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Abstract

In this paper, we consider three-dimensional parameter space, which is the time-frequency-chirprate

(TFCR), to characterize the time-varying features of multi-component non-stationary signals. By per-

forming reassignment on the frequency-chirprate plane, a highly concentrated TFCR representation,

named as the frequency-chirprate reassignment method (FCRM), is proposed. FCRM can provide the

instantaneous frequency (IF) and chirprate (CR) estimates jointly, making the time-frequency (TF)

crossed signals appear as separated in the TFCR domain, which overcomes the separable limitation of

the popular TF post-processing methods. Based on the chirplet transform, we derive the reassignment

center of FCRM, and a three-dimension ridge detection algorithm is introduced to extract the IFs and

CRs from the FCRM. Numerical experiments demonstrate that FCRM provides a concentrated TFCR

representation, obtaining a good IF estimation for overlapped multicomponent signals.

Keywords: Time-frequency-chirprate analysis, Reassignment, Chirplet transform, IF estimation,

Overlapped multi-component signals

1. Introduction

Non-stationary signal analysis has received extensive attention in the fields of seismic [1], astronomical

[2], radar and sonar [3], biomedicine [4,5], mechanical engineering [6,7], etc. To better process such signals,

time-frequency (TF) representations [1,6-8], instead of the Fourier transform, are widely used. The most

two popular TF methods are probably the short-time Fourier transform (STFT) [9] and the continuous

wavelet transform (CWT) [10], which serve as basic choices for signal detection. However, both transforms

are limited by the Heisenberg uncertainty principle [8]. Indeed, the TF resolution is constrained by the

choice of window or wavelet, limiting the readability and the adaptivity of the TF representation.

In the past decades, many works have been presented aiming at the high-resolution TF representa-

tion, i.e., a sufficient concentration TF plot to represent the signal as accurately as possible. The first

attempt we think is the Wigner-Ville distribution (WVD) [11]. Although WVD is not constrained by

the uncertainty principle, interference terms are introduced for multi-component signals [8]. Another

attempt, called the reassignment method (RM) [12,13], transfers the TF coefficients from the original
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position to the center of gravity of signal’s energy distribution in the TF plane. Although RM improves

the energy concentration and has been widely applied in many practical applications [14-16], it lacks

an explicit formula for signal reconstruction and fails to characterize signals with cross-over frequencies

[17,18].

As a special case of the RM, the synchrosqueezing transform (SST), put forward by Daubechies and

Maes in the mid-1990s [19], squeezes the TF coefficients into the IF trajectory only in frequency direction

[20]. As a result, SST not only exhibits a TF spectrum with a good readability but also retains an explicit

formula for signal reconstruction. In recent years, SST has attracted a lot of interest and been widely

studied. It has been proved that SST is adapted to different transform frameworks, including the STFT-

based SST [21], the synchrosqueezed curvelet transform [22], the synchrosqueezed wave packet transform

[23,24], the synchrosqueezing S-transform [25], the chirplet-based SST [26], etc. The robust analysis and

multivariate extensions of SST are presented in [27-31]. In spite of all these advances, one drawback

associated with SST in its original formulation is that it suffers from a low TF resolution when dealing

with strongly amplitude-modulated and frequency-modulated (AM-FM) signals [32-34], which are very

common in many fields of practical interest, e.g., mechanical vibration [7] and gravitational waves [35].

In this regard, many improvements of SST to better handle strong modulation signals are introduced,

e.g., the demodulated SST [32,36], the high-order SST [33,37], the multiple squeezes transform [26,38],

the time-reassigned SST [39].

Differing from the squeezing manner of SST, the synchroextracting transform (SET) [40] retains only

the TF information related to the IFs of the signal and removes most smeared TF energy. A theoretical

studies of SET and its extension are presented in [41], which sharpens the TF representation by extracting

the TF points satisfying an IF equation. In addition, similar to the time-reassigned SST [39], a time-

synchroextracting transform is also developed for transient signals analysis [42].

