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Abstract—We address the removal of canvas artifacts

from high-resolution digital photographs and X-ray im-

ages of paintings on canvas. Both imaging modalities

are common investigative tools in art history and art

conservation. Canvas artifacts manifest themselves very

differently according to the acquisition modality; they

can hamper the visual reading of the painting by art

experts, for instance, in preparing a restoration campaign.

Digital removal of canvas is desirable for restorers when

the painting on canvas they are preparing to restore has

acquired over the years a much more salient texture.

We propose a new algorithm that combines a cartoon-

texture decomposition method with adaptive multiscale

thresholding in the frequency domain to isolate and

suppress the canvas components. To illustrate the strength

of the proposed method, we provide various examples, for

acquisitions in both imaging modalities, for paintings with

different types of canvas and from different periods. The

proposed algorithm outperforms well-known methods such

as Morphological Component Analysis (MCA) and Wiener

filtering.

Keywords—Digital painting analysis, canvas removal, de-

noising, periodic noise, source separation

I. INTRODUCTION

Computer processing of digitized artworks is a fast

growing and challenging field of research. A number

of algorithms were proposed to analyze high-resolution
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digital images of paintings in support of art scholar-

ship. Examples include the numerical characterization

of painting style [1], [2], [3] for the authentication or

dating of paintings, canvas thread counting [4], [5], [6],

[7] for art forensics, and the (semi-) automatic detection

and digital inpainting of cracks [8], [9], [10]. In the

domain of image enhancement, the algorithmic removal

of cradling artifacts within X-ray images of paintings

on panel was studied, mostly to facilitate the reading

of the painting by art experts [11], [12], but also to

improve the performance of the crack detection method

presented in [9].

This paper concerns the removal of canvas artifacts

from both high-resolution digital photographs and X-

ray images of paintings on canvas. Canvas removal can

help in the reading of the painting by art experts for

instance during a restoration campaign, to assist in the

interpretation of the artists’ creative intent, or in art

historical studies. Initially, the question of removing

canvas from high-resolution photographs was raised

for the painting Portrait of Suzanne Bambridge (1891)

made by Paul Gauguin (1848-1903) in Tahiti [13],

which is in dire need of restoration and where the

prominent grid-like structure caused by the underlying

jute canvas is quite disturbing (see Fig. 1). In lining the

painting, the original canvas was pressed into the pic-

torial layer, accentuating the grid-like canvas structure.

This restoration procedure consists of applying a heated

wax or resin to the back of the original canvas in order
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Fig. 1. Portrait of Suzanne Bambridge: (left) high resolution

photography, (right) detail under raking light clearly showing canvas

texture and brushstrokes [14].

to stabilize any loose paint and to prevent any future

losses. The removal of the prominent and very regular

canvas pattern helped in the analysis of the painting’s

structural condition and the uncovering of restoration

areas.

When an artist chooses to paint his subject on canvas,

(s)he is aware of the texture this will convey to the

finished painting and typically factors this in when

realizing the artwork. However, over time this natural

texture may be altered by various external factors. Dirt

accumulated in the valleys between the threads of the

canvas can get trapped by later applications of varnish

after imperfect cleaning. In addition, layers of varnish,

always slightly thicker in the inter-thread spacings than

on top of the threads become visually more prominent

by the unavoidable yellowing of the aging varnish, thus

emphasizing the thread structure.

X-ray radiographs provide conservators and art histo-

rians with information related to the three-dimensional

structure of a painting, not just its surface. They are

for example used to reveal changes between earlier

paint layers and the final surface. The penetrating X-

rays also provide information about structural aspects

of paintings, such as the support layer (i.e. the threads

in paintings on canvas or the wood grain, joints or splits

Fig. 2. X-ray image of van Gogh’s painting Portrait of an Old Man

with Beard, 1885, Van Gogh Museum, Amsterdam (F205).

in paintings on wood panel), but also about cracks and

losses in the ground and paint layers. The greater the

radiographic absorption of the material, the greater the

opacity, meaning that the X-ray image intensity varies

according to not only paint thickness variations but also

to composition of the material. This investigative imag-

ing technique is therefore an important aid for modern-

day conservators and art historians. Fig. 2 shows an X-

ray image of a canvas painting by van Gogh where the

canvas and stretcher of the painting are very prominent.

Digitally removing canvas artifacts is not straight-

forward since the canvas weave often only deviates

from truly horizontal and vertical directions, but also

may fail to be straight-lined (see Fig. 2); in addition,

the spacing between threads is typically not exactly

periodic. These deviations from perfect regularity in the

canvas are exploited in [15], [5]. Next to these local

deviations in periodicity, the canvas can suffer from even

stronger deformations at the edges of the stretcher where

it was attached, a phenomenon also know as cusping.

