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Abstract

We prove a theorem concerning the approximation of generalized bandlimited multivariate functions by deep ReLU

networks for which the curse of the dimensionality is overcome. Our theorem is based on a result by Maurey and on

the ability of deep ReLU networks to approximate Chebyshev polynomials and analytic functions e�ciently.
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1. Introduction

The curse of dimensionality is a vital bottleneck in scientific computing. Standard numerical algorithms whose

cost is exponential in the dimension d are prohibitive when d is large. As a mesh-free function parametrization

tool, neural networks are believed to be a suitable approach to conquer the curse of dimensionality if the number

of parameters required in the network to maintain an ✏ approximation accuracy is bounded by O
⇣
p

⇣
1

✏

⌘⌘
, where p is

a polynomial with a degree independent of d. In this paper, we show that ReLU networks overcome the curse of

dimensionality for generalized bandlimited functions, which we shall define at the end of the introduction.

Shallow networks are approximations

e
f

W

of multivariate functions f : Rd ! R of the form

e
f

W

(x) =

WX

i=1

↵
i

�(w

i

· x + ✓
i

), (1)

for a certain activation function� : R! R, weights ↵
i

, ✓
i

2 R, w

i

2 Rd

and integer W � 1. Each operation�(w

i

·x+✓
i

)

is called a unit and the W units in (1) form a hidden layer; this is a special form of nonlinear approximation [1, 2].

Deep networks are compositions of shallow networks and have several hidden layers, and each unit of each layer

performs an operation of the form �(w · x + ✓). Following Yarotsky [3], we allow connections between units in non-

neighboring layers. We define the depth L of a network as the number of hidden layers and the size W as the total

number of units. In this paper, we shall consider networks with depth L = O(1) as shallow, and networks with L � 1

as deep.

Before the revolution of deep learning [4], most research concerned the approximation power of shallow networks

with L = 1 and various sigmoid activation functions. Recently, in deep learning, networks using the REctifier Linear

Unit (ReLU) activation function �(x) = max(0, x) have become the most popular tool, partly because sigmoid acti-

vation functions lead to severe gradient degeneracy in the optimization process. It was shown in [5] that deep ReLU

networks can produce sparsity that helps a wide range of machine learning applications, while smooth activation

functions including smoothed ReLU functions cannot. This is why we focus on ReLU networks in this paper.
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The theory of approximating functions using shallow networks goes back to 1989 when Cybenko showed that

any continuous functions can be approximated by shallow networks [6], while Hornik, Stinchcombe, and White

proved a similar result for Borel measurable functions [7]. In the 1990s, the attention shifted to convergence rates

3

of approximations by shallow networks [8, 9, 10, 11]. Of particular interest was the discussion of the absence of the

curse of dimensionality when one-hiddel-layer sigmoid neural networks are applied to approximate functions with

fast decaying Fourier coe�cients [12].

Fast forward to the 2010s and the success of deep networks, one of the most important theoretical problems

is to determine why and when deep networks can lessen or break the curse of dimensionality, especially for ReLU

networks. One may focus on a particular set of functions which have a very special structure (such as compositional or

polynomial), and show that for this particular set deep networks overcome the curse of dimensionality [13, 14, 15, 16,

17, 18, 19, 20]. Alternatively, one may consider a function space that is more generic for multivariate approximation

in high dimensions, such as Korobov spaces [21], and prove convergence results for which the curse of dimensionality

is lessened [22].

In this paper, we may consider generalized bandlimited functions f : B = [0, 1]

d ! R of the form

f (x) =

Z

Rd

F(w)K(w · x)dw, (2)

supp F ⇢ [�M,M]

d, M � 1, (3)

for some integrable function F : [�M,M]

d ! C and analytic kernel K : R ! C. In Section 3, we shall show that

for any measure µ such functions can be approximated to accuracy ✏ in the L

2

(B, µ)-norm by deep ReLU networks of

depth L = O
⇣
log

2

2

1

✏

⌘
and size W = O

⇣
1

✏2
log

2

2

1

✏

⌘
, up to some constants that depend on F, K, µ and B.