The introduced TF post-processing methods above, including RM, SST-based methods, and SET-

based methods, have been widely used and adapted in many fields [7,14,19,25,27,30,36,37,40,42]. However,

the performance of these methods depends on the basic condition of separability, failing in the presence

of crossed modes in the TF plane. To tackle this limitation, some attempts have been presented recently.

The first one focuses on the modifications of RM [18,43,44] combining with the improved ridge detection

methods [45,46]. The modified RM methods correct the signal representation in the non-separable region

partly, but no additional support can be used for distinguishing multi-component signal. In addition

to the modified RM methods, another two-dimension analysis is referred to as time-chirprate (time-

CR) representation, which mainly involves high-order ambiguity functions [47] and cubic phase functions

[48,49]. For such methods, cross-terms are also introduced when multi-component signals are considered;

however, there is no sufficient study on sharpening the time-CR representation and how to solve the

overlapped case in the time-CR plot. Instead of two-dimension signal representation, three-dimension

representation (e.g. time-frequency-chirprate (TFCR)) [50,51] shows great potential in processing multi-
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component non-stationary signals, since the intersected signals in the TF or time-CR domain frequently

appear as separated in high-dimensional space. However, how to obtain an accurate and concentrated

three-dimensional representation is a challenging job.

In this paper, we attempt to improve the resolution of the TFCR representation generated by

the chirplet transform [41,50,52]. A new transform, named frequency-chirprate reassignment method

(FCRM), is proposed, which sharpens the three-dimensional signal representation and characterizes the

IF and CR information simultaneously. The main contributions of this paper can be summarized as

follows:

(a) We derive the reassignment center for the TFCR representation.

(b) We propose a novel FCRM to obtain a high-resolution TFCR representation by reassigning the

frequency-chirprate (frequency-CR) points from original location to reassignment center, which

extends the reassignment technology to three-dimensional signal representation.

(c) A three-dimensional ridge detection algorithm is presented to realize the robust detection for IF

and CR of the signal.

(d) The FCRM breaks the limitation of the separability of the standard RM and SST methods and has

a good performance for handling overlapped multi-component signals.

The remainder of the paper is organized as follows. In Section 2, the TFCR transform is introduced.

In Section 3, we devote to the description of the proposed FCRM method. Three-dimensional ridge

detection algorithm is given in Section 4. Experimental results and comparative studies are presented in

Section 5. Finally, Section 6 concludes the paper.

2. Time-frequency-chirprate representation for multi-component non-stationary signal

2.1. Multi-component non-stationary signal

The multi-component non-stationary signal we considered in this paper is the AM-FM waves as

f(t) =

K∑
k=1

fk(t) =

K∑
k=1

Ak(t)ejφk(t), (1)

where K is a positive integer representing the number of AM-FM components,
√
−1 = j, Ak(t) > 0

and φk(t) are the instantaneous amplitude and instantaneous phase of the k-th component (or mode),

respectively. The first and the second derivative of the phase, i.e., φ′k(t), φ′′k(t), are respectively referred

to as the instantaneous frequency (IF) and chirprate (CR) of the signal.

Generally, the IFs and CRs of the signal can be used for multi-component and non-stationary signal

characterization. Indeed, for l 6= k, (φ′l(t), φ
′′
l (t)) = (φ′k(t), φ′′k(t)) requires that these two components

to be tangent in the TF plot, which is a more strict condition compared with the intersection in the

TF or time-CR plane. That also means the multi-component signal can be well represented by several
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separable curves in the TFCR domain for most of the time. Effective signal representation should admit

concentrated energy distributions in the IF and CR simultaneously such that post-processing can be

carried out for signal estimation and separation.

2.2. Chirplet transform

The chirplet transform (CT) generalizes the STFT by using an extra CR parameter, which is defined

as [41,50,52]

Cgf (t, ω, β) =

∫ +∞

−∞
f(µ)g(µ− t)e−

jβ(µ−t)2
2 e−jω(µ−t)dµ, (2)

where β is the CR parameter/variable, and g(t) is a real and even window function. When β ≡ 0, this

transform corresponds to the well known STFT. By introducing the parameter β, CT maps the signal

from the time domain to a three-dimensional space obtaining the TFCR representation.