An additional challenge lies in the fact that these canvas

artifacts manifest differently according to the pictorial

context and modality. In X-ray images especially, the

presence of canvas can dominate in areas where the

paint is X-ray transparent, while areas of more opacity
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would show less interference of the canvas pattern.

We propose a method for the canvas removal problem

that can be deployed for both high-resolution pho-

tographs and X-ray images of canvas paintings. In a

first stage we decompose the image into a cartoon and

a texture component. The cartoon component retains

strong edges, mostly from the painting composition,

while the texture component consists of the canvas as

well as a plethora of other features such as fine-scale

brushstrokes, cracks, etc. In a second stage we focus on

the texture component, from which we isolate the canvas

by localizing and suppressing the frequency components

from the canvas. The residual is fed back to the cartoon

components giving us the final painting image, free

of canvas. The results of our method were evaluated

in two ways. On one hand, we printed on canvas a

high-resolution scan of a painting on masonite, and

applied our algorithm to a scan of the print, which we

then compared to the original. In this case, the original

scan can be viewed as a “ground truth”; however, the

printing process itself introduces additional variation

that produces extra, non-canvas “noise”, confounding

SNR measurements. On the other hand, we also worked

with art experts to evaluate our algorithm. They compare

our proposed method with other competing methods

(see Section II) and we explored criteria to quantify the

advantages and shortcomings of each approach, with the

aim of devising a method that would use each approach

in portions of the painting where it is most successful.

The paper is organized as follows. In Section 2 we

will introduce related work and state-of-the-art algo-

rithms. In Section 3 we will introduce the proposed

algorithm together with a detailed explanation of its pa-

rameters. In Section 4 we extensively test our algorithm

and compare it with MCA and a smoothing Wiener filter

approach, first presented in [16]. Finally, the last section

contains conclusions along with some ideas for future

work regarding this novel application.

II. RELATED WORK AND STATE-OF-THE-ART

Several solutions for the removal of periodic (or

quasi-periodic) noise have been proposed in the litera-

ture, such as frequency domain median filters [17], [18],

notch filters, a Gaussian notch reject filter (GNF) and

its improvement, the Windowed GNF [19]. However,

none of them are readily applicable due to the highly

specific nature of canvas contamination. This led the

authors of [16] (including one of us) to propose a new

generic way of periodic noise filtering for removing

canvas contamination in high-resolution photographs of

paintings. Canvas removal was approached in [16] as

a denoising problem, i.e, the uncompromised painting

image Ip is retrieved from the contaminated image

I = Ip + Ic, where the underlying support is repre-

sented by an additive (periodic) noise component Ic

(canvas), which is locally independent of the painting

signal Ip. Therefore, a smoothing Wiener filter was

proposed, defined in the frequency domain as:

HW (ξ) =
SIp(ξ)

SIp(ξ) + SIc(ξ)
,

with ξ ∈ R2 the variable in the two-dimensional

frequency domain, SIp(ξ) the power spectral density

(PSD) of the uncontaminated image, and SIc(ξ) the

PSD of the canvas. Subsequently, a quad-tree decom-

position of the entire image was constructed and the

filter strength adapted according to the degree of can-

vas contamination determined per quad-tree block. The

overall Wiener filter was designed to specifically target

the removal of independent periodic noise caused by

the canvas without affecting the finer structures of the

painting (e.g. brushstrokes, cracks, previous restorations

or details). Even though robust to slight deviations

in thread density and orientation, this approach fails

in cases where the canvas is heavily distorted, due

to cusping for example, and with other than plain-

weave canvasses. Moreover, the method was designed

for high-resolution photographic material and not for
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X-ray images where the canvas dominates and is much

more sharply delineated.

In [20], [21] a source separation algorithm called

morphological component analysis (MCA) is intro-

duced. MCA successfully decomposes an image I =

Icart + Itxt into its constituents, assuming that Icart

and Itxt have sparse decompositions in different stan-

dard dictionaries, called Dcart and Dtxt respectively.

In our case, the canvas texture could be sparsely rep-

resented in a dictionary of high frequency curvelets,

shearlets, wavelet packets or a discrete cosine trans-

form (DCT) while the painting can be sparsely rep-

resented using a dual-tree complex wavelet transform

(DT-CWT) [22], which is optimal for the representation

of piecewise smooth signals. To illustrate the strength

of MCA an example is given in [20] where canvas is ar-

tificially introduced into a photograph and subsequently

removed by using the curvelet and DCT dictionaries.

