
1/41

A Few Thoughts on Deep Learning-Based Scientific
Computing

Haizhao Yang
Department of Mathematics

Purdue University

Inverse Problems Seminar
Department of Mathematics and Computer Science

University College London
February 5, 2021

2/41

Deep Learning for Scientific Computing?
Still not a complete story.

Outline
Neural Network Approximation
• Exponential Approximation Rate
• Curse of dimensonality
• Deep network is powerful

Neural Network Optimization
• Global convergence for supervised learning
• Global convergence for solving PDEs
• But assumption is strong

Neural Network Generalization
• Generalization for supervised learning
• Generalization for solving PDEs
• But requires regularization

3/41

Deep neural networks

y = h(x ; θ) := T ◦ φ(x) := T ◦ h(L) ◦ h(L−1) ◦ · · · ◦ h(1)(x)

where
h(i)(x) = σ(W (i)T

x + b(i));
T (x) = V T x ;
θ = (W (1), · · · ,W (L),b(1), · · · ,b(L),V).

4/41

Supervised deep learning

Conditions

Given data pairs {(xi , yi = f (xi))}
from an unknown map f (x) defined
on Ω

{xi}n
i=1 are sampled randomly from

an unknown distribution U(x) on Ω

Goal
Recover the unknown map f (x)

Deep learning

Design a family of DNNs {h(x ; θ)}θ of
a given size
Find the best DNN h(x ; θ) ≈ f (x) on
Ω

5/41

Supervised deep learning
Deep learning ideally

Quantify how good h(x ; θ) ≈ f (x) via the population loss:

RD(θ)
e.g.
= Ex∼U(Ω)

[
|h(x ; θ)− f (x)|2

]
The best solution is h(x ; θD) with

θD = argmin RD(θ)

But U(Ω) is not known

Deep learning in practice

Only the empirical loss is available:

RS(θ) :=
1
N

N∑
i=1

(h(xi ; θ)− yi)
2

The best empirical solution is h(x ; θS) with

θS = argmin RS(θ)

Numerical optimization to obtain a numerical solution h(x ; θN).
In practice, θN 6= θS 6= θD and how good RD(θN) is?

6/41

Supervised deep learning

A full error analysis of RD(θN)

RD(θN) = [RD(θN)− RS(θN)] + [RS(θN)− RS(θS)] + [RS(θS)− RS(θD)]

+ [RS(θD)− RD(θD)] + RD(θD)

≤ RD(θD) + [RS(θN)− RS(θS)]

+ [RD(θN)− RS(θN)] + [RS(θD)− RD(θD)],

RD(θD) =
∫

Ω
(h(x ; θD)− f (x))2dµ(x) ≤

∫
Ω

(h(x ; θ̃)− f (x))2dµ(x)

can be bounded by a constructive approximation of θ̃
[RS(θN)− RS(θS)] is the optimization error
Other two terms are the generalization error

6/41

Supervised deep learning

A full error analysis of RD(θN)

RD(θN) = [RD(θN)− RS(θN)] + [RS(θN)− RS(θS)] + [RS(θS)− RS(θD)]

+ [RS(θD)− RD(θD)] + RD(θD)

≤ RD(θD) + [RS(θN)− RS(θS)]

+ [RD(θN)− RS(θN)] + [RS(θD)− RD(θD)],

RD(θD) =
∫

Ω
(h(x ; θD)− f (x))2dµ(x) ≤

∫
Ω

(h(x ; θ̃)− f (x))2dµ(x)

can be bounded by a constructive approximation of θ̃

[RS(θN)− RS(θS)] is the optimization error
Other two terms are the generalization error

6/41

Supervised deep learning

A full error analysis of RD(θN)

RD(θN) = [RD(θN)− RS(θN)] + [RS(θN)− RS(θS)] + [RS(θS)− RS(θD)]

+ [RS(θD)− RD(θD)] + RD(θD)

≤ RD(θD) + [RS(θN)− RS(θS)]

+ [RD(θN)− RS(θN)] + [RS(θD)− RD(θD)],

RD(θD) =
∫

Ω
(h(x ; θD)− f (x))2dµ(x) ≤

∫
Ω

(h(x ; θ̃)− f (x))2dµ(x)

can be bounded by a constructive approximation of θ̃
[RS(θN)− RS(θS)] is the optimization error