We review properties of deep ReLU networks in Section 2, providing new proofs of existing results (Prop. 2.2 and

Prop. 2.3), as well as new results (Prop. 2.4, Prop. 2.5 and Thm. 2.6). We recall an existing theorem (Thm. 3.1) and

prove our main theorem (Thm. 3.2) in Section 3.

2. Approximation properties of deep ReLU networks

The ability of deep ReLU networks to implement the multiplication of two real numbers with an amplitude at most

M was proved by Yarotsky in [3, Prop. 1]. Liang and Srikant proved a similar result for M = 1 using networks with

rectifier linear as well as binary step units in [16, Thm. 1]. In the rest of the paper, “with accuracy ✏” or “bounded”

should be understood in the L

1
-norm, unless stated otherwise.

Proposition 2.1 (Multiplication in two dimensions). For any scalar M � 1, N � 1 and 0 < ✏ < 1, there is a deep

ReLU network e⇡(x

1

, x
2

) with inputs (x

1

, x
2

) 2 [�M,M] ⇥ [�N,N], that has depth

L = O
✓
log

2

MN

✏

◆
(4)

and size

W = O
✓
log

2

MN

✏

◆
(5)

such that

ke⇡(x

1

, x
2

) � x

1

x

2

k
L

1
([�M,M]⇥[�N,N])

 ✏. (6)

Equivalently, if the network has depth L = O
⇣
log

2

1

✏

⌘
and size W = O

⇣
log

2

1

✏

⌘
, the approximation error satisfies

ke⇡(x

1

, x
2

) � x

1

x

2

k
L

1
([�M,M]⇥[�N,N])

 MN✏.

3

For a real-valued function f in Rd

whose smoothness is characterized by some integer m � 1, and for some prescribed accuracy ✏ > 0, one

shows that there exists a shallow network

e
f

W

of size W = W(d,m) that satisfies k f � e
f

W

k  ✏ for some norm k · k.
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We generalize the proposition of Yarotsky to the d-dimensional case.

Proposition 2.2 (Multiplication in d � 2 dimensions). For any scalar M � 1 and 0 < ✏ < 1, and any integer d � 2,

there is a deep ReLU network

e⇧(x

1

, . . . , x
d

) with inputs (x

1

, . . . , x
d

) 2 [�M,M]

d

, that has depth

L = O
 
d log

2

d

✏
+ d

2

log

2

M

!
(7)

and size

W = O
 
d log

2

d

✏
+ d

2

log

2

M

!
(8)

such that

���e⇧(x

1

, . . . , x
d

) � x

1

. . . x
d

���
L

1
([�M,M]

d

)

 ✏. (9)

Proof. Let M � 1 and 0 < ✏ < 1 be two scalars and d � 2 an integer. For any scalar A � 1 and B � 1, let us call e⇡ the

network of Prop. (2.1) that implements the multiplication xy, x 2 [�A, A], y 2 [�B, B], with accuracy AB✏
0

for some

scalar 0 < ✏
0

< 1 to be determined later. This network has depth and size O
⇣
log

2

1

✏
0

⌘
.

We construct the network e⇡(x

1

, . . . , x
d

) that implements the multiplication x

1

x

2

. . . x
d

as follows,

y

1

= e⇡(x

1

, x
2

), |y
1

|  M

2

(1 + ✏
0

),

y

2

= e⇡ (

y

1

, x
3

) , |y
2

|  M

3

(1 + ✏
0

)

2,

y

3

= e⇡ (

y

2

, x
4

) , |y
3

|  M

4

(1 + ✏
0

)

3,

...
...

y

d�1

= e⇡ (

y

d�2

, x
d

) , |y
d�1

|  M

d

(1 + ✏
0

)

d�1,

and set

e⇧(x

1

, . . . , x
d

) = y

d�1

.