However, the canvas used in that example is very regular

and this toy example is far from representative for a real-

life scenario. After extensive experimental evaluation

we found that for images of real-life paintings, the

best performing two dictionaries are the discrete cosine

transform and the dual-tree complex wavelet transform;

the latter is the same dictionary as in [11] for the

painting content. The canvas image Itxt can be sparsely

represented in the first dictionary, and the paint image

Icart in the second; neither component has a sparse

expansion in the other dictionary. Even though MCA

is a very powerful all-round method, its performance

depends strongly on the choice of dictionaries used to

represent each component. Its lack of parametrisation

makes it an unwieldy technique as it often tends to

remove other fine-scale features within the painting (see

Section IV for more details). Moreover, MCA fails in

removing the canvas completely within X-ray images

when the canvas weave is strongly non-periodic.

III. PROPOSED ALGORITHM

We formulate the digital canvas removal problem as

a source separation problem for extracting sources with

periodic structures. We will restrict our discussion to the

analysis of grayscale images and omit explicit modeling

of color images, since the method for grayscale images

can be applied to each individual channel of the color

image. Let I denote the intensity of a grayscale image

of a painting, e.g. an X-ray image (see Fig. 2 for an

example). The image data I usually contains several

components. In case of a photograph we observe the

surface layer, the paint, canvas, possible damage such

as cracks, and restorations. For X-ray images of canvas

paintings, additional components, such as the primer

between the canvas threads and wooden stretchers, be-

come visible due to greater transparency of the surface

layers to X-rays. Some types of damage, such as cracks

and areas of missing paint, are usually highly contrasted

within the X-ray modality. Additionally, various types of

noise can be introduced during the acquisition process.

Hence, we model the image data I as an additive

superposition of three parts:

I = Ip + Ic + Iout,

where Ip denotes the paint layer; Ic represents the

canvas texture; and the summation of the other outlier

components is denoted as Iout. The quantitative canvas

analysis in [6] models the canvas part as Ic(x) :=

a(x)S(2πNφ(x)), where S is a periodic shape function

on the square [0, 2π)2 reflecting the basic weave pattern

of the canvas (see [23] for its definition); a(x) is a

slowly varying function accounting for the variations of

the amplitude of the canvas due to the influence of the

paint layer and the reflection of light in the acquisition

process; φ(x) is a smooth deformation describing the

local warping of the canvas; and N is a density param-

eter describing the averaged overall weave density of the

canvas. We can further simplify this model by applying

the algorithms presented in [8], [9], [10], [11], [12],
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designed to precisely remove components in Iout such

as the wooden stretcher and cracks.

A straightforward idea for canvas removal is to es-

timate the phase function Nφ(x), the shape function

S(x) and the amplitude function a(x) directly from a

given image I. It has been shown in [6] that the two-

dimensional synchrosqueezed transforms [24], [25] are

powerful tools in estimating the phase function Nφ(x).

However, although there exist algorithms for estimat-

ing S(x) and a(x) in one-dimensional problems [26],

[27], there is no efficient method suitable for the two-

dimensional problem encountered here, where the image

contains structured noise, such as brushstrokes, cracks,

and stretchers in Ip and Iout.
By rewriting the canvas part in terms of the Fourier

series of the shape function S(x), i.e.,

Ic(x) =
∑
n∈Z2

a(x)Ŝ(n)e2πiNn·φ(x),

we see that canvas removal is equivalent to removing

the deformed plane waves a(x)Ŝ(n)e2πiNn·φ(x), corre-

sponding to peaks in the Fourier domain (see Fig. 3 (d)

for an example). In places where the canvas is deformed,

due to irregularities in the canvas weave, attaching the

canvas to its stretcher or previous conservation practice,

peaks can be spread out and we can even observe ridges

in the frequency domain. Therefore, we conclude that

canvas removal is equivalent to peak and ridge removal

in the frequency domain.

Based on the above observations, we propose a two-

stage method for canvas removal as follows.

A. Cartoon-Texture Decomposition

In the first stage of our algorithm, we apply well-

established cartoon-texture decomposition methods to

estimate the cartoon part Icart of I, i.e. we decompose

I as

I = Icart + Itxt.

Due to the oscillatory nature of canvas patterns, the

canvas component Ic together with some other fine

features (e.g., cracks, brushstrokes) will be contained

in Itxt. In contrast to simple low-pass filters, cartoon-

texture decomposition methods permit sharp edges of

complex geometry in the cartoon part. This is especially

important for high-resolution digital photographs, where

the painting image contains sharp contours and crisp

edges. This asset reduces the influence of horizontal

and vertical edges in the painting part Ip during the

estimation of the canvas texture.