CT is a linear transform and hence its resolution is limited by the choice of its window size, which

is the size of the essential support of g in (2). Indeed, a narrow window leads to a high time-resolution,

but diffuses the energy distribution in the frequency-CR domain. Conversely, a wide window produces a

concentrated frequency-CR representation, but it causes a large error of the IF estimation for fast-varying

signals [36,53,54]. Let us consider an example:

f(t) = f1(t) + f2(t) + n(t),

f1(t) = exp(−0.03t) sin(2π(−90t2 + 220t)),

f2(t) = (1 + 0.1 cos(20πt)) cos(2π(10 sin(2πt) + 80t)),

(3)

where n(t) is a Gaussian noise. The sampling frequency is 512 Hz, and time duration is [0 1]. The STFT

of this test signal with the SNR = 16 dB is illustrated in Fig. 1(a). Fig. 1 (b-c) display the CT slices

(t = 0.5 s) of this signal using different window lengths, where the red notes are the true instantaneous

features of the signal. Obviously, a wide window concentrates the result of f1(t) but leads the energy

distribution of f2(t) to deviating from the true value. A narrow window is prefer for f2(t), but it spreads

the representation.

3. Frequency-chirprate reassignment method

In this section, we consider how to sharpen the chirplet transform such that the obtained repre-

sentation concentrates along the IF and CR curves in the TFCR domain. For the convenience of the

following explanation, we consider the case of a monocomponent signal f(t) = A(t) exp(jφ(t)). The

multicomponent signals can be handled similarly if all of modes are well separated in the TFCR domain.

Assume that around µ = t the mode f(t) = A(t)ejφ(t) can be well approximated by its second-order

local expansion:

f(µ+ t) ≈ A(t)ej(φ(t)+φ
′(t)µ+ 1

2φ
′′(t)µ2). (4)
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Figure 1: The STFT and the CT slices (t = 0.5 s) for the test signal. (a) The STFT, (b) the CT slice when

window length is taken as 67 points, (c) the CT slice when the window length is taken as 127 points, (d) the

FCRM result with 67 window length.

As the Gaussian window function g(t) = σ−
1
2 e−

t2

2σ2 is employed, the CT result of f(t) under the hypothesis

(4) is simple gaussian integral as follows:

Cgf (t, ω, β) =

∫ +∞

−∞
f(µ)g(µ− t)e−

jβ(µ−t)2
2 e−jω(µ−t)dµ

= f(t)
√
σ

√
2π

1 + jσ2(β − φ′′(t))
exp

(
− σ2(ω − φ′(t))2

2(1 + jσ2(β − φ′′(t)))

)
.

(5)

From (5), we can obtain that

1 + σ4(β − φ′′(t))2

σ2
<

{
∂
∂ωC

g
f (t, ω, β)

Cgf (t, ω, β)

}
+ ω = φ′(t), (6)

=

{
Cgf (t, ω, β)2

∂2

∂ω2C
g
f (t, ω, β)× Cgf (t, ω, β)− ∂

∂ωC
g
f (t, ω, β)

2

}
+ β = φ′′(t), (7)

where | Cgf (t, ω, β) |> γ, | ∂2

∂ω2C
g
f (t, ω, β) × Cgf (t, ω, β) − ∂

∂ωC
g
f (t, ω, β)

2 |> γ, the parameter γ > 0 is a

hard threshold, and <{·} (={·}) denotes the real (imaginary) part of complex number.

Let

β̂(t, ω, β) := =

{
Cgf (t, ω, β)2

∂2

∂ω2C
g
f (t, ω, β)× Cgf (t, ω, β)− ∂

∂ωC
g
f (t, ω, β)

2

}
+ β, (8)
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then we can obtain the following expression according to equation (6)

ω̂(t, ω, β) :=
1

σ2
<

{
∂
∂ωC

g
f (t, ω, β) |β=β̂
Cgf (t, ω, β̂)

}
+ ω = φ′(t). (9)

From expressions (8-9), a novel time-frequency-chirprate representation called the frequency-chirprate

reassignment method (FCRM) is proposed as

Fc(t, η, ζ) =

∫ +∞

−∞

∫ +∞

−∞
| Cgf (t, ω, β) |2 δ(η − ω̂)δ(ζ − β̂)dωdβ, (10)

where δ(·) is the Dirac delta function. We call this transform as the frequency-chirprate reassignment

because the reassignment is performed on the frequency-CR plane and it relocates the frequency-CR

points from (ω, β) to (ω̂, β̂). The point (ω̂, β̂), an approximation of (φ′(t), φ′′(t)), is called the reassignment

center since the modulus of CT at that point achieves the maximum. Different from the standard RM

[13], FCRM can be seen as a scaled reassignment since the scaling factor 1
σ2 is employed in expression

(9).