The network

e⇧(x

1

, . . . , x
d

) has accuracy

|y
d�1

� x

1

. . . x
d

|  |y
d�1

� y

d�2

x

d

| + |x
d

||y
d�2

� y

d�3

x

d�1

|
+ . . . + |x

d

x

d�1

. . . x
5

||y
3

� y

2

x

4

|
+ |x

d

x

d�1

. . . x
4

||y
2

� y

1

x

3

|
+ |x

d

x

d�1

. . . x
3

||y
1

� x

1

x

2

|,
< M

d

(1 + ✏
0

)

d�2✏
0

+ M

d

(1 + ✏
0

)

d�3✏
0

+ . . . + M

d

(1 + ✏
0

)

2

+ M

d

(1 + ✏
0

) + M

d✏
0

,

< dM

d

(1 + ✏
0

)

d✏
0

(crude estimate).

We choose ✏
0

= ✏/(dM

d

e) to obtain accuracy ✏.
The depth and the size of the resulting network are equal to (d�1) times the depth and size of the network defined

at the beginning of the proof. With accuracy ✏
0

defined above, this gives depth and size

O
 
d log

2

dM

d

e

✏

!
= O

 
d log

2

d

✏
+ d

2

log

2

M

!
. (10)

The proof is complete.

The network of Prop. 2.2 computes x

1

. . . x
d

as well as all the intermediate products x

1

. . . x
k

, 2  k  d � 1, to the

same accuracy ✏. This allows us to prove the following result about polynomials

4

(similar to [16, Thm. 2]).

4

In the rest of the paper, we shall exclude the trivial cases n = 0 and n = 1.
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Proposition 2.3 (Polynomials). For any scalar M � 1, C � 0 and 0 < ✏ < 1, any integer n � 2, and any polynomial

p

n

(x) of degree n with input x 2 [�M,M] and of the form

p

n

(x) =

nX

k=0

c

k

x

k, max

0kn

|c
k

|  C, (11)

there is a deep ReLU network ep(x

1

, . . . , x
n

) with inputs (x

1

, . . . , x
n

) 2 [�M,M]

n

, that has depth

L = O
✓
n log

2

Cn

✏
+ n

2

log

2

M

◆
(12)

and size

W = O
✓
n log

2

Cn

✏
+ n

2

log

2

M

◆
(13)

such that

kep
n

(x, . . . , x) � p

n

(x)k
L

1
([�M,M])

 ✏. (14)

Proof. Let M � 1, C � 0 and 0 < ✏ < 1 be three scalars, n � 2 an integer and consider a polynomial

p

n

(x) =

nX

k=0

c

k

x

k, max

0kn

|c
k

|  C. (15)

We construct ep(x

1

, . . . , x
n

) as follows,

ep
n

(x

1

, . . . , x
n

) = c

0

+ c

1

x

1

+

nX

k=2

c

k

y

k�1

(x

1

, . . . , x
k

), (16)

where y

k�1

(x

1

, . . . , x
k

) approximates x

1

. . . x
k

with the network of Prop. 2.2 to accuracy 0 < ✏
0

< 1 to be determined

later. (Note that when the inputs are the same y

k�1

(x, . . . , x) approximates x

k

.)

The network ep(x, . . . , x) has accuracy

|ep
n

(x, . . . , x) � p

n

(x)|  C

nX

k=2

|y
k�1

(x, . . . , x) � x

k |,

< nC✏
0

.

We choose ✏
0

= ✏/(Cn) to obtain accuracy ✏.
The resulting network has depth and size

O
 
n log

2

Cn

2

M

n

✏

!
= O

✓
n log

2

Cn

✏
+ n

2

log

2

M

◆
. (17)

The proof is complete.