Other two terms are the generalization error

6/41

Supervised deep learning

A full error analysis of RD(θN)

RD(θN) = [RD(θN)− RS(θN)] + [RS(θN)− RS(θS)] + [RS(θS)− RS(θD)]

+ [RS(θD)− RD(θD)] + RD(θD)

≤ RD(θD) + [RS(θN)− RS(θS)]

+ [RD(θN)− RS(θN)] + [RS(θD)− RD(θD)],

RD(θD) =
∫

Ω
(h(x ; θD)− f (x))2dµ(x) ≤

∫
Ω

(h(x ; θ̃)− f (x))2dµ(x)

can be bounded by a constructive approximation of θ̃
[RS(θN)− RS(θS)] is the optimization error
Other two terms are the generalization error

7/41

Deep Learning for Solving PDEs

Goals
Learning the solutions of high-dimensional and highly nonlinear PDEs

Challenges for traditional methods

curse of dimensionality

Machine learning for PDEs

Owens and Filkin, 1989; Lee and Kang, 1990; Dissanayake and
Phan-Thien, 1994
RBM, Quantum Many-Body Problem, Giuseppe Carleo, Matthias
Troyer, 2016
BSDE, Han et al, 2017
DGM, Sirignano and Spiliopoulos, 2017
Deep Ritz, E and Yu, 2017
PINN, Raissi, Perdikaris, and Karniadakis, 2017

8/41

Least Square Methods

Neural networks + least square for PDEs (date back to 1990s),

D(u) = f in Ω,

B(u) = g on ∂Ω.

A DNN φ(x ;θ∗) is constructed to approximate the solution u(x) via

θ∗ = argmin
θ
L(θ)

:= argmin
θ
‖Dφ(x ;θ)− f (x)‖2

2 + λ‖Bφ(x ;θ)− g(x)‖2
2

9/41

Least Square Methods

We aim at the full error analysis:

Approximation theory
Optimization theory
Generalization theory

10/41

Deep Network Approximation

Goals

The curse of dimensionality exist? e.g., # parameters not (1
ε)d

Is exponential approximation rate available? e.g., # parameters
log(1

ε)

Why this goal?

Computational efficiency especially in high dimension

11/41

Literature Review

Active research directions
Cybenko, 1989; Hornik et al., 1989; Barron, 1993; Liang and Srikant,
2016; Yarotsky, 2017; Poggio et al., 2017; Schmidt-Hieber, 2017; E
and Wang, 2018; Petersen and Voigtlaender, 2018; Chui et al., 2018;
Yarotsky, 2018; Nakada and Imaizumi, 2019; Gribonval et al., 2019;
Gühring et al., 2019; Chen et al., 2019; Li et al., 2019; Suzuki, 2019;
Bao et al., 2019; E et al., 2019; Opschoor et al., 2019; Yarotsky and
Zhevnerchuk, 2019; Bölcskei et al., 2019; Montanelli and Du, 2019;
Chen and Wu, 2019; Zhou, 2020; Montanelli et al., 2020, etc.

12/41

Literature Review

Functions spaces

Continuous functions
Smooth functions
Functions with integral representations

13/41

ReLU DNNs, continuous functions C([0,1]d)

ReLU; Fixed network width O(N) and depth O(L)

Nearly tight error rate 5ωf (8
√

dN−2/dL−2/d) simultaneously in N
and L with L∞-norm. Shen, Y., and Zhang (CiCP, 2020)
ωf is the modulas of continuity

Improved to a tight rate O
(√

d ωf

((
N2L2 log3(N + 2)

)−1/d
))

.
Shen, Y., and Zhang (J Math Pures Appl, 2021)

Curse of dimensionality exists!

14/41

ReLU DNNs, smooth functions Cs([0,1]d)

Does smoothness help?

ReLU; Fixed network width O(N) and depth O(L)

Nearly tight rate 85(s + 1)d8s‖f‖Cs([0,1]d)N−2s/dL−2s/d

simultaneously in N and L with L∞-norm
Lu, Shen, Y., and Zhang (SIMA 2021)

The curse of dimensionality exists if s is fixed.