Fig. 2 illustrates the reassignment of the signal representation to the new frequency-CR coordinates

according to Equation (10), and the reassignment result is presented in Fig. 1(d). Obviously, the resulting

FCRM has two peaks at the correct frequency-CR centers. Compared with the results obtained by CT

(i.e., Fig. 1(b,c)), the proposed FCRM effectively improves the readability, obtaining highly concentrated

frequency-CR representation.
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Figure 2: An illustration of the frequency-CR reassignment.

For more precise parameter estimation, ∂
∂ωC

g
f (t, ω, β) can be calculated by

∂

∂ω
Cgf (t, ω, β) =

∂

∂ω

(∫ +∞

−∞
f(µ)g(µ− t)e−jβ(µ−t)

2/2e−jω(µ−t)dµ

)
= −jCtgf (t, ω, β),

(11)

where Ctgf (t, ω, β) denotes the CT of f(t) obtained by using the window function tg(t). Similarly, for
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∂2

∂ω2C
g
f (t, ω, β), we also have

∂2

∂ω2
Cgf (t, ω, β) = −Ct

2g
f (t, ω, β), (12)

where Ct
2g
f (t, ω, β) denotes the CT of f(t) under the window function t2g(t). Combing (11)-(12), the

reassignment center can be computed by
β̂(t, ω, β) = =

{
Cgf (t,ω,β)

2

Ctgf (t,ω,β)
2−Ct

2g
f (t,ω,β)Cgf (t,ω,β)

}
+ β,

ω̂(t, ω, β) = =
{
Ctgf (t,ω,β̂)

Cgf (t,ω,β̂)

}
+ ω.

(13)

Therefore, the computational cost of FCRM mainly comes from the CT calculations with different win-

dows, and which can be efficiently implemented by FFT.

4. Three-dimensional ridge detection algorithm

In this section, we introduce a classical ridge detection algorithm to obtain the IF and CR estimates

from three-dimensional signal representation.

FCRM reassigns the signal energy, which makes the representation achieve a maximum energy along

the curve (φ′(t), φ′′(t)), t ∈ R. Similar to the ridge definition given in the TF domain [41,55], we also

call the maximum energy curve in the TFCR representation as the ridge. Due to the smoothness of the

ridge curve, we can compute them by maximizing the cost function as

E(r(t), c(t)) =

∫ +∞

−∞
Fc(t, r(t), c(t))dt− λ1

∫ +∞

−∞
r′(t)

2
dt− λ2

∫ +∞

−∞
c′(t)

2
dt, (14)

where λ1 and λ2 are two positive parameters tuning the level of regularization.

Consider the discrete multicomponent signal as

f(n) :=

K∑
k=1

fk(n∆t), n = 1, 2, · · · , N, (15)

where ∆t is the sampling interval, Algorithm 1 offers algorithmic means to compute the ridges of the

FCRM by optimizing the cost (14).

To improve the robustness of the detection procedure, several random initializations are required,

leading to the detection of many different ridge sets (rk(t), ck(t)), and the one retained as the output

corresponds to the one maximizing the cost (14). Moreover, the classical robust regression [56] can

be applied to the obtained ridges to further improve the accuracy of the IF and CR estimation. It

is worth noting that the introduced ridge detector can be directly applied to other three-dimensional

representations instead of the FCRM in Algorithm 1.