The Chebyshev polynomials of the first kind play a central role in approximation theory [23]. They are defined on

[�1, 1] via the three-term recurrence relation

T

n

(x) = 2xT

n�1

(x) � T

n�2

(x), n � 2, (18)

with T

0

= 1 and T

1

(x) = x. We show next how deep ReLU networks can e�ciently implement Chebyshev polynomi-

als, using the three-term recurrence (18).
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Proposition 2.4 (Chebyshev polynomials). For any scalar 0 < ✏ < 1, any integer n � 2 and any Chebyshev

polynomial T

n

(x) of degree n with input x 2 [�1, 1], there is a deep ReLU network

e
T

n

(x

1

, . . . , x
n

) with inputs

(x

1

, . . . , x
n

) 2 [�1, 1]

n

, that has depth

L = O
✓
n log

2

n

✏
+ n

2

◆
(19)

and size

W = O
✓
n log

2

n

✏
+ n

2

◆
(20)

such that

���e
T

n

(x, . . . , x) � T

n

(x)

���
L

1
([�1,1])

 ✏. (21)

Proof. Let 0 < ✏ < 1 be a scalar and n � 2 be an integer. For any scalar A � 1 and B � 1, let us call e⇡ the network

of Prop. (2.1) that implements the multiplication xy, x 2 [�A, A], y 2 [�B, B], with accuracy AB✏
0

for some scalar

0 < ✏
0

< 1 to be determined later. This network has depth and size O
⇣
log

2

1

✏
0

⌘
.

We construct the network

e
T

n

(x, . . . , x) that approximates T

n

(x) as follows,

e
T

0

= 1, |eT
0

|  1,

e
T

1

(x) = x, |eT
1

|  1,

e
T

2

(x, x) = 2e⇡(x, eT
1

) � e
T

0

, |eT
2

| < (1 + ✏
0

)

2,

e
T

3

(x, x, x) = 2e⇡(x, eT
2

) � e
T

1

, |eT
3

| < 3(1 + ✏
0

)

3,

...
...

e
T

n

(x, . . . , x) = 2e⇡(x, eT
n�1

) � e
T

n�2

, |eT
n

| < 3

n�2

(1 + ✏
0

)

n.

Let us now estimate the accuracy e

n

of the network

e
T

n

(x, . . . , x), where e

n

= |eT
n

(x, . . . , x) � T

n

(x)|. We have

e

n

= |2e⇡(x, eT
n�1

) � e
T

n�2

� 2xT

n�1

+ T

n�2

|,
 2|e⇡(x, eT

n�1

) � x

e
T

n�1

| + 2|x||eT
n�1

� T

n�1

| + e

n�2

,

 2✏
0

|eT
n�1

| + 2e

n�1

+ e

n�2

,

< 2✏
0

3

n�3

(1 + ✏
0

)

n�1 + 2e

n�1

+ e

n�2

,

< n4

n

(1 + ✏
0

)

n✏
0

(crude estimate).

We choose ✏
0

= ✏/(n4

n

e) to obtain accuracy ✏.
The depth and the size of the resulting network are equal to (n+1) times the depth and size of the network defined

at the beginning of the proof. With accuracy ✏
0

defined above, this gives depth and size

O
 
n log

2

n4

n

e

✏

!
= O

✓
n log

2

n

✏
+ n

2

◆
. (22)

The proof is complete.

Note that we could have proven Prop. 2.4 using Prop. 2.3 and an estimate for the size C of the coe�cients of the

expansion of T

n

in the monomial basis (the leading term grows like 2

n�1

while the other terms grow at most like c

n

for some c < 4).

Since Prop. 2.4 implements T

n

as well as the intermediate T

k

’s, 0  k  n� 1, to the same accuracy ✏, we have the

following result about truncated Chebyshev series.
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Proposition 2.5 (Truncated Chebyshev series). For any scalar 0 < ✏ < 1, any integer n � 2, and any truncated

Chebyshev series f

n

(x) of degree n with input x 2 [�1, 1] and of the form

f

n

(x) =

nX

k=0

c

k

T

k

(x), max

0kn

|c
k

|  C, (23)

there is a deep ReLU network

e
f

n

(x

1

, . . . , x
n

) with inputs (x

1

, . . . , x
n

) 2 [�1, 1]

n

, that has depth

L = O
✓
n log

2

Cn

✏
+ n

2

◆
(24)

and size

W = O
✓
n log

2

Cn

✏
+ n

2

◆
(25)

such that

����e
f

n

(x, . . . , x) � f

n

(x)