A general variational framework of the cartoon-

texture decomposition aims at solving the following

optimization problem:

inf
(u,v)∈X1×X2

{λF1(u) + F2(v) : f = u+ v} , (1)

where f is the given image, λ is a tuning parameter, F1,

F2 ≥ 0 are functionals and X1, X2 are function spaces

such that any function pair (u, v) ∈ X1 ×X2 satisfies

F1(u) < +∞ and F2(v) < +∞. By choosing a proper

functional F1 that favors piecewise smooth functions

u and another F2 that favors oscillatory functions v,

i.e., F1(u) � F1(v) and F2(v) � F2(u), one can

decompose the given image f into its cartoon part u

and texture part v by solving the above optimization

problem [28].

There has been extensive research in designing func-

tionals F1 and F2 in terms of decomposition accuracy

and computational efficiency depending on different

applications [29], [30], [31], [28], [32]. In what follows,

we will apply the efficient nonlinear filtering cartoon-

texture decomposition method of [32], which can be

rapidly solved in the Fourier domain. The authors in

[32] proposed a simple model with X1 ×X2 = H1 ×
H−1 and F1×F2 = ‖ · ‖H1 ×‖ · ‖H−1 . The solution u

to the optimization in (1) is û = L̂λf̂ , where

L̂λ(ξ) =
1

1 + λ(2π|ξ|)4
.

Hence, the cartoon texture decomposition is (u, v) =

(Lλ ∗ f, (Id− Lλ) ∗ f), which are two complementary

components obtained by applying a low-pass and high-
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pass filter. Here Id represents an identity map. However,

this simple solution u does not preserve sharp edges.

Based on the observation that the total variation of a

cartoon region does not decrease by low-pass filtering

and the total variation of a textured region decreases

fast under low-pass filtering, the authors of [32] defined

the local total variation (LTV) at a position x as

LTVλ(f)(x) := Lλ ∗ |Df |(x),

where Df is the derivative of f . Hence, the quantity

γλ(x) :=
LTVλ(f)(x)− LTVλ(Lλ ∗ f)(x)

LTVλ(f)(x)

quantifies the relative reduction of the local total vari-

ation by the low-pass filter Lλ. Therefore, the authors

proposed a better solution to preserve strong edges in

the cartoon part by a weighted average:

u(x) = w(γλ(x))(Lλ ∗ f)(x)

+(1− w(γλ(x)))f(x),

v(x) = f(x)− u(x),

where w(x) : [0, 1] → [0, 1] is the increasing function

defined by

w(x) =


0 x ≤ 0.25

4x− 1 0.25 ≤ x ≤ 0.5

1 x ≥ 0.5

.

B. Peak and ridge removal

In the first stage, we decomposed the image data I
via a cartoon-texture decomposition as follows:

Icart = w(γλ(x))(Lλ ∗ I)(x)

+(1− w(γλ(x)))I(x),

Itxt(x) = I(x)− Icart(x).

The canvas part Ic = a(x)S(2πNφ(x)) is contained

in Itxt. In the second stage, we propose an adaptive

multiscale thresholding algorithm for peak and ridge

removal in the frequency domain, which is equivalent

to removing canvas structure from Itxt.

1) Peak and ridge estimation: Recall that we want to

remove

Ic(x) =
∑
n∈Z2

a(x)Ŝ(n)e2πiNn·φ(x),

from the texture part Itxt after cartoon-texture de-

composition. Due to other outlier components in Iout,
remaining traces of the cartoon part, and the defor-

mation Nφ(x), peaks and ridges are not prominent in

the frequency domain (see Fig. 3(d), which shows the

spectrum of the example in Fig. 12). To enhance the

prominence of peaks and ridges we apply an anisotropic

band-pass filter to Îtxt; more precisely we evaluate

Îb = gσ1
∗ Îtxt − gσ2

∗ Îtxt,

where gσ1
and gσ2

are two Gaussian filters with standard

deviations σ1 and σ2, and Îb is the filtered spectrum.