5. Numerical validation

In this section, the proposed FCRM is tested on some numerical simulations. We employ the hard

threshold method used in [20,26] to select parameter γ, and the Gaussian window is used in the FCRM.
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Algorithm 1 Three-dimensional ridge detection algorithm

1: Input the TFCR representation Fc(n,m, l), 1 ≤ n ≤ N , 1 ≤ m ≤ M , 1 ≤ l ≤ L, the parameters λ1, λ2, and

the allowable variations ∆r and ∆c;

2: Pick q ∈ {1, 2, · · · , N};

3: Define (r(q), c(q)) = arg maxm,l Fc(q,m, l);

4: for n = q + 1, q + 2, · · · , N do

5: Define Irc = [max(1, r(n− 1)−∆r) min(r(n− 1) + ∆r,M)]× [max(1, c(n− 1)−∆c) min(c(n− 1) + ∆c, L)];

6: Calculate (r(n), c(n)) = arg max(m,l)∈Irc Fc(n,m, l)− λ1(m− r(n− 1))2 − λ2(l − c(n− 1))2;

7: end for

8: for n = q − 1, q − 2, · · · , 1 do

9: Define Irc = [max(1, r(n+ 1)−∆r) min(r(n+ 1) + ∆r,M)]× [max(1, c(n+ 1)−∆c) min(c(n+ 1) + ∆c, L)];

10: Calculate (r(n), c(n)) = arg max(m,l)∈Irc Fc(n,m, l)− λ1(m− r(n+ 1))2 − λ2(l − c(n+ 1))2;

11: end for

12: Define Fc(n,m, l) = 0 for (m, l) ∈ Irc, n = 1, 2, · · · , N ;

13: Repeat the steps (2-12) until all ridges are detected.

5.1. Overlapped multi-component signals detection

The first test is to consider the performance of the FCRM in detecting the two-components signal

(3) with the SNR= 12 dB. Fig. 3 displays two frequency-CR plots of the CT and FCRM methods

with an 67-length window, where the red notes are the true instantaneous information of the signal.

Obviously, the FCRM successfully localizes the two modes and achieves a significant improvement on

signal concentration compared with the CT. Although both two components of the signal (3) have almost

the same IF at t = 0.76 s, the FCRM can separate them in the frequency-CR domain (see Fig. 3(d)).

Furthermore, we apply Algorithm 1 (λ1 = 0.07, λ2 = 0.03) to the FCRM, and the detected results are

displayed in Fig. 4. We can see from the results that the FCRM successfully characterizes the features

of the overlapped multi-component signal, obtaining a good IFs estimation. It is difficult to separate

this multi-component signal from the TF domain or time-CR domain due to the interference of different

modes. It can be seen from Fig. 4(c) that a error exists in the CR estimation for FCRM. Nevertheless,

the obtained CR information still plays a critical role in the TFCR representation because it contributes

to a more accurate IF estimation for signals with cross-over frequencies.

In addition, Fig. 5(a,b) show the TF representations of the SST [20] and RM [13], and the estimated

IFs by the TF ridge detection algorithm [55] are given in Fig. 5(c,d). Compared to the result of the

FCRM as presented in Fig. 4(b), we can observe that SST and RM methods generate an inaccurate IFs

estimation in the non-separable region, and easily leading to the mixture of different modes. Therefore,

the TFCR representation has its clear advantages in processing multi-component non-stationary signals

in spite of increasing the calculation than TF analysis methods.
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Figure 3: Frequency-CR plots by CT and FCRM at different times. (a) The CT result at t = 0.1 s, (b) the CT

result at t = 0.76 s, (c) the FCRM result at t = 0.1 s, (d) the FCRM result at t = 0.76 s.
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Figure 4: The detected result of FCRM. (a) Time-frequency-chirprate representation of FCRM, (b) TF plot of

FCRM, (c) time-CR plot of FCRM, (d) the estimated IFs by FCRM.
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Figure 5: TF results of SST and RM. (a) SST result, (b) RM result, (c) the detected IF from SST, (d) the detected

IF from RM.

Next, let us consider a three-components AM-FM signal with small CR values as

f(t) = f1(t) + f2(t) + f3(t) + n(t),

f1(t) = cos(2π × (0.35 + 85t− 8t2)),

f2(t) = (1 + 0.1 cos(0.6πt)) cos(2π × (20t+ 12t2)),

f3(t) = cos(8πt+ 120 sin(0.5πt)),

(16)

where n(t) is a Gaussian noise with the SNR= 8 dB. The sampling frequency is 256 Hz, and time duration

is [0 4].