����
L

1
([�1,1])

 ✏. (26)

Proof. Let C � 0 be a scalar, n � 2 an integer and consider a truncated Chebyshev series

f

n

(x) =

nX

k=0

c

k

T

k

(x), max

0kn

|c
k

|  C. (27)

We construct

e
f (x

1

, . . . , x
n

) as follows,

e
f

n

(x

1

, . . . , x
n

) = c

0

+ c

1

x

1

+

nX

k=2

c

k

e
T

k

(x

1

, . . . , x
k

), (28)

where

e
T

k

approximates T

k

with the network of Prop. 2.4 to accuracy 0 < ✏
0

< 1 to be determined later.

The network

e
f (x, . . . , x) has accuracy

|ef
n

(x, . . . , x) � f

n

(x)|  C

nX

k=2

|eT
k

� T

k

|,

< nC✏
0

.

We choose ✏
0

= ✏/(Cn) to obtain accuracy ✏.
The resulting network has depth and size

O
 
n log

2

Cn

2

✏
+ n

2

!
= O

✓
n log

2

Cn

✏
+ n

2

◆
. (29)

The proof is complete.

Chebyshev series lies at the heart of polynomial approximation. Lipschitz continuous functions f (x) with in-

put x 2 [�M,M] have a unique absolutely and uniformly convergent (scaled) Chebyshev series and we write f (x) =P1
k=0

c

k

T

k

(x/M) [23, Thm. 3.1]. For analytic functions, the truncated (scaled) Chebyshev series f

n

(x) =
P

n

k=0

c

k

T

k

(x/M)

are exponentially accurate approximations [23, Thm. 8.2].

More precisely, let us define

a

M

s

= M

s + s

�1

2

, b

M

s

= M

s � s

�1

2

, (30)

6



and the Bernstein s-ellipse scaled to [�M,M],

E

M

s

=

(
x + iy 2 C :

x

2

(a

M

s

)

2

+
y

2

(b

M

s

)

2

= 1

)
. (31)

(It has foci

p
(a

M

r

)

2 � (b

M

r

)

2 = ±M, semi-major axis a

M

s

and semi-minor axis b

M

s

.) If a function f (x) is analytic in

[�M,M] and analytically continuable to the open Bernstein s-ellipse E

M

s

for some s � 1 where it satisfies | f (x)| < C

f

for some C

f

> 0, then for each n � 0 the truncated Chebyshev series f

n

satisfy

k f
n

(x) � f (x)k
L

1
([�M,M])

 2C

f

s

�n

s � 1

. (32)

Using Prop. 2.5 and Eq. (32) we prove a result about the approximation of analytic functions by deep ReLU

networks. Our result below could be generalized to multiple dimensions, which would be interesting future work.

In [24], it was shown that deep ReLU networks can approximate multivariate analytic functions with exponential

convergence, a result similar to our theorem below. However, we would like to emphasize that it is not possible to

apply the result in [24] to prove our main theorem in Section 3 because the result in [24] is only valid on an open

interval of [�1, 1], instead of an arbitrary closed interval [�M,M].

Theorem 2.6 (Deep networks for analytic functions). For any scalar 0 < ✏ < 1 and M � 1, and any analytic function

f (x) with input x 2 [�M,M] that is analytically continuable to the open Bernstein s-ellipse E

M

s

for some s > 1 where it

satisfies | f (x)|  C

f

for some C

f

> 0, there is a deep ReLU network

e
f (x

1

, . . . , x
n

) with inputs (x

1

, . . . , x
n

) 2 [�M,M]

n

,

that has depth

L = O
0
BBBB@

1

log

2

2

s

log

2

2

C

f

✏

1
CCCCA (33)

and size

W = O
0
BBBB@

1

log

2

2

s

log

2

2

C

f

✏

1
CCCCA (34)

such that

����e
f

n

(x, . . . , x) � f (x)

����
L

1
([�M,M])

 ✏. (35)

Proof. Let 0 < ✏ < 1 and M � 1 be two scalars, and f be an analytic function defined on [�M,M] that is analytically

continuable to the open Bernstein s-ellipse E

M

s

for some s > 1 where it satisfies | f (x)|  C

f

for some C

f

> 0. We

first approximate f by a truncated Chebyshev series f

n

and then approximate f

n

by a deep ReLU network

e
f

n

using

Prop. 2.5.

