇θh(X ;θ(t))T∇h(X ;θ(t))RS,
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Neural Tangent Kernel of Deep Learning Optimization

Gradient flow

∂tθ(t) = −∇θh(X ;θ(t))T∇h(X ;θ(t))RS,

DNN evolution

∂th(X ;θ(t)) = ∇θh(X ;θ(t))∂tθ(t) = −Θ̂t (X ,X )∇h(X ;θ(t))RS

with the neural tangent kernel (NTK)

Θ̂t = ∇θh(X ;θ(t))∇θh(X ;θ(t))T .

Nonlinear ODEs and challenging to analyze
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Neural Tangent Kernel of Deep Learning Optimization

Linearization

hlin(x ;θ(t)) := h(x ;θ(0))+∇θh(x ;θ(0))(θ(t)−θ(0)) ≈ h(x ;θ(t)),

Approximate DNN evolution

∂thlin(x ;θ(t)) = −Θ̂0(x ,X )∇hlin(x ;θ(t))RS

= −Θ̂0(x ,X )
2
N

(hlin(x ;θ(t))− f (X ))

Linear ODE with a solution

hlin(x ;θ(t)) = h(x ;θ(0))−Θ̂0(x ,X )Θ̂−1
0

(
I − e−Θ̂0t

)
(h(X ;θ(0))−Y)

and
hlin(X ;θ(t)) =

(
I − e−Θ̂0t

)
Y + e−Θ̂0th(X ;θ(0)).

with Y := [y1, . . . , yN ]T ∈ RN .
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Neural Tangent Kernel of Deep Learning Optimization

Approximate DNN evolution

hlin(x ;θ(t)) = h(x ;θ(0))− Θ̂0(x ,X )Θ̂−1
0

(
I − e−Θ̂0t

)
(h(X ;θ(0))− Y)

and
hlin(X ;θ(t)) =

(
I − e−Θ̂0t

)
Y + e−Θ̂0th(X ;θ(0))

Insight for numerical performance
Spectral bias of deep learning (Rahaman et al, 2018; Xu et al,
2018, Cao et al, 2019)
sin activation to lessen spectral bias (Tancik et al, 2020; Sitzmann
et al, 2020)
Wendland activation for non-singular NTK (Benson, Damle, and
Townsend, 2020)
Reproducing activation function to reduce the condition number
of NTK (Liang, Lyu, Wang, Y., 2021)
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Optimization for PDE Solvers

Question: can we apply existing optimization analysis for PDE
solvers?

A simple example

Two-layer network: φ(x ;θ) =
∑N

k=1 akσ(wT
k x).

A second order differential equation: Lu = f with

Lu =
d∑

α,β=1

Aαβ(x)uxαxβ .

f (x ;θ) := Lφ(x ;θ) =
∑N

k=1 ak wT
k A(x)wkσ

′′(wT
k x) to fit f (x)

Much more difficult nonlinearity in x and w in the fitting than the
original NN fitting.
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Optimization for PDE Solvers
Assumption

Two-layer network: φ(x ;θ) =
∑N

k=1 akσ(wT
k x) on [0,1]d .

A second order differential equation: Lu = f with

Lu =
d∑

α,β=1

Aαβ(x)uxαxβ +
d∑
α=1

bα(x)uxα + c(x)u.

L satisfies the condition: there exists M ≥ 1 such that for all
x ∈ Ω = [0,1]d , α, β ∈ [d ], we have Aαβ = Aβα

|Aαβ(x)| ≤ M, |bα(x)| ≤ M, and |c(x)| ≤ M.

Fixed n samples in the PDE domain.
Empirical loss

RS(θ) =
1

2n

∑
{xi}n

i=1

|Lφ(xi ;θ)− f (xi )|2

and population loss

RD(θ) =
1
2
Ex∼D

[
|Lφ(xi ;θ)− f (xi )|2

]
with φ satisfying boundary conditions.
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Optimization for PDE Solvers

Luo and Y., preprint, 2020

Theorem (Linear convergence rate)
Let θ0 := vec{a0

k ,w
0
k }

N
k=1 be the GD initialization, where

a0
k ∼ N (0, γ2) and w0

k ∼ N (0, Id ) with any γ ∈ (0,1). Let
Cd := E‖w‖12

1 < +∞ with w ∼ N (0, Id ) and λS be a positive
constant. For any δ ∈ (0,1), if width

N ≥ max

{
512n4M4Cd

λ2
Sδ

,
200
√

2Md3n log(4N(d + 1)/δ)
√

RS(θ0)

λS
,

223M3d9n2(log(4N(d + 1)/δ))4
√

RS(θ0)

λ2
S

}
,

then with probability at least 1− δ over the random initialization θ0,
we have, for all t ≥ 0,

RS(θ(t)) ≤ exp

(
−NλSt

n

)
RS(θ0).
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Generalization of PDE solvers