Since canvas texture is usually a superposition of hor-

izontal and vertical deformed plane waves, we project

Îb along the horizontal and vertical axes and identify

the peak positions of the projected one-dimensional

signals. The peak positions along the horizontal axis

are denoted as {ξ1i} while those for the vertical axis

are denoted as {ξ2j}. These peaks are illustrated in

Fig. 3(a) and (b) for positive {ξ1i} and {ξ2j}. Only

empirically prominent peaks are considered situated at

multiples of a fundamental frequency; other misleading

peaks, generated by noise, are discarded. The peak po-

sitions {ξ1i} are multiples of the fundamental frequency

N∂x1
φ(x) in the horizontal direction, while {ξ2j} are

multiples of N∂x2
φ(x) in the vertical direction. Due to

the deformation φ(x) of the canvas, we pick an area

Sr surrounding the peak and ridge position to cover the

canvas component in the frequency domain as follows:

Sr := {ξ = (ξ1, ξ2) : |ξ1 − ξ1i| ≤ r for some i

or |ξ2 − ξ2j | ≤ r for some j},

where r is a parameter measuring the texture devia-

tion caused by the deformation φ(x); the larger the

deviation, the larger r is chosen. In most numerical
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Fig. 3. Peak and ridge detection in the frequency domain. (a) and (b) show the projected spectrum of |Îtxt| in (d) along the horizontal axis

and the vertical axis, respectively. (e) shows the estimated spectrum Îcest by thresholding Îtxt. (c) shows the Sr estimated from Îtxt and the

spectrum outside Sr . (f) shows the estimated support of the spectrum |Îc|.

experiments, r is set to be 2, 3, or 4. As shown in

Fig. 3(c) and (d), the estimated Sr essentially covers

the support of Îc in the frequency domain.

2) Multiscale adaptive thresholding: A simple idea

following the peak and ridge estimation is to threshold

the restriction of Îtxt to Sr. Suppose Îcest(ξ) is the

estimated spectrum of Ic. This simple idea is equivalent

to defining Îcest(ξ) = Îtxt(ξ) if |Îtxt(ξ)| > δ and

letting Îcest(ξ) = 0 otherwise. However, there is no

uniform threshold δ such that the canvas texture can be

simply extracted, since the Fourier series coefficients

|Ŝ(n)| decay when |n| increases. If δ is small, the

canvas texture extracted by a uniform thresholding will

be contaminated by other fine features of the canvas

painting. If δ is large, many Fourier series terms of the

canvas would be missed.

This dilemma motivates the design of the multiscale

block partition of the frequency domain. Applying the

algorithms in Theorem 3.8 in the diffeomorphism based

spectral analysis [26], we can estimate the fundamental

frequency N∂x1φ(x) in the horizontal direction from

the peak positions {ξ1i}. Similarly, the fundamental

frequency N∂x2
φ(x) in the vertical direction is esti-

mated. If we denote the estimation of the fundamental

frequencies as ωhor and ωvert, respectively, then the

frequency domain can be partitioned into multiscale

blocks {Bnm} with

Bnm := {ξ : (n− 0.5)ωhor ≤ ξ1 < (n+ 0.5)ωhor,

(m− 0.5)ωvert ≤ ξ2 < (m+ 0.5)ωvert}

for integers n and m.

More reasonable than uniform thresholding is then
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to threshold Îtxt adaptively in each frequency sub-

domain Bnm ∩ Sr when Bnm ∩ Sr 6= ∅. For each

pair (n,m), if Bnm ∩ Sr 6= ∅, we define an adaptive

threshold δnm = max{|Îtxt(ξ)| : ξ ∈ Bnm \ Sr}. We

then define Îcest(ξ), the estimated spectrum of Ic, by

Îcest(ξ) = Îtxt(ξ) if |Îtxt(ξ)| > δnm and ξ ∈ Bnm∩Sr
and Îcest(ξ) = 0 otherwise. Then Icest is able to recover

both the high frequency and low frequency components

in Ic(x) =
∑
n∈Z2 a(x)Ŝ(n)e2πiNn·φ(x), as illustrated

in Fig. 3. Finally, we are able to estimate the canvas

part by

Ic ≈ Icest,

The painting part containing fine-scale features such as

cracks, brushstrokes, etc. is approximated by

Ip + Iout ≈ I − Icest.

IV. NUMERICAL RESULTS

The frequency spectrum of (visual-light) photographs

and X-ray images of canvas paintings behave very

differently, as canvas often dominates in X-ray images

while the painting content is usually more prominent in

photographs. This difference between both modalities

is reflected in the way we identify the frequency com-

ponents of the canvas. Moreover, because canvas can

locally deviate (sometimes significantly) from periodic

periodicity, the characteristic frequency components are

not localized in peaks, but spread out over frequency

ranges, showing up as ridges in the frequency spectrum.