Since f is analytic in the open Bernstein s-ellipse E

M

s

then for any integer n � 2

k f
n

(x) � f (x)k
L

1
([�M,M])

 2C

f

s

�n

s � 1

= O
⇣
C

f

s

�n

⌘
. (36)

Therefore if we take n = O
⇣

1

log

2

s

log

2

2C

f

✏

⌘
then the term above is bounded by ✏/2.

Let us now approximate f

n

(x) by a deep ReLU network

e
f

n

(x, . . . , x). We first write

f

n

(x) =

nX

k=0

c

k

T

k

✓
x

M

◆
, (37)

with

max

0kn

|c
k

| = O
⇣
C

f

s

⌘
via [23, Thm. 8.1]. (38)

7



We then define our network

e
f

n

(x, . . . , x) as in Prop. 2.5 with extra scaling x/M,

e
f

n

(x, . . . , x) =

nX

k=0

c

k

e
T

k

✓
x

M

, . . . ,
x

M

◆
, (39)

where the

e
T

k

’s are computed to accuracy ✏/2 so that

|ef
n

(x, . . . , x) � f

n

(x)|  ✏
2

. (40)

This yields

|ef
n

(x, . . . , x) � f (x)|  |ef
n

(x, . . . , x) � f

n

(x)|
+ | f

n

(x) � f (x)|,
 ✏

2

+
✏

2

= ✏.

With n = O
⇣

1

log

2

s

log

2

C

f

✏

⌘
, the resulting network has depth and size

O
 
n log

2

C

f

n

✏
+ n

2

!
= O

⇣
n

2

⌘
= O

0
BBBB@

1

log

2

2

s

log

2

2

C

f

✏

1
CCCCA . (41)

The proof is complete.

Let us highlight that in general the constants s and C

f

depend on M. Let us look at two examples, a function

with a singularity on the imaginary axis and an entire function (i.e., a function that is analytic over the whole complex

plane).

A typical example of an analytic function with singularities on the imaginary axis is the Runge-like function

f (x) = 1/(1+ x

2

�2

), � > 1, whose singularities are located at x = ±i�. The function f is analytic on the interval [�M,M]

and analytically continuable to the open Bernstein s-ellipse E

M

s

with

s(M) =

p
(4M

2 � 2)r

2 + r

4 + 1 + r

2 � 1

2Mr

(42)

and r = � +
p
�2 + 1. Since f increases along the imaginary axis we may take

C

f

(M) = f

 
M

s(M) � s(M)

�1

2

!
. (43)

The complex exponential f (x) = e

ix

is an entire function. Hence, any s > 1 works but C

f

(s,M) must grow with s

and M. As f increases along the imaginary axis we may choose

C

f

(s,M) = f

 
M

s � s

�1

2

!
= e

M

s�s

�1

2 . (44)

In this case the network of Thm. 2.6 has depth and size

O
0
BBBBB@

1

log

2

2

s

 
M

s � s

�1

2

+ log

2

1

✏

!
2

1
CCCCCA . (45)

We also would like to mention that the ReLU activation function is not an optimal choice for constructing neu-

ral networks to approximate smooth functions. For example, Thm. 2.3 of [9] shows that one-hidden-layer shallow

networks with O
⇣
log

⇣
1

✏

⌘⌘
parameters can approximate analytic functions with ✏ accuracy when a smooth activation

function is used. The disadvantage of the ReLU activation function in this scenario is not unexpected since it is not

a natural choice to use a function that is not di↵erentiable at the origin to approximate a smooth function. However,

from the point of view of deep learning and optimization, ReLU is a much better choice, as discussed in [24]. The

study in this paper should be regarded as a good complement to existing approximation theory, using a more modern

approach.
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3. Approximation of generalized bandlimited functions by deep ReLU networks