Luo and Y., preprint, 2020

Theorem (A posteriori generalization bound)
For any δ ∈ (0,1), with probability at least 1− δ over the choice of
random sample locations S := {xi}n

i=1, for any two-layer neural
network φ(x ;θ), we have

|RD(θ)− RS(θ)| ≤ (‖θ‖P + 1)2
√

n
2M2

(
14d2

√
2 log(2d)

+ log[π(‖θ‖P + 1)] +
√

2 log(1/3δ)
)

Proof: |RD(θ)− RS(θ)| ≤ Rademacher complexity + Stat error
≤ O

(
‖θ‖P√

n

)
+ O

(
1√
n

)
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Generalization of PDE solvers

Regression: E, Ma, and Wu, CMS, 2019
PDE solvers: Luo and Y., preprint, 2020

Theorem (A priori generalization bound)
Suppose that f (x) is in the Barron-type space B([0,1]d ) and
λ ≥ 4M2[2 + 14d2

√
2 log(2d) +

√
2 log(2/3δ)]. Let

θS,λ = arg min
θ

JS,λ(θ) := RS(θ) +
λ√
n
‖θ‖2
P log[π(‖θ‖P + 1)].

Then for any δ ∈ (0,1), with probability at least 1− δ over the choice
of random samples S := {xi}n

i=1, we have

RD(θS,λ) := Ex∼D
1
2 (Lφ(x ;θS,λ)− f (x))2

≤ 6M2‖f‖2
B

N
+
‖f‖2
B + 1√

n
(4λ+ 16M2) {log[π(2‖f‖B + 1)]

+ 14d2
√

log(2d) +
√

log(2/3δ)
}
.

Proof: RD(θS,λ) ≤ Approximation error + Rademacher complexity +

Stat error ≤ O
(
‖f‖2
B

N

)
+ O

(
‖θ‖P√

n

)
+ O

(
1√
n

)
≤ O

(
‖f‖2
B

N

)
+ O

(
‖f‖2
B√
n

)
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Key ideas of our approximation

For x ∈ Qβ:
x → φ1(x) = β → φ2(β) = kβ → φ3(kβ) = f (xβ) ≈ f (x)

Piecewise constant approximation:
f (x) ≈ fp(x) ≈ φ3 ◦ φ2 ◦ φ1(x)

2N pieces per dim and 2Nd pieces with accuracy
2−N

Floor NN φ1(x) s.t. φ1(x) = β for x ∈ Qβ and
β ∈ Zd .
Linear NN φ2 mapping β to an integer
kβ ∈ {1, . . . ,2Nd}
Key difficulty: NN φ3 of width O(N) and depth O(1)
fitting 2Nd samples in 1D with accuracy O(2−N)

ReLU NN fails

Figure: Uniform domain
partitioning.

Figure: Floor function.

Figure: ReLU function.
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Key ideas of our approximation

Binary representation and approximation
θ =

∑∞
`=1 θ`2

−` with θ` ∈ {0,1} is approximated by
∑N
`=1 θ`2

−` with
an error 2−N .

Bit extraction via a floor NN of width 2 and depth 1

φk (θ) := b2kθc − 2b2k−1θc = θk

Bit extraction via a floor NN of width 2N and depth 1
Given θ =

∑∞
`=1 θ`2

−`

φ(θ) :=

φ1(θ)
...

φN(θ)

 =

θ1
...
θN

 ∈ ZN
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Key ideas of our approximation

Encoding K numbers to one number

Extract bits {θ(k)
1 , . . . , θ

(k)
N } from θ(k) =

∑∞
`=1 θ

(k)
` 2−` for

k = 1, . . . ,K
sum up to get
a =

∑N
`=1 θ

(1)
` 2−` +

∑2N
`=N+1 θ

(2)
` 2−` + · · ·+∑KN

`=(K−1)N+1 θ
(K )
` 2−`

Decoding one number to get the k -th numbers

Extract bits {θ(k)
1 , . . . , θ

(k)
N } from a via

ψ(k) := φ(2(k−1)Na− b2(k−1)Nac)
of width O(N) and depth O(1).

sum up to get θ(k) ≈∑N
`=1 θ

(k)
` 2−` = [2−1, . . . ,2−N ]ψ(k) := γ(k),

γ(k) is an NN of width O(N) and depth O(1).

Key Lemma
There exists an NN γ of width O(N) and depth O(1) that can
memorize arbitrary samples {(k , θ(k)}K

k=1 with a precision 2−N .
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DNNs with advanced activation function

EUAF is more powerful than bit extraction.

Lemma (Curve filling in K -dimensions (Shen, Y., and Zhang
(arXiv:2107.02397))
For any K ∈ N+, the following point set{[

σ1( w
π+1 ), σ1( w

π+2 ), · · · , σ1( w
π+K )

]T
: w ∈ R

}
⊆ [0,1]K

is dense in [0,1]K , where π is the ratio of the circumference of a circle
to its diameter.

Proof.
Ideas:

Transcendental number + distinct rational numbers→ rationally
independent numbers
Rationally independent numbers + periodic functions→ dense
set in [0,1]K

For arbitrary K , NN with width 1 and depth 2 constructed with EAUF
can fit K points up to arbitrary accuracy.