We compare the results of different methods with

our proposed algorithm and illustrate the strengths and

weaknesses of each, depending on the imaging modality

and the type of canvas used. The first method we

compare against is Morphological Component Analysis

(MCA), using, as its two dictionaries, the discrete cosine

transform (DCT) and the dual-tree complex wavelet

transform (DT-CWT). For every experiment, the algo-

rithm was run on overlapping blocks of 512 × 512

pixels with overlapping strips of width 64 pixels. In

principle, the low frequency component could be part

of either a DCT or a DT-CWT decomposition. However,

since the canvas texture has no low frequency com-

ponent, we force the low frequency component to be

contained entirely in the DT-CWT decomposition, by

setting the coarse level DCT coefficients to zero. The

second method we compare against is the Wiener filter

approach, proposed earlier in [16], which was designed

for high-resolution photographs of paintings.

A. High-resolution macrophotography

As explained in Section III, peaks in the two di-

mensional spectrum are identified by performing peak

detection for the (one dimensional) projections of Îb =
gσ1 ∗ Îtxt − gσ2 ∗ Îtxt onto the horizontal and vertical

axis. For all experiments σ1 and σ2 were kept fixed, with

σ1 = 15, σ2 = 30. We observed by experimental eval-

uation that taking the maximum for each column/row

is sufficient to obtain a signal from which we can

identify the peaks that correspond to the fundamental

frequencies of the canvas in the vertical and horizontal

directions respectively. We use the Matlab built-in peak

detection function called findpeaks(), which measures

how much a peak stands out due to its intrinsic height

and its location relative to other peaks (we refer the

reader to the Matlab documentation for a more de-

tailed explanation). Practically, we limit the number of

peaks in each quadrant of the spectrum to 3, in case

findPeaks() would detect more. Additionally, in case of

noisy images where multiple peaks are detected close

to each other, we only retain the most prominent peak

in a local neighborhood.

a) Portrait of Suzanne Bambridge (1891): This

painting of Paul Gauguin, depicted in Fig. 1, is painted

on rough sackcloth; it is in dire need of restoration and

the canvas has become very prominent throughout the

years, by dirt accumulation and varnish discoloration.

In order to facilitate the analysis of the painting by a

professional restorer we were asked to remove canvas
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artifacts from the image. Fig. 4 shows a detail from the

painting (with dimensions of 512×512 pixels), depicted

in Fig. 1, together with the result of the different

canvas removal methods mentioned in Section II. The

proposed method was run on a selection of the painting

with dimensions 2048 × 2048 pixels and with r = 4.

While MCA removes the grid structure from the canvas

completely, it removes additional features within the

image such as brushstrokes and hairline cracks. The

Wiener filter method of [16] performs well but some

faint canvas structures remain visible; the proposed

method, which we refer to as DeCanv from now on,

removes all canvas structure but does not affect other

objects within the painting. Fig. 5 shows two separate

details extracted from the results obtained with MCA

and DeCanv, showing the removed features that one

would prefer to see retained.

b) Sandpiper and Pomegranate by Charlotte

Caspers (2014): Painting on a coarse, very absorbing

jute-type canvas (see Fig. 6(b)). This particular canvas

support is much more challenging as its frequency spec-

trum is more complex, and the peaks, corresponding to

different periodic components in different orientations,

are more difficult to localize. Fig. 8 shows different

canvas removal results by using MCA, Wiener filtering

and DeCanv, as well as their difference with the original

canvas painting. The proposed method was run on a

selection of the painting with dimensions 1500× 1500

pixels and with r = 3. Morphological component

analysis removes the entire canvas, but as can be seen

from the difference image, it struggles to capture the

canvas structure in some areas, such as the top of the

image. It also removes some of the fine-scale structures

that are part of the original painting. The Wiener filter

approach is the least performant as it fails to capture all

the frequency components corresponding to the canvas

structure. The proposed method DeCanv was able to

capture the characteristic frequency components of the

complex canvas structure, even in areas where the

canvas is difficult to see with the naked eye.

c) Bird by Charlotte Caspers (2014): The painting

in Fig. 6(a), originally not on canvas, was painted on

a (very smooth) masonite support. The painting was

scanned, printed out on canvas and scanned again; the

hope was that this would provide an image with visual

canvas structure for which we also knew the canvas-

free ground truth. The printing and scanning steps,

however, distorted the color distribution of the image

quite significantly and introduced spatial distortions. For

a reasonably fair comparison of the original image with

the different canvas removal results, a registration (i.e.

spatial alignment) step as well as a color remapping of

the results to the original was required. Fig. 8 shows our

attempt at comparing different canvas removal methods

with the ground-truth data depicted in Fig. 8(a). It has

to be noted that the digital processing required to create

the canvassed version of this painting introduced noise,

which is not present in the original. MCA, also used as

a denoising technique, quite successfully removes the

introduced noise, together with the canvas texture and

some of the thinner brushstrokes. It is difficult in this

case to distinguish a difference in performance between

the results obtained with Wiener filtering and DeCanv.