A famous theorem of Carathéodory states that if a point x 2 Rd

lies in the the convex hull of a set P then x

can be written as the convex combination of at most d + 1 points in P. Maurey’s theorem [26] is an extension of

Carathéodory’s result to the infinite-dimensional case. It was used in the context of shallow network approximations

by Barron in 1993 [12]. We quote the theorem below without a proof. The reader is referred to [12] for its proof.

Theorem 3.1. Let H be a Hilbert space with norm k · k. Suppose there exists G ⇢ H such that for every g 2 G, kgk  b

for some b > 0. Then for every f in the convex hull of G and every integer n � 1, there is a f

n

in the convex hull of n

points in G and a constant c > b

2 � k f k2 such that k f � f

n

k2  c

n

.

We are now ready to prove our main theorem about the approximation of generalized bandlimited functions of the

form (2)–(3) by deep ReLU networks.

Theorem 3.2 (Deep networks for generalized bandlimited functions). Let B = [0, 1]

d

and f : B! R be a generalized

bandlimited function of the form

f (x) =

Z

Rd

F(w)K(w · x)dw, (46)

supp F ⇢ [�M,M]

d, M � 1, (47)

for some functions F : [�M,M]

d ! C and K : R ! C. Suppose that K is analytic in t = w · x 2 [�dM, dM] and

satisfies the assumption of Thm. 2.6 for some s > 1 and C

K

> 0. Suppose also that K is bounded by some constant

0 < D

K

 1 on the real axis, and that

Z

Rd

|F(w)|dw =

Z

[�M,M]

d

|F(w)|dw = C

F

< 1. (48)

Then, for any measure µ and any scalar 0 < ✏ < 1, there exists a deep ReLU network

e
f (x) with inputs x 2 B, that has

depth

L = O
0
BBBBB@

1

log

2

2

s

log

2

2

C

F

C

K

p
µ(B)

✏

1
CCCCCA (49)

and size

W = O
0
BBBBB@

C

2

F

µ(B)

✏2 log

2

2

s

log

2

2

C

F

C

K

p
µ(B)

✏

1
CCCCCA (50)

such that

����e
f (x) � f (x)

����
L

2

(µ,B)

=

sZ

B

|ef (x) � f (x)|2dµ(x)  ✏. (51)

Proof. Let F(w) = |F(w)|ei✓(w)

. We may write

f (x) =

Z

Rd

F(w)K(w · x)dw, (52)

=

Z

Rd

C

F

e

i✓(w)

K(w · x)

|F(w)|
C

F

dw. (53)

The integral in (2) represents f (x) as an infinite convex combination of functions in the set

G(w) = {�ei�
K(w · x), |�|  C

F

, � 2 R}. (54)
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In other words f (x) is in the closure of the convex hull of G(w). Since functions in G(w) are bounded in the L

2

(µ, B)-

norm by C

F

p
µ(B) (since D

K

 1), Thm. 3.1 tells us that there exists

5

f✏
0

(x) =

d1/✏2
0

eX

j=1

b

j

K(w

j

· x),

d1/✏2
0

eX

j=1

|b
j

|  C

F

, (55)

for some 0 < ✏
0

< 1 to be determined later, such that

���
f✏

0

(x) � f (x)

���
L

2

(µ,B)

 C

F

p
µ(B)✏

0

. (56)

We now approximate f✏
0

(x) by a deep ReLU network

e
f (x). Using Thm. 2.6, each K(w

j

· x) can be approximated

to accuracy ✏
0

using a network

e
K(w

j

· x) of depth and size

O
0
BBBB@

1

log

2

2

s

log

2

2

C

K

✏
0

1
CCCCA . (57)

We define the deep ReLU network

e
f (x) by

e
f (x) =

d1/✏2
0

eX

j=1

b

j

e
K(w

j

· x). (58)