Fig. 6 provides two examples of the CT and FCRM for t = 1.60 s and t = 2.34 s. The results

again prove the concentration ability of the FCRM. From Fig. 6(a,c), we also see that there are two

modes overlapping in the frequency-CR plane for the CT method, while the FCRM shows a separated

representation. We note one shortcoming of the FCRM is that it may yield error in locating the true CR,

but that has little influence on the IF estimation. As presented in Fig. 7, the FCRM achieves a good

IFs detection, which in turn brings a perfect result for CR estimation because of the derivative relation

between the IF and the CR. In addition, Fig. 8 displays the TF results obtained by the SST and RM

methods. It can be observed that, in the TF plane around the cross point, there are heavy cross-terms

between two modes, and the TF methods cannot characterize the true IF trajectories. By comparison, the
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proposed method generates a concentrated three-dimensional representation and has obvious advantages

in addressing overlapped multi-component signals.

0 20 40 60 80 100 120
Fre / Hz

-40

-20

0

20

40

C
R

 

(a)

0 20 40 60 80 100 120
Fre / Hz

-40

-20

0

20

40

C
R

 

(b)

0 20 40 60 80 100 120
Fre / Hz

-40

-20

0

20

40

C
R

 

(c)

0 20 40 60 80 100 120
Fre / Hz

-40

-20

0

20

40

C
R

 

(d)

Figure 6: Frequency-CR plots by CT and FCRM at different times. (a) The CT result at t = 1.60 s, (b) the CT

result at t = 2.34 s, (c) the FCRM result at t = 1.60 s, (d) the FCRM result at t = 2.34 s.

5.2. Performance in robustness to noise

In order to explore the performance of the FCRM method in noise tolerance, in this section we give

the IF estimates of signal (3) under different noise levels. Similarly, the SST and RM methods are used for

comparison. The detected result can be evaluated by the mean square error (MSE), which is calculated

by

MSE =
1

N
‖ ĨF− IF ‖22, (17)

where N is the discrete length of the IF, ‖ · ‖2 denotes l2-norm, IF is the original clean IF, and ĨF repre-

sents the estimated IF. The experiments are conducted by running 30 times and the average performance

is recorded as the final result.

Fig. 9 displays the MSEs for the two IFs of the test signal with respect to different input SNRs. We

note the IF estimation obtained by the FCRM is more accurate than that of the SST and RM for all noise

levels. The average improvements for f1(t) and f2(t) are 2.1 and 1.3 in log 10 scale than the standard

RM. Therefore, the FCRM has a robust performance in component separation and IF estimation.
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Figure 7: The detected result of FCRM. (a) Time-frequency-chirprate representation of FCRM, (b) TF plot of

FCRM, (c) time-CR plot of FCRM, (d) the estimated IFs by FCRM.
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Figure 8: TF results of SST and RM. (a) SST result, (b) RM result, (c) the detected IF by SST, (d) the detected

IF by RM.
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Figure 9: MSE of IF estimation versus SNR. (a) The MSEs of f1(t) by different methods, (b) the MSEs of f2(t)

by different methods.

6. Conclusion

In this paper, a concentrated time-frequency-chirprate (TFCR) representation for multi-component

non-stationary signals analysis has been proposed. The proposed FCRM relocates the frequency-CR

points from their original locations to reassignment centers; it provides joint IF and CR estimation,

which makes the TF crossed signals separated in the FCRM representation. To obtain robust IF and CR

estimates form the FCRM, three-dimensional ridge detector is introduced. We finally apply the proposed

method to analyze some simulation signals. The simulation results indicate that FCRM achieves a

high-resolution TFCR representation, suitable for more accurate IF estimation in addressing overlapped

multi-component signals. Future research will be devoted to the extension of the method to non-constant

amplitude signals and to scalogram reassignment; more accurate CR estimation instead of Equation (8)

and the application to real-life signals will be further investigated.
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