They both successfully remove the faint canvas without

affecting other structures in the image. Our method was

run on blocks of 1024× 1024 pixels with r = 2.

B. X-ray imaging

As mentioned in the introduction of this section,

canvas structure is much more prominent and sharply

delineated in X-ray images of old paintings: typically

their lead-containing primer accumulated more in the

spaces between the canvas threads, so that variations in

X-ray penetration, due to these variations in thickness

of the X-ray absorbing primer layer, provide a clear

“imprint” of the canvas structure. To the best of the

authors’ knowledge, the removal of canvas structures

from X-ray images of paintings has not been attempted
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(a) Original (b) MCA (c) Wiener filter (d) DeCanv

Fig. 4. Portrait of Suzanne Bambridge (1891): Canvas removal results on image (a) with MCA (b), smoothing Wiener filter (c) and the

proposed method, called DeCanv (d) respectively.

(a) Detail 1 (b) Detail 2

Fig. 5. Portrait of Suzanne Bambridge (1891): Comparison on two

details between MCA ( (a) left and (b) top) and DeCanv ( (a) right

and (b) bottom).

(a) Bird (b) Sandpiper and Pomegranate

Fig. 6. Still-life paintings by Charlotte Caspers, originally made for

digital brushstroke analysis studies.

before. Nevertheless, it may facilitate the reading of the

X-ray image by experts interested in decoding clues

to the realization or the state of conservation of the

painting, and as such this technique is of interest to art

conservators. Similarly to the visual-light photographs

discussed earlier, one can detect frequency peaks that

correspond to the fundamental frequencies of the canvas

weave by examining the projections on the horizontal

and vertical axis of the Fourier spectrum of the X-ray

images. These peaks tend to be less well-localized in

the frequency domain, but spread out more, forming

ridges; reliable peak detection can still be achieved by

first summing the spectral contributions in each row

and column and identifying the local maxima of these

marginal 1-D distributions (instead of locating local

maxima for the 2-D distributions, as was done earlier).

a) The Virgin and Child with St. John and His

Parents (1617): Fig. 9 shows a detail (with 1800×1300
pixels) of this oil painting on canvas by Jacob Jordaens,

currently residing in the collection of the North Carolina

Museum of Art, before (a) and after (b) the canvas

has been removed with the proposed method. To obtain

this final result, the vertical stretcher bar was removed

first with the algorithm presented in [12] and subse-

quently the canvas texture was removed with DeCanv

on overlapping blocks of 512 × 512 with overlapping

strips of 128 pixels wide, and with r = 4. Fig. 10
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(a) MCA (b) Wiener filter (c) DeCanv

Fig. 7. Canvas removal results and their difference with original canvas painting entitled Sandpiper and Pomegranate by Charlotte Caspers.

shows results with competing methods on a zoom-in.

The Wiener filter fails to capture the prominent and

complex structure of the canvas and removes only the

lower frequency components from the canvas spectrum,

which is clearly insufficient for X-ray images. It also

deals poorly with the local deviations from periodic-

ity of the canvas. MCA does a much better job at

removing the canvas texture, but it has a tendency to

smooth out the image and remove some of the fine-

scale details that are captured by the DCT dictionary.

Overall, DeCanv performs best, clearly removing the

canvas pattern, while leaving the fine-scale details intact.

This observation is corroborated by the result in Fig. 11,

showing a different zoom-in, from an area where the

stretcher is located.

b) Portrait of an Old Man with Beard (1885):

This painting by van Gogh, currently residing in the

collection of the Van Gogh Museum in Amsterdam,

has a much coarser canvas that is distorted in some

places, especially at the edges, where it is attached

to the stretcher. Fig. 12 depicts a selection from the

painting alongside its canvas-free version and the re-

trieved canvas component, obtained with r = 3. From

the difference image it is clear that only the canvas is

extracted. The proposed method is thus also capable of

capturing these strong deviations in the periodicity of

the canvas.

c) Lady Mary Villiers, Later Duchess of Richmond

and Lennox (1637): This painting by the Dutch artist

Anthony van Dyck is currently in the collection of the
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(a) Original on masonite (ground-truth) (b) Scan printed on canvas

(c) Result with MCA (d) Result with Wiener filter (e) Result with DeCanv

Fig. 8. Canvas removal results on bird painting by Charlotte Caspers.