15/41

DNNs with advanced activation function

Sine-ReLU; Fixed width O(d), varying depth L

exp(−cr ,d
√

L) with L∞-norm for Cr ([0,1]d)

Root exponential approximation rate achieved
Curse of dimensionality is not clear
arotsky and Zhevnerchuk, NeurIPS 2020

Floor and ReLU activation, width O(N) and depth O(dL), C([0,1]d)

Error rate ωf (
√

dN−
√

L) + 2ωf (
√

d)N−
√

L with L∞-norm
Merely based on the compositional structure of DNNs
NO curse of dimensionality for many continuous functions
Root exponential approximation rate
Shen, Y., and Zhang (Neural Computation, 2020)

16/41

DNNs with advanced activation function

What if we use more activation functions?

Floor, Sign, and 2x activation, width O(N) and depth 3, C([0,1]d)

Error rate ωf (
√

d2−N) + 2ωf (
√

d)2−N with L∞-norm
Merely based on the compositional structure of DNNs
NO curse of dimensionality for many continuous functions
Exponential approximation rate
Shen, Y., and Zhang (Neural Networks, 2021)

17/41

Further interpretation of our result

Explicit error bound

Floor, Sign, and 2x activation, width O(N) and depth 3,
Hölder([0,1]d , α, λ)

Error rate 3λ(2
√

d)α2−αN with L∞-norm
NO curse of dimensionality
Exponential approximation rate
Shen, Y., and Zhang (Neural Networks, 2021)

18/41

Further interpretation of our result

Realistic consideration

Constructive approximation requires f or exponentially many
samples given
Constructed parameters require high precision computation
Floor and Sign are discontinuous functions leading to gradient
vanishing
The network size has to be increased when ε→ 0

19/41

DNNs with advanced activation function

Elementary universal activation function (EUAF)
A continuous activation function without gradient vanishing

σ1(x) =
∣∣x − 2b x+1

2 c
∣∣,

σ2(x) :=
x

|x |+ 1
,

σ(x) :=

{
σ1(x) for x ∈ [0,∞),
σ2(x) for x ∈ (−∞,0).

−10 −8 −6 −4 −2 0 2 4 6 8 10
−1.0

−0.5

0.0

0.5

1.0

σ

Figure: An illustration of σ on [−10, 10].

20/41

DNNs with advanced activation function

Theorem (EUAF approximation in d-dimensions)
Arbitrarily small error with a fixed number of neurons for C([0,1]d).

For any ε > 0, there exists φ of width 36d(2d + 1) and depth 11
s.t.

‖f (x)− φ(x)‖L∞([0,1]d) ≤ ε
Shen, Y., and Zhang (arXiv:2107.02397)

21/41

DNNs with advanced activation function

Theorem (EUAF representation in d-dimensions)
Exact representation with a fixed number of neurons for classification
functions.

For any classification function f (x) with K classes, there exists φ
of width 36d(2d + 1) and depth 12 s.t.

f (x) = φ(x)

on the supports of each class.
Shen, Y., and Zhang (arXiv:2107.02397)

22/41

DNNs with advanced activation function

Two main ideas

Theorem (Kolmogorov-Arnold Superposition Theorem)
∀f (x) ∈ C([0,1]d), there exist ψp(x) and φ(x) in C(R) and bpq ∈ R s.t.

f (x) =
2d+1∑
q=1

aqφ(
d∑

p=1

bpqψp(xp)).

Lemma (EUAF approximation in 1D (Shen, Y., and Zhang
(arXiv:2107.02397))
NNs with width 36 and depth 5 constructed with EUAF is dense in
C([0,1]).

23/41

DNNs with advanced activation function

Other EUAF

Cs EUAF
Sigmod EUAF

24/41

Summary

Deep Neural Networks are powerful
Quantitative approximation results are available
How to quantify deep learning optimization and generalization
errors?

25/41

Optimization and Generalization of Deep Learning

In the setting of supervised learning:

Mean-field analysis

Chizat and Bach 2018; Mei et al. 2018; Mei et al. 2019, Lu et al.
2020, etc.
Idea:
1) a two-layer neural network can be seen as an approximation to
an infinitely wide neural network with parameters following a
distribution pt ;
2) understanding network training via the evolution of pt .

In the setting of solving PDEs: vastly open

26/41

Optimization and Generalization of Deep Learning

In the setting of supervised learning:

Neural tangent kernel/Lazy training

Idea: in the limit of infinite width, deep learning becomes kernel
methods
Global optimization convergence:
• Jacot et al. 2018 (two layers);
• Du et al. 2019 (L layers, DNN);
• Z Allen-Zhu, Y Li, Z Song 2018 (L layers, DNN, RNN);
• D Zou∗, Y Cao∗, D. Zhou, and Q Gu 2018 (L layers, DNN, milder conditions)
• Chizat et al. 2018

Generalization theory
• Y Cao and Q Gu, 2019a (GD)
• Y Cao and Q Gu, 2019b (SGD)

Consistent optimization and generalization for classification
• Z Ji and M Telgarsky 2020
• Z Chen∗, Y Cao∗, D Zou, and Q Gu 2020 (SOTA)

In the setting of solving PDEs: vastly open

27/41

Neural Tangent Kernel of Deep Learning Optimization

Optimization objective function:

RS(θ) :=
1
N

N∑
i=1

(h(xi ;θ)− f (xi))2

Introduce X := [x1, . . . ,xN]T ∈ RN×d , then
• h(X ; θ(t)) := [h(xi ; θ(t))] ∈ RN

• ∇θh(X ; θ(t)) := [∇θj
h(xi ; θ(t))] ∈ RN×W

• ∇h(X ;θ(t))RS := 2
N (h(X ; θ(t))− f (X)) := [2

N (h(xi ; θ(t))− f (xi))] ∈ RN

Gradient descent

θ(t + 1) = θ(t)− τ 2
N

N∑
i=1

(h(xi ;θ(t))− f (xi))∇θ(t)h(xi ;θ)

= θ(t)− τ∇θh(X ;θ(t))T∇h(X ;θ(t))RS,

Gradient flow

∂tθ(t) = −∇θh(X ;θ(t))T∇h(X ;θ(t))RS,

28/41

Neural Tangent Kernel of Deep Learning Optimization

Gradient flow

∂tθ(t) = −∇θh(X ;θ(t))T∇h(X ;θ(t))RS,

DNN evolution

∂th(X ;θ(t)) = ∇θh(X ;θ(t))∂tθ(t) = −Θ̂t (X ,X)∇h(X ;θ(t))RS

with the neural tangent kernel (NTK)

Θ̂t = ∇θh(X ;θ(t))∇θh(X ;θ(t))T .

Nonlinear ODEs and challenging to analyze

29/41

Neural Tangent Kernel of Deep Learning Optimization

Linearization

hlin(x ;θ(t)) := h(x ;θ(0))+∇θh(x ;θ(0))(θ(t)−θ(0)) ≈ h(x ;θ(t)),

Approximate DNN evolution

∂thlin(x ;θ(t)) = −Θ̂0(x ,X)∇hlin(x ;θ(t))RS

= −Θ̂0(x ,X)
2
N

(hlin(x ;θ(t))− f (X))

Linear ODE with a solution

hlin(x ;θ(t)) = h(x ;θ(0))−Θ̂0(x ,X)Θ̂−1
0

(
I − e−Θ̂0t

)
(h(X ;θ(0))−Y)

and
hlin(X ;θ(t)) =

(
I − e−Θ̂0t

)
Y + e−Θ̂0th(X ;θ(0)).

with Y := [y1, . . . , yN]T ∈ RN .

30/41

Neural Tangent Kernel of Deep Learning Optimization

Approximate DNN evolution

hlin(x ;θ(t)) = h(x ;θ(0))− Θ̂0(x ,X)Θ̂−1
0

(
I − e−Θ̂0t

)
(h(X ;θ(0))− Y)

and
hlin(X ;θ(t)) =

(
I − e−Θ̂0t

)
Y + e−Θ̂0th(X ;θ(0))

Insight for numerical performance
Spectral bias of deep learning (Rahaman et al, 2018; Xu et al,
2018, Cao et al, 2019)
sin activation to lessen spectral bias (Tancik et al, 2020; Sitzmann
et al, 2020)
Wendland activation for non-singular NTK (Benson, Damle, and
Townsend, 2020)
Reproducing activation function to reduce the condition number
of NTK (Liang, Lyu, Wang, Y., 2021)

31/41

Optimization for PDE Solvers

Question: can we apply existing optimization analysis for PDE
solvers?

A simple example

Two-layer network: φ(x ;θ) =
∑N

k=1 akσ(wT
k x).

A second order differential equation: Lu = f with

Lu =
d∑

α,β=1

Aαβ(x)uxαxβ .

f (x ;θ) := Lφ(x ;θ) =
∑N

k=1 ak wT
k A(x)wkσ

′′(wT
k x) to fit f (x)

Much more difficult nonlinearity in x and w in the fitting than the
original NN fitting.

32/41

Optimization for PDE Solvers
Assumption

Two-layer network: φ(x ;θ) =
∑N

k=1 akσ(wT
k x) on [0,1]d .

A second order differential equation: Lu = f with

Lu =
d∑

α,β=1

Aαβ(x)uxαxβ +
d∑
α=1

bα(x)uxα + c(x)u.

L satisfies the condition: there exists M ≥ 1 such that for all
x ∈ Ω = [0,1]d , α, β ∈ [d], we have Aαβ = Aβα

|Aαβ(x)| ≤ M, |bα(x)| ≤ M, and |c(x)| ≤ M.

Fixed n samples in the PDE domain.
Empirical loss

RS(θ) =
1

2n

∑
{xi}n

i=1

|Lφ(xi ;θ)− f (xi)|2

and population loss

RD(θ) =
1
2
Ex∼D

[
|Lφ(xi ;θ)− f (xi)|2

]
with φ satisfying boundary conditions.

33/41

Optimization for PDE Solvers

Luo and Y., preprint, 2020

Theorem (Linear convergence rate)
Let θ0 := vec{a0

k ,w
0
k }

N
k=1 be the GD initialization, where

a0
k ∼ N (0, γ2) and w0

k ∼ N (0, Id) with any γ ∈ (0,1). Let
Cd := E‖w‖12

1 < +∞ with w ∼ N (0, Id) and λS be a positive
constant. For any δ ∈ (0,1), if width

N ≥ max

{
512n4M4Cd

λ2
Sδ

,
200
√

2Md3n log(4N(d + 1)/δ)
√

RS(θ0)

λS
,

223M3d9n2(log(4N(d + 1)/δ))4
√

RS(θ0)

λ2
S

}
,

then with probability at least 1− δ over the random initialization θ0,
we have, for all t ≥ 0,

RS(θ(t)) ≤ exp

(
−NλSt

n

)
RS(θ0).

34/41

Generalization of PDE solvers

Luo and Y., preprint, 2020

Theorem (A posteriori generalization bound)
For any δ ∈ (0,1), with probability at least 1− δ over the choice of
random sample locations S := {xi}n

i=1, for any two-layer neural
network φ(x ;θ), we have

|RD(θ)− RS(θ)| ≤ (‖θ‖P + 1)2
√

n
2M2

(
14d2

√
2 log(2d)

+ log[π(‖θ‖P + 1)] +
√

2 log(1/3δ)
)

Proof: |RD(θ)− RS(θ)| ≤ Rademacher complexity + Stat error
≤ O

(
‖θ‖P√

n

)
+ O

(
1√
n

)

35/41

Generalization of PDE solvers

Regression: E, Ma, and Wu, CMS, 2019
PDE solvers: Luo and Y., preprint, 2020

Theorem (A priori generalization bound)
Suppose that f (x) is in the Barron-type space B([0,1]d) and
λ ≥ 4M2[2 + 14d2

√
2 log(2d) +

√
2 log(2/3δ)]. Let

θS,λ = arg min
θ

JS,λ(θ) := RS(θ) +
λ√
n
‖θ‖2
P log[π(‖θ‖P + 1)].

Then for any δ ∈ (0,1), with probability at least 1− δ over the choice
of random samples S := {xi}n

i=1, we have

RD(θS,λ) := Ex∼D
1
2 (Lφ(x ;θS,λ)− f (x))2

≤ 6M2‖f‖2
B

N
+
‖f‖2
B + 1√

n
(4λ+ 16M2) {log[π(2‖f‖B + 1)]

+ 14d2
√

log(2d) +
√

log(2/3δ)
}
.

Proof: RD(θS,λ) ≤ Approximation error + Rademacher complexity +

Stat error ≤ O
(
‖f‖2
B

N

)
+ O

(
‖θ‖P√

n

)
+ O

(
1√
n

)
≤ O

(
‖f‖2
B

N

)
+ O

(
‖f‖2
B√
n

)

36/41

Acknowledgment

Collaborators
Qiang Du, Yiqi Gu, Jianguo Huang, Senwei Liang, Jianfeng Lu, Tao
Luo, Liyao Lyu, Hadrien Montanelli, Zuowei Shen, Chunmei Wang,
Haoqin Wang, Chunmei Wang, Shijun Zhang, Chao Zhou

Funding
National Science Foundation under the grant award 1945029

37/41

Key ideas of our approximation

For x ∈ Qβ:
x → φ1(x) = β → φ2(β) = kβ → φ3(kβ) = f (xβ) ≈ f (x)

Piecewise constant approximation:
f (x) ≈ fp(x) ≈ φ3 ◦ φ2 ◦ φ1(x)

2N pieces per dim and 2Nd pieces with accuracy
2−N

Floor NN φ1(x) s.t. φ1(x) = β for x ∈ Qβ and
β ∈ Zd .
Linear NN φ2 mapping β to an integer
kβ ∈ {1, . . . ,2Nd}
Key difficulty: NN φ3 of width O(N) and depth O(1)
fitting 2Nd samples in 1D with accuracy O(2−N)

ReLU NN fails

Figure: Uniform domain
partitioning.

Figure: Floor function.

Figure: ReLU function.

38/41

Key ideas of our approximation

Binary representation and approximation
θ =

∑∞
`=1 θ`2

−` with θ` ∈ {0,1} is approximated by
∑N
`=1 θ`2

−` with
an error 2−N .

Bit extraction via a floor NN of width 2 and depth 1

φk (θ) := b2kθc − 2b2k−1θc = θk

Bit extraction via a floor NN of width 2N and depth 1
Given θ =

∑∞
`=1 θ`2

−`

φ(θ) :=

φ1(θ)
...

φN(θ)

 =

θ1
...
θN

 ∈ ZN

39/41

Key ideas of our approximation

Encoding K numbers to one number

Extract bits {θ(k)
1 , . . . , θ

(k)
N } from θ(k) =

∑∞
`=1 θ

(k)
` 2−` for

k = 1, . . . ,K
sum up to get
a =

∑N
`=1 θ

(1)
` 2−` +

∑2N
`=N+1 θ

(2)
` 2−` + · · ·+∑KN

`=(K−1)N+1 θ
(K)
` 2−`

Decoding one number to get the k -th numbers

Extract bits {θ(k)
1 , . . . , θ

(k)
N } from a via

ψ(k) := φ(2(k−1)Na− b2(k−1)Nac)
of width O(N) and depth O(1).

sum up to get θ(k) ≈∑N
`=1 θ

(k)
` 2−` = [2−1, . . . ,2−N]ψ(k) := γ(k),

γ(k) is an NN of width O(N) and depth O(1).

Key Lemma
There exists an NN γ of width O(N) and depth O(1) that can
memorize arbitrary samples {(k , θ(k)}K

k=1 with a precision 2−N .

40/41

Key ideas of our approximation

For x ∈ Qβ:
x → φ1(x) = β → φ2(β) = kβ → φ3(kβ) = f (xβ) ≈ f (x)

Piecewise constant approximation:
f (x) ≈ fp(x) ≈ φ3 ◦ φ2 ◦ φ1(x)

2N pieces per dim and 2Nd pieces with accuracy
2−N

Floor NN φ1(x) s.t. φ1(x) = β for x ∈ Qβ and
β ∈ Zd .
Linear NN φ2 mapping β to an integer
kβ ∈ {1, . . . ,2Nd}
Key difficulty: NN φ3 of width O(N) and depth O(1)
fitting 2Nd samples in 1D with accuracy O(2−N)

Key Lemma: There exists an NN γ of width O(N)
and depth O(1) that can memorize arbitrary
samples {(k , θ(k)}K

k=1 with a precision 2−N .

Figure: Uniform domain
partitioning.

Figure: Floor function.

Figure: ReLU function.

41/41

DNNs with advanced activation function

EUAF is more powerful than bit extraction.

Lemma (Curve filling in K -dimensions (Shen, Y., and Zhang
(arXiv:2107.02397))
For any K ∈ N+, the following point set{[

σ1(w
π+1), σ1(w

π+2), · · · , σ1(w
π+K)

]T
: w ∈ R

}
⊆ [0,1]K

is dense in [0,1]K , where π is the ratio of the circumference of a circle
to its diameter.

Proof.
Ideas:

Transcendental number + distinct rational numbers→ rationally
independent numbers
Rationally independent numbers + periodic functions→ dense
set in [0,1]K

For arbitrary K , NN with width 1 and depth 2 constructed with EAUF
can fit K points up to arbitrary accuracy.