This network has depth L = O
✓

1

log

2

2

s

log

2

2

C

K

✏
0

◆
and size W = O

✓
1

✏2
0

log

2

2

s

log

2

2

C

K

✏
0

◆
, and

|ef (x) � f✏
0

(x)| 
d1/✏2

0

eX

j=1

|b
j

||eK(w

j

· x) � K(w

j

· x)|,

 C

F

✏
0

,

which yields

����e
f (x) � f✏

0

(x)

����
L

2

(µ,B)

 C

F

p
µ(B)✏

0

. (59)

The total approximation error satisfies

����e
f (x) � f (x)

����
L

2

(µ,B)

 2C

F

p
µ(B)✏

0

. (60)

We take

✏
0

=
✏

2C

F

p
µ(B)

(61)

to complete the proof.

Let us end this section with comments on the constants C

F

, C

K

and µ(B); we start with C

F

. If F is a mollifier then

C

F

= 1, whereas if F is a normal distribution truncated to [�M,M]

d

then C

F

< 1. In general, however, C

F

might

grow algebraically or exponentially with the dimension d.

We continue with C

K

. Consider for example the complex exponential kernel K(t) = e

it

, t 2 [�dM, dM]. Eq. 44

yields

C

K

(s, dM) = e

dM

s�s

�1

2 , for any s > 1. (62)

5

We use Thm. 3.1 with c = b

2 > b

2 � k f k2, b = C

F

p
µ(B) and k · k = k · k

L

2

(µ,B)

.
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The resulting network to approximate a function to accuracy ✏ in the L

2

(µ, B)-norm with such a kernel has depth

L = O
0
BBBBBB@

1

log

2

2

s

0
BBBBB@dM

s � s

�1

2

+ log

2

C

F

p
µ(B)

✏

1
CCCCCA

2

1
CCCCCCA (63)

and size

W = O
0
BBBBBB@

C

2

F

µ(B)

✏2 log

2

2

s

0
BBBBB@dM

s � s

�1

2

+ log

2

C

F

p
µ(B)

✏

1
CCCCCA

2

1
CCCCCCA . (64)

We conclude with µ(B). If µ is a probability measure, then µ(B)  1 for any compact domain B. If µ is Lebesgue

measure, then µ(B) = 1 for the domain B = [0, 1]

d

we considered, but grows exponentially with the dimension d if

B = [0, L]

d

, L > 1. This is a common drawback in the approximation theory of neural networks for conquering the

curse of dimensionality, e.g., [12].

4. Discussion

We have proven new upper bounds for the approximation of bandlimited functions of the form (2)–(3), for which

the curse of dimensionality is overcome. Our proof is based on Maurey’s theorem and on the ability of deep ReLU

networks to approximate Chebyshev polynomials and analytic functions e�ciently.

There are many ways in which this work could be profitably continued. The space of bandlimited functions is a

type of Reproducing kernel Hilbert space (RKHS) and therefore a possible extension would be to look at di↵erent

types of RKHS. One could also relax the bandlimited assumption (3), e.g., to functions F whose derivatives are rapidly

decreasing. In this case, the kernel K could be approximated on the real line by Chebyshev polynomials on truncated

intervals or Hermite polynomials. The latter is another example of classical orthogonal polynomials, which can be

represented by a three-term recurrence relation similar to (18) and e�ciently implemented by deep ReLU networks.

Let us conclude this paper with a comment on deep versus shallow networks in the context of parallel computing

e�ciency. Since the depth L grows like O
⇣
log

2

2

1

✏

⌘
in Thm. 3.2, the approximation accuracy for deep networks can

be root-exponentially improved if L increases. Hence, very deep networks are more e�cient than shallow networks

when both parallel computing e�ciency and approximation e�ciency are considered. This is in contrast with the more

general case of continuous functions, the approximation of which via very deep networks might be less attractive in

terms of parallel computing [27].
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