(a) Original (b) Result without stretcher and after canvas removal

Fig. 9. The Virgin and Child with St. John and His Parents: (left) original - (right) after removal of the stretcher and canvas.
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(a) Original (b) MCA

(c) Wiener filter (d) DeCanv

Fig. 10. Canvas removal results on detail of The Virgin and Child with St. John and His Parents

NCMA. Fig. 13 contains the different canvas removal

results on a detail of the painting. The original X-

ray image contains a very prominent canvas structure

while the painting content itself appears faded. It is

clear from Fig. 13(c) that the Wiener filter is not the

adequate method for the separation of the canvas from

the painting. MCA performs decently but fails to extract

canvas in places where it is very dominant. DeCanv was

performed on the original crop of size 1360×1380 with

r = 4.

C. Note on post-processing

Depending on the acquisition settings and the pro-

cessing done at the museum (which might differ

strongly from one image to another), images can be very

contrasted and/or saturated, especially in X-ray images.

Strongly saturated areas do not respond well to any form

of digital processing and are prone to the introduction

of undesirable artifacts. Such areas are detected in the

original image I by thresholding a blurred version of

the original, with a very large threshold close to the
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(a) Original (b) DeCanv

Fig. 11. Canvas removal results on detail of The Virgin and Child with St. John and His Parents

(a) Original (b) Recovered painting component (c) Separated canvas texture

Fig. 12. Portrait of an Old Man with Beard: canvas removal results and the difference with original canvas painting.

maximum intensity value. Large saturated areas are

replaced in the result with their original. An example

of such processing is depicted in Fig. 10, where the

forehead of the baby is very bright and does not contain

canvas.

V. CONCLUSIONS AND FUTURE WORK

We introduce DeCanv, a source separation method for

the removal of periodic structures, and applied it in the

context of the novel application of canvas removal from

digital image acquisitions of paintings on canvas. The

nature of the canvas is very specific and behaves very

differently depending on the acquisition modality. Es-

pecially for X-ray images, classic methods for (quasi-)

periodic noise removal fail because the fundamental

frequency components of the canvas spectrum are not

well localized into peaks but rather spread out over

ridges. Wholesale removal of high-frequency content,

while removing the canvas structures, blurs sharp edges

in the image. Hence, we propose a two-stage method

that first decomposes the image into cartoon and texture
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(a) Original (b) MCA

(c) Wiener filter (d) DeCanv

Fig. 13. Canvas removal results on detail of Lady Mary Villiers, Later Duchess of Richmond and Lennox.

parts, minimally affecting the stronger edges that belong

to the pictorial content of the painting. The second

processing step targets the texture component; it uses

adaptive multiscale thresholding in the frequency do-

main to specifically target and suppress the frequency

components of the canvas. Results were compared to

those obtained with other well-known competing meth-

ods and assessed visually by an art expert (co-author

N. Ocon of this manuscript). Our new method performs

better than previous methods in various complicated

examples.

We note that the canvas removal technique was used

in [33], which re-examined earlier results obtained by

one of us in collaboration with others [1], in a study

of distinguishing original paintings from copies; [33]

specifically studied whether the positive results of [1]

could be explained, in part, by a recognition of the

canvas rather than the painting technique.

The following are some possible research directions

to improve on the current approach. First, the peak
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position estimation by one-dimensional projection in the

second stage is not very robust under very significant

image rotations and other heavy deformations. In these

cases, it might be better to apply the highly redun-

dant two-dimensional synchrosqueezed transform [34]

to estimate the rotation and the deformation of the

canvas. Once this information is available, one can

rotate and deform the canvas back to standard canvas

texture with straight horizontal and vertical threads. The

canvas removal algorithm introduced in this paper can

then be applied to remove the canvas texture after-

wards. Second, the estimated canvas texture Icest may

violate the model a(x)S(2πNφ(x)) for some smooth

amplitude and phase functions. A possible solution is

to extend the one-dimensional diffeomorphism spectral

analysis method in [26] to a two-dimensional method

to estimate Nφ(x), S(x) and a(x) from the removed

canvas texture. A post-processing technique based on

variational optimization, presented in [35], may further

refine these estimations such that they agree better with

the canvas model, i.e., Icest ≈ a(x)S(2πNφ(x)) with

a smooth amplitude a(x), a smooth deformation φ(x)

and curl∇φ = 0.